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Overview

• Equilibria and periodic orbits of PDEs

• Newton-Krylov continuation methods

• Inexact Newton methods

• Iterative linear solvers and GMRES

• Stability

• An example
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Equilibria and periodic orbits of ODEs

Suppose

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R

is a large-scale (n� 1) autonomous system of ODEs obtained after the spatial discretization of a

system of parabolic PDEs and that

ϕ(t, x, p)

is its solution with initial condition x at t = 0 for a fixed value of p, that is, ϕ(0, x, p) = x.

We will assume that this system has been obtained as the discretization of a systems of evolutionary

parabolic PDEs (reaction-diffusion or Navier-Stokes equations, for instance).

We are interested in the computation of its equilibria x satisfying

f(x, p) = 0,

their dependence on the parameter p and their stability.

We are also interested in the periodic regims of the system given by the equations

x− ϕ(T, x, p) = 0,

g(x, p) = 0,

x being a point of the periodic orbit selected by the phase condition g(x, p) = 0 and T > 0 its

period.

In both cases one has to solve large-scale nonlinear systems of equations and to study the stability of

the resulting equilibria or periodic orbits.
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Continuation of zeros of a nonlinear system of equations

Consider a system of nonlinear equations depending on a parameter p

H(x, p) = 0, (x, p) ∈ U ⊂ Rm × R

with m� 1. We are interested in its solutions and their dependence on p.

Parameter and pseudo-arclength-like continuation methods are used to obtain the curves

(x(s), p(s)) of fixed points. They admit an unified formulation by adding an equation

h(x, p) = 0.

If h(x, p) = p− p0 the equation fixes the parameter p.

If h(x, p) = hTx (x − x0) + hp(p − p0), with (x0, p0)

and (hx, hp) being the predicted point and the tangent

to the curve of solutions, the hyperplane is transverse

to the curve of solutions if the prediction is not far away

from the previous point, and the algorithm allows passing

turning poits.

The system that determines a unique solution,

(x, p) ∈ Rm+1, is then

H̃(x, p) =

 H(x, p)

h(x, p)

 = 0 ∈ Rm+1 .
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The system H̃(x, p) = 0 is solved by an inexact Newton’s method:

starting from the initial (x0, p0),

(xi+1, pi+1) = (xi, pi) + (∆xi,∆pi),

where (∆xi,∆pi) satisfies the linear systemDxH(xi, pi) DpH(xi, pi)

h>x hp

∆xi

∆pi

 =

−H(xi, pi)

−h(xi, pi)


which is solved iteratively by matrix-free methods (GMRES(M), BiCGStab, TFQRM, etc.) which

only require the computation of matrix products, i.e., products of the formDxH(xi, pi) DpH(xi, pi)

h>x hp

δx
δp


and, eventually, the use of preconditioners.

GMRES(M) = Generalized Minimal Residual (with restarting dimension M)

BiCGStab = Biconjugate Gradient Stabilized

TFQRM = Transpose-Free Quasi-Minimal Residual
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An example of a matrix-free product

Consider the system of PDEs

∂τ c = (1/Pem)∂2
ssc− ∂sc−Dc exp(γ(1− 1/θ))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr) +BDc exp(γ(1− 1/θ)),

modelling a tubular exotermic chemical reactor (Heinemann and Poore 1981), with s ∈ [0, 1], and

where c, θ and τ are the non-dimensional concentration of a reactant, temperature and time,

respectivelly. Pem, Peh, D, β, B, θr and γ are non-dimensional parameters of the problem.

Suppose that all of them are fixed except D that will be our control parameter (p in the previous

slides), and that our state variable is x = (c, θ).

Let

H(x, p) =

 (1/Pem)∂2
ssc− ∂sc−Dc exp(γ(1− 1/θ))

(1/Peh)∂2
ssθ − ∂sθ − β(θ − θr) +BDc exp(γ(1− 1/θ))

 .

Then, if δx = (δc, δθ) and δp = δD,

DxH(x, p)δx+DpH(x, p)δp = (1/Pem)∂2
ssδc− ∂sδc− exp(γ(1− 1/θ))(Dδc+Dc(γ/θ2)δθ + δDc)

(1/Peh)∂2
ssδθ − ∂sδθ − βδθ +B exp(γ(1− 1/θ))(Dδc+Dc(γ/θ2)δθ + δDc)

 .
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Inexact Newton’s methods.
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Types of convergence

Iterative methods can be classified by their rate of convergence.

Definition. Let {xk} ⊂ Rn and x∗ ⊂ Rn. Then

• xk → x∗ q-quadratically if xk → x∗ and there is K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2.

• xk → x∗ q-superlinearly with q-order α > 1 if xk → x∗ and there is K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖α.

• xk → x∗ q-superlinearly if

lim
n→∞

‖xk+1 − x∗‖/‖xk − x∗‖ = 0.

• xk → x∗ q-linearly with q-factor σ ∈ (0, 1) if

‖xk+1 − x∗‖ ≤ σ‖xk − x∗‖.

Definition. Let {xk} ⊂ Rn and x∗ ⊂ Rn. Then xk → x∗ r-(quadratically, superlinearly,

linearly) if there is a sequence ξk ⊂ R converging q-(quadratically, superlinearly, linearly) to

zero such that

‖xk − x∗‖ ≤ ξk,

and xk → x∗ r-superlinearly with r-order α > 1 if the sequence ξk → 0 q-superlinearly with

q-order α.
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Newton’s method

Suppose we seek to solve the system

F (x) = 0

with x, F (x) ∈ Rn, and assume the following standard conditions hold

• F (x) = 0 has a solution x∗,

• There is a neiborhood of x∗, Ω ⊂ RN , such that DF : Ω→ RN×N is Lipschitz continuous with

Lipschitz constant γ > 0, i.e.,

‖DF (x)−DF (y)‖ ≤ γ‖x− y‖

for all x, y ∈ Ω,

• DF (x∗) is nonsingular.

Theorem. Under the above assumptions there is a δ > 0 such that if ‖x0 − x∗‖ < δ the

Newton iteration

xk+1 = xk + sk, with DF (xk)sk = −F (xk)

converges q-quadratically to x∗, i.e., there is a K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2.
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Inexact Newton methods

Suppose now that instead of solving

DF (xk)sk = −F (xk)

exactly, the linear system is solved by an iterative method with stopping criteria

‖DF (xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖.

Theorem. Let the standard conditions hold. Then there exists δ > 0 such that if

‖x0 − x∗‖ < δ, and {ηk} ⊂ [0, η] with η < η̄ < 1, then the inexact Newton iteration

xk+1 = xk + sk, with ‖DF (xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖,

converges q-linearly to x∗ with respect to the norm ‖ · ‖∗ = ‖DF (x∗) · ‖. Moreover

• if ηk → 0 the convergence is q-superlinear, and

• if ηk ≤ Kη‖F (xk)‖p for some Kη > 0 the convergence is q-superlinear with q-order 1+p.

Proposition. Under the standard conditions, and if xk → x∗, ‖xk − x∗‖∗ → 0 q-linearly if

and only if ‖F (xk)‖ does.
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Iterative linear algebra.
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Krylov methods for linear systems

Large-scale linear systems Ax = b of dimension n� 1 are usually solved by iterative Krylov

methods. The class of projection methods produce, from an initial guess x0, a sequence of

approximations, xk, to the solution x∗ = A−1b, in the affine subspace xk ∈ x0 +Kk, which satisfy

the Petrov-Galerkin condition

b−Axk ⊥ Lk,

where Kk and Lk are two k-dimensional linear subspaces. If Lk = AKk, then xk minimizes

||b−Ax||2 over x ∈ x0 +Kk.

In the particular case of GMRES, Lk = AKk, and Kk is the Krylov subspace

Kk = {r0, Ar0, A2r0, . . . , A
k−1r0}, with r0 = b−Ax0.

It follows that

rk =b−Axk = b−A(x0 + zk) = r0 +Azk =

= Ir0 +A(α1r0 + α2Ar0 + · · ·+ αkA
k−1r0)

= (I + α1A+ α2A
2 + · · ·+ αkA

k)r0 = pk(A)r0

pk being a polynomial of degree k, with pk(0) = 1.
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Now, by using that

• If A = V ΛV −1 then Al = V ΛlV −1 and p(A) = V p(Λ)V −1

• If Λ = diag(λ1, . . . , λn) then p(Λ) = diag(p(λ1), . . . , p(λn))

• ‖p(A)‖2 ≤ ‖p(Λ)‖2‖V ‖2‖V −1‖2 = κ2(V )‖p(Λ)‖2, with κ2(V ) = ‖V ‖2‖V −1‖2 the norm-2

condition number of V .

• If Λ = diag(λ1, . . . , λn) then ‖p(Λ)‖2 = maxi=1,...,n |p(λi)|

the following result is obtained.

Theorem. (Saad and Schultz 1986) Assume that A is diagonalizable with A = V ΛV −1, where

Λ = diag(λ1, · · · , λn) is the diagonal matrix of eigenvalues, Pk is the set of polynomials of

degree at most k, and κ2(V ) = ‖V −1‖2‖V ‖2 is the norm-2 condition number of V . Then at

the k-th step of GMRES

‖b−Axk‖2
‖b−Ax0‖2

≤ κ2(V ) inf
p∈Pk
p(0)=1

max
i=1,...,n

|p(λi)|.

Proof:

‖b−Axk‖2 = inf
p∈Pk
p(0)=1

‖p(A)r0‖ ≤ κ2(V ) inf
p∈Pk
p(0)=1

max
i=1,...,n

|p(λi)|‖b−Ax0‖2.
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It remains to solve the minimizing problem infx∈x0+Kk
‖b−Ax‖2.

Suppose that v1, . . . , vk form an orthonormal basis of Kk and let Vk = [v1, . . . , vk]. Then if

x = x0 + Vky ∈ x0 +Kk with y ∈ Rk and

inf
x∈x0+Kk

‖b−Ax‖2 = inf
y∈Rk

‖b−A(x0 + Vky)‖ = inf
y∈Rk

‖r0 −AVky‖.

The orthonormal basis is found by means of the Arnoldi factorization.

1. Start: Choose as initial unitary vector v1 = r0/‖r0‖, and set β = ‖r0‖.

2. Set the (k + 1)× k matrix H̃k = {hi,j} to zero.

3. Iterate: for j = 1, 2, . . . , k do

(a) compute Avj

(b) hi,j = 〈Avj , vi〉, i = 1, 2, . . . , j

(c) wj = Avj −
∑j
i=1 hi,jvi (Gram-Schmidt orthogonalization)

(d) hj+1,j = ‖wj‖, if hj+1,j = 0 stop

(e) vj+1 = wj/‖wj‖

If Vk = [v1, . . . , vk] then

• The columns of Vk form an orthonormal basis of Kk = {v1, Av1, A2v1, . . . , Ak−1v1}.

• If H̃k is the (k + 1)× k matrix whose nonzero entries are the hi,j then

AVk = Vk+1H̃k or AVk = Vk+1Hk + wke
>
k

where wk = hk+1vk+1, and Hk is H̃k without the last row.
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Now

‖r0 −AVky‖2 = ‖r0 − Vk+1H̃ky‖2 = ‖V Tk+1(βv1 − Vk+1H̃ky)‖2 = ‖βe1 − H̃ky‖2

with e1 = (1, 0, . . . , 0)T ∈ Rk+1 and y ∈ Rk.

The complete restarted version of the algorithm GMRES(m) is then

1. Set l = 0.

2. Start: Choose as initial unitary vector v1 = r0/‖r0‖, set ρ = β = ‖r0‖, k = 0.

3. do while ρ > ε, k < m, and l < lmax.

(a) Set k = k + 1 and l = l + 1

(b) Set the (k + 1)× k matrix H̃k = {hi,j} to zero.

(c) Iterate: for j = 1, 2, . . . , k do

(d) compute Avj

(e) hi,j = 〈Avj , vi〉, i = 1, 2, . . . , j,

(f) wj = Avj −
∑j
i=1 hi,jvi, (Gram-Schmidt orthogonalization)

(g) hj+1,j = ‖wj‖, if hj+1,j = 0 stop

(h) vj+1 = wj/‖wj‖
(i) find yk the minimizer of ‖βe1 − H̃ky‖2
(j) set ρ = ‖βe1 − H̃kyk‖2

4. if ρ < ε then set xk = x0 + Vkyk as approximate solution and exit

5. if l > lmax (to many iterations without convergence) exit

6. if k = m set x0 = xk, r0 = b−Ax0 and restart the algorithm (go to 2).
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Preconditioning

If the spectrum of A is not clustered it is necessary to use preconditioners to accelerate the

convergence of the iterative solvers for the linear system Ax = b.

Suppose M is a matrix which approximates A (M ≈ A) and is easy to invert (easy to solve systems

with matrix M).

• Left preconditioning. Solve the system

M−1Ax = M−1b.

Its solution is that of Ax = b.

• Right preconditioning. Solve system

AM−1y = b.

Then the solution of Ax = b is x = M−1y.

This means that when applying a matrix-free method (GMRES, for instance) each matrix product

by A is substituted by a matrix product by A followed by a matrix solve with matrix M in the case

of left preconditioning, or by a matrix solve with matrix M followed by a matrix product by A for

right preconditioning.

Advanced Computational and Experimental Techniques in Nonlinear Dynamics, August 3-14 2015, Cusco – p. 15



Spatial discretization of the HP problem

Consider the system of PDEs

∂τ c = (1/Pem)∂2
ssc− ∂sc−Dc exp(γ(1− 1/θ))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr) +BDc exp(γ(1− 1/θ)),

in the interval s ∈ [0, 1], with boundary conditions

∂sc = Pem(c− 1) at s = 0, ∂sc = 0 at s = 1,

∂sθ = Peh(θ − 1) at s = 0, ∂sθ = 0 at s = 1.

To implement the boundary conditions easily we substitute c = c̄+ 1, θ = θ̄ + 1 in the equations

and boundary conditions to obtain, after removing the overbars the equations

∂τ c = (1/Pem)∂2
ssc− ∂sc−D(c+ 1) exp(γθ/(θ + 1)))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr + 1) +BD(c+ 1) exp(γθ/(θ + 1))),

with boundary conditions

∂sc = Pemc at s = 0, ∂sc = 0 at s = 1,

∂sθ = Pehθ at s = 0, ∂sθ = 0 at s = 1.

If D = 0 and θr = 1 then c = 0 and θ = 0 is a solution of the problem.
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We use collocation methods in a Gauss-Lobatto mesh. Let si = 0.5(1− cos(πi/nd)), i = 0, . . . , nd

and D(l) = {d(l)
i,j} the (nd + 1)× (nd + 1) matrices which approximate the derivatives on the mesh,

i.e,

f (l)(si) ≈
nd∑
j=0

d
(l)
i,jf(sj), i = 0, . . . , nd.

Let ci = c(si), θi = θ(si) and approximate the boundary conditions (of c, for instance) by

nd∑
j=0

d
(1)
0,jcj = Pemc0,

nd∑
j=0

d
(1)
nd,j

cj = 0.

From these two equations the values at the end points can be obtained as a linear combination of

the values at the inner points,

c0 =

nd−1∑
j=1

α0,jcj , cnd =

nd−1∑
j=1

αnd,jcj .

And then, for instance,

∂2
ssc(si) ≈

nd−1∑
j=1

(d
(2)
i,j + di,0α0,j + di,nd

αnd,j)cj =

nd−1∑
j=1

d̃
(2)
i,j cj , i = 1 . . . , nd − 1

and D̃(2) = {d̃(2)
i,j } is the (nd − 1)× (nd − 1) matrix which approximates ∂2

ss incorporating the

boundary conditions and acting only on the values at the inner points.
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After the spatial discretization of

∂τ c = (1/Pem)∂2
ssc− ∂sc−D(c+ 1) exp(γθ/(θ + 1)))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr + 1) +BD(c+ 1) exp(γθ/(θ + 1))),

the following stiff system of ODEs of dimension 2(nd − 1) is obtained

ċi =

nd−1∑
j=1

(
(1/Pem)d̃

(2)
i,j − d̃

(1)
i,j

)
cj −D(ci + 1) exp(γθi/(θi + 1)))

θ̇i =

nd−1∑
j=1

(
(1/Peh)d̃

(2)
i,j − d̃

(1)
i,j − βI

)
θj − β(1− θr) +BD(ci + 1) exp(γθi/(θi + 1))),

i = 1, . . . , nd − 1

which is integrated with the subroutine DLSODPK from the ODEPACK library.
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Effect of the preconditioner in the HP problem

In all the following examples we have taken nd = 30 and therefore the dimension of the dynamical

system is n = 2(nd − 1) = 58.

For the next examples Pem = Peh = 5, B = 0.5, γ = 25, β = 3.5, θr = 1, and D will be the free

parameter.

If δx = (δc, δθ) then,

DxH(x, p)δx =

 (1/Pem)∂2
ssδc− ∂sδc−N

(1/Peh)∂2
ssδθ − ∂sδθ − βδθ +BN

 ,

with N = exp(γθ/(θ + 1))D(δy + (y + 1)(γ/(θ + 1)2)δθ)

Two possible preconditioners are

M1 =

(1/Pem)∂2
ss 0

0 (1/Peh)∂2
ss

 ,

and

M2 =

(1/Pem)∂2
ss − ∂s 0

0 (1/Peh)∂2
ss − ∂sδ − βI

 .
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The following figure shows the convergence of GMRES at the first Newton iteration for D = 0.1

starting with c = 0 and θ = 0. The size of the linear system is n = 58, and the dimension of the

Krylov subspace was m = 10 or m = 58. Norm of the residual = ‖b−Axk‖2.
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Stability of fixed points (equilibria)

Given an autonomous system of ODE ẋ = f(x), with f : U ⊂ Rn → Rn (which we will assume to

be at least C1), let ϕ(t, x) its solution with initial condition x.

Let x∗ be a fixed point (or equilibrium) of the system of EDOs, i.e., f(x∗) = 0.

Definition. The fixed point is said to be Lyapunov stable if for every neighborhood N of x∗
there is a neighborhood M ⊂ N of x∗ such that if x ∈M , then ϕ(t, x) ∈ N for all t ≥ 0.

An equilibrium that is not stable is called unstable.

Definition. The fixed point is said to be asymptotically stable if it is Lyapunov stable and

there is a neighborhood N of x∗ such if x ∈ N then limt→∞ ‖ϕ(t, x)− x∗‖ = 0.

Definition. The fixed point said to be exponentially stable if it is asymptotically stable and

there exist α > 0, and β > 0, and a neighborhood N of x∗ such that if x ∈ N , then

‖ϕ(t, x)− x∗‖ ≤ α‖x− x∗‖e−βt, for t ≥ 0.

Theorem. If f is of class C1 and x∗ is a fixed point such that all the eigenvalues of Df(x∗)

have strictly negative real parts, then x∗ is exponentially stable (and hence asymptotically

stable). If at least one eigenvalue has strictly positive real part, then x∗ is unstable.

The eigenvalues of Df(x∗) close the imaginary axis have to be computed to detect bifurcations of

fixed points.
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Stability of periodic orbits

Definition. A set Λ is said to be invariant under the flow ϕ(t, x) if ϕ(t,Λ) = Λ for all t; that

is, for each x ∈ Λ, ϕ(t, x) ∈ Λ for any t.

Definition. The invariant set is said to be stable if for every neighborhood N of Λ there is a

subset M ⊂ N of Λ such that if x ∈M , then ϕ(t, x) ∈ N for all t ≥ 0.

An set that is not stable is called unstable.

Definition. The invariant set is said to be asymptotically stable if it is stable and there is a

neighborhood N of Λ such if x ∈ N then, then limt→∞ ρ(ϕ(t, x),Λ) = 0, with

ρ(x,Λ) = infy∈Λ(‖x− y‖).

A trajectory x(t) = ϕ(t, x) is a periodic orbit if there is a minimal T > 0 such that ϕ(T, x) = x.

Consider the first variational equation Ṁ = Df(x(t))M about the periodic orbit x(t), with initial

condition M(0) = I. The solution at time T is called the monodromy matrix M(T ). Its eigenvalues

are called the Floquet multipliers of the periodic orbit.

Theorem. The monodromy matrix M(T ) always has a unit eigenvalue with eigenvector

ẋ(0) = ẋ(T ) = f(x(0)).

This unit eigenvalue is named the trivial eigenvalue of the periodic orbit.

Theorem. If x(t) is a periodic orbit of a C2 flow ϕ(t, x) that is linearly asymptotically stable

(its monodromy matrix has all the eigenvalue inside the unit circle except the trivial one), then

it is asymptotically stable.

The eigenvalues of M(T ) of largest magnitude have to be computed to detect bifurcations of the

periodic orbits.
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Eigenvalue problems

Two main methods ar available to obtain the leading (largest magnitude) eigenvalues of a n× n
large-scale (n� 1) matrix A.

Subspace iteration (implemented, for instance, in LOPSI and SRRIT).

1. Start: Choose an initial system of orthonormal vectors Vm = [v1, . . . , vm], (m� n)

2. For l=1,. . . , k do

(a) Compute Zm = AVm

(b) Orthonormalize Zm by computing Zm = QmRm, and set Vm = Qm

3. Form Bm = V TmAVm and compute the eigenpairs (λi, zi), i = 1, · · · ,m of Bm by the QR

method (LAPACK).

4. Test for convergence of eigenvalues and/or eigenvectors

5. Stop: When satisfied, compute the approximate eigenvectors of A as xi = Vmzi, i = 1, · · · ,m.

The λi, i = 1, · · · ,m are the approximate eigenvalues. If not go to 2.

Theorem. Suppose that the n eigenvalues of A are ordered by decreasing modulus as follows:

|λ1| ≥ |λ2| ≥ · · · |λm| > |λm+1| ≥ · · · ≥ |λn|. If the initial set of vectors Vm is not deficient in

the eigenvectors corresponding to λ1, · · · , λm, and if k is large enough, then previous algorithm

computes approximations λ̂i,k to λi (i = 1, . . . ,m) with

|λ̂i,k − λi| = O

(∣∣∣∣λm+1

λi

∣∣∣∣+ εi,k

)k
, lim

k→∞
εi,k = 0.

Moreover, if λi is simple, then εi,k = 0.

Advanced Computational and Experimental Techniques in Nonlinear Dynamics, August 3-14 2015, Cusco – p. 23



Eigenvalue problems

Arnoldi’s method (implemented, for instance, in ARPACK).

1. Start: Choose an initial unitary vector v1.

2. Iterate: Until convergence do:

(a) Compute the Arnoldi factorization AVm = VmHm + wmeTm of length m. The columns of

Vm form an orthonormal basis of Km = {v1, Av1, A2v1, . . . , Am−1v1}.
(b) Compute the eigenpairs (λi, zi), i = 1, · · · ,m of Hm = V TmAVm by the QR method

(LAPACK).

(c) Test for convergence of eigenvalues and/or eigenvectors. If not converged select a new initial

vector v1 from the Arnoldi factorization.

3. Stop: When satisfied, compute approximate eigenvectors of A as xi = Vmzi, i = 1, · · · ,m.

The λi, i = 1, · · · ,m are the approximate eigenvalues.

Theorem. Suppose that the n eigenvalues of A are simple and that λ2, . . . , λn are enclosed by

a circle centered at ξ and passing through λ2, and that λ̂1 is the approximation to λ1 obtained

by Arnoldi’s method, then

|λ̂1 − λ1| ≤ c
∣∣∣∣λ2 − ξ
λ1 − ξ

∣∣∣∣m−1

,

with c a constant. This gives the same error bound as m− 1 steps of the power method applied

to A− ξI.
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The Arnoldi factorization

1. Start: Choose an initial unitary vector v1.

2. Iterate: for j = 1, 2, . . . ,m compute

(a) hi,j = 〈Avj , vi〉, i = 1, 2, . . . , j,

(b) wj = Avj −
∑j
i=1 hi,jvi, (Gram-Schmidt orthogonalization)

(c) hj+1,j = ‖wj‖, if hj+1,j = 0 stop

(d) vj+1 = wj/hj+1,j

If Vm = [v1, . . . , vm] then

• The columns of Vm form an orthonormal basis of Km = {v1, Av1, A2v1, . . . , Am−1v1}.

• If Hm is the m×m Hessenberg matrix whose nonzero entries are the hi,j then

AVm = VmHm + wme
T
m, with wm = hm+1,mvm+1, and V TmAVm = Hm

Proposition. Let yi,m be an eigenvector of Hm associated with the eigenvalue λi,m, and

ui,m = Vmyi,m the Ritz approximate eigenvector of A. Then,

(A− λi,mI)ui,m = hm+1,me
T
myi,mvm+1

and, therefore

‖(A− λi,mI)ui,m‖2 = hm+1,m|eTmyi,m|.
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Eigenvalue Transformations

To find the leading (maximal real part) eigenvalues of Av = λv the following transformations can be

used:

• Shift-invert with real or complex shift:

Av = λv =⇒ (A− σI)−1v = µv with µ = 1/(λ− σ).

The circle C(σ, |λ− σ|) in the λ-plane is mapped to the circle C(0, |λ− σ|−1) in the µ-plane.

• Generalized Cayley transformation:

Av = λv =⇒ (A− σI)−1(A− τI)v = µv with µ = (λ− τ)/(λ− σ).

The line Re(λ) = (σ + τ)/2 is mapped to the unit circle and Re(λ) < (σ + τ)/2

(Re(λ) > (σ + τ)/2) is mapped to the interior (exterior) of the unit circle.

• Double complex shift: If σ = ρ+ iθ,

Av = λv =⇒ (A− σI)−1(A− σ̄I)−1v = µv with µ = 1/((λ− ρ)2 + θ2).

• Exponential:

Av = λv =⇒ exp(TA)v = µv with µ = exp(λT ).

The line Re(λ) = 0 is mapped to the unit circle and Re(λ) < 0 (Re(λ) > 0) is mapped to the

interior (exterior) of the unit circle.

The previous methods (subspace or Arnoldi iterations) can be used to find the eigenvalues µ with

maximal modulus of the transformed problems.
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Continuation of fixed points of ODEs

Summarizing, it is possible to find the equilibria of the system of ODEs

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R,

by Newton-Krylov methods by a generic continuation code if one can provide three subroutines:

• fun(X, H) computing the function H = f(x, p) from X = (x, p),

• dfun(X, δX, δH) which computes the action by the Jacobian δH = Dyf(x, p)δx+Dpf(x, p)δp

from X = (x, p) and δX = (δx, δp), and

• prec(X, h, δX, δZ) which solves MδZ = δX from X = (x, p), h = (hx, hp), and δX = (δx, δp),

M being an approximation of Dxf(xi, pi) Dpf(xi, pi)

h>x hp

 .

In the previous example (HP problem) we used an approximation of the form

M =

M 0

0 1

 .
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Continuation of periodic orbits of ODEs

To compute periodic orbits of

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R,

by Newton-Krylov methods two subroutines are needed:

• fun(X, H) computing the function

H(x, T, p) =

x− ϕ(T, x, p)

g(x, p)


from X = (x, T, p), g(x, p) being a phase condition. This involves integrating

ẏ = f(y, p) with initial conditions y(0) = x during a time T.

• dfun(X, δX, δH) which computes the action by the Jacobian of the system

δH = DH(x, T, p)(δx, δT, δp) =

δx−Dxϕ(T, x, p)δx−Dpϕ(T, x, p)δp− f(x, p)δT

Dxg(x, p)δx+Dpg(x, p)δp


from X = (x, T, p) and δX = (δx, δT, δp).
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The matrix product

Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp

can be computed by integrating a first variational equation. If

y(t) =ϕ(t, x, p)

y1(t) =Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp

then y1 satisfies

ẏ1 = Dyf(y, p)y1 +Dpf(y, p)δp and y1(0) = δx,

because ϕ(0, x, p) = x.

This equation must be solved coupled with that for y,

ẏ = f(y, p)

ẏ1 = Dyf(y, p)y1 +Dpf(x, p)δp
with initial conditions

y(0) = x

y1(0) = δx.

Finally

Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp = y1(T ).
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Results for the HP problem
In this example Pem = Peh = 5, B = 0.5, γ = 25, β = 3.50, and θr = 1.
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Results for the HP problem
In this example Pem = Peh = 5, B = 0.5, γ = 25, β = 3.00, and θr = 1.
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Other objects which have been computed by Newton-Krylov methods

• Periodic orbits by multiple shooting.

• Two-dimensional invariant tori.

• Curves of codimension-one bifurcations of equilibria and periodic orbits.
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