

Estudios Ópticos en el Procesamiento de Películas Delgadas

Arturo Mendoza Galván

CINVESTAV-IPN, Unidad Querétaro

I Taller Internacional de Ciencia de Materiales Universidad Autónoma de Puebla Instituto de Física "Luis Rivera Terrazas" Enero de 2005

Contenido:

- 1. ITO: Efecto de la temperatura de tratamiento. *Cuauhtémoc Trejo (M) y Miguel Gracia (IFUAP)*.
- Co-SiO₂: Efectos de composición y temperatura de tratamiento. Alicia Ramos (M) y Hugo Tototzintle (M).
- Ni-SiO₂: Efectos de composición y temperatura de tratamiento. *Julián Hernández (D*).
- 4. Oxidación de Ni. Ana María López (D).

Análisis de Datos

Ejemplos: Efecto de reflexiones en la cara posterior del substrato sobre las mediciones elipsomètricas.

Óxido de indio estaño (ITO) sobre vidrio

Ejemplos: ITO sobre vidrio

Datos experimentales

Ajustes para tres ángulos de incidencia

Efecto sobre las constantes ópticas del ITO Oscilador de Lorentz generalizado

Ajustes de R y T en el infrarrojo

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\varepsilon_{\infty}\omega_p^2}{\omega(\omega + i\nu)}; \quad \sigma_{IR} = \frac{\varepsilon_0\varepsilon_{\infty}\omega_p^2}{\hbar\nu},$$

Constantes ópticas del ITO y frecuencia de plasma

Parámetros de ajuste y conductividad eléctrica

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\varepsilon_{\infty}\omega_p^2}{\omega(\omega + i\nu)}; \quad \sigma_{IR} = \frac{\varepsilon_0\varepsilon_{\infty}\omega_p^2}{\hbar\nu},$$

Películas compuestas Co-SiO₂

Sitios tetraédricos y octaédricos

0

Películas compuestas Co-SiO₂

Efecto de la viscosidad de la solución precursora. Formación de Co_3O_4 en la superficie y en el volumen de SiO₂.

Compuestos Ni-SiO₂

10NiO+90SiO₂

20NiO+80SiO₂

Infrarrojo: SiO₂ sobre Si

Compuestos Ni-SiO₂

40NiO+60SiO₂

(a)

(b)

(C)

800

Formación de partículas de NiO en SiO₂

Transformación de partículas de NiO en partículas de Ni.

Tratamiento en aire a 500°C

Tratamiento en H₂/N₂

Formación de una capa superficial de NiO

NiO, 22 nm SiO₂:Ni²⁺,1036 nm vidrio

Oxidación de Níquel

Oxidación de Níquel

Sumario

El análisis de datos ópticos sobre un intervalo amplio de longitudes de onda permite determinar diferentes parámetros ópticos y microestructurales de la muestra.

Con lo anterior es posible estudiar el efecto de las variables del procesamiento sobre las cantidades de interés.

Incorporación de diferentes especies en los poros del SiO₂

