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Preface \%

Preface

Fortran has been the principal programming language of the scientific community since
the mid-1950s and has evolved over that time. The 1978 standard version, called Fortran
77, saw extremely wide use. Fortran 90 is the next step in the evolution of Fortran; it sup-
ports all of the features of Fortran 77 as well as many new ones which can make program-
ming easier and more efficient. The purpose of this book is to provide a concise yet
complete reference for Fortran 90.

Though there are numerous examples, this reference is neither a programming nor Fortran
90 tutorial; it assumes some familiarity with Fortran 77 programming. Though focusing
mainly on standard Fortran 90, a separate chapter on the Absoft implementation of Fortran
90 describes implementation-specific features, including extensions to support interopera-
bility with other languages and to facilitate porting of extended Fortran 77 legacy code.

O 0 0 0 0 0 O O 0

Chapter 1 summarizes various “structural” aspects of a Fortran 90 program: source form,
program units (e.g., procedures, modules) “parts” (e.g., specification part, execution part),
etc. It also indicates how to read the formal syntax rules (BNF), heavily relied upon
throughout.

Chapter 2 describes the Fortran 90 intrinsic data types. Those familiar with Fortran 77 will
recognize them all. The one new feature here is the type “kinds” and kind parameters. All
implementations must provide at least two kinds of reals (single and double precision),
and may provide more; accordingly the Fortran 77 double precision type is deprecated.

Chapter 3 describes the Fortran 90 features for user-defined data types, formally called
derived types (as they are derived from the intrinsic types). This provides for the first time
in standard Fortran, data structures, including dynamic (linked) structures, and most of the
data abstraction capabilities of a modern object-oriented language. The generic procedure
and data abstraction features are superb (but lacking are inheritance and polymorphism).

Chapter 4 describes the Fortran 90 array-processing language. This is one of the major
features of Fortran 90, and gives the language much of the array power (albeit with Fortran
syntax and efficiency) of APL. In addition to array-level operations, there are two new
facilities for dynamic arrays, including a couple of flavors of allocatable arrays.

Chapter 5 is an identification of many of the Fortran 90 features that are redundant with
other (usually more modern) features. This includes the features “deprecated” in the For-
tran 90 standard and which may therefore be removed in future versions of the Fortran
standard.

Chapter 6 describes the Fortran 90 Input/Output facilities. There's not much new here
beyond Fortran 77, additional file connection specifiers and name-directed (namelist) 1/0
being the main ones. These features require two chapters and 47 (large) pages to fully
describe in the Fortran standard; they consume 127 (smaller) pages in the exhaustive For-
tran 90 Handbook (see below).
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Chapter 7 describes the Fortran 90 control structures. To the Fortiagohstruct are
added: a case construct and three modern loop constructs (do while, do forever with exit, a
modern form of the indexeatb).

Chapter 8 describes the Fortran 90 module program unit and its uses. This is a major addi-
tion to Fortran and provides flexible software “packaging”, complete with information
hiding (public, private) capabilities.

Chapter 9 describes the Fortran 90 procedure facilities. Much of this will be familiar to
Fortran programmers, but there are some significant features new in Fortran 90. These
include explicit procedure interfaces, user-defined generic procedures, module and inter-
nal procedures, and operator definition.

Chapter 10 summarizes Fortran 90's 113 intrinsic procedures. These include, in addition to
the traditional numeric and character computational functions, numeric environmental
inquiry functions, array-processing and inquiry functions, bit-processing procedures, and
a few intrinsic subroutines.

Chapter 11 is the complete BNF for Fortran 90, extracted from the Fortran standard. This
is the rigorous description of the Fortran syntax, and this reference relies very heavily on
it; in many cases reference to the syntax rules in chapter 11 is the extent to which the syn-
tax is described, with the text devoted primarily to describing the semantics and con-
straints related to the syntax.

Chapter 12 describes various implementation-specific values (e.g., kind values), options
(e.g., compiler options), and extensions in the Absoft implementation of Fortran 90.

O 0 0 0 0 0 0 0 0

This reference is intended to completely describe all of Fortran 90, but being concise it
may give short shrift to some of the more subtle details of the language. The recom-
mended sources to pursue these details are the following:

1. The fortran standardA committee draft of the version of the Fortran standard cur-
rently under development is available on the Fortran standard committee’s web site,
http://www.ionet.net/~jwagener/j3. As of this writing standing document J3/007 is the
working draft of the Fortran 2000 standard, a very substantial subset of which is the
official definition of Fortran 90 (less five of the deprecated Fortran 90 features);
because of copyright restrictions the Fortran 90 standard cannot be posted publically.

2. The fortran 90 Handbogkby Adams, Brainerd, Martin, Smith, and Wagener. This
book was published by McGraw-Hill in 1992, and is an exhaustive, 740-page refer-
ence on Fortran 90; its chapter organization is the same as the Fortran 90 standard and
it was intended as a “readable version” of that standard.

Jerry Wagener

June 1998
Jerry@Wagener.com
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1 Program Structure

This concise reference to Fortran 90 summarizes all aspects of the language in a crisp,
concise manner. This reference is neither a programming nor Fortran 90 tutorial; it
assumes some (but not extensive) familiarity with Fortran 77 programming concepts.

This chapter summarizes various "structural" aspects of a Fortran 90 program: source
form, program units (e.g., procedures, modules), "parts” (e.g., specification part, execution
part), etc. It also indicates how to read the formal syntax rules (BNF) used throughout.

syntax

Chapters 1-9 rely heavily on, and make frequent reference to, chapter 11, which is a com-
plete BNF description of Fortran 90; while there are numerous examples of syntax
throughout, this reference primarily lets syntax rules (each witiRandmber) of chapter

11 "do the talking" for a complete and rigorous account of the Fortran 90 syntax. The var-
ious chapters describe the associated semantics; no semantics are omitted, though some
(especially those related to the "deprecated" features) are indeed brief.

The characteristics of the formal BNF of chapter 11 are summarized at the beginning of
that chapter. A somewhat more informal form often will be used in chapters 1-9 in describ-
ing a feature. For example: a Fortran 90 programmer-defiaeeis (R304:

letter [ name-character ] ...

where aname-characteis a letter, (decimal) digit, or underscoretharacter.
The maximum length of a name is 31 characters; letters may be either upper or
lower case (the case is not significant in names and keywords).

Square brackets ([ ]) indicate optionality and square brackets followed by three dots ([] ...)
indicate optionally repeated any number of times. Constraints (like the 31 limit for name
lengths) will be mentioned. In those cases where the language imposes no constraints, an
implementation might. To take an extreme example, the internal subprogram part of a
function (say) may contain, according to the BNrtdrnal-subprogram ] ... without limit;

clearly no contemporary implementation could cope with a function having ten trillion
internal functions, even if the programmer could (1?).

Chapters 1-9 will contain a number of short, illustrative examples. The predominant style
in these examples will be: keywords in all lower caseefd), procedure and variable
names starting with a lower-case lettemfidPoint ), main program, module, and derived-
type names starting with an upper-case letieliofvorld , RangeArithmetic ), constants in

all upper caseN, QUAD), "free-form" source (described below), and modest indentation of
internal structure. A (nonsense) example is:

program HelloWorld I nonsense example
use RangeArithmetic ! this program uses a module
real(QUAD) :: X(N) ! a "quad-precision" array
type(Range) :: m1=Range(0,6) ! variable of user-defined type

X(1) = midPoint(m1)
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if (x(1) > 0) then
print *, "Hello, world; the midpoint of m1 is: ", x(1)
end if
end program

There are no column restrictions in free-form source, except that lines have a 132 charac-
ter limit, and an exclamation poinf) (nitiates anend-of-line commenffrom where it

begins to the end of that line). Blanks must be used to separate keywords and names (e.g.,
the blanks are significant pogram Helloworld anduse RangeArithmetic above); the other

blanks in the above example are used for purposes of readability, not because they are syn-

tactically required by the languadeThe above program is syntactically legal Fortran 90
if (and only if) a module namerlangeArithmetic  exists and it defines integer constants
andQUAD, a derived-type namerbnge, and a real (or integer) function nameidPoint

that takes an argument of tyRenge.

Every Fortran program is a setgybgram units each of which is a sequencestdtements

- the above example has nine statements, each on a separate line. This is the normal pat-
tern, but there are two other aspects of free-form source, both used occasionally, but spar-

ingly, in subsequent examples: (1) two (or more) statements can appear on the same line,

separated by a semicolon (the second statement can be null if you want to simulate the C

style of ending a statement with a semicolon); (2) a statement can be continued on the next

line by ending the (first) line (before any end-of-line comment) with an ampergand (

program units

A Fortran program is a set of (related) individual program uRIgD(), consisting of one

main program(R1101J), zero or morexternal subprogram@203, zero or morenodules
(R1109, and zero or morblock dataunits 111Q. The Fortran standard does not spec-

ify "where" these parts reside on a computing system, but typically one or more complete
units are placed in a file; each such file is a separately-conguilagilation unit The

order of compiling such compilation units is normally immaterial, except that a module
must be compiled before any units using that module, and the main program should be
compiled last if an executable program is to be prepared therefrom. (For small programs
everything can be placed in one file, with the modules first and the main program last.)

1. In Fortran’s original fixed-form source (see chapter 5) blanks are never significant (e.g.,
never required) except in character strings, but blanks could be used freely for improv-
ing readability. Blanks could even be used within keywords and names; for example:
integer  could be writterinteger . In free-form source blanks are significant (token
delimiters) and must not be used within a keyword, name, or constant (except character
constants), and (one or more) must be used to separate (delimit) consecutive keywords
and names. The exceptions to this rule are that the separating blanks are optional in the
foIIowing keyword Sequencedock data , double precision , else if, go to, in out , select case ,
and all that start with the woedd. The nonletter nondigit characters serve as delimiters
and blanks may be freely used with (on either side of) them.
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A large program unit can be spread across multiple files and “put back together” with
include linesin a compilation unit. The include line, which is not a Fortran statement (but
rather a compiler directive), has the foriude file-name and cannot have an end-of-line
comment; during compilation the compiler replaces the include line with the contents
(e.g., common block definitions) of the specified file. With the advent of modules in For-
tran, there are not many situations in which the include line is needed.

Execution of a program begins with its main program, which ca#lyprocedures defined

in external subprogram units and modules to perform computations. In addition, modules
may provide the main program (or any of the procedures it calls) with various “global”
entities, such as global constants and variables, type definitions, and procedure interfaces.
Ignoring the (unnecessary and not recommended) “attribute” staterREAB-$38 - see

chapter 5 - the eight sections of these program units are as depicted in the following dia-
grams.

main programs external subprograms module program unifs

function StatementR1219 or

program StatementR1102 subroutine  StatementR1219 module Statementf1105
use Statementsf110) —fF— ——
implicit statementsR540 —}— —4—

specification$

(R422 R1201 R501) e N

executable construct®?15 }— see note

contains Statement1225 44— —4—

internal subprogranigR211)-4— module subprogram&g13
end statementR1103 end statementR1218 R1222 | end statementR1109

a. Section 4 may also contatmmon (R548),data (R529),equivalence (R545),namelist (R543), and

save (R523) statementsormat statements (R1001) may be included in sections 3-5 of main
programs and external subprograms, efgl statements (R1223) may be included in parts 3-5 of
external subprograms and part 7 of modules (but not in part 7 of main programs and external
subprograms).

b. Module program units do not have section 5.

c. Internal subprograms must not contain internal subprograms (but module subprograms may).

Sections 1 and 8 define the beginning and end of the program unit, and are the only sec-
tions that are not optional. Section 2 provides the program unit access to any modules it
uses. Section 3 modifies the implicit environment (or replaces itimitiit none ). Sec-

tion 4 is the heart of thepecification parbf the program unit; it is here that all the local
constants and variables are declared and any derived types and interface blocks not pro-
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vided by modules are defined. Section 5 isekecution partwhich represents the pri-

mary computation part of the program unit; note that modules do not have an execution
part (they are intended as a source of definitions used by other program units). Section 6 is
a keyword that marks the beginning of any internal or module subprograms (section 7);
sections 6 and 7 go together - if one is present the other must be also. Each internal or
module subprogram has the same structure as an external subprogram, except that internal
subprograms cannot themselves contain internal subprograms. Note that a module may
access other modules (and pass their definitions on to other program units using that mod-
ule).

statements

A Fortran statement is made up of keywords, names, expressions, and delimiters. Key-
words are predefined words that have some special meaning; most statements start with a
keyword (e.g.,print, end, integer, function , etc.). Names are programmer-defined, as
described above, and are used to give unique identifiers to variables, constants, proce-
dures, modules, etc. Expressions are the “computational engines” that generate computed
results; they are formed from operands and operators. Operands include constants, vari-
ables, and function calls, and are described in the next chapter and in other appropriate
places throughout; operators are either special charaeters ¢, /, /1, ==, I=, <, <=, >, >=)

or letters enclosed in periodsq, .ne., .It., .le., .gt., .ge., .and., .or., .eqv., .neqv., .not., and
user-defined operatoiR317).

Delimiters include blanks (as described abovdfpr assignment - see below), (struc-

ture component selectd®612and chapter 3), left and right parentheses (multiple “enclos-
ing” uses), single and double quotes (character constant delimiters - see chapter 2), the
comma (list separator)and:: (other separators){comment initiator)& (statement con-
tinuation), and the semicolon (statement separation).

The only statements that do not begin with a keyword arassignment statemefiR735
and thestatement functiofR1226, which have similar forms; the statement function is
described in chapter 9. The assignment statement has the form

variable = expression

and has the purpose of saving the value of a computation (expression) so that the value can
be used in subsequent computations. ¥dmasle (R601-603 is where the value of the
expression (R723 is saved (the previous value of the variable is replacedyathgle may

be a scalar variable name, an array variable name (for results of an array expression - see
chapter 4), an array element, an array section (see chapter 4), a structure component (see
chapter 3), or a substring (see chapter 2). Normally the type and kind of the variable must
be the same as the type and kind of the expression value, but this rule is relaxed when
numeric values are involved (see chapter 2). The expression can represent an arbitrarily
complex computation involving operators and operands; the main features of expressions
are described in chapter 2, with expressions involving user-defined types in chapter 3 and
whole arrays (and array sections) in chapter 4.
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2 Intrinsic Data Types

Fortran 90 has “built-in"ifitrinsic) data types and user-definatk ived data types; the

latter are described in the next chapter. The intrinsic data types may be categorized as the
numeric types (integer, real, and complex) and the nonnumeric types (character and logi-
cal). Each of these may have any numbédirnds though an implementation need provide

only one kind of integer, character, and logical, and two kinds (“single” and “double” pre-
cision) of real and complex. Typical additional kinds that an implementation may provide
are long and short integers, “quad” precision for real and complex, additional national
character sets (the default character kind is essentially ASCII), and one-bit (or one-byte)
logically. Arrays of any of these intrinsic type/kinds are permitted, with full array opera-
tions appropriate for that type.

The kinds are specified by integer constants céiledl type parameterand allow types

to be “parameterized”. Thus a given program can, for example, be run with some set (or
all) of the real variables having single precision; on another run these variables could be
double precision. Across procedure boundaries both the type and type kind parameters of
associated actual and dummy arguments must match, and thus kind mechanism can be
used to provide families of generic procedures in procedure libraries. Each type has a
“default” kind that is used for variables for which a kind type parameter is not explicitly
declared; for example, the default real (and complex) kind is “single precision” and the
default character kind is (essentially) ASCII.

integer data type

The integer type is intended to represent integer numeric values, and as such is modeled
by v =g dr', O<i<n, where for integer value v, s is the sign (+1 or -1), r is the radix (see

intrinsic functionradix ), n is the number of digits (see intrinsic functéits ), and the d's
are digits in the base-r system.

An integer constant is specified with decimal digits, with an optional sign (+ or -) and an
optional kind parameteR@03. Examples of integer constants are:

42
135843_LONG
-687

The second of these examples illustrates how the kind parameter is specified for constants
(“attached” to the value by the underscore); in this cases is a hamed integer constant
having a valid kind value provided by the implementation. (See the intrinsic functions
kind , andselected-int-kind to determine the implementation’s kind values for integers and
see the intrinsic functiongnge, huge, andtiny to determine the range for any integer
kind.)
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The usual operations are provided intrinsically for two integer operands: addjtisnl-

traction ), multiplication ¢), division (), and exponentiation*}. Such operations all pro-

duce (the usual) integer results, the only potentially surprising one being integer division,
which results in the truncated arithmetical result. PHisid minus-§ may also be used

as unary operators with integer operands with the usual results. The other intrinsic opera-
tions on integers are the relational operatetrs=, <, <=, >, >= (or, equivalently,eq, .ne,

At., .le., .gt., .ge.) for comparing two integer values. Respectively, these operations result
in the logical valuetrue. if the first integer operand value is equal to, not equal to, less
than, less than or equal to, greater than, or greater than or equal to the second integer oper-
and value, andalse. otherwise. Examples of operations involving integer operands are:

j+k

j-k*n l'evaluated as j - (k * n)
(-K*n

j-k+n levaluated as (j- k) +n
-j+k ! evaluated as (-)) + k
-(+K)

-j*k ! evaluated as -(j * k)
() *k

jlk*n l'evaluated as (j/ k) *n
il (k*n)

k**n

i<k

j*k>n-m ! evaluated as (j + k) > (n - m)

Note that parentheses may be used in the usual way to specify evaluation order in expres-
sions containing multiple operations. The usual default precedence (e.qg., left-to-right and
multiplication-before-addition) is used in the absence of parentheses, and the numeric
operations take precedence over the relational operationR728#&or a rigorous descrip-

tion of the precise rules for evaluation of expressions involving integer operands. Addi-
tional (user-defined) operations may be provided for integers - see chapter 9.

Though (arguably) Fortran does not provide an intrinsic bit data type (but see the logical
type) a complete bit processing facility is provided via integer objects and intrinsic proce-
duresbtest, iand, ibclr, ibits , ibset , ieor, ior, ishft , icshft , mvbits , andnot. These provide bit-

by-bit operations on non-negative scalar integer values represented by binary digits (bits)
according to the model v ¥b;2', Osi<m. Integer constants may, alternatively, be speci-
fied or printed as a set of binary digits, octal digits, or hexadecimal digits, in accordance
with R407, andR1005 The rightmost bit in the integer object igdnd, for example, the
integer valua3 (orB"1101" or0"15" orz'D") represents the bit string. 0001101.
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real data type
The real type is intended to represent the real, or floating-point, numeric values, and as
such is modeled by v =§¥d;r", O<i<g. where for real value v, s is the sign (+1 or -1), r is

the radix (see intrinsic functiordix ), q is the number of mantissa digits (see intrinsic
functiondigits ), the d’'s are the mantissa digits in base-r system and e is the exponent (an
integer - see intrinsic functioxponent ). Intrinsic functionsepsilon , huge , minexponent ,
maxexponent , nearest, precision , range, rrspacing , scale, set-exponent , spacing , andtiny

provide access to the numeric properties of any real kind. A common implementation for
the default real kind is the single precision IEEE floating point standard, for which r=2,
=24, and -126e<127.

A real constant is specified with decimal digits, and optional sign (+ or -), an optional kind
parameter, and either a fractional part, an exponent, or botfR4dgxfor the syntactic
details of the various forms that a real constant may take. Examples of real constants are:

-15.24
2.6E7 ! value is 26,000,000.0
4.3

-22.9E22_QUAD

123

123.

TE4 !'value is 70,000 in single precision
7D4 !'value is 70,000 in double precision
-1.1D-3 !'value is -0.0011 (double precision)

The fourth of these examples illustrates the use of a kind parameter in a real constant -
QUAD is a named integer constant having a valid kind value provided by the implementa-
tion for reals. As mentioned above, an implementation must provide at least two kinds of
real, informally known as single and double precision. (See the intrinsic funkiians
andselected-real-kind to determine the implementation’s kind values for reals.) Note that,
unlike for integers, a real constant may not be representable exactly; for example the real
constant 0.1, though within range for (most) real types, is not representable exactly in a
binary implementation (that is, one for which r=2 - e.g., the IEEE floating point standard).

Exactly the same intrinsic operations as for integers are provided for real operands, with
the same meanings, except that division works “normally”. Because of the potential noted
above for inexact representation of real values, the equality relational operatams//E)

may at times yield “unreliable” results and thus should be used with care (if at all) with
real operands. As for integers, 9e&23 for a detailed descriptions of the syntax and
semantics (precedence) of expressions involving intrinsic operators with real operands,
and see chapter 9 for expressions involving user-defined expressions with real operands.
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The last two examples above a@®@uble precision constantasing thed (instead ofe or
neither) makes the constant the double precision kind of real rather than the (default) sin-
gle precision kind. The data typeuble precision (R502, before the advent of tHénd
concept in Fortran, was the only way that double precision objects could be declared. The
double precision type is still available, but is now deprecated in favoreaifkind(1D0)) ;

double precision andreal(kind(1D0)) represent identical type/kind combinations.

complex data type

The complex type is intended to represent complex numeric values, and as such is an
ordered (real part, imaginary part) pair of reals; there is a complex kind for every real kind.
A complex constant comprises values for the real part and imaginary part, separated by a
comma and enclosed in parentheses, as descrilbetllinrNote that integers may be used

for these values, in which case they are converted to the equivalent real value; different
kinds of reals may be used for these two values, in which case the one with the lower kind
value is converted to the equivalent value of the other kind; the kind of the complex con-
stant is the kind of the parts (after any conversion). Examples of complex constants are:

(1.0,-1.0)
(5,5.5E5)
(-3.3_QUAD, 4.4 QUAD)

The complex type has the same intrinsic numeric operators 4 /, **) as the other
numeric types, with the usual meanings. However, since complex values do not have a nat-
ural ordering, the equality operatots @nd/=) are the only intrinsically defined relational
operators for complex. Because comparison of complex values involves comparison of
real values, the same comparison caveat applies to complex values as to real values.
Though intrinsic meanings fer, >, etc., are not provided for complex, an application may
provide such meanings as user-defined operators - see chapter 9.

Intrinsic functionsreal andaimag return the real and imaginary parts, respectively, of a
complex argument. Functiaanjg returns the complex conjugate of a complex argument,
and functioremplx allows construction of a complex value of any kind from any integer or
real values (e.g., any integer or real expressions, not just constants) and conversion of
complex values to different complex kinds. Intrinsic functiorconverts any integer, real

or complex argument to any kind of integer value, and funetrconverts any integer,

real or complex argument to any kind of real value.

logical data type

The logical type is intended to represent boolean (true, false) values. A logical constant is
either.true. or .false., optionally appended with a kind parameter, as describRd2d. A

default logical value is defined to require the same storage (most often 32 bits) as a default
integer value and a default real value (both of which, by definition, require the same
amount of storage - this unit of storage is calledmeric storage unit The role of differ-

ent kinds of logical is to allow for different amounts of storage (usually less) for logical
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values than is required for default logical values. One bit is adequate for representing a
true/false (1/0) value, though one byte (8 bits) is often used as well. A logical kind in
which exactly one bit is used to represent a logical value has many of the properties of a
bit data type (especially in the form of logical operations on logical arrays).

There are four intrinsic binary operators that take logical operamds (or., .eqv., .neqv.)
and one unary operatandt.). The results of these operations are shown in the following
table, where T stands farue. and F stands fofalse.

X=T | x=F | x=T | x=F} x=T| x=F}] x=T| x=F

y=T} T F T T T F F T F
y=F F F T F F T T F T
x.and.y X .0y X .eqv.y X .neqv.y  jnoty

Note that relational operations on numeric values result in logical values, which can then
be used as operands in logical operations; for examphe:and.y <z (meaning x<y<z).

character data type

The character type is used to represent and process character strings. Character values may
be any length, from one character to an implementation-defined (usually pretty large)
number of characters. Arrays of character strings are allowed, but each element of such an
array has the same length (same number of characters). Each character may be any one of
the characters in the implementation-defined character set (the default character kind),
which is often a subset or superset of ASCII. An implementation may provide additional
character sets, with different character kind parameters; this is often used to support
national character sets (e.g., kanji, greek, cyrillic, etc.).

A character constant is simply a character sequence delimited by (single or double) quotes
and optionallyprecededuy a kind parameteR@20. A (single or double) quote delimiter

may be included in a character constant by repeating it once. Examples of character con-
stants are:

"now is the time"

e

GREEK_"pg 3"

"He said "OK"", and left." 1"OK" in quotes

There is just one intrinsic character operator, the concatenation opgyaiteagpends the
second operand to the first, forming a longer character string:

"blue" // "whale" I results in "bluewhale"
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There are a number of intrinsic procedures that are very useful for a wide range of charac-
ter processing, including the following functiomsi, index, trim, adjustl , scan, etc. Two

such functionsghar andichar, provide conversion between characters and integers. The
characters have @llating sequencgewhich is a one-to-one mapping between the charac-
ters and (a subset of) the integers. Fundctian takes an integer argument and returns the
character associated with that integer value in the collating sequence; fiunetiactoes

the reverse, returning the collating-sequence integer associated with the character argu-
ment.

O 0 0 0 0 0 O O 9
declarations

Making a specific variable name have a specific type is known as a data object declaration,
type declarationor justdeclarationfor short. Declarations are used as well to establish
named constants and to type function results. The simplest form of a type declaration
(R50)) is:

type-spec [ :: ] object-list
wheretype-spedR503 is, for intrinsic types, the type nametdger, real, complex , logi-
cal, character ) with an optionakind specification and, fotharacter , an optionalength

specification. Examples of declarations of simple, uninitialized scalar variables
are:

integer 3 i,

integer(SHORT) :: k

real :: ab, cd

real(QUAD) :: eps
real(DOUBLE) :: p, g2
complex :: z1, z2
complex(QUAD) :: tp3

logical :: done

character(20) :: s1, s2, s3*30
character(10, GREEK) :: g, h5

The:: is optional, but it makes a nice visual barrier for the more complicated declarations
(to be described below) and so will be used consistently in examples henceforth. The kind
parameters§HORT, QUAD, GREEK) are named integer constants; the actual integer values
could be used in place of the named constants, but since kind parameter values are not
standardized, and differ from implementation to implementation, the better practice is to
have the actual value appear only once - where the named constant is defined. If the kind
valueDOUBLE has the appropriate integer value, the fifth example above is equivalent to
using (the deprecated) type namweble precision (without a kind specification). The
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same declaration is obtained by usiedi(kind(1D0)) instead ofeal (DOUBLE), and indeed
the value oboOUBLE could have been specified, in its definitionkiag(1Do) .

All of the objects in a character type declaration have the length specified in the type-spec,
unless overridden as illustrated $8y30 in the next-to-last example above; s1 and s2 both
have length 20, while s3 has length 30. If the length specification is omitted, the value 1 is
assumed; if the length is omitted and the kind is not, thekinde keyword must be used;

if both the length and kind are specified, with kind first, bothitie andien= keywords

must be used; otherwise tkiad= andlen= keywords are optional (and tkied= keyword

is always optional in declarations of the other intrinsic types).

The above examples declared uninitialized scalar variables. The following examples illus-
trate how array objects can be declared and how objects (scalars or arrays) can be given
initial values.

integer :: i, j(10) 1jis an array of 10 elements
integer(SHORT) :: k=0 'k has initial value zero
real :: ab(100), cd(100,100) ! a one dimensional and a two dimensional array

real(QUAD) :: eps=0.000001

real(DOUBLE) :: p=0D0, g2 ! p initialized to (a double precision) zero
complex :: z1, z2=(1.0,-1.0)

complex(QUAD) :: tp3(1000,1000)

logical :: done=.false.

character(20) :: s1, s2(250), s3*30="the third degree ....."

character(10, GREEK) :: g, h5="pg t3"

Arrays can have up to seven dimensions, the specification of which are enclosed in paren-
theses, and separated by commas; each has thd faven : ] upper, where lower and

upper are integer values which specify the lower and upper bounds of the subscript range
for that dimension; if the optional part is omitted, the lower bound is 1. Arrays are
described in detail in chapter 4, together with additional forms of array declaration (for
dynamic and dummy argument arrays).

An initial value is specified by anitialization expressionwhich can by any expression

(of an appropriate type) involving only constant values, with the following two exceptions:
(1) operators must be intrinsic operators and any exponentiation openatougt have a
second operand of type integer; (2) a procedure call must be to an intrinsic function that
(a) can be evaluated at compile type and (b) except faedhape , transfer , and inquiry
functions, have arguments only of type integer and character and deliver a result only of
type integer or character. A variable local to a procedure may be initialized, but that initial-
ization is effective only at the first execution of the procedure and the variable, though
saved (see below) is not reinitialized at the beginning of subsequent executions.
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attrib utes

The properties of data objects are calitdbutes the most basic attribute, one that every
data object has, is type (and kind). The other attributes are optional and the two illustrated
above are the arrayifiension ) attribute and the initial valué@dta) attribute. There are 11

more attributes, the specification of which requires either the attribute form of the type
declaration statemenRb01, R503 or a separate “attribute-oriented” statement for each
such attributeR519-539. The attribute form of the type declaration statement is

type-spec , attribute-list . object-list

The attribute-list can contain any of the attributes listd®l583 in any order, separated by
commas; but any given attribute can appear at most once in the list, and over half of them
are mutually exclusive (see the following table).

initialization
Shaded attribute combinations
are compatible; the others are
mutually exclusive.

public
private

external

intrinsic

intent

optional

allocatable
dimension
pointer
target

save

N\
parameter -- ‘

Attributespublic andprivate control the visibility of module objects and are described in
Chapter 8. Attributesxternal andintrinsic specify objects that are either external or intrin-
sic functions, respectively. Attribut@gent andoptional apply only to procedure dummy
arguments (see chapter 9). Attribusiscatable anddimension apply to arrgs and are
discussed in chapter 4. Attribuiesiter andtarget are used for dynamic structures,
including dynamic arrays, and are discussed in chapters 3 and 4.
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save

Thesave attribute is used to retain an object’s value when the object “goes out of scope”
and then comes back in. One example of this is local variables in a procedure; upon return
from the procedure, its local variables normally cease to exist, the space may be reallo-
cated for another purpose, and the variables are reinstantiated when the procedure is next
executed. However, any such variable withdhe attribute remains intact with its value
unchanged between executions of the procedure, ready to “take up where it left off” when
the procedure is next executed. Initialized variables (and hamed constants) automatically
have thesave attribute. A module variable goes “out of scope” and, withoutsthe
attribute, becomes undefined whenever all program units using that module are inactive
(i.e., not executing). Similarly theave attribute is used to retain a common block and its
variable values when all program units using that common block are inactive.

parameter

A data object with thearameter attribute must also be initialized, and that value cannot be
changed - the object is a constant; it has a name and “looks” like a variable, and thus it is
called anamed constaniNamed constants are declared identically to initialized variables,

but with theparameter attribute. Named constants may be scalars or arrays, of any type,
and are extremely important to reliable programming. A constant that appears more than
once in a program, such as an array bound value or a kind parameter, should be a named
constant, and then when a change is needed in that value the change can be made in only
one place.

Examples of declarations with specified attributes are:
integer, parameter :: DOUBLE=kind(1DO0)
real(DOUBLE), parameter :: P1=3.141592653589793
integer, private :: maxCount
complex, save :: z0=(1.0,-1.0)
real, allocatable, save :: workArray(:,:)
character(40),dimension(100) :: firstName, lastName, address1, address2
real, intent(in) :: length, width
logical, optional :: codeFlag
type(Tree), pointer :: left, right
real(DOUBLE), target, dimension(400,500) :: rhol, rho2, vel_x, vel_y, vel_z
complex, external :: f1, f2
complex, pointer :: temp(:)

logical(BIT), target, intent(out) :: digitalRadar
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numeric computations

As mentioned in chapter 1, computations are formulated as the results of expressions;
these results can then be assigned to variables, written (to the screen, the printer, or a file),
used as actual arguments in procedure calls, or used for control purposes (a logical expres-
sion as aif condition, ann array subscript, an integer expression as the final index value in
an indexed loop, etc.). In many respects, numerical expressions are the heart of Fortran
and, in addition to the four numerical types (counting both of the required real kinds) and
the numerical intrinsic operators, Fortran provides most of the elementary numerical func-
tions and the basic vector and matrix computations as intrinsic functions. In addition, the
facilities for providing user-defined computational libraries is very powerful.

Individual expression operands are definedRif01 and include constants (including
named constants), variables (scalars and array elements), function calls, and subexpres-
sions (expressions in parenthes&sj23 defines expression structure in detail, including
operator precedence. Without the operator precedence, R723 boils down to this:

[ unary-operator | numeric-operand [ binary-operator numeric-operand 1] ...

Thebinary-operatorprecedence determines the execution order, but this can be controlled
with parentheses - that is, by making each operand a (parenthesized) subexpression, leav-
ing only onebinary-operatorat the top level; unparenthesized expressions are evaluated
as if the parentheses needed to represent the operator hierarchy had been added. For
numeric expressions the operators @oeer-op(R708, mult-op (R709, add-op(R710,

and unary and binary user-defined operat®804 R724 delivering numeric results.

Note thatR705-707indicates that exponentiatiott, (power-op) has precedence higher

than any other numeric operator and works right-to-left for consecutive (unparenthesized)
power-ops R709; multiplication and division*( /), both mult-ops, have the same prece-
dence, which is higher than additiof),(and subtraction), both add-ops, and work left-
to-right (R706; additional and subtraction also work left-to-rigR7Q7).

If a numeric operation has two operands with the same type and kind, it delivers a result of
that type and kind. Otherwise, the operation is “mixed-mode”, and one of the two oper-
ands (x,) will have a type/kind combination that is “wider” than that of the other operand
(Xp); In this case the value of, will be converted to the equivalent value in thgxmber
system, the computation will be made at theype/kind level, and the result will have the
type and kind of x; operand value conversion is performed as described below for mixed-

mode assignment. Any operand of type real is wider than any operand of type integer, and
any operand of type complex is wider than any operand of type real. Of two integer kinds,
the one having the greater integer range is the wider; normally this one will have the
greater kind value as well. Of two real (or complex) kinds, the one having the greatest pre-
cision is the wider; normally this one will have the greater kind value as well. By this rule,
double precision real/complex is wider than default (single precision) real/complex.

In numeric assignmenise, thevariablev and theexpressiore can be any combination of
the numeric types (integer, real, complex). The value assigrect isnd(v)) wherecfis
the intrinsic conversion functiant, real, orcmplix , depending on whetheris type integer,
real, or complex, respectively.
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character computations

Character expressions (with intrinsic operators) are all of the form:

character-operand [ Il character-operand ] ...

There are no intrinsic character unary operators, and concatendti®the only intrinsic
character binary operator. Concatenation “works” left-to-right, but it doesn't matter since
concatenation is associative/(B//C) has the same result @#B)//C). The length of a con-
catenation result is sum of lengths of the two operands.

Character operands can be character constants, character variables (including character
array elements), functions delivering character results, character expressions in parenthe-
sis, and substring®609-61). The form of a substring is:

parent-string ([ lower] : [ upper])

where gparent-stringcan be a scalar character variable, a character array element, a char-
acter component of a structure, or a character constant; it cannot be a general character
expression, a character functional call, or substring itse¥fer andupper which may be
arbitrary integer expressions, define the portion of the parent string that comprises the sub-
string; both lower and upper must have values greater than zero and less than or equal to
the length of the parent string. The length of the substringpe-lower+1 (actually,
max(0,upper-lower+1)) and comprises the characters from intexer in the parent string

up to and including indexpper If lower==upper, then the substring is just one character -

that at indeXower (or uppe)); if upperis less thamower then the substring is empty (has
length zero). Examples of substrings are:

s2(2:5)
lastName(k:)
address(i-1:index(address,'-"))

account % name(i:j)

The result of a character expression may, among other uses, be assigned to a character
variable (including an array element) of the same kind or to a substring of such a variable.
In either event the expression has a length (number of characters it produces) and the
receiving variable has a length (number of characters it receives). If these lengths are the
same, then the expression result becomes the value of the receiving variable. If the expres-
sion length is less than the receiving length, the expression result is padded on the right
with the requisite number of blank characters so that the two lengths are the same and then
the assignment is made; if the expression length is greater than the receiving length, the
expression is truncated on the right to the receiving length, and then the assignment is
made. Examples of character assignment are:

sl =s1(1:4) /] s2(5:) ! concatenate two substrings, then assign
s2(2:5)="" ! replace substring with "...."
firstName(k+1) = firstName(n) ! character array elements

firstName(k+1)(i:j) = firstName(n)(m:m+2) ! substrings of array elements



16 Fortran 90 Concise Reference

implicit declaration

Unlessimplicit none is specified at the beginning of the program-urRRI5 R540, it is
possible to use variables in the program that have not been explicitly typed in type declara-
tion statements. Such variables will have the types specified by the implicit type environ-
ment in effect and are said to baplicitly typed Such variables may be given other
attributes with “attribute-oriented” statemen®b(09-539.

The implicit type environment associates a type/kind combination to each letter. A name
not explicitly typed is implicitly typed according to its first letter. The default implicit type
environment is that letter I-N are associated with type default integer and all others are
associated with type default reatplicit statementsR540-542 may be used to change
these associations for some or all of the letters, and this may include implicitly typing for
the nondefault kinds and for user-defined typedicit none is a special form afplicit
statement that “turns off” all implicit typing and requires that each data object be explicitly
typed.implicit none is not the default implicit environment (unfortunately); uniegsicit

none is explicitly specified in the program unit, each letter in that program unit has an

associated implicit type/kind combination.

1. An exception to the rule thatpiicit none turns off all implicit typing” is in internal and
module procedures havimgpiicit none in their hosts; such procedures may hayeit
statements defining implicit typing for part of the letters, leadipigitnone (and hence
explicit typing required) for the other letters - see chapter 9.
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3 User-defined Data Types

The intrinsic types are the numeric types (integer, real, complex), the logical type, and the
character type. Each of these may be parameterized (type kinds), have intrinsically-
defined forms for constant values, and have intrinsically-defined operators and operations.
A number of intrinsic functions are defined for the intrinsic types, and user-defined func-
tions may return values of intrinsic type. Fortran 90 has user-defined types as well, called
derived typedecause they are derived from the intrinsic types (and other derived types);
all aspects of an intrinsic type, except type kind parameterization, may be provided for a
derived type - name, constants, operators, and functions returning derived type values.
Derived types, once defined, essentially augment the intrinsic types as the data types
available for use in a program. Two other uses of derived types are consgund; struc-

tures anddynamic structuresRecord structures are convenient for organizing data into
logical groups (records) for input and output and corresponding processing. Dynamic
structures, such as linked lists and binary trees, are indispensable for certain application
areas.

derived-type defnitions

Unlike intrinsic types, whose definitions are intrinsic (built into the language), a derived
type must be defined. This is done by specifyingcadmponentswhich are objects of
intrinsic or derived typeR422). The simplest form for such a definition is:

type type-name

component-definition ! a derived type has one or

[ component-definition] ... I more components - see R426
end type [ type-name]

Each component definition is an ordinary type declaration statement, except that the only
attributes permitted ar@imension andpointer . A component can be either a scalar or an
array, and derived types for recursive dynamic structures (e.qg., linked lists, binary trees)
can have pointer components that have the same type as that being defined. More than one
component may be declared in the same component definition statement. Simple exam-
ples illustrating all of these possibilities:

type Point ! a type to represent points
real :: x, y !'in a two-dimensional
end type | cartesian coordinate system

type Student
character(30) :: ID
integer :: homework(15) ! can represent up to 15 homework grades
integer :: hour_exam(3) ! and 3 hour_exam grades
integer :: final_exam

end type
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type Tree ! the nature of the node data

type (TreeData) :: node_data I is defined in another type;

type (Tree), pointer :: left, right ! two “links”, for left and right subtrees
end type
type Pixel

type (Point) :: p ! the position on the screen;

integer :: R, G, B ! primary color values for this point
end type

The first (and last) of these four examples do indeed suggest new data types, and the
expectation would be that appropriate operations would be defined on objects of these
types. The second example suggests a typical record structure, with an expectation that
various computations would be made with individual fields (components) but not on “a
student as a whole”. The third example clearly is intended to be used as a dynamic struc-
ture, in this case a binary tree wigh andright links to subtrees. The data for such a tree
can, of course, be of any nature, and in this case the details of that nature have been encap-
sulated in yet another derived type calfeskData.The fourth example also illustrates the

use of a previously-defined derived type as a type component. Though not having the
properties of true object-oriented inheritance, the Point component of Pixel does “inherit”
all of the properties (e.g., operations) defined for type Point. (In this manner, and through
use of type definitions packaged in modules, Fortran 90 provides much of the inheritance
and data abstraction benefits of object-oriented programming; typical O-O features not
accommodated are polymorphism and object invocation of procedures.)

The name of a derived type must not be the same as any intrinsic type name, nor the same
as any other derived type accessible in that scope; it also must not be the same as any vari-
able or procedure name accessible in that scope. Derived-type definitions are local to the
scope in which they are defined, but may be accessible to other scopes via use and host
association.

Component names have a scope of their derived-type definition, though they are accessi-
ble outside the type definition when (and only when) selected witlwtiemponent
selection operator (see below). Within a given type definition, each component name must
be unique, but otherwise there is no restriction on component names; in particular, they
can be the same as the names of entities defined in or accessible to the surrounding scope
of the type definition.

derived-type objects

Derived-type definitions do not create data objects; a type definition only specifies the
name of the type (analogous to, say, the type namyer ) and the component structure

for objects of that type. Actual objects must be created, again in analogy with intrinsic
types, in type declaration statemeri®$Q1); derived type objects are created witly-

spec of

type ( type-name )
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As with objects of intrinsic type, a derived type object, also callstlugtureor struc-
tured object may be: declared as a constant (havedheneter attribute), an array (have
thedimension attribute and, optionally, be afocatable or pointer array), a dummy argu-
ment (and, optionally, have theent and/or thevptional attributes), a module object (and,
optionally, have therivate or public attribute), a pointer or a pointee (have jihiater or
target attribute), a saved local variable (have ¢he attribute). Function results may be
declared to be of derived type, in which case eitherytlee( type-name ) type specifier
may appear on the function statement or the function may be typed in the func-
tion’s specification part.
Some example declarations of derived-type objects:

type (Point) :: p1, p2

type (Point), allocatable :: property_corner(:)

type (Student), intent(in) :: valedictorian

type (Student), private :: onProbation (100)

type (Tree) :: dictionary

type (Tree), pointer :: root

type (Pixel), save :: screen (480,640)

type (Pixel) function summit (topo_map)
A structure reference may appear in an expression, on the left hand side of an assignment
statement, and as an actual argument - as ncaynponent referencé component of a

structure may be referenced by usingdhmponent access operates, in the following
manner R612):

structure-reference % component

Specific examples of component references (using the above example type definitions and
structure object declarations) are:

pl % x ! the x component of p1, a scalar real object
property_corner(i) % x I x component of the ith element of property_corner
property_corner %y ! an array of real objects: all the y components
valedictorian % ID ! a scalar character object

valedictorian % homework ! an integer array - all valedictorian homework grades
onProbation(n) % hour_exam(m) ! a scalar integer object

dictionary % node_data I scalar object of type TreeData

dictionary % left I the left subtree

screen(i,j) % R ! a scalar object
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screen % B 12D array of integer objects
screen % p 12D array of Point objects
screen(i,j) % p % x ! a scalar real object

The last of these examples illustrates that if a structure component is itself a structured
object, then its components may be accessed as well. Such a sequeopeators may

be of any length, as long the entity on the left of eachof derived type and the entity on

the right is a component of that derived type; the “parsing” of such a sequence is from left
to right. The very left one must be a structured object, and is either its declared name or (if
the structure is an array) an element or section of that array. Each entity on the right of a
operator must be either a component name or (if the component is an array) an element or
section of that array. Any array name (whole array) or array section in a component refer-
ence makes the result of the reference array valued, with the same shape; there can be at
most one array-valued entity in a given component reference.

structur e constructors

A structured object may be assigned a value by individually assigning a value to each of
its components. For example:

p2 % x=112.2 ! these two assignments
p2 %y =357 ! completely define p2
A complete list of component values may be gathered togethestinciure constructor

to define a structure value; these may be used in any expression legitimate for a value of
that type. A structure constructor has the general fe43Q

type-name ( component-value [ , component-value] ...)

and a specific example is
p2 = Point (112.2, 35.7)

The effect of this last assignment is the same as the preceding individual component
assignments; a structure value of a given type may be assigned to a derived-type variable
of that type. (But this intrinsically-defined assignment may be overridden by a defined
assignment - see chapter 20).

The structure valueoint ( 112.2, 35.7) is a constant because all of the component values
are constants. Such a value may be used to establish a named constant of derived type:

type (Point), parameter :: origin = Point (0.0, 0.0)

In general, however, any expressions may be used for the component values in a structure
constructor, so long as the constructor contains an assignment-compatible value for each
component, in the order in which the components are declared in the type definition.

An associated structure constructor is available for any defined or accessible type, (except
for types with private components - see below). If a type has a pointer component (either
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scalar or array) an allowable target object must appear in the corresponding position in a
constructor for that type. If a component is an explicit-shape array (the only type allowed
as a component other than a pointer array), an array value with that shape must appear in
the corresponding position in a structure constructor.

Additional examples of structure constructors are:

Point (z+1, w-2)

Point ( r*sin(phi), r*cos(phi) )

Point ( 2*p2%y, 0.0)

Student ( “Joe”, hw(i,:), (/lel,e2,e3/), fe )
In the last examplew must be a two-dimensional integer array with a size of 15 in its sec-
ond dimension, andi, e2, e3 andfe must all be scalar integer variables (or named con-

stants). The first three of these examples illustrate the use of arbitrary expressions to
specify component values in a structure constructor.

L R A A

Structure values may also be obtained from input. A structure variable name may appear
in the input list of aead statement, in which case a value is input for each component. In
list directed input the effect is the same as if the individual components had been placed
(with the% operator) in the input list instead. For formatted input, a format is specified for
each component, in component-declaration order, in exactly the same manner as for the
intrinsic typecomplex .

read *, pl ! read two real values, one for p1%x and one for p1%y
read “(2F10.2)", p1
read *, valedictorian ! consumes one character and 19 integer values

read “(A30,1914)", valedictorian

Similarly, structure values may be placed in the output list wiha or write Statement,

and the component values are output in component-declaration order. Structures with
pointer components can be neither input nor output, though individual nonpointer compo-
nents of such structures can appear in I/O lists.

derived-type operators

Since dummy arguments may be of derived type, and functions may return structure val-
ues, functions may be used to define virtually any operation on and among structured
objects. For example, the midpoint between two Point objects may be defined as follows:

type (Point) function midpoint(a,b); type (Point) :: a, b
midpoint = Point ( (a%x+b%X)/2, (a%y+b%y)/2) )
end function
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Note that the midpoint is, of coursepaint value. An operator, sayid., can be associ-
ated with this operation:

interface operator (.mid.)
module procedure midpoint I assuming midpoint is an accessible module procedure
end interface

Then the midpoint of two points, say andp2, can be computed with the expression
pl.mid.p2 ! as well as with the function call: midpoint(p1,p2)

Chapter 20 contains more details on defining operators. Chapter 19 illustrates how a mod-
ule can be used to encapsulate a derived-type definition, its constants, and any operations,
so that the type could be used almost as naturally as an intrinsic type.

private types

Sometimes it is desirable to hide the internal structure of objects and access components
only via explicitly provided procedures. This is possible only for derived types defined in
modules. A derived-type’s components are accessible anywhere inside the module in
which the type is defined, but the internal structure of a private type can be hidden from
users of the module. This is accomplished with the derivedypee statement, an
example of which is:

type Point; private
real ;1 X, y
end type

In this case users of the module which contains this type definition can declare objects of
typePoint, but cannot use the operator to access either theomponent or thg compo-

nent of those objects, nor is tReint structure constructor accessible to the user of the
module. The module may contain functions to aceeswy, but need not if the intended

use ofpPoint does not involve the user accessing the components. In this latter case the
module presumably includes procedures that provide the intended computations on and
with Point objects.

Theprivate statement, if used, immediately follows thge statementR422 R423 and
hides_allof the components from users of the module containing the derived-type defini-
tion. Note that

type type-name; private

is really two statements, and many programmers prefer to put them on separate lines,
whereas

type, private :: type-name

is a single statement that makes the entire type, name as well as the components, private to
the module and not accessible to users of the module.
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seqguence types

A derived-type actual argument must be exactly the same type as the associated dummy
argument or aequivalent type“Same type” means that both a dummy and its associated
actual argument derive from the same type definition. For all practical purposes this
means that the derived type must be defined in a module that is used by, or host to, (a) any
procedure definition with arguments of that type and (b) any program unit making calls to
such procedures. (The only way the requisite conditions can be met without a module is if
all of the procedures having an argument of this type are internal procedures in a host pro-
cedure containing the type definition.)

“Equivalent types” arsequencedype definitions with the same type and the same num-

ber of components; corresponding components in each list must have the same name, the
same or equivalent type, the same attributes (dimension and/or pointer), and neither can be
private. An example of sequenceype is

type Student; sequence

character (30) :: ID

integer :: homework(15), hour_exam(3), final_exam
end type

This type definition need not be used from a module and can be repeated in any scope
which has actual or dummy arguments of type Student. The main problem with such
duplication is, of course, the maintenance one of needing to make a change in more than
one place. This problem can be circumvented by putting the sequenced type definition in
its own file and including that file wherever the type definition is needed,; this, however, is
not much different from putting the type definition in a module and using the module
wherever the type definition is needed.

A derived type is made into a sequenced type by insertiaguance statement between
thetype statement and the list of component definitidR442 423). There is one use of
sequence types other than for equivalent type argument association. This is to allow
derived-type objects to be associated (e.g., in common blocks) with numeric or character
storage sequences. If all of the components of a sequence derived type have numeric stor-
age units (i.e., they comprise only intrinsic kinds of integer, real, complex, and logical
components), the type isnameric sequence tyad can be storage associated with any
numeric storage sequence. Similarly, if all of the components of a sequence derived type
are of type default character, the derived typeciseaiacter sequence tyjpad can be stor-

age associated with any character storage sequence.
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4 Arrays

The array features of Fortran 90 represent one of the most significant aspects of the lan-
guage. A computation can be specified on a whole array (or any portion of an array); such
a computation is performed on each element of the array, conceptually concurrently. The
corresponding potential for actual process parallelism is enormous - namely the number of
elements in the array. Roughly speaking, versions of Fortran prior to Fortran 90 allowed

the programmer to specify computations only on scalar entities, such as individual array

elements, with an entire array processed by sequencing (looping) through its elements.

array-valued expressions

Suppose that, B, andc are two-dimensional real arrays, all dimensioned at 200x300 ele-
ments. Fortran 90 allows the following statement, involving the addition of two of these
arrays and the assignment of the result:

C=A+B

The meaning of this operationas,j) = A,j) + B(,j) for all 200 values afand all 300 val-

ues ofj, for a total of 60,000 individual (scalar) computations involving the array ele-
ments. The array computational modetancurrent element-by-corresponding-element
computatiorfor all elements of the arrays.

In addition to extending all of Fortran’s scalar operations to arrays in this manner, other
useful whole array operations are provided. These indledection operationge.g.,
product(A) returns the product of all the elements of amdyconstruction operations
(e.g.,(¢ G, i=1,n) /) constructs the vector [ 1, 2, 3, ..., n ], anduiry operations(e.g.,
shape(B) returns the shape of array- a vector comprising the size of each dimension of
arrayB, or [ 200, 300 ] for the arrag in the above example). All such operations can be
combined into more complex expressions; for exampbeuct(shape(B)) has the value
60,000, the total number of elementsifbut Fortran 90’s rich supply of array functions
also includes theize intrinsic function, which gives the same result more directly).

Generally speaking, except in a few contexts in which an expression is restricted to be sca-
lar, any Fortran 90 expression may have array operands and the result is array valued.
(Scalar expressions are required in control contexts suthasstruct control (scalar log-

ical expressions required)e loop indexing expressions, and 1/O specifiers such as unit
number, file names, open statement specifiers, etc.) In most cases the arrays in an array-
valued expression must have the same shape (musnfermablg and the expression

value is an array of the same shape.

Note that in many cases, such as in the above exampier(+ B), array expressions
appear indistinquishable from scalar expressions and one needs to know from other con-
texts (e.g., the specifications) that the variables have been declared as arrays. However,
Fortran 90 allows such expressions to be written with explicit dimensionality, which
clearly identifies array operations. For example, the above assignment can be written as:

C(,)) =A(:) +B(,) I makes the “arrayness” explicit
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Functions may be defined to return array valaesy-valued functionjsand calls to such
functions may be operands in array-valued expressions. Array-valued functions, including
both user-defined and intrinsic ones, make array-valued expressions a complete, natural
extension/generalization of scalar expressions, with arrays replacing scalars as operands
and results.

conformability and element-by-element computation

The principal requirement in forming an array expression is conformability of the oper-
ands. Each operand of an array operation must have the same rank and the same number of
elements along each dimension as the other operands - that is, conformable arrays are
arrays with exactly the same shape. The result of such an operation is, of course, conform-
able with the operands, and the value of each element of the array result is the scalar com-
putation involving the corresponding elements of the array operands.

fe ]

the result of A + B F 7 i and the result of A* %Jig 12 5;
39 2 141

Thus if A and B are the following 2x3 arrays: AE ? j

If there is more than one operation in an expression, the (array-valued) result of the first
subexpression is an operand for the second operation, and so on, just as in scalar opera-
tions. For example, for A and B as given above, in the expression A + B * A, A is added to
the result of B * A; thus the result of A+ B *Ais

{235} + J1012 8 = {121513

17 2 141 3211

Note that, for example, a 3x2 array is not conformable with a 2x3 array - they have the
same rank and total humber of elements, but corresponding dimensions don’t have the
same size - and thus two such arrays cannot be the operands in the same array operation.
The only exception to this basic conformability rule is in the event that one of the operands

is a scalar. In this case the scalabrigadcastinto an array conformable with the other

operand, the value of each element of this broadcast array being that of the scalar. For
example, B + 2 is a valid array operation and (assuming B is as given above)

the result of B+2 is {5 4 J:j + 22 = 76
22 22 44

Common uses of (broadcast) scalars in array operations are to initialize and scale arrays:

A=0 I sets each element of A to zero
B=(B+1)/2 ! add 1 to each element of B then take half the result
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This last example illustrates a key aspect of the Fortran array operations: in an array-val-
ued assignment the effect is as if the right-hand side array value is fully evaluated before
any assignment takes place. Otherwise it is possible (though not in this simple example)
for the right-hand-side array value to be affected before its evaluation is complete. Thus
the conceptual model is that all elements of the right-hand-side array value are computed
concurrently (or in any order) before any assignment takes place, and any implementation
is allowed that guarantees this behavior.

An example where this rule is important is in the pivoting step in Gauss elimination (see
the last example in this chapter). There the pivot row is normalized with the array opera-
tion

G(P,:) = G(P,:)/G(P,K)

G(P,) is the Pth row of the two-dimensional arayandG(PK) is the pivot element; the
normalization scales the row so that the pivot element value is 1.0. Note that if the value of
this element is changed to 1.0 before the evaluation of the right-hand side is complete,
then the row is not properly normalized (a typical error in sequential scalar code). There-
fore, array operations should not be thought of as “loops” over the array elements, as a
loop implies a sequentially of the operations; in general, thinking of array operations as
loops gives incorrect results when assignment is involved. Array operations should be
thought of as integral/parallel computations.

array constants - array constructors

Array values may be explicitly constructed usingdh&y constructor(R431) and, if the

desired resultant array has dimension higher than onesstizge intrinsic function; an

array constructor forms a one-dimensional array. An array constructor is simply a list of
the element values of the result, separated by commas and enclgsed ielimiters.

These values can be any scalar expressions, as long as they all have the same type and type
parameters. If they are all constants, however, then such a constructor (possibly combined
with thereshape function) is an array constant and may appeapimaieter declaration.

Because lists of individual scalar values are not very practical for constructing large
arrays, two forms for array constructor list items are provided in addition to scalar expres-
sions. These are implied-do constru®433 and array expressions. The first of these has
the form

( expression-list , index-variable = first-value , last-value [ , increment])

The index-variable is a scalar integer variable serving as an iterative index in exactly the
same manner as inda loop. The example aboveé,, i=1,n) /), employs an implied-do
construct in an array constructor. In general, a list of expressions can precede the indexing
in an implied-do construct; a simple example: 100 million alternating ones and zeros,
(/2,0,1,0,1,0,1,... /) can be constructed with the array constructar, j=1,50000000) /).

The implied-do simply replicates the list the specified number of times, and if the index-
variable is an operand in an expression in the expression-list, each replication of that item
uses the corresponding value of the index-variable. The items in the implied-do expres-
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sion-list may be any of the three forms allowed in the array constructor itself - scalar
expressions, implied-do constructs, and array expressions. The two examples above have
only simple scalar expressions in the implied-do lists.

An array expression of any dimension may appear in an array constructor. For example, if
A is a 1000*1000 array themA+1.3 /) is an array constructor of one million elements,
each having a value of 1.3 more than the corresponding element value of A. The elements
of A+1.3 are placed in the array constructoaimay element orderarray element order is
obtained by varying the first dimension first, the second dimension next, and so op. Thus
A+1.3/) is equivalent to(/ ((A(j.k)+1.3, j=1,1000), k=1,1000) /) . Implied-do constructs may be

used to specify a different order of the array elements in the constructor. For example, if a
row by row vector of the elementsafi1.3 is desired, rather than the column by column of
array element ordeg, ((A(j.k)+1.3, k=1,1000), j=1,1000) /) would do the job.

O 0 0 0 0 0 O O 0

Finally, a simple form of theeshape intrinsic function can be used to reshape the (one-
dimensional) result of an array constructor into the desired array shape:

reshape ( array-constructor , shape-vector)

where the shape-vector (which may itself be an array constructor) has one element for
each dimension of the desired array shape; the value of each shape-vector element is the
number of elements in that dimension in the target array. For example, a 100@di©00

tity matrix of can be created as the array constant nasaedby the declaration

real, parameter :: ident(1000,1000) = &
reshape ( (/ (1.0, (0.0, k=1,1000), j=1,999), 1.0 /), (/ 1000,1000 /) )

Thus the array constructor, coupled with ikhape intrinsic, is an extremely powerful
tool for constructing array values, including array constants.

masked array assignment

A maskis an array of type logical. A masked array operation is one in which a mask con-

formable to the result of the operation is used to specify that only a subset of the concur-
rent element operations are to be performed. This functionality is available in some of the
intrinsic functions, those with a mask argument, and for array assignment. An array

assignment is placed under mask controlimee statementR739:

where ( mask) array-assignment-statement
Thewhere mask must be conformable with the array on the left of the assignment, which
must be conformable with the expression on the right of the assignment. For mask ele-

ments that have the valtreie the corresponding element assignments take place; where
the mask igalsethe assignment is not made. A example of masked array assignment is

where (C.gt.0) A=B/C

in which the assignment is made only for those elementstiot have a positive value.
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Arrays A, B, andc must all be conformable and the (array-valued) logical expression
C.gt.0 is therefore a mask conformable with these arrays.

Another simple example of the use of masked array assignment can be found in the picture
refinement program near the end of this chapter. In this case the elements of a character
array are set te where all corresponding elements in another (conformable) array are 1.:

where (picData.eq.1) picDisplay = "#"
O 0 0 0 0 0 0 O 0

Any number of array assignments that are conformable with the mask, can be placed
under the control of a single mask; in this casentiee: takes a block formR739:

where ( mask)
array-assignment-1
array-assignment-2

end where

The forms ofwhere described above leave unassigned some elements of the array on the
left hand side of the assignment statement. An extension of the block fermaref the
elsewhere option, specifies a value to be given to the left-hand-side array elements where
the mask igalse This takes the forrR739:

where ( mask)
array-assignment-1
array-assignment-2

elsewhere
array-assignment-n+1

end where

The picture refinement example uses this last forwhet :

where (picData.eq.1)
picDisplay = "#"
elsewhere
picDisplay =" "
end where

In this case those elementsp@bisplay for whichpicData has a value other than one are
assigned a blank rather than sheharacter. This is an important formwiere , because it
results in a fully defined arraycDisplay that can be used in subsequent array operations.
Without theelsewhere option the arrapicDisplay might end up not being fully defined, in
which case it cannot be used in other array expressions.
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assumed-shape dummy ajuments

Fortran has always allowed array arguments, but before array-valued expressions were
possible, array actual arguments were limited to array variable names; now such actual
arguments may be array expressions as well. No hew mechanism would be required to
handle array exprssions as actual arguments, except for the fact an array expression may
be an array section and hence nabatiguousarray object. In such cases eitlstiide
information (how the actual array is distributed in memory) must be supplied in the call or
the actual argument must be “repacked” so that the old argument association mechanisms,
which assume “compacted” arrays, will still work; generally it is more efficient to pass the
extra informationAssumed-shape dummy argumemesused for this purpose and accom-
modate the passing of completeay descriptorinformation.

An assumed-shape dummy argum&i 16 is declared with a colon for each dimension:

subroutine calc3(T,U,V)

real :: T, U(:,2), V() 1 U is a two-dimensional assumed-shape array
1V is a one-dimensional assumed-shape array
end subroutine

In a call tocalc3, any two-dimensional array expression (of type real) may be passed to
and any one-dimensional array expression may be passgddoversely, a two-dimen-
sional real arraynustbe passed to and a one-dimensional real arraystbe passed ta

In effect the colons in the declarations tbandv instructcalc3 to accept the descriptor
information supplied by the calling program.andv then exactly represent the corre-
sponding array objects in the actual argument list and may be used in array operations in
the body otalc3.

Assumed-shape dummy arguments require explicit interfaces (see chapter 9). This
requirement is automatically met for internal and module procedures; an interface block
must be supplied for an external procedure, however. When the procedure’s interface is
explicit, the calling program knows when an assumed-shape dummy argument is the
receiver and can then pass an efficient descriptor; otherwise the calling program cannot
assume the dummy arguments are assumed-shape and must therefore provide a contiguous
actual argument, packing and unpacking the actual argument array(s) as necessary.

array elements and sections

A portion of an array containing more than one element is calledray section Often

an operation is needed on an array section, not on the entire array. The earlier example of
normalizing the pivot row of a matrix is a case in point. In this example exactly one row of
the matrix was of interest in the computation, not the whole array, and the array section
was one row of a two-dimensional array. In general virtually any subset of an array can be
an array section. Array sections have array values and may be used in array-valued expres-
sions; they may be assigned array values.

An array elements specified by the array name and a subscript value for each dimension:

array-name ( scalar-subscript-1 , scalar-subscript-2 , scalar-subscript-3, ...")
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where the number of subscripts is the rank of the array and each subscript is a scalar inte-
ger expressionstalar subscript An array section is specified by replacing at least one
scalar subscript by gector subscripf{R618. A vector subscript is a one-dimensional
array of scalar subscript values for that dimension; a vector subscript may be constructed
with an array constructor. If (only) one scalar subscript is replaced by a vector subscript
the resulting array section is a one-dimensional array; if two scalar subscripts are replaced
by vector subscripts the result is a two-dimensional array, and so on. An array section has
a rank equal to the number of vector subscripts used to specify it.

As an example, consider the following 5x6 array, Q. Three sections of Q are shown in
bold: the entire second column (a one-dimensional section), the 2x2 upper right hand cor-
ner of Q (a two-dimensional section), and the last half of the fifth row of Q (a one-dimen-
sional section).

1311252 1 9

9 3 311452 2

Q = |16 4554 36 15 2
7201819 8 1
37565466 779

Q(:, 2)==(/11,3,45,20,56/) ! the second column
Q( (/1,2)), (/5,6/) ) == reshape( (/1,52,9,27/), (/12,2]) ) ' upper right corner
Q(5, (/4,5,6/) ) == (/66,77,90/) ! last part of 5th row

Note that all of these vector subscripts could be written with implied-do constructs:

Q( Uk, k=1,5)/),2) I the second column
Q( (/(k, k=1,2)/), (/(k, k=5,6)/) ) I the upper right corner
Q(5, (I(k, k=4,6)/)) ! last part of 5th row

The implied-do form is more extensible and, for large sections, considerably more com-
pact than explicit lists. Implied-do constructs are also useful for regularly-spaced but non-
contiguous vector subscripts. For example,

Q( (/(k, k=1,5,2)/), 2) == Q( (/1,3,5/), 2 ) == (/11,45,56/)
The implied-do form is common enough that a more readable shorthand notation, called a
triplet subscript(R619), is also provided for the indexed-do control triplet.

A triplet subscript is just the indexed-do control values, separated by colons rather than
commas, with the last one (the increment or stride value) optional. Thus using triplet nota-
tion the above four examples may be written (much more clearly!) as:

Q(15,2) or Q(:,2) ! the second column
Q(1:2,56) or Q(:2,5:) ! the upper right corner
Q(5,4:6) or Q(5,4:) ! last part of 5th row
Q(1:5:2,2) or Q(::2,2) ! every other element of 2nd col.

(The formQ(:,) is a section that comprises the entire agayhis form in a dummy argu-
ment declaration, rather than in an array expression, specifies an assumed shape dummy.)
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Though the above examples employ array constructors, any one-dimensional integer array
expression is permitted as a vector subscript. The only requirement is that the value of
each element of the vector subscript be a valid subscript value for that dimension of the
array. A common form for vector subscripts is a one-dimensional integer array name (or
section), whose element values have been previously established. This form is useful for
indirect access, such as indexing into a table; e.g., table elements may be retrieved (or set)
by subscripting the table array with an array containing the desired table index values.

For the array defined above, for example, consid®r(/2,5,3/), (/6,4/) )

. Q64 |271
This represents the array sectiono, s , = (90 6

This section can be used in any array expression in which a 3x2 array object is valid. It
may also appear on the left hand side of an array assignment, in which case the (1,1) ele-
ment of the right hand side expression value gets assigneglgtdh@ (3,2) value of the

right hand side gets assigned tg Qand so on.

A vector subscript may contain more elements than the size of that array dimension. In
this case there are duplicate values, since all of the values must be within the array dimen-
sion range. Indeed, subscript values may be duplicated in a vector subscript even if the
size of the vector is less than the array dimension (the only requirement is that the sub-
script values must be within range). Both of these cases are illustrated in the following
example, which specifies a 7x4 section from the elememgs of

Q4,194,494 3
Q1,191,4Q1, 403
Q,19,49,4% 3
Q((/4.1,23,425/), (11,443)) = |Qg 1 Qg 43 4Q 3
Q4,194,494,49, 3

Q1942 42 3

Q51 Q5,4 Q5,405 3

Note that rows one and five of this section are identical, as are rows three and six and col-
umns two and three. Many elementsQaterefore appear twice in this array section and

two elements, @, and Q 4 each appear four times. Array sections with multiple appear-
ances of a given parent array element are perfectly legitimate array operands in array
expressions, but such sections must not appear on the left hand side of array assignments
(or be actual arguments associated witmt(outy dummy arguments - see chapter 9).
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dynamic arrays

Fortran 90 has three varieties of dynamic arrays. All three allow array creation at run time
with sizes determined by computed (or input) values. The three varietiesutogatic
arrays allocatable arraysandpointer arrays

automatic arrays:AAutomatic arrays are local arrays whose sizes depend upon values asso-
ciated with dummy arguments. Automatic arrays are automatically created (allocated)
upon entry to the procedure and automatically deallocated upon exit from the procedure.
The size of an automatic array typically is different in different calls to the procedure.
Examples of automatic arrays are:

function F18(A,N)

integer N ! a scalar
real A(:,:) ! 'an assumed shape array
real F18(size(A,1)) ! the function result itself is an automatic array
complex Local_1(N,2*N+3) I Local_1 is an automatic array whose size
! is based on N
real Local_2(size(A,1),size(A,2)) ! Local_2 is an automatic array
! exactly the same size as A
real Local_3(4*size(A,2)) ! Local_3 is a one-dimensional array 4 times

! the size of the second dimension of A
end function

Note the importance of the intrinsic inquiry functions, suckizasin declaring automatic

arrays; a number of inquiry functions are provided that are allowed to appear in declara-
tions. Array bounds and sizes, character lengths, and type kinds may all be specified with
expressions involving these inquiry functions. RoughBpecification expressipas such
expressions are called, is a scalar integer expression that has operands whose values are
determinable upon entry to the procedure. Such operands include constants, references to
certain intrinsic procedures, and variables accessible through dummy arguments, modules,
common, and (in the case of module and internal procedures) the host procedure.

allocatable arraysAllocatable arrays are those explicitly declaststatable . An allocat-

able array may be local to a procedure or may be placed in a module and effectively be
global to all procedures of the application. An allocatable array is explicitly allocated with
theallocate statement, and deallocated either explicitly withddetiocate statement or, if

it is a local array for whichave has not been specified, automatically upon exit from the
procedure. (Ikave has been specified, local allocatable arrays can persist from one execu-
tion of the procedure to the next - they must be explicitly deallocated wihilgcate
statement.) A global allocatable array persists until it is explicitly deallocated, which may
occur in a procedure different from the one in which it was allocated. An allocatable (or
pointer) array is indicated if its size depends on a value to be computed after its declara-
tion. Theallocation statugallocated or not yet allocated) of an allocatable array may be
tested with theaillocated intrinsic function. Examples of allocatable arrays are:
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subroutine Peach

use Recipe ! accesses global allocatable array, Jam

real, allocable :: Pie(:,:) ! Pie is a 2-dimensional allocatable array

allocate ( Pie(N,2*N) ) ! allocate a local allocatable array

if (.not.allocated(Jam)) allocate ( Jam(4*M) ) I allocate a global allocable array

I if it is not already allocated
deallocate ( Pie)

end subroutine Peach

module Recipe 1 Jam is a global allocatable array,

real, allocable :: Jam(:) ! and can be allocated and deallocated in
! any procedure(s) using this module
end module Recipe

Note that the declared bounds for allocatable arrays are simply colons, indicating that
these will be provided later, at the time of allocation. This makes allocatable array declara-
tion appear similar to assumed-shape dummy argument declaration, appropriate because
the “deferred” nature of the sizes of the dimensions is conceptually similar.

pointer arrays:Pointer arrays are similar to allocatable arrays in that they are explicitly
allocated with thellocate statement to have computed sizes and are explicitly deallocated
with thedeallocate statement. Simple examples of pointer arrays result by replalting
catable With pointer in the preceding examples of allocatable arrays.

In addition, pointer arrays can be usedlbssesfor (maypoint tg other arrays and array
sections; the pointer assignment statement is used to establish such aliases. The target for
pointer associations (as such aliasing is called) may be other explicitly allocated arrays, or
static or automatic arrays that have been explicitly identified as allowable targets for point-
ers. The association status of a pointer array may be tested witksdhiated intrinsic

function. Pointer arrays may be dummy arguments and structure components, neither of
which are allowed for allocatable arrays.

Given this apparent similarity between allocatable arrays and pointer arrays, what is the
fundamental distinction between these two forms of dynamic arrays, and when should
allocatable arrays be used rather than pointer arrays? Pointer arrays subsume all of the
functionality of allocatable arrays, and in this sense allocatable arrays are never needed -
pointer arrays could always suffice. The problem with pointer arrays is efficiency. Though
pointer arrays must always point to explieitgets which makes some optimization prac-

tical that would otherwise be infeasible, pointer assignment makes optimization of pointer
arrays much more difficult than for allocatable arrays. Because of their more limited
nature and functionality, allocatable arrays are just “simpler” and can be expected to be
more efficient than pointer arrays.

Therefore, when all that is needed is simple dynamic allocation and deallocation of arrays,
and automatic arrays are not sufficient, use allocatable arrays. A common example of this
is if a “work array” is needed of a size dependent upon the results of a local computation.
If, on the other hand, the algorithm calls for a dynamic alias, of for example a “moving”
section of a host array, then a pointer array is probably indicated.
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array-valued functions

As noted above, functions can be defined that return array-valued results. In addition, most
intrinsic functions can return array values (and some always do). Array-valued functions
may be used as operands in array-valued expressions, allowing more forms of concurrent
computation expression.

An example using an array-valued intrinsic function is common in applications of finite
difference modeling. Here each element of a large two-dimensionalgaisay be added

to the “next” element in the same row of a conformable arrapd subtracted from this is
the “previous” row element ofi; this is to be done with all of the elementg ofesulting

in a conformable array The computation, for each element, is sketched as follows:

g | [a] |

u | [B] [vli I
a+pB-y

1
a [] |

Using thecshift intrinsic function, which returns a given array “shifted” a specified
amount, this computation is nicely expressed as follows:

r = g + cshift(u,1, 2) - cshift(u,-1, 2)

This illustrates the power of array-valued functions, especiadlyniére replaced with an
array-valued function reference rather than an array variable reference.

The array-valued intrinsic functions are all summarized at the end of chapter 9 and
described in detail in chapter 10. Functi®s in the previous section and the functional
form of g in the preceding example are examples of user-defined array-valued functions.
The shape of the result returned by user-defined array-valued functions normally is deter-
mined (dynamically) from arguments, as illustrated inftteeexample (and see tirefine
andsolve examples below). Note that function results are declared to be array-valued with
ordinary declaration statements, as if the function name is an ordinary variable (as indeed
it is within the body of the function). Though automatic arrays may be the most useful
form for user-defined array-valued functions, any other form is also valid: explicit-shape
array, allocatable array, pointer array.

The main additional requirement for user-defined array-valued functions is that the array
value must be fully defined before completeion of execution of the function. On the caller

side, the interface of an array-valued function must be explicit so that the caller knows that
it is dealing with a function that is array-valued; otherwise the caller has to assume the
function returns a scalar value, which is then broadcast in the array-valued expression
from which the function is called.
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example -pictur e refinement

This simple example illustrates a number of the Fortran 90 array features. A two dimen-
sional array of ones and zeros is received, perhaps from space. This data represents the bits
of a black and white “picture”, but some of the bits have been “corrupted” in transmission.
ProgramRefine applies a simple algorithm to this picture to “correct” the corrupted data.
This simple algorithm, which is similar to finite-difference algorithms, replaces each ele-
ment of the array with the average (in this case truncated to an integer) of the values of the
3x3 neighborhood of which that element is the center.

program Refine
integer :: picData(60,24)
integer :: picFile=11
open (picFile file="refine.data")
read(picFile,"(60I1)") picData

print "(A/(60A1))", "raw picture data", display(picData)

! the two-dimensional picture array

! open and read the picture data file,
! then display the raw and refined data

print "(/A/(60A1))", "refined picture", display(refined(picData) )

contains
|

function display(pic); integer :: pic(:,:)
character :: display(size(pic,1),size(pic,2))

where (pic==1); display = "#"
elsewhere; display =""
end where

end function
|

function refined(pic); integer :: pic(:,:)

integer :: refined(size(pic,1),size(pic,2))

integer ::r,

r = size(pic,1); c = size(pic,2)

refined =0

refined(2:r-1,2:c-1) = ( pic(1:r-2,1:c-2) +
pic(1:r-2,2:c-1) +
pic(1:r-2,3:c ) +
pic(2:r-1,1:c-2) +
pic(2:r-1,2:c-1) +
pic(2:r-1,3:;c )+
pic(3:r ,1:c-2) +
pic(3:r ,2:c-1) +
pic(3:r ,3:c ))/5

end function
|

end program

I assumed shape argument
! returned value same size

!'turn all ones and zeros
linto display characters

I assumed-shape argument
! returned value same size

! use of array intrinsics

&! entire array refined
&!'in one array operation
&
&! the sum of the 3x3
&! neighborhood is divided
&! by 5 to give the refined
&! one or zero for each
&! element in the interior

! of the array
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raw picture data refined picture

## # #
# #
# o #H
H#itt g HHi HiHHE H#ita
#itH # # #itt# H#itt# #itH
i HitHE # i HitHE # HiH# #HitH #i# H#itH#
#OHHH HEHEHR # HEHHE HHH HitH HitHH HitH HHHH
H#HHHHE HitH Hi #HE# HitH HitH HEHE
# # # HHHHHE it HitHHE
Hit # #Ht # HiH# # H#ittH il
#  H#H # # H#it #ittH i
HitHE HiH . # H#it# # # Hit#
#  HH i #O# #Ht HiHH H#itt HitH
# O HHHE HHHEE HEERERRRRR R i # HitH HHH R it
it # HHHIH AR #it#  #H HitH # T HitH
it H#iH# H#HHH Hittit
#Hitt # # HitH # H#i#H it
##
#
# # #it
# #H#

ProgramRefine defines two array-valued functions, both with assumed-shape dummy
arguments whose size determines the returned array size. Fufitign illustrates the

use of thewhere construct. Functiomefined illustrates (a) the use of an array intrinsic
(size) in the execution part as well as in the specification part, (b) assigning a value to an
array section, and (c) a nontrivial array-valued expression which exhibits considerable
conceptual concurrent computations.

example -Gaussian elimination

The classic Gauss elimination algorithm, with maximum pivot strategy, for solving sys-
tems of linear equations illustrates additional array features. Furties is an array-
valued function that returns the solution vector for the supplied matrix; it employs several
automatic arrays; it has just one loop (to sequence through the pivot elements). The typi-
cal nonarray sequential version of this algorithm has loops nested up to four deep; in func-
tion Gauss, on the other hand, searching for the next pivot element, normalizing the pivot
row, and using the pivot row in the next elimination step are all done as array operations.

program Solve
print *, Gauss( reshape( (/1.,1.,3.,2.,2.,2.,3.,1.,1.,5.,1.,3./), shape=(/3,4/) ) )
print *, Gauss( reshape( (/2.,1.,3.,4.,8.,-1./), shape=(/2,3/) ) )

contains

function Gauss(Grid); real :: Grid(:,:)
real :: Gauss(size(Grid,1) ) ! returns the solution vector
real ;1 G(size(Grid,1),size(Grid,2)) ! a local work array (copy of Grid)
integer :: p(size(Grid,1),2) ! array for the pivot rows and columns
logical :: not_pivot_row(size(Grid,1),size(Grid,2)) I mask current pivot row
logical :: not_pivot_rows_or_cols(size(Grid,1),size(Grid,1)) ' mask out all pivots

integer :: n, pn

if (size(Grid,2).ne.size(Grid,1)+1) stop 'bad Grid shape' ! check for valid shape
n = size(Grid,1)
G = Grid I'work on G, not Grid
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do pn=1,n I pn is next pivot number
not_pivot_rows_or_cols = .true.
not_pivot_rows_or_cols(p(1:pn-1,1),:) = .false. I mask all pivot rows
not_pivot_rows_or_cols(;,p(1:pn-1,2)) = .false. ! mask all pivot columns
P(pn,:) = maxloc(abs(G(:,1:n)),mask=not_pivot_rows_or_cols) I find next pivot
if (abs(G(p(pn,1),p(pn,2))).It.1E-4) stop 'ill-conditioned matrix’ I check stability
G(p(pn,1),:) = G(p(pn,1),:)/G(p(pn,1),p(pn,2)) I normalize pivot row
not_pivot_row = .true.; Not_pivot_row(p(pn,1),:) = .false. I mask pivot row
where ( not_pivot_row ) &! reduce matrix

G = G - G(:,spread(p(pn,2),1,n+1))*G(spread(p(pn,1),1,n),:)
end do

! repeat for all pivots, then
Gauss(p(:,2)) = G(p(:,1),n+1) I unscramble the solution vector

end function
end program

When executed with the simple data sets shown above, this program returns (1.0, -1.0, 2.0)
and (7.0, -2.0) for the respective solution vectors, demonstrating that fuaatien will

correctly solve any size linear system. The entire matrix is reduced for each pivot, rather
than just those columns needing reduction, so that about twice as many (scalar element)
operations are performed as are really necessary; further tailoring adt thieot_row

mask could decrease the number of (scalar) operations. Note that, in terms of the number
of array operations, more attention is devotedass to preparing the masks than to the
numerical computations themselves - in array algorithms logical masks take the place of
conditional statements in sequential scalar algorithms.

The Gauss code is pretty straightforward (though reading and writing such compact,
highly concurrent array operations code takes some getting used to); perhaps the least
obvious aspect oGauss is its use if thespread intrinsic function.spread replicates
(spreads) a scalar into a one-dimensional array, or replicates an n-dimensional array into
an n+1-dimensional array. The scalar-to-one-dimensional array form is usagksnto

convert the scalar operation G(i,j)=G(i,k)*G(k,j), where k is a constant, into a whole-array
operation (over all i and j) on Gpread has three arguments: the first is the scalar or array
value to be spread, the second is the dimension over which the spreading occurs (and must
be one for spreading a scalar), and the third is the number of replications.

FunctionGauss has, for any given system size n, of the order of: 7n array masking opera-
tions and 7n array numerical computations, corresponding to abscalar logical oper-

ations and 7hscalar numerical operations. As the “cost” (execution time) of an array
operation, continues its inexorable march toward that of a scalar operation, array codes
such assauss become increasingly attractive in terms of performance.
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5 Redundancy

Some of the newer features of Fortran, motivated by modern common programming prac-
tices, have made some of the earlier features redundant. The purpose of this chapter is to
identify and summarize these redundancies.

The current Fortran standard officially identifies “two categories of outmoded features”:
(1) those for which “better methods existed in Fortran 77” and (2) those for which “better
methods exist in Fortran 90”. The standard goes on to say “programmers should use these
better methods ...". In this reference these two categories are called “deprecated” (out of
favor) features.

In addition to those officially deprecated, there are several features of Fortran 90 that are
redundant and for which many believe that “better methods exdgifion , equivalence ,
and attribute specification statements.

common blocks

Before Fortran 90, the only practical way to providediobal objects (variables and con-
stants) was viommon blocksbecause global objects are important to many Fortran
application areas, much practical pre-Fortran-90 code uses common. Common blocks are
contiguous blocks of storage, and an object may be associated with (occupy) certain stor-
age units in a common block. Any program unit can access a given common block and
thereby access an object by virtue of its known location in the common block. Such
objects are said to sorage associatecand common blocks share objects among pro-
gram units througktorage associatian

Common blocks are distinguished by (programmer-specified) names, anghthen
statementRR548 allows the programmer to declare a common block having a given name.
The common statement also specifies a sequence of objects that are associated with the
successive storage units of that common block; the common block can contain any mix of
scalar and array variableB%49, but cannot contain an allocatable array, a dummy argu-
ment, a nonsequence structure, or a function result name; arrays dimensioned in common
block arrays must have constant bounds. In a given program unit, a object cannot be
assigned to two (or more) common blocks.

The common block names are themselves global, known to all program units. Two (or
more) program units accessing the same common block access the same sequence of stor-
age units; the object names and mix may be different in the two program units - the associ-
ation is by storage sequence. For example, suppose that two program units specify the
same common block as follows (where all the variables are of type default real):

common / Omega / x(100), y, z(200)
common / Omega / a(200), b(100), ¢

The common block name @mega and it contains 301 storage numeric units. In one of
the program units the first 100 storage unitoraéga are known as the array the 101st
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is the scalay, and the last 200 are the artayn the second program the first 200 storage
units are known as the arraythe next 100 storage units are known as the arragd the
last storage unit is know as the scalar variableanda(101), for example, represent the
same storage location and hence are the same “thing”.

Objects of type default integer, default real, and default logical haweeric storage

units, objects of type default complex and double precision real each require two numeric
storage units and double precision real requires four numeric storage units. Objects of type
default character haveharacter storage unitsEvery other type/kind combination (or
type/kind/rank combination for pointers) has a different, unique (but unspecified) storage
unit. Objects with different storage units maybe be placed in a given common block, but
each program unit in a program using that common block must sgeeifylythe same
sequence of storage units. If a sequenced structure appears in a common block, the effect
is as if the individual components, in order, had been placed in the common block.

Because of the strict requirement of the preceding paragraph, a popular use of include
lines (before the advent of modules in Fortran) was to make one copy of a common block,
place it in a file, and include that file in every program unit that used that common block.
With modules, the same effect can be achieved by placing the common block in a module
and using that module. Even better (and simpler), place the variable definitions directly in
the module, without putting them in common blocks; those variables are then global to all
programs units using that module (see chapter 8).

Two or morecommon Statements naming the same common block can appear in the same
program unit; the effect of the second (and subsequent) statements is to extend the com-
mon block defined in the first such statement. A named common block must have the same
size in all program units. A common block name may appeasaveastatement, in which

case the entire block is saved; individual variables in a common block must not have the
save attribute. Variables in a named common block may be initializegldtk @data pro-

gram unit.

The common block name may be omitted oramon statement, in which case the com-
mon block is known ablank commonThere may be any number of named common
blocks, but there is only one blank common; multiple blank common statements in a pro-
gram unit simply extend the one blank common. The rules for blank common are the same
as for named common, except that blank common is always saved, blank common vari-
ables cannot be initialized, and different program units can specify blank commons of dif-
ferent sizes (but storage units must still be associated with like storage units).

equivalence

To save space, two or more variables may share the same storaggiviinece state-

ment is how such sharing is specified. This was important when computing systems had
quite limited storage, but equivalence is largely redundant these days because there is not
normally now the overpowering need to “save space”.

Two (or more) variables aequivalence objectshare the same space) if they appear in
anequivalence-satf anequivalence statementR545-547%. An equivalence object may be
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a variable name (scalar or array), an array element, or a substring; it may not be a named
constant, an allocatable array, a dummy argument, a nonsequence structure, a function
result name, a pointer (or structure containing a pointer), or any part thereof. There must

be at least two equivalence objects in an equivalence set and all equivalence objects in an
equivalence set must be of like storage unit. An example of an equivalence statement is:

equivalence ( x, b(10,20)), ( first, name )

In this case the variableis the same as the array elem&mb,20), assuming that is a

scalar real and is and array of reals, and changing one changes the otfier;iff a sin-
gle-character variable anéme is a longer character string, this equivalence statement
causedirst to be the same character (share the same character storage unit) as the first
character ofame.

Equivalence superimposes (makes the same) two or more storage unit sequences; thus
unlike storage units cannot be equivalenced. Moreover since arrays and array element may
be equivalence objects, and (whole) arrays occupy contiguous storage units, care must be
taken to not specify inconsistent pairings. For example, if x and y are both one-dimen-
sional real arrays

equivalence (x(10),y(20))

assignx andy overlapping storage units, offset by 10, but
equivalence (x(10),y(20)) (x(20), y(10))

specifies inconsistent offsetting and hence is illegal. As illustrated, any array elements or
substrings specified as equivalence objects must use constants as the subscripts or sub-
string ranges. An unsubscripted array name (or a character variable name) as an equiva-
lence object, storage associates the first element of the array (or first character of the
string) to the other equivalence objects in that equivalence set.

The objects in an equivalence set must be local to that program unit. An equivalence object
may be a variable in a common block, but equivalence must not cause two different com-
mon blocks to become storage associated, nor add storage units that precede the front of a
common block.

attrib ute statements

Prior to Fortran 90 Fortran did not have the attribute form of the type declaration statement
(see chapter 2); separate statements, now clidoute statementsvere used to convey
attributes to objects; each such statement conveys exactly one such attribute. Though the
attribute form of the type declaration makes the attribute statements essentially redundant,
attribute statements are the only way attributes can be given to implicitly typed objects.
Constraints pertaining to attributes are summarized in chapter 2.

The typical (but not only) form for attribute statements is
attribute-name [ :: ]| object-list

The effect is that the named attribute is given to each of the object listed in the object list.
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Some examples are:

parameter ( MAX=100) ' with type declaration: integer, parameter :: MAX=100
real :: x, y ! using type declarations:

dimension :: x(100), y(200,200) ! real :: x(100)

save Iy ! real, save :: y(200,200)

In the first of these, which is not of the general form given above,may be implicitly

typed; in the second, the (two) variables are explicitly typed, but the other attributes are
conveyed with separate attribute statements. The attribute statements having precisely the
form shown above are: thgtional statementR520), thedimension statementR525, the
allocatable statementR526, thepointer statementR527), thetarget statementR528,
theexternal statementR1207), and thentrinsic statementR120§.

The attribute statements having almost the form shown above aretethhestatement
(R519, thepublic andprivate statementsR521), and thesave statementR523. In the
intent Statement, aimtent-speqR511) must follow thentent keyword. In thepublic , pri-

vate, andsave statements, the object-list is optional; if it is missing then the attribute
applies to all of the local objects with which it is compatible. Note thadstleeattribute
statement is the only mechanism for saving a named common block.

The form of theparameter statement is given iR538-539 such a statement can contain
any number of named constant value definitions, separated by commas and enclosed in
parentheses. Another example of a parameter statement is:

parameter ( MAX=100, DOUBLE=kind(1DO0) ) ) I assuming DOUBLE is of type integer

Thedata statementR529-537, which initializes variables, not constants, is the attribute
statement that differs the most from the general form; it also is the one that is almost not
redundant, as it can be used to initialize part of an array, a structure, or a substring (the ini-
tialization provision of the type declaration, when applied to an array, structured object, or
a character string, must initialize the entire array, structure, or string).

The simplest form of theata statement is:

data variable-list | value-list |

The variables in the variable list are “paired”, left to right, with the values in the value list;
each value has to be assignment-compatible with its associated variable. Any substring or
array section ranges, or array element subscripts, in the variable list must be constants, and
all values in the value list must be constants and any repeat factors must be positive integer
constants. An example of a data statement is:

data count, n, name(1:3), (x(i), i=4,19,3) / 0, 0, "Dru", 6*3.5 /

After thedata keyword comes the list of variables to be initialized; between the slashes (
are the initial values. In this case the variables are scalar integetr&ndn, both initial-

ized to zero, a substring (first three characters) of character varaatgeinitialized to
"Dru", and six elements (4,7,10,13,16,19) of real axal initialized to the value 3.5.
The 6 in 6*3.5 is aepeat factorand 6*3.5 is equivalent to 3.5,3.5,3.5,3.5,3.5,3.5.
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Recall that an object with thiata attribute (i.e., has been initialized) also automatically
has thesave attribute. The following objects must not appear in a data statement: a named
constant, an object in common (unless the data statement is in a block data program unit)
an allocatable array, a dummy argument, a function result name, a pointer (or structure
containing a pointer), or any variable imported by host or use association.

block data program unit

The sole purpose of thabck data program unitiR111Q is to initialize objects in named
common blocks. A block data program unit has only a (limited) specification part and no
execution part or internal procedure part. Itduasnon statements to specify the common
blocks it initializes, and any declaration and specification statements needed to fully spec-
ify the attributes of the common block variables to be initialized. Thus the only statements
that block data program units can have are: derived-type definitions, type declarations, and
use, common , equivalence , dimension , pointer , target, intrinsic , save, parameter, anddata
statements; common statements must specify nhamed common blocks. The role of use
statements in block data program units is quite limited; only named constants can be
imported in this manner.

Common block variables cannot be initialized in type declaration statements, and so data
statements must be used for this purpose; therefore, unlike in other program units, in block
data program units common block variables may appear in the variable lists of data state-
ments.

A block data program unit can initialize more than one named common block, and only a
part of a common block need be initialized - it is not necessary to initialize the entire com-
mon block. Though a common block may be only partially initialized, it must be entirely
specified in that block data program unit. A program may contain any number of block
data program units (at most one of which can be unnamed), but a given common block
may be initialized in at most one of the block data program units.

deprecated featues

The Fortran standard says that deprecated features may be removed from subsequent ver-
sions of the standard. Even should this happen, standard-conforming implementations are
still allowed to support these features (as “extensions” to the language); many will do so.

The five deprecated features for which the standard proclaims there are “better methods in
Fortran 77" are:

1.1 real (and double precisionip control variablesR822

This tends to be error-prone because of accumulated round-off error
associated with repeated arithmetical operations. The better method is to
use an integer control variable and to convert it to the requisite real value
prior to using it in the computations of the loop.

1.2 branching to aend if statement (from outside thiatonstruct)
Better method - branch to the statement followingethier .
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1.3 thepause statementR844)

Execution of this statement requires subsequent “operator intervention”
to resume execution. Operator intervention is an archaic notion in most
modern computing; a better method is to useaa statementR909
without an input list (e.gread *) to pause execution; the user can resume
execution by pressing the “return” key.

1.4 assign andassigned goto statementsR838-839 and assignetdrmat specifiers

These statements involve using statement labels as integer values for
controlling selective execution; a major use was to simulate internal pro-
cedures. Better methods are either internal procedures or equivalent
constructs. A better method for assigned format specifiers is to use char-
acter formatsR913 first alternative).

1.5 H edit descriptorR1016 second alternative)

These were used to provide character output before the advent of the
character type. Better methods are to use character constant edit descrip-
tors R1016 first alternative) or, better yet, to place character constants
in the output list, associated withedit descriptors.

The ten deprecated features for which the standard proclaims there are “better methods in
Fortran 90" are:

2.1 arithmetic if statementRR840

Redundant ever since the introduction of the logicsdatement. Better
methods are the logicalstatementR807) and thef construct R802.

2.2 shared do termination R826

This allowed nested do loops to share the same terminal statement,
which is now considered to be poor software engineering practice. A bet-
ter method is to have a separaie do statement for everyo statement
(R817).

2.3 alternateeturn (R1214 R1221 second alternative)
This feature introduces labels into argument lists; upon return from the
procedure a branch may be made to such a specified label. A better
method is to return an integer or character code, which can then be used

as the controlling case expression in a case consR809( to achieve
the desired processing.

2.4 computed goto  StatementR837)
This is another instance in which the case constR809 is a better
method.

2.5 statement function®(229

Statement functions look like assignment statements and have a number
of error-prone non-intuitive restrictions. Statement functions are com-
pletely superseded by internal procedures.
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2.6

2.7

2.8

29

data Statements in the execution part

Data statement initialization is done at compile time, not execution time,
so this capability is at best misleading. A better method is to place all
data statements before the execution part; within the execution part if the
value of a variable is to be changed that must be done with an assign-
ment statement - it can’t be done with a data statement.

fixed source form

Fixed source form requires close attention to columns 6, 7 and 72 on a
line and does not use blanks as delimiters. This is error-prone for several
reasons, but especially on modern screen equipment using proportional
fonts. Free-form source is a better method.

In fixed-form source, columns 1-6 are reserved for comment initiators,
labels, and statement continuatiorg; @r # in column 1, or ain any col-

umn (except column 6), makes that line into a comment line; (optional)
statement labels must be put in coulmns 1-5, and any nonblank nonzero
character in column 6 makes (columns 7-72 of) that line a continuation
of the preceding (honcomment) line. Statement text must go in columns
7-72.

assumed-size arrays (R518)

Assumed-size arrays are “open ended” and not consistent with the con-
formability requirements of the Fortran 90 array operations and
assumed-shape arguments. Better methods are to use automatic arrays,
assumed-shape arrays, and deferred shape arrays, as appropriate in spe-
cific contexts.

character(*) function results

A character function may be defined with an asterislefgth. There is

no way the function can determine the value of the length for a given
invocation of the function, however, say from argument values; rather
the calling program must declare this function with a specified length.
This is not very useful functionality and is inconsistent with other func-
tion result concepts (e.g., deferred shapes for array-valued functions). In
most cases a better method for the (likely) intended functionality is to
use a subroutine with an extra character argument that can be used to
return the desired character value to the calling program.

2.10character* type specifierR507, second alternative)

This original form of character length declaration, introduced in Fortran
77, is clearly redundant with the comprehensive and consistent type
parameter declaration model in Fortran 90. A better method is to use the
character(*) form (R507, first alternative).
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Input/Output

Just as Fortran has an entire “sublanguage” for array processing (see chapter 4), so too
does it have a comprehensive sublanguage for perfomaitaginputanddata output

Theread statement performs data input. The sources for data input are the user’s keyboard
and/or one or more data files on the computing system; the input process transfers a copy
of the data from the external source(s) into specified variables of the program, replacing
the previous values of those variables. Whe statement performs data output. The des-
tinations for data output are the user’s screen and/or one or more data files; the output pro-
cess transfers a copy of the values of specified variables and expressions to the external
destinations, either appending the data to previously written data or replacing existing data
on the external destination(s), depending on the nature of that particular output operation.

Fortran 1/O isrecord oriented A data file is a sequence of records, each record being a
sequence of values terminated by a special end-of-record (EOR) character (or character
combination). EOR is system-dependent but often is equivalent to end-of-line - when dis-
played on a screen, each line represents a record. A read statement normally “consumes”
an entire record (line), regardless of how much data is then actually used; a write state-
ment normally produces an entire record (including the EOR). When reading from the
keyboard each typed line, ending with th&urn key, is an input record; when writing to

the screen each write operation produces one line of output. Fortran 90 introdoadéd
vancing I/Q providing Fortran, for the first time, with partial-record 1/O capability.

The basic read and write statements are quite simple. The bulk of the I/O sublanguage
involves the many data formats that the input/output processes must accommodate, as well
as tools for effectively utilizing the data file system. The first two sections of this chapter
illustrate basic reading and writing of data; though relatively simple, these illustrations
include a great many practical uses of the read and write statements. The remaining sec-
tions are devoted to the more specialized, or more subtle, aspects of formats and files.

inputting data (read)

A simplified general form of thead statementR909 is:
read ( [unit= Junit [,[fmt=] format ][, [iostat= ios-variable 1) [ input-list ]

Theinput-list specifies the variables into which the data is to be read; the items in paren-
theses specify the data souraaif), the datdormat, and astatus variablgto detect input
errors, end of file, etc.) - these are calleditipeit control specifier§R912. Note that the

only control specifier required is the unit and that the only specifier keyword required,
when that specifier is used,igstat= . If the input list is omitted, no values are input, but a
record is consumed nonetheless.

Actual uses of the read statement tend to appear quite a bit simpler than the above general
form:

read (dataFile, fmt=*) x,y, z ! read 3 values from a data file, with "free form" input
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read (*, fmt="(14,A)", iostat=k2) number, name I read two values from the keyboard
read (expenses, fmt=*) balance, amounts I read 2 values from a file; "free form" input
read (*,*, iostat=ios) next I read one value from the keyboard
read (labData, "(A,14,5F10.3)") specimen, n, weight(1:5) ! formatted read from a file

An asterisk {) for the unit specifies keyboard input rather from a file. An asterisk for the
format specifies default formatting (also callistidirectedformatting); list-directed input
formatting assumes the individual values requested (bynthé-list) are separated by

(any combination of) spaces, commas, and end-of-lines. The iostat option is used if and
only if the programmer wants to detect input errors or the end of the file.

If the input unit is to be a data file rather than the keyboard, the unit is an integer value
(this is a good place to use a named constant); this value must have been connected to a
specific file, with thepen statement, prior to executing the read statement. For example:

open(inputData, file="lab/test-16.data") ! inputData is a previously defined integer

After execution of this open statement the appearaneguwbata as the unit in a read
statement will cause the input to be taken from the next record in the file identified as “lab/
test-16.data”, which on most systems is the file named “test-16.data” in the directory
named “lab”. The simplest form of the open statement is

open ( [unit= ] unit , file= file-name )

whereunit is as defined above for the read statemenfiladameis any character expres-

sion; of course if the file specified bBie-namedoes not exist, an I/O error occurs. See the
section below on opening files for other features of the open statement and how to prevent,
detect, and recover from 1/O errors encountered while opening files.

The format specifier in the read statement may be: omitted (in which case thisfds-a
mattedread), an asterisk (listed-directed formatting, see above and the relevant section
below), a character expression (whose value must be a valid format specifikRa009,

or a label (which must be the label gbanat statementiR1007). (See chapter 5 for a dep-
recated option not listed here.) The format specifies how the input data is converted and
assigned as the values of the variables in the input list. An unformatted read must specify a
unit that is connected to a file previously created with unformatted write statements.

If an iostat variable is specified in a read statement, it must be an integer variable, and after
execution of the read statement it is defined as follows: with a negative value if end-of-file
is detected (in which case no data input occurs, and the variables in the input list are unde-
fined), with a positive integer value if an 1/O error occurs (also in which case the variables
are undefined), or zero (in which case no error or end-of-file occurred and the variables are
defined with the input values). The non-zero values for the iostat variable are implementa-
tion-dependent, but in principle can be used to determine the exact nature of the error.

Alternatives to theostat= specifier are thend= specifier and therr= specifier R912.
end= applies only to input and specifies the label to which the program branches if the
end-of-file is encountered during execution of the read statement in which the end=



Input/Output 49

appearserr= can be used with both input and output and specifies a label to which the pro-
gram branches if any I/O error occurs during execution of the read or write statement in
which the err= appears. In addition, the err= option is available in the other I/O contexts in
which iostat= can appear: the open and inquire statements. end=/err= can be used together
with iostat=, in the same statement, or they can be used separately.

The input list R914 can contain any variables, in any order, that can appear on the left-
hand side of an assignment statement, including scalar variable names, array variable
names, array elements, array sections, substrings, and structure components; in addition,
the input list can include io-implied-do construd®919.

outputting data (write )

A simplified general form of therite statementR910 is similar to the read statement:
write ( [unit= Junit [, [fmt= ] format ][, [ iostat= ios-variable ]) [ output-list ]

The output-listspecifies the values to be copied to the output destination; the only differ-
ence between the input list and the output list is that, whereas the input list must specify
assignment-capable variables, the output list can comprise any set of expressions (includ-
ing stand-alone variables and expressions formed in io-implied do constructs). If the out-
put list is omitted, an empty record is written; on the screen this appears as a blank line.

The unit, format, and iostat specifiers in the write statement are the same as in the read
statement. The unit is an integer value that identifies the file that is to receive the output, or
it is an asterisk; if the latter, the output is displayed on the user’s screen. As for input, if the
output is to a file, the unit (integer value) must have been connected, by an open statement,
to the desired file before execution of the write statement. The simplest form of opening a
file for output appears exactly like that for input.

Also as in the read statement, the format specifier in the write statement may be: omitted
(in which case this is a unformatted write, and any subsequent reads on this file must be
unformatted), an asterisk (listed-directed, system-defined default output formats are used),
a character expression, or a label. The format specifies how the values of the output list are
to appear in the destination record. Unformatted output should not be sent to the user’s
screen.

The only role of the iostat variable in a write statement is to detect, and take corresponding
action, if an error occurs during the execution of the write statement. As in the read state-
ment, if an error occurs the iostat variable is defined with an implementation-determined
positive value; if no error occurs the iostat value is zero.

Examples of the write statement are:

write (dataFile, fmt=*) x, vy, z I write 3 values to a data file, with default formatting
write (*, *, iostat=ios) number, name ! write two values to the screen
write (*, fmt="(T20,15)", iostat=ios) next ! write one value to the screen

write (labData, "(A,14,5F10.3)") specimen, n, weight(1:5) ! formatted write to a file
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A redundant form ofirite(*, format) ... is provided as thgrint statementR911):
print format [, output-list ]

Similarly, a redundant form eéad(*, format) ... is provided R909 second alternative):
read format [, input-list ]

whereformat input-list, andoutput-listare exactly as described above.

data formats

Data read from the keyboard or written to the screen is alfgaystted data read from

or written to a file may be either formattedumformatted Unformatted I/O is specified,

as outlined above, by omitting tfematspecifier from théo-control-list The purpose of
unformatted 1/O is to provide efficient data transfer, without conversion between the file
and the internal representation in the programs variables; in an unformatted write the bit
patterns of the data as represented in the program variables is written, unchanged to the
file. Such data is subsequently readable only by the corresponding unformatted read state-
ment (“corresponding” meaning the same type/kind pattern of variables in the input list as
values in the written by the output list), and again the bit patterns are simply transferred -
in this case from the file to the variables - without conversion. To be readable by humans,
data must be converted from internal form to appropriate character strings, and vice versa
- that is, formatted.

Default numeric types, for example, are typically groups of 32 binary bits; to be readable
by humans this the value of an real variable must be converted to the familiar decimal digit
representation of numerical values (complete with decimal points, minus signs, etc.). Sim-
ilarly, when one types a4 as keyboard input, this must be converted to the internal (usu-
ally binary) representation used by the variable receiving this value. Formatted 1/O first
specifies that such conversion is to take place and second allows the programmer to spec-
ify the exact form of the output (humber of decimal places, for example) and, for input, the
exact form in which the data exists (and from which conversion must be made).

Such conversion is specified by forndataedit descriptordR1005. A format-specifica-

tion (R1002 is a sequence of such edit descriptors, delimited by commas, possibly inter-
spersed witltontrol edit descriptorgR1010, and enclosed in parentheses. In a formatted

I/O statement each value in the input-list or output-list is “paired with” a data edit descrip-
tor that specifies how that value appears in the source (input) or how that value is to appear
in the destination (output). The association is positional, with each value in the input/out-
put list associated with the data edit descriptor in the same position (ignoring any control
edit descriptor) in the format specification - thus, in left-to-right fashion, the first value in
the input/output list is associated with the first data edit descriptor in the format specifica-
tion, the second with the second, etc. The descriptor list may be longer (have more data
edit descriptors) than the input/output list (has values), in which case the extra descriptors
are unused; if the descriptor list is shorter, then it is “reused” as often as needed. Some
examples appear above - others are:

(A8, E16.6, 110) ! a character, real, and integer, in 34 spaces
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(15, 15, 2F10.2, A42) ! five values in record, in 72 spaces

(15, 3(4F5.1, Z5), E20.4) 1 14 values in record, in 100 spaces
(A10, 2L5, A20, A30, F10.4) ! ( note that these five examples are
(A, A, G10.2E4, EN8.4) ! not complete Fortran statements )

Each intrinsic data type has a set of data edit descriptors. The |, B, O, and Z data edit
descriptors are for integer values. The F, D, G E, EN, and ES data edit descriptors are for
real values (and complex values - each complex values takes two real data edit descriptors
- one for the real part and one for the imaginary part). The L edit descriptor is for logical
values, and the A edit descriptor is for character values. A derived type (structure) value
requires a set of data edit descriptors corresponding to its components, an appropriate one
for each of its (intrinsic) components, similar to complex (thinking of a complex value as a
structure with two real components). The following table summarizes these 12 data edit
descriptors:

data edit more
. data type effect
descriptor examples
optional + followed by decimal digits; on output write a minimunmodligits and right- 18
Iw [.m] integer | justify value in field widthw; on input value must be an integer constant (not necessarily 14
right-justified in the field)m has no effect on inputn<w; default value om is 1 19.5
Bw [.m] integer | same asformat, except binary digits (0,1) instead of decimal digits and no sign B16
Ow [.m] integer | same aB format, except octal digits (0-7) instead of binary digits 03]
Zw [.m] integer | same aB format, except hexadecimal digits (0-9,A,B,C,D,E,F) instead of binary digjts ZA2
output has optional + followed by decimal digits wdtldigits to right of decimal point, F7.2
Fw.d real, right-justified in field widthw; input may be integer, decimal digits with decimal point  F12.8
complex | anywhere, or either followed by + followed by an integer expomritcw; F5.1
need two for complex values (and for theD, G, EN, andES data edit descriptors) F6.0
Ew.d output has optional + and 0 preceding decimal pdidigits after decimal point, E9.2
Ew.d [Ee] real, followed by a base-10 exponent of the fdesruu or +uuu (u being a decimal digit); D9.2

Dw.d complex | Ew.dEe is the same but with u's in the exponent parw.d is the same a&w.d but with | E14.4E4
aD instead oE in the exponenid+6<w; same a§w.d on input, except input value may E30.6
have arkE or D exponent

Gw.d [Ee] real, same a$w.d on input; a generalized edit descriptor that for output valaets approxi- G10.3
complex | mately af~w.d for 0.1<v<10**d and approximately &w.d [Ee] otherwise G10.3E3
ENw.d real, output is in “engineering notation“, which is liksv.d [Ee] but with an exponent divisible EN15.5
[Ee] complex | by 3 and 1-3 digits preceding the decimal point; saniees on input
ESw.d real, output is in “scientific notation”, which Ew.d [Ee] with the exponent one smaller so that ES15.5
[Ee] complex | there is a single nonzero digit preceding the decimal point; safe.@®n input
Lw logical | output consists af-1 blanks followed by & or anF; on input, in field widthw, any num- L2
ber of blanks followed by an optional period followed Bl @r F, followed by anything L14

if w is omitted the field width is the length, of the character value/variable; on input,|if A

A [w] character| w>n then then rightmost characters in the field are read amekifi then thew characters A10
are character-assigned to the variable; on outpwt:iif then the characters are left-justi-  A40
fied in the field and ifv<n then the leftmostv character of the value are output
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In these data edit descriptors w, d, e, and m all must be unsigned integer constants (but not
named constants); in addition all may be optionally preceded by an unsigned integer con-
stant (but not named constargpeat factoy the letters I, B, O, Z, F, E, D, G EN, ES, L

and A must all be capital (cannot be lowercase). All involve a field width, w, which is the
total number of characters “reserved” for this value.

The control edit descriptors, which can be inserted among the data edit descriptors as
desired, and also comma delimited, are summarized in the following table:

control edit
. effect example
descriptor
/ at this point complete the current record and start a new one; need not be comma delimijted /,/
Tn tab to the character colunmnof the record (tabbing may be either forward or backward) T40
TLn tab left (backwardh character columns in the record TL2
TRn tab right (forwardn character columns in the record TR12
nX same a§R n 12X
S processor choice as to whether or not to output the optional plus sign (this is the default S
SP from this point, the optional plus sign must be output; no effect on input SP
SS from this point, the optional plus sign must not be output; no effect on input SS
BN from this point, nonleading blanks in numeric input fields treated as nulls; no effect on output BN
Bz from this point, nonleading blanks in numeric input fields treated as zeros; no effect on qutputBZ
“scales” subsequent numerical values; on input, no effect if the input field has an exponent, and
kP otherwise divides the input value by* during conversion; on output, no effect for theF 3P
part of)G, EN, andES edit descriptors, and for tiieandD (andE part ofG) descriptors 8P
reduces the exponent valuelbgnd multiplies the nonexponent part by*k0
ch-ed a character constant (but not a named constant) that is written to output; no effect on ingut "x="
stops output format processing if the output list has been finished (suppresses subkezg)ent

In these control edit descriptors k and n must be unsigned integer constants (but not named
constants); the letters P, T, L, R, X, S, N, and Z must all be capital (cannot be lowercase).
Some examples of format-specifications containing both data edit descriptors and control
edit descriptors are:

(T5, 15, 15, 2F10.2, A42) ! tab to column 5 first

(15, /, 3(4F5.1, 75, /), E20.4) ! a total of five records involved

(A10, 2L5, TR10, A20, A30, 2PF10.4) ! tab right after logicals, and scale the real

(A, BZ, G10.2E4, EN8.4) I treat blanks as zeros in the two numeric fields

The discussion, tables, and examples in this section summarize most of the important con-
cepts and techniques of 1/0 formatting. But there are many other combinations and subt-
lies: treatment of formatting takes an entire chapter and 21 large pages in the Fortran
standard, and 53 (smaller) pages in the exhaustive Fortran 90 Handbook. Consult the ref-
erences listed in the preface for additional details regarding formatted 1/0.
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opening and closing fes

A file read or write statement specifies the file via auiilé number, which is an integer

value; prior to executing the read or write statement, this unit must be associated with an
actual file on the computing system. Making this association is aalatkctingthe file

to the unit oropeningthe file; breaking this connection is callddsingthe file. During
program execution a file may be opened on a unit, subsequently closed, and then reopened
again or a different file opened on that unit. The open and close statements control file
connection.

The simplest form of the open statement was illustrated above, with the two required
“connect specifications” (unit and file). There are many more connection properties that
can be specified when making a file connection, however, and the general formpefi the
statement R904-905 has 11 additional connect specifications, all optional; all have
required keywords (e.gaccess=). Only the specifier in the open statement that has an
optional keyword is the unit specifier, amtt= may be omitted only when the unit speci-

fier is the first in any open statement specifier list - the specifiers may be in any order an
none may appear more than once. Open statement specifiers are summarized in the follow-
ing table, with the unit and file specifiers first followed by the others in alphabetical order.

specifier value meaning

unit= integer expr. the unit number to be connected by this open statement

file= character expr. | the name of the file to be connected to this unit

access= "direct" file to be connected for direct, or “random”, access to its records
"sequential" file to be connected for sequential access to its records; the default

action= "read" file to be connected for reading (input) only
"write" file to be connected for writing (output) only
"readwrite" file to be connected for both reading and writing

blank= "null" ignore blanks in numeric input fields (can be overridden by BZ); the delfault
"zero" treat blanks as zeros in numeric input fields (can be overridden by BN

delim= "apostrophe" this specifies the delimiter to be used in writing character data
"quote" by list-directed or name-directed (namelist) output statements;
"none" “none” is the default

err= label branch point if an error occurs in executing this statement

form= "formatted" the records in the file are formatted; the default for sequential access
"unformatted" the records in the file are unformatted; the default for direct access

iostat= integer variable | same as in read/write statements; gets positive value if error occurs

pad= "yes" use blank padding for character input, when needed; the default
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specifier value meaning
"no" don't pad - require that input data has the requested number of charagters
position= "asis" do not change file position upon connection; the default
"rewind"” upon connection, insure that file is positioned at its first record
"append" upon connection, insure that file is positioned after its last record
recl= integer expr. record length for direct files; number of characters for formatted files;
processor-dependent units for unformatted files, typically bytes or worfls
status= "old" the file must exist prior to making the connection
"new" the file must not exist prior to the connection - created by connection
"unknown" processor-dependent status; this is the default
"replace” creates or replaces file; in either case gitist= inquiry returnstrue.
"scratch” a temporary file is created, for the duration of the connection;

1%
o

this is the one case in which tfile= specification is not (must not be) usg

For those open specifiers for which character values are listed in the above table (e.g.,
action="read" ), the value can be specified as a character expression, but such expressions
must evaluate to one of the listed options, either in uppercase or lowercase (all lowercase
shown above). For those specifiers having a specific default value, the default is identified;
in the other cases the default is processor dependent. Note the one case that is incompati-
ble with thefile= specifier: whetatus="scratch" is specified.

Some of the options in the above table involve concepts to be discussed in subsequent sec-
tions of this chapter; for exampl&cess="direct’ specifies a “random” file rather than a
sequential file, and random files are described in section below entitled “sequential and
random files”.

The close statemenR907-908 disconnects the file currently connected to the specified
unit, allowing the unit to be reconnected later to another (or even the same) file. Any con-
nections not explicitly terminated by close statements are automatically close at the termi-
nation of the program. As with the open statement, the close statement has a list of
specifiers, only one of which is required (the unit specifier, which is the same as in the
open statement). The close= andiostat= specifiers play the same error-handling role in

the close statement as they do in the open statement. The only other close specifier is the
status= option, which has two possible values: "keep" specifies that the file remain on the
system after being closed, and "delete" specifies that the file be deleted from the system;
"delete" is the default for scratch files and "keep" is the default for all other files.
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file inquiry

The Fortran I/0 sublanguage has an extensive file inquiry mechanism, which allows infor-
mation to be obtained about a file before opening it; such information can be used in sub-
sequent connection specifiers. The form ofithére statementRR923-924 is similar to

that of the open statement in that in has a statement name and a list of specifiers; each
specifier specifies a variable to hold the returned information (exeeptvhich specifies

a label). As in the open statement, the only specifier for which the keyword can be omitted
is the unit specifier, and then only if this is the first specifier in the list; any given specifier
can appear at most once in a given inquire statement.

Each inquire statement must have either a unit specifier or a file= specifier but, unlike the
open statement, not both. If it has a unit specifier then the inquiry is “by unit”, and the
information returned pertains to the unit and the file connected thereto (if any). If the
inquire statement has a file= specifier then the inquiry is “by file” and the information
returned pertains to the file on the system with the name specified in the file= specifier. In
inquiry by unit the specified unit may or may not be connected; in inquiry by file the file
may or may not exist and, if it exists, may or may not be connected to a unit. the various
inquiry specifiers are summarized in the following table.

specifier retu.rne.d va_lue for retumepl va!ue for
file inquiry unit inquiry

unit= not allowed the unit number about which to inquird
file= name of the file about which to inquire not allowed
number= the unit number, if currently connected; otherwise the integer value -1
named= true. .true. iff connected to a named file
name= file name file name if connected to a nameddile
exist= true. if file exists, .false. otherwise .true. if unit exists,.false. otherwise
opened= .true. if file is currently connected .true. if unit is currently connected
access= "sequential" or "direct”, if connected; otherwise undefined
sequential= "yes", "no", or "unknown", if connected; otherwiséunknown"
direct= "yes", "no", or "unknown", if connected; otherwiséunknown"
action= "read", "write", or"readwrite", if connected; otherwise undefined
read= "yes", "no", or"unknown", if connected; otherwiséunknown"
write= "yes", "no", or "unknown", if connected; otherwiséunknown"
readwrite= "yes", "no", or "unknown", if connected; otherwiséunknown"
form= "formatted" or "unformated", if connected; otherwise undefined
formatted= "yes", "no", or "unknown", if connected; otherwiskinknown"
unformatted= "yes", "no", or"unknown", if connected; otherwiskinknown"
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specifier retu.rne.d vqlue for returryepl va!ue for
file inquiry unit inquiry

blank= "null", "zero", or undefined, if connected; otherwise undefined
delim= "apostrophe", "quote”, "none", or undefined, if connected; otherwise undefindd
err= label of statement to which to branch if an error occurs
iostat= 0 for no error; a positive integer value if an error occurs
pad= "yes" or "no", if connected;yes" if not connected
position= "asis", "rewind", "append", or undefined, if connected; otherwise undefined|
recl= record length, if connected; otherwise undeffhed
nextrec= next record number, if connected for direct access; otherwise undefined
iolength= recl= value for theoutput-item-list (a special form of the inquiry statement)

a. The value is undefined if the unit is not connected, or is connected to a scratch file.

b. If the connection is for direct access, all records have the same length;
if the connection is for sequential access, the maximum record length is returned.

Three of the inquire specifiersn(i=, file=, anderr=) serve as input to the inquire state-
ment; the others all return values to the program. Three of these spetifieks-( exist=,
andopened=) return logical values, fivengmber=, iostat=, recl=, nextrec=, andiolength=)

return (default) integer values, and the rest return (default) character values. Note that in a
great many cases the value return is undefined if the file or unit in not currently connected,
which means that normally apened= inquiry should be made first.

seguential andrandom files

Fortran data files come in two flavosgquentialanddirect The records of a sequential

file are processed in sequence, starting from the first record of the file. The read and write
statements illustrated above are sequential reads and writes. (Note that the keyboard is a
sequential input “file” and the screen is a sequential output “file”.) Opening a file for
seqguential accegmositionsthe file at its first record; a sequential file may be repositioned

at its first record by closing the file and reopening it; it may also be repositioned at the first
record, without closing and reopening, by executingvad statementiR921-922 on the

unit connected to that file. A sequential file may also be “backed up” one record by issuing
abackspace (R919 on the unit; this is handy if there is a need to reread (or rewrite) the
previous record. Thendfile statementR920 causes an end-of-file marker to be written to

a sequential file opened for write or readwrite action; closing such a file also writes an
end-of-file marker.

A direct file is so called because a one can “go directly” to any record number in the file;
direct files are also called ‘random” files, because one can specify processing any record at
“random”. If there ara records in the file, they are numbered, 1, 2, 3,.and the read or

write statement can specify, with tiee= specifier, which record is to be involved:
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read ( [unit= ] unit [, [fmt= ] format ], rec= record-number [, iostat= ios-variable]) input-list
write ( [unit= ] unit [, [fmt= ] format ], rec= record-number [, iostat= ios-variable]) output-list

Other than the addition of thec= specifier, the read and write statements for direct files
are the same as for sequential files. The record-number is any (default) integer expression,
the value of which specifies the record to be processed.

All of the records of a direct file are the same length (this does not have to be the case for
sequential files)access="direct" and therecl= specifier must be included when opening
direct files; note that the default formatting for direct filesuigormatted” , and thus
form="formatted" must also be specified if the direct file is to be formatted. The inquire
statement with theecl= andnextrec= specifiers can be used to, respectively, determine the
record length of a direct file and the record following the last record processed with a
direct file read or write statement.

partial-r ecord (nonadwancing) I/O

As mentioned above, Fortran I/O is fundamentally record oriented, and explicit specifica-
tion is needed for a read (write) statement to consume (produce) only part of a record. In
(the default) whole-record 1/O, the position of the file is sa@liwanceto the next record

after a read or a write statement. Thus partial-record I/O is cadleadvancind/O, as the

file position is “left where it is” rather than advancing to the beginning of the next record.

In nonadvancing input the position of the file is left at the beginning of the next datum
within the record that has not yet been read, and the next read statement continues reading
from that point; in nonadvancing output an end-of-record is not written by the write state-
ment, and the next write statement continues the same output record.

Nonadvancing I/O is specified with thévance="no" specifier R912 in the read or write
statement; nonadvancing can be specified only for sequential, formatted 1/0O, so the gen-
eral forms of the read and write statements for partial-record 1/O are:

read ( [unit= Junit ,[fmt= ] format , advance="no" [, iostat= Jjos-variable]) input-list
write ( [ unit= ] unit , [ fmt= ] format , advance="no" [, iostat= ios-variable]) output-list

Note the (syntactic) similarity of nonadvancing 1/0O with direct I/O, the only differences
being that the format is not optional, and may not be an asterisk, and these\vises*
specifier rather than ecl= specifier. The "no" can be any scalar (default) character
expression which evaluates to either “no” or “yes” (upper/lower case immaterial); “yes”
represents (the default) ordinary whole-record sequential formatted 1/O. An extended
example of nonadvancing read and write statements is:

! read from a file the day-month-year, such as "24 September 1987"; year position unknown;
! write the results in a (slightly) different form to the screen, interleaving the writes with the reads

read (f, fmt="(12)", advance="no") day l'assume that i, j, day, year are integer
write (*, fmt="(13,TR1)", advance="no") day ! print day to screen, blanks on both sides
do i=1,10

read (f, fmt="(A1)", advance="no") month(i:i) I assume that month, m are character

if (i>1.and.month(i:i))=="") exit ! read characters through second blank

end do I (first character of month is a blank)
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m = "*** January February March April May June July" 1l &
“ August September October November December "
j = index(m, month(1:i) )

write(*, fmt="(A3)", advance="no") m(j+1:j+3) I now write first three characters of the month
read(f, fmt="(14)") year I (or three asterisks if month "error" in file)
write(*, fmt="(15)") year ! finish with advancing read and write for year

! for the above example data the output to the screen is “ 22 Sep 1987”, and no more, on one line

This example illustrates the advance="no" option, of course, but also illustrates that non-
advancing can be used with both file I/O and screen/keyboard I/O. If the interleaving of
the read and write statements had been important then, because of the unknown length of
the Month data, the partial-record I/O is exactly the tool needed. If the interleaving is not
important (which it probably isn't in the example as shown) then whole-record read and
writes could have been used, together with and internal read (see the next section). Gener-
ally speaking, nonadvancing I/O is indicated when some action must be taken after part of
a record (line) has been input or output and before it is completed.

In nonadvancing I/O the iostat= specifier can be used to detect end-of-record on input as
well as end-of-file. At end-of-file the iostat variable has a negative value and a different
negative value at end-of-record. Unfortunately, these values are implementation depen-
dent, although some implementations provide a module with named constant definitions
that include the end-of-file (typically named EOF) and end-of-record (EOR) values. If the
implementation does not provide such definitions, at least the documentation should iden-
tify what these values are for that implementation; then the programmer can provide the
appropriate named constant definitions. If these values are not readily available then resort
must be made to thend= andeor= specifiers, which specify the branch point label if the
input encounters end-of-file or end-of-record, respectively.eblespecifier is available

for use only with nonadvancing input.

internal data corversion (internal files)

The file unit in a whole-record formatted sequential read or write statement may be a char-
acter variable, rather than an integer expression or an asterisk. If the variable is an array
then the effect is as if the array represents a formatted sequential file, each element of the
array being one record of the file; if the variable is a scalar (a scalar character variable, a
substring, or an array element), the “file” is a one-record file. Such a “file” is called an
internal file as the file (character variable), as well as the input or output list entities, is an
internal entity of the program. A read statement specifying an internal fileinéeanal

read and a write statement specifying and internal file isnggrnal write The general

form of internal reads and writes are:

read ( [unit= ] unit ,[fmt= ] format [, iostat= jos-variable]) input-list
write ( [unit= ] unit ,[fmt= ] format [, iostat= ios-variable]) output-list

in which the unit in the read statement is a (default) character expression and the unit in
the write statement is a (default) character varig89(, R903.

The purpose of an internal write is to convert a set of expression values (the output list) to
a (sequence of) character string(s), just as a formatted write to an external file; the purpose
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of an internal read is to convert a (sequence of) formatted record(s) - any formatted record
is simply a string of characters - to the proper internal values for a set of variables (the
input list), exactly the role of a formatted read of an external file. Thus internal reads and
writes are exactly the same as external reads and writes, except that the records are inter-
nal character objects rather the same kind of thing in an external file.

An external read “reads from” the record, converts the character values as specified by the
format, and defines the variables in the input list; the record itself is not changed and there-
fore the internal file may in fact be any character expression - it is not limited to a variable.
On the other hand, an external write converts the values in the output list to characters,
according to the format, and “writes” the record; hence the internal file for an internal
write must be a character variable that can be assigned a value. Any character variable, or
element, section, or substring thereof, in an internal file must not appear in the format (if
specified as a character expression) or the input or output list.

Internal files are most often used to convert between numerical values and character string
(and vice versa). A common instance of this is when the format of an record is not known
until after it has been read (into a character string); after determining the format, an inter-
nal read can convert the values to the “target” variables. For example, consider the exam-
ple of the preceding section. A whole-record read, coupled with internal reads, can
accomplish the same thing as the nonadvancing reads:

! read from a file the day-month-year, such as "24 September 1987"; year position unknown;

read (f, fmt="(A)") iFile I assume that iFile isa character variable
i = index(iFile, ' "); i = index(iFile(i+1:), ' ") lassumei, j, day, year are integer

!'iis location of the second blank in IFile
read (iFile(:2)), fmt™(12)) day linternal read to convert
month = iFile(3:j) I assume month, m are character
read (iFile(i:i+4)), fmt™(15)) year linternal read
m = "*** January February March April May June July" I &

“ August September October November December "
j = index(m, trim(month)//" ")
write (*, fmt="(13,TR1,A3,15)") day, m(j+1:j+3), year ! ordinary advancing write to the screen
! output is the same as in preceding section, but all with whole-record and internal 1/0O

Note in this example that the contents of the entire external record are read into an ordi-
nary character variablérie ). Theindex function is then used to identify the substrings on
which internal reads are used to convert the numeric data into the desired variables.

If the internal file cannot be an unallocated array or unassociated pointer; the file for an
internal read must be a valid character expression (that is, all parts must have defined val-
ues). Data transfer in internal file 1/O is the same as in external file 1/0O. Internal file 1/0O
may be list directed (see next section), but may not be name directed (namelist), direct,
unformatted, or nonadvancing. The file connection (open and close statements), inquiry
(inquire statement), and positioning (backspace, rewind, and endfile) cannot be used with
internal files; thelank="null" , delimit="none" , andpad="yes" connection specifications are
assumed.
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list-dir ected andname-directed I/O

All of the formatted 1/0O described above involve a programmer-supioiietatthat spec-

ifies the exact columns in which output values are to be written and from which input val-
ues are to be read. Fortran provides two forms of sequential advancing formatted 1/O in
which the formatting is system-supplied rather than programmer-supplied. For output, the
system supplies (typically) blank-delimited values written according to some system-sup-
plied data edit descriptors; input values are “free form”, delimiteddbye separators
(usually blanks or commas).

List-directed I/O syntax is:
read ( [unit= Junit ,[fmt=]* [, iostat= ios-variable]) input-list
write ( [unit= Junit ,[fmt=]* [, iostat= jos-variable]) output-list

The format is an asterisk to indicate system-supplied formatting. The unit may be either an
internal or external file, or an asterisk (keyboard/screen); when the unit is an asterisk the
“short form” may be usedead * ... andprint*... .

In list-directed input, the first value is extracted from the record and converted for assign-
ment to the first variable in the input list, the second value extracted, converted, and
assigned to the second variable, and so on until values have been read for all of the input
list variables, or until a slashdr end-of-file is encountered. If a slash (or end-of-file) is
encountered and some of the variables have not been assigned new values, those input list
variables retain their current values.

A value in the input file is separated from the next value by a blank or a comma; a comma
may optionally be preceded and/or followed by a blank. (Multiple consecutive blanks in
the input, but not in a character value, are equivalent to a single blank, and blanks are
never zeros.) Consecutive commas (possibly with intervening blanks) reprebemput

values, and the corresponding input list variable values are not changed. The end of a
record is treated as a blank.

A numeric input value must be in the form of a numeric constant, assignment compatible
with the input list variable to which it is to be assigned, but binary, octal, and hexadecimal
constants must not be used in list-directed input and the separator characters (blank,
comma, and slash) cannot be part of a logical value (they would be treated as value separa-
tors). A character value may be a character constant, assignment compatible with the cor-
responding input list variable, or not delimited at all; in the last case the first appearance of

a separator character terminates the character value; a separator character appearing in a
character constant is part of the constant, however, and not treated as a separator.

A value may be repeated, much as in the data statement (R532), by preceding it with an
unsigned (default) integer constant followed by an asterisk; for example: 4*1.0 is equiva-
lent to 1.0, 1.0, 1.0, 1.0. Such a repeated construct must contain no blanks (any blank
would serve as a value separator). The repeat without a constant specifies that many con-
secutive nulls; for example 6*, specifies six nulls and is equivalent to , ,,,,,,.
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The format for list-directed output is entirely implementation dependent, except that it
must be (almost) suitable for list-directed input of the same values in the same sequence.
An integer value is in | format, a real value is in F or E format, the real and imaginary parts

of a complex value are enclosed in parentheses and separated by a comma, a logical value
is T or F, and a character value is delimited by the character specified by the delim= speci-
fier in the open statement (note that the delim= default is “none”); if a character value is
written with single (or double) quote delimiters, any single (or double) quote characters in
the character values are repeated once, as per the rules for character constants. The
“almost” in the first sentence of this paragraph refers to the situation where a character
value containing separator characters is written with delim="none"; in this case the list-
directed output does not represent the same set of values for subsequent list-directed input.
A list-directed write statement may output any number of records, and the first character
of each such record is a blank.

L R A A

Name-directed I/O is similar in many respects with list-directed 1/O, except that the values
in the input or output list can be in any order. This is accomplished by making two syntax
changes in the read and write statements and keywording the input (and output) values.
The value keywords are modeled after the specifiers (e.g., iostat=...) of the various 1/0O
statements - the value is preceded byriable= construct, whereariable is the identifica-

tion of the variable to receive that value (input) or whose value is to be written (output);
note that name-directed output works only with variables, not with arbitrary expressions.

The following forms for the name-list read and write statements illustrate the two syntax
changes:

read ( [unit= ] unit , [ nml= ] group-name [, iostat= ios-variable])
write ( [ unit= ] unit , [ nml=] group-name [, iostat= ios-variable])

The two changes are: (1) thet=* has been replaced li= group-name, and (2) there is
no input list or output list, which are also replacedgbyup-name The group name is
defined by the@amelist specification statemenRb43-544, the simplest form of which is:

namelist/ group-name | variable-name-list

The namelist statement associates a name (the group name) with a list of variable names;
some or all of these variables, or parts of them, are assigned input values by a name-
directed read statement; similarly the values of some or all of these variables, or parts of
them, are output by a name-directed write statement. Each name in the variable name list
of a namelist statement must be a scalar or array variable name, but cannot be the name of
an array dummy argument with a honconstant bound, an allocatable array, a variable with
a nonconstant character length, a pointer or an structure containing a pointer, or any other
nondummy argument local variable without the save attribute.

Thevariable part of avariable=value pair may specify one of the names in the variable name
list, or an element or section of an array having one of those names, a component of a
structure with one of those names, or a substring of a character variable with one of those
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names. Thealue part of avariable=value pair may be empty (null value), a single scalar
value (if thevariable is a scalar), or if theariable is an array (or array section) theue is

either a sequence of comma or blank separated scalar values or of the repeated “*” form
(as in list-directed 1/0); as in list-directed /O, if there is no value following the “*” then
that many null values are specified.

Name-directed input starts with an ampersand followed (immediately) by the group name,
followed by a set ofariable=value pairs (in any order), and ending with a slash. Bagh
able=value must be preceded by a comma or a blank; there may be a blank between the
and thevalue. If the variable and value are scalar, that value is assigned to the specified
variable; if the variable is array valued then the specified sequence of scalar values are
assigned to the corresponding elements of the array. Unlike list-directed input, a character
value in name-directed input must be a character constant; otherwise name-directed input
is pretty much the same as list-directed input. Name-directed output has an implementa-
tion-dependent form, but must be (almost) suitable for subsequent name-directed input for
the same variable values; the “almost” is the same as for list-directed /O - if
delim="none" then character output is not delimited and thus likely would not represent
the same values for namelist input.

Examples of list-directed and name-directed 1/O are:

read (labData, fmt=*) name, weight(1:4) 1 #1 ! weight is an array

"white rats"  4.3,5.1,4.6,4.3 (input for #1)
print *, name, weight (3) 1 #2 ! output the values read in #1

white rats 4.319683 (output for #2)
namelist / labVars / name, weight ! namelist for #3 and #4, specification part

read (labData, nml=labVars) 1 #3 | same data read as in #1

&labVars weight(1:4)=4.3, 5.1, 4.6, 4.3 name="white-rats" / (input for #3)
write (*, nml=labVars) ! #4 1 using the same namelist as defined for #3
&labVars weight(1:4)= 4.3 5.1 4.6 4.3 name= white-rats / (output for #4)

Each of the above input statement reads data from a file (labData), and prints it on the
screen. Note that theint * statement may be used for list-directed screen output, but not
for name-directed output. Also note the subtle change in the input data between cases #1
and #3 - in the first case the name is two words separated by blanks, in the second the
blank is replaced with a hyphen; the output for #2 is not suitable for re-input with the #1
read statement, but the #4 output is suitable for re-input with the #3 read statement.

O 0 0 0 0 0 0 0 0

As mentioned in the preface, this is an extremely concise version of Fortran’s considerable
I/O sublanguage. It is intended to be complete, however, with nothing left out and no need
to consult other references. Nevertheless the compactness of this description may have
“glossed over” some subtle details which may be better described in either of the refer-
ences given in the preface or some other sources of Fortran 90 information.
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7 Control Structures

Control structures allow the programmer to (a) select which statements are executed next
(it andselect), (b) specify repetitive execution of a group of statememt¥ @nd (c)
branch to another part of the prograjotd).

if construct
Theif construct has the basic form:

if ( logical-expr ) then
executable-constructs I the block (R215) “guarded” by logical-expr
end if

If the logical-expr is true then the block of executable constructs is executed; ldgiba-

expr is false then the block is skipped. Note that the executable constructs can be any mix
of action statements and other (nested) constructs, such as loops, other if constructs, etc.
The syntax of the if construct is more fully described in syntaxR8@2and the rules it
references.

Another useful form of th& construct is:
if ( logical-expr ) then

executable-constructs ! the block guarded by logical-expr
else

executable-constructs ! the alternative block, if logical-expr is false
end if

In this form the first block of executable constructs (betweeli #redelse), but not the
second (between thase andend if) is executed if theogical-expr is true, and just the
reverse if it is false. This form of thfeconstruct has one logical expression and two blocks
of executable constructs. One can think of the logical expression as “guarding” the first
block; if the “guard” is true the first block is executed and the second one isn't; if the guard
is false the block it guards (the first one) is not executed and the second one is.

The most general form of thieconstruct involves n guards (logical expressions) and n+1
blocks of executable constructs (where n can be any integer value greater than zero):

if ( logical-expr ) then ! the first guard,
executable-constructs ! and the block it guards
[ else if ( logical-expr ) then I'any number of additional guards,
executable-constructs ] ... ! and the blocks they guard
[else
executable-constructs | I the alternative block, if all guards are false
end if

Each guard is associated with (guards) “its own” block of executable constructs. The exe-
cutable construct associated with the first guard that is true is executed and the refst of the

construct is skipped. If none of the guards are true then the unguarded block (the one
betweerelse andend if) is executed. Note that the optionality brackets in the above gen-
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eral form show that the other two forms described above (with just one guard, with and
without an unguarded block) are just special cases of this general form.

An example of an if construct with two guards is:

if (temperature > BOILING ) then
s ' vapor phase
else if (temperature > FREEZING ) then
s !'liquid phase
else
- ! solid phase
end if
Finally, Fortran has a single-linfestatement, also called thagical if:

if ( logical-expr ) action-stmt I see R216for definition of action-stmt

In this case the action statement is executed if (and only if) the logical expression is true.
The logical if is especially handy when you want to get out fast:

if (code == "DONE") exit ! exit loop when processing is finished
if (n>20) return I computation of routine is completed
if (disaster) stop "DISASTER!" I anywhere disaster strikes

The guards in am construct need not be disjoint - that is any of them can be true at the
same time. But only one block of executable constructs is executed - that one guarded by
the first (top most) guard that is true. In the casiedf) construct, however, at most one
guard can be true at any given time.

case construct

The case construct also involves n guards and n+1 blocks of executable constructs, only
one (or, more precisely, at most one) of which is executed. The order of the guards in a
case construct is immaterial (whereas the order of the guards iincanstruct may well

be critical - witness the temperature example above).

The case construct syntax is described in det&i8d8and the syntax rules it references.
The general form is:

select case ( case-expr ) ! the case expression to be evaluated,;

[ case ( case-value-list ) 1'if the case-expr value matches one of these
executable-constructs ] ... ! then this block is executed;

[ case default !'if no match exists
executable-constructs | ! then this block is executed;

end select

The case expression and case values may be of type integer, type character, or type logical;
all of the case values are constants, and all of the case-value lists are disjoint. The block of
executable constructs corresponding to (guarded by) the case-value list that contains the
value of the case expression (or the default block, if there is one and there is no value



Control Structures 65

match) is the block executed. Since the case-value lists are disjoint, the case expression
value can match at most one, and therefore the order of the case blocks, inglsiing
default , IS immaterial.

The case-value lists are comma-separated lists of constants or constant ranges, as
described byrR813 Examples of thease construct are:

select case ( shape ) I names in all caps are named constants
case ( CIRCLE); area = d*d*Pl/4

case ( SQUARE); area = d*d

case (TRIANGLE ); area = d*d*sqrt(3.)/2

case (HEXAGON ); area = 6*d*d*sqrt(3.)/8

case default; area =f_area(shape,d)

end select

select case (age)

case (0:17) - !'youth
case (18:61) - I adult

case (62:) - ! senior
end select

do construct

Modern loop constructs do not involve statement labels. For compatibility with older For-
tran code, which makes extensive use of the original labelled form ab thenstruct,
Fortran 90 has three categoriesi@fconstruct:

(a) a modern construald - end do ) without any labels
(b) the modern construct with labels
(c) the original style

Category (b) is the same as (a) with an optional label, and is provided for those who want
the modern structure but prefer to have loops with labels.

The syntax of all forms of thé construct is described R816and the syntax rules it ref-
erences. The modern form, without labels (category (a)), itself comes in three flavors -
infinite, indexed andwhile :

do I the “infinite” form -
executable-constructs !'looping stops only by explicit exit
end do ! from within the loop body
do int-variable = int-expr, int-expr [, int-expr ]
executable-constructs ! the indexed form
end do

do while ( logical-expr )
executable-constructs ! the while form
end do
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Execution of thenfinite do construct “loops forever” unless there is exn statement
somewhere in the block of executable constructs (loop body).

The semantics of thHadexeddo is best described by making the first line more specific:
do i=el,e2,e3
Then the semantics of tiredexeddo are equivalent to:

i=el-e3

do;i=i+e3;if (i>e2) exit
executable-constructs

end do

If e3 is omitted, a value of +1 is assumeds3fis negative then the testiise2 rather than
i >e2. Of course a value of zero must not be specified¥ofSeeR817and related syntax
rules for additional, but inconsequential, syntax details of the indiexednstruct.)

The semantics of thenile loop are:

do; if (.not. logical-expr) exit !'in the while loop the test is
executable-constructs I made at the top of the loop
end do

O 0 0 0 0 0 O O 0

The modern form with labels (category (b)) simply replageandend do with labelled
versions of these statements (same label on bothjpdiés described ilR313 the unla-
beled and labelled versions of these two statements are summarized as follows:

unlabeled labelled

do do label
end do label end do
label continue

A R A R R

The original style DO-loop (category (c)) required labels and did notdagwie . Though

it allowed terminating a loop on a labelleshtinue statement, it did not require it; the
(labelled) last statement could be the final action statement of the loopR®#i¥. (Note

that such an action statement could not, however, diareturn, or other branching
statement.) Moreover, two (or more) nested loops could share the same termination state-
ment (and label) - sde83Q For example, a two-dimensional array can be initialized with

the nested loops:

do 101, i=1,m
do 101, j=1,n
101 x(i,j) =0

whereas the modern version of these nested loops would be:
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do i=1,m
do i=1,m
x@i,j))=0
end do
end do

O 0 0 0 0 0 O O 0

The execution of any loop may be explicitly and immediately terminated (witkitan
statementR835 or advanced to the next iteration (witltyale statementR834 any-
where within the loop body. The most common use of these features is to exit a loop upon
the occurrence of some condition. A common pattern, for example, is the read-test-process
nature of processing file data:
do
ce ! read the next record
if ( end-of-file') exit | test to see if at end of file
e ! process the data just read
end do
If only part of the records are to be processed, then the loop could be:
do
ce ! read the next record
if ( end-of-file') exit | test to see if at end of file
if ( not-of-interest) cycle ! record not of interest, so go on to next
- ! process the data just read
end do
In the nested loop case these simple formsciofandcycle apply only to the inner-most
loop in which they appear. To make them apply to an outer loop, that outer loop must be
named with aonstruct nam¢R818 R825 and thexit (or cycle ) statement must specify
this name. For example:

outer_loop: do
do
i.f.(. ...) cycle outer_loop
enld.c.io
ena-d.o outer_loop

O 0 0 0 0 0 O O 0

goto statements

Theif, case, anddo constructs provide the disciplined, readable, and reliable way to con-
trol the execution sequence. Téwo statement, and variations, are primitive, but power-
ful, branchingstatements that allow execution to be switched to (almost) any other place
in the current scope. The bagigo (which can also be spellgd to) has the form:

goto label I see R836
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Execution of agoto statement causes execution to resume with the statement having the
label specified in thgoto statement. Any action statement may be labelled, as well as the
if, select, ordo statement (that is, first statement) of a control construct.

A goto statement must not cause a branch into the body of satect, or do construct
from outside that construct, but the reverse (branch out from inside) is allowed.

Though aiabel may be placed on any action statement, plus a few others, many program-
mers prefer to use only thentinue Statement to identify a branch point:

label continue I see R84Q execution of continue “does nothing”

The computed-gotastatement (deprecated - see chapter 5) specifies a list of labels and
causes a branch to one of them, depending on the value of an integer expression:

goto ( label-list ) int-expr I see R837
For example:
goto ( 222, 333, 222) K/5 l'assume K is an integer variable

causes a branch to the statement labelled 222 if K is in the 5-9 range or 15-19 range, to the
statement labelled 333 if K is in the10-14 range, and has no effect otherwise.

Theassigned-gotatatement (also deprecated) uses an integer variable as a label:

goto int-variable [ ( label-list )] I see R839
Prior to executing an assigned-goto statement, the integer variable must have been
assigned a label value with thssign-statemerfalso deprecated):

assign label to int-variable I see R838

If the optional label-list is included in the assigned-goto statement, the label value of the
integer variable must match one in the list.

The arithmetic-if (also deprecated) causes a branch to a specified label, based upon a
numeric value:

if ( numeric-expr ) label , label , label !see R840

If the numeric value is less than zero the branch is to the first label, if the value is zero the
branch is to the second label, and if the value is greater than zero the branch is to the third
label.

A R A A

The stop statementR842-843 is a special kind of a branch - it terminates execution of

the program; it can be placed in any execution sequence and, as an above example indi-
cates, can be used to “get out quick” when disaster strikes. In normal use it is redundant,
however, as the end statement of the main program serves to terminate execution of the
program. Note that in those exceptional cases where it is useful, the stop statement can
issue a relevant message, which on most systems is printed on the screen at termination.

L R A A
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Modules

Themoduleis a new program unit in Fortran 90 that provides definitions for use in other
program units; modules may be placed in separate files and re-used with different pro-
grams.

A module is not executable; it contains definitions to be used by other program units; these
definitions include procedures, which are individually executable, but the module itself is
not executable.

Module entities are made available to other program units hystsatement:

program Seismic_Processing
use Seismic_Trace_Definitions

end program

Available modules entities are said to be “use associated” within the using program. A
module may contaiprivate entities; such entities are not available to using program units
(private entities are available only within the module itself, including any procedure defi-
nitions within the module). In addition, tlealy form of the use statement limits the mod-

ule entities that are available in the using program unit.

The principal contents of a module include: type definitions, interface definitions, proce-
dure definitions, and shared data objects (including global constants). Typical uses of
modules include: procedure libraries (with explicit interfaces), encapsulated data abstrac-
tions, and shared-data units (alternative to COMMON).

module structur e

The general structure of a moduR1(L04-110%is as follows; additional syntax rules are
listed for specific items in the following description:

module module-name

use-statements I modules can (optionally) use (import) other modules
constant-definitions I global constants - see R538and the parameter attribute
variable-declarations I shared variables - see R501
interface-blocks I explicit interfaces, defined operators, overloading - see R1201
type-definitions I user-defined data types - see R42

contains
module-subprograms Isee R213

end module

module use

Other program units (main programs, functions, subroutines, and other modules) may use
the definitions provided in a module by includingsa statementRR1107-1109 immedi-
ately after the program unit heading, as in the Seismic_Processing example above:



70 Fortran 90 Concise Reference

use module-name [ rename-list ] limports all public entities of the module
use module-name, only: only-list limports only the specified public entities

Module entities are imported into the using program with the same name as they have in
the module, unless they are renamed in the use statement; this may be necessary to avoid
name conflicts, as an imported (“use associated”) name does not “mask” a local entity
with the same name. ®ename(R1109 has the form:

local-name => use-name

wherelocal-name is the new name (in the using program) asename is the name of the
entity in the module (the new name “points to” the module entitypyn(R1109 can be
either the name of the module entity being imported, or a rename:

[ local-name =>] use-name ! renaming is optional in an only-list
O 0 0 0 0 0 O O 9

A module for the above Seismic_Processing program might take the form:

module Seismic_Trace_Definitions

real, parameter :: PI=3.1415926 ! a global constant
real, allocatable :: seismicWorkArray(:,:) ! a shared data work-space
interface FFT ! overloading the procedure name FFT

subroutine FFT_C (...)

end subroutine
end interface

type SeismicTrace ! defining a “Seismic_trace” data type
real :: trace(1000)
end type
contains
!
function FFT (...) ! definition of function FFT

end function FFT
|

subroutine FFT_C (...) ! subroutine FFT_C can also be called
I with the name FFT, because of the
end subroutine ! overload defined above
!
subroutine timeDomain (...) I another procedure definition in this module

end subroutine
1

end module

AV R A A
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module applications

A module might contain just shared (global) constants and variables:

module Shared_Data

real, parameter :: PI=3.1415926 ! a shared (global) constant
integer :: n_rho, n_vel ! two shared variables
real, allocatable :: workArray(:,:) ! a shared array

end module

O 0 0 0 0 0 0 0 0
A module might comprise a procedure library:

module Procedure_Library
contains
|

function FFT (...)

end function FFT
|

subroutine timeDomain (...)

end subroutine
|

|
end module

O 0 0 0 0 0 O O 0

A module might be used to collect a set of procedure interfaces, for use by other program
units; these can include (1) explicit interfaces for external procedures, (2) generic (over-
loaded) names for specific procedures, and (3) operator symbol definitions:

module Procedure_Interfaces
|
interface ! providing an explicit interface
subroutine T_time (A) ! for external procedure T_time
real :: A(200,300)
end subroutine T_time
end interface

!
interface FFT ! overloading FFT for use with FFT_C and FTT_R
subroutine FFT_C (...)

I FTT_C is defined external to this module
end subroutine
module procedure FFT_R land FTT_R is defined in this module

end interface
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interface operator(.inverse.)
module procedure inverse
end interface
|
interface operator(+)
function or(a, b)
logical :: or
logical, intent(in) :: a, b
end function
module procedure addCharDigits
end interface

contains
1

function inverse (matrix)

end function

!

function addCharDigits (d1, d2)
integer :: addCharDigits
character :: d1, d2

end function

|
end module
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! defining the operator “.inverse.”;

! the procedure itself (inverse) is defined
lin the procedure part of the module

! extending the use of the operator “+”

! to use with logical operands;
I function “or” is defined external to this module

! extending “+” to character digits as well

! the definition of function “inverse”

! definition of adding character digits

O 0 0 0 0 0 0 O 9
A module might contain definitions of user-defined types (or record structures):

module Derived_types
|

type Point
real :: xX_r
real ::y_rho

real :: z_theta
logical :: cartesian
end type
|

type List
type (Point) :: data
type (List), pointer :: next
type (List), pointer :: prev
end type
|
type Seismic_trace; private
character(20) :: trace_ID
real, pointer :: traceData(:)
end type
|

end module

! a type to similate a 3D point in two ways

! a typical linked list structure node

'a new type with “hidden” internal structure
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O 0 0 0 0 0 0 0 90
A module might encapsulate a complete data abstraction:

module Interval_Arithmetic
!

type Interval; private
real :: lower, upper
end type
1
interface operator(+)
module procedure interval_plus_interval,
interval_plus_real,
real_plus_interval

end interface
1
interface operator (*)
module procedure interval_times_interval,
interval_times_real,
real_times_interval

end interface
!
interface sqrt

module procedure interval_sqrt
end interface

contains

|

function interval_plus_interval (a, b)
type (Interval) :: interval_plus_interval
type (Interval), intent(in) :: a, b

end function
!
function interval_plus_real (a, b)
type (Interval) :: interval_plus_real
type (Interval), intent(in) :: a
real, intent(in) :: b

end function interval_plus_real
|
function real_times_interval (a. b)
type (Interval) :: real_times_interval
real, intent(in) :: a
type (Interval), intent(in) :: b

end function
!

I a data abstraction for interval arithmetic

!the basic data structure is private; an interval
lis represented by its upper and lower bounds

I'use “+” for adding intervals

I'use “*” for multiplying intervals

! extend “sqrt” to interval arguments

! other interfaces ....

! one of the addition functions

I another addition function

letc....
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function interval_sqrt (X) ! definition of interval square root
type (Interval) :: interval_sqrt
type (Interval), intent(in) :: X

end function interval_sqrt
|
function interval_mid (x) ! to return the mid-point of an interval

real :: interval_mid
type (Interval), intent(in) :: x

end function
!

! other procedure definitions....
!
end module

L R A A
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@ Procedures

Subroutinesandfunctionsare the two forms for Fortran 90 procedures; each may appear
in the following contextsexternal(stand-alone, separately compileahipdule(packaged

within a module definition)internal (packaged within another procedure or main program
definition). Fortran 90 has a large number of builiatninsic procedures; these are sum-
marized here and described in detail in chapter 10. Both subroutines and functions are
used to encapsulate particular computations, and the principal difference between them is
the manner in which they are usedll(ed invoked. A subroutine does not return a value
(except possibly through its argument list) and is invoked by a separate subcalltine
statement; a function returns a value and is invoked by using its name (and arguments) in
an expression in which its returned value is used.

Procedures interact with each other (primarily) through argument lists, andirtterse
facesare eitherexplicit (known) orimplicit (unknown) to the calling procedure; only
external procedures have implicit interfacesgerface blocksan make even these inter-
faces explicit. Procedures candmneric(multiple procedures called by the same name),
and procedures may be used to defiesw operators

subroutines
A subroutine is defined by a subroutine subprogf@@®(9, which has the form

subroutine  subroutine-name ( dummy-arg-list)! see R1221for dummy arguments

specification-part I see R204for specification-part
execution-part ! see R208for execution-part
internal-subprogram-part I see R210for internal-subprogram-part

end subroutine

Any of the three parts in a subroutine definition may be empty, but a subroutine will nor-
mally have a specification part (e.g., argument declarations) and do some computation
(execution part). If the subroutinerecursive it definition starts with the keywordscur-

sive subroutine  rather than just the keywosdbroutine . SeeR1219for some minor syntax
options (such as allowing the subroutine name to be repeated @ teroutine State-

ment).

A subroutine definition may be placed in:

(1) theinternal-subprogram-part of a module R1104, in which case it is enodule sub-
routing,

(2) theinternal-subprogram-part (R210Q) of an external subroutine definition, an external
function definition, amain-program (R1101), or a module procedure definition, in
which case it is amternal subrouting

(3) its own file, or a file with other stand-alone procedure definitions, in which case it
is anexternal subroutine
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An external subroutine has an implicit procedure interface (if no interface block is sup-
plied for it) and, as it has nwst does not access a host data environment. (An external
subroutine is also the only kind of subroutine in whiath is an acceptable abbreviation

of theend subroutine statement.)

A module subroutine has an explicit interface and accesses the data environment of its
host module; an internal subroutine has an explicit interface and accesses the data environ-
ment of its host procedure.

In all cases, a subroutine is invoked witta statementR1210:

call subroutine-name ( actual-arg-list) !see R1213for actual arguments

If the subroutine’s interface is explicit the compiler can enforce consistency between the
actual-arg-listin the call statement and tlhemmy-arg-listin the subroutine definition;
otherwise interface consistency is not enforceable. (Interface inconsistency is the source of
difficult-to-find errors in programs with implicit interfaces.)

(Note: subroutine argument lists may incluad&rnate returngdeprecated - see chapter

5), and this is the only way that subroutine argument lists differ from function argument
lists. An alternate return is an asterigkitt adummy-arg-list; the corresponding actual argu-
ment must be davel (€.9.,+220) specifying the alternate return point.)

functions

A function is defined by a function subprograR1215, which has a form similar to that
of subroutines:

[ type-spec ] function function-name ( dummy-arg-name-list ) [result ( result-name) ]

specification-part ! same
execution-part I asin
internal-subprogram-part ! subroutines

end function

As with a subroutinesecursive must be added to a recursive functi®1217, and the
result clauses required for recursive functions (and optional for all other functions). See
R1215for other (minor) syntax options. Functions may be internal, module, or external in
exactly the same way as subroutines, with the same implications in each case.

Each function returnsrasult valueand therefore must have a result type; that type may be
specified on the function statemetype-speror in the specification part of the function.
Function results may be of any type, including derived type, and may be array valued; if
the function is array valued, the array (dimension) attributes must be specified in the spec-
ification part. The result clause, if present, specifies the name to which the result is
assigned in the execution part; otherwise the function name is also the result name.

A function is invoked as an operand in an expression, not as a stand-alone statement, and
its result value becomes the value of that operand; such a function call has the form
(R1209:
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function-name ( actual-arg-list)

Explicit interfaces and arguments work the same for functions as for subroutines, except
that alternate returns are not allowed in function arguments lists. The result clause is
required for recursive functions for the following reason. Consider:

recursive function rf(a,b) result(rf_result)
integer ::a, b
real :: rf_result(2,3)

.. =rf(2,1)
end function rf

If the result clause had not been present, theould be used for the result value as well

as for recursive calls. Becausdas two integer arguments and returns a two-dimensional
array, the referencg?2,1) could be either a recursive call or a reference to an element of
the result. Though only very few combinations of argument lists and arrayness cause such
ambiguity, nevertheless the Fortran 90 rule is “recursive implies result”.

host association

All procedures have the following four data access mechanism#ocdl)entities, (2)
argumentassociation (3) useassociation and (4)commonassociation. The second of
these (argument association) allows a procedure to access entities explicitly “passed” by
the procedure’s caller; the third (use association) refers to module entities accessed via use
statements in the procedure’s specification part; the fourth (common association) refers to
entities in the common blocks listed in the specification part. These are the only data
access mechanisms for external procedures.

Module procedure and internal procedures have a fifth mechahissh associationHost
association refers to a procedure’s access to entities declared in the procedure’s host. The
host of a module procedure is the module that contains its definition; the host of an inter-
nal procedure is the procedure (or main program) that contains its definition. Any entity
declared in the host is automatically accessible by that declared name in the contained pro-
cedure - even private module entitipsvéte affects only use association) - unless the con-
tained procedure has an explicit declaration of that name. In the latter case the name refers
to an entity local to the procedure and not to the host entity with this name; the host entity
is then available to the procedure only through argument association. The following exam-
ple illustrates these concepts:

program P
integer :: X
real ;1 y
call s1(x) ! X is passed to the procedure s1

contains
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subroutine s1(z); integer z
real :: X I xis local; y is host associated
! execution part of subroutine s1
end subroutine
end program

In the execution part of subroutisg, x is (always) the local real variable (not the host’s
integerx), y is (always) the host’s real variable, anigd the argument-associated entity; in
the shown call ta1, z becomes associated with the host'and thus for this call in the
procedure’s execution part refers to the host's

In the preceding example the host-association rules are simple and “obvious” because all
entities are explicitly declared. Fortran 90 allows implicit declaration of variables, how-
ever, which can make host association less obvious. The above rules, as stated, still apply;
the one missing piece is this: a variable implicitly declared in the host is host associated as
if it were explicitly declared and a variable implicitly declared in a contained procedure
(possible only if it has not been explicitly or implicitly declared in the host) is local to the
procedure. Recall that a variable is implicitly declared if there is no type declaration for its
name in the specification part, but its name is referenced in the execution part. The follow-
ing example illustrates the host-association rules involving implicit declarations:

program P ! no type declarations in the host
call s2(x) ! x implicitly declared in the host
contains
subroutine s2(z) ! no type declarations in s2
print*, x,y, z ! X is host associated
lyislocal to s2
end subroutine !z is argument associated (with x in this case)

end program

In this example subroutinge accesses three variablesy, andz, all implicitly declaredx

is implicitly declared in the host, by virtue of its reference in the call statement, and thus is
host associated is2. y is not (explicitly or implicitly) declared in the host and so is
implicitly declared ins2, by virtue of its reference ise, and is therefore local &2. z is
argument associated.

The default implicit typing rules in a main program, module, or external procedure are: all
default real except variables starting with letters 1-N, which are implicitly default integer.
Implicit typing can be turned off (witimplicit none , which then requires that all variables

to be explicitly typed) or modified byplicit statements540 in the specification part of

the host. Whatever implicit typing is in effect in the host becomes the default implicit typ-
ing in the contained procedure. This can in turn be turned off (implicit none) or modified
by implicit statements in the specification part of the contained procedure. These are
straightforward, consistent rules, but by far the simplest host association scenario is
explicit declaration of all entities in both the host and the contained procedures.
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procedure arguments andargument association

Argument association is the mechanism by which a procedure has access to entities via an
argument list. The procedure definition includes a dummy argument list, which specifies
the properties of the passed entities in the context of the procedure body. These properties
must be consistent with the actual argument entities specified in a call to the procedure. At
the beginning of execution of each call, the dummy arguments are associated with (in a
sense, become aliases for) the corresponding actual arguments.

This association requires that there be exactly the same number of arguments in the
dummy and actual arguments lists (except for optional dummy arguments - see below),
and that (in the absence of keyworded actual arguments - see below) corresponding posi-
tional arguments become associated; that is, the nth dummy argument (left to right)
becomes associated with the nth actual argument. Consistency requires that the type and
kind of each actual argument exactly match the type and kind specified for its associated
dummy argument. In addition, if a dummy argument has the pointer attribute, the associ-
ated actual argument must also be a pointer.

In most cases, dummy arguments of type character shoaksbheed lengtfR508-509,

meaning they should assume (inherit) the length of the associated actual argument. Simi-
larly, dummy arrays can lessumed shap@516, which means that they have declared

rank (and all associated actual arguments must have this rank) but inherit the actual argu-
ment extent in each dimension. Assumed length is specified by an asterisk for the length
parameter, and assumed shape is specified by a colon for each dimension; both are illus-
trated by this declaration gfa two-dimensional character dummy array:

character(*) :: r(:,:)

Note that actual arguments that are substrings work well with assumed-length dummy
arguments. Similarly, actual arguments that are array sections work well with assumed-
shape dummy arguments.

This simple set of argument association rules is all that is needed, and is the preferred way,
to develop new Fortran code and to update existing code. However, assumed-shape
dummy arguments require explicit procedure interfaces, and much existing code predates
Fortran 90, explicit interfaces, and assumed-shape dummy arguments. Fortran 90 allows
thearray element sequence associatinachanism for array arguments that Fortran pro-
vided prior to Fortran 90. In this case the dummy argument is declared as either an
explicit-shapearray R513 or anassumed-sizarray R518; the principal difference
between the two is that the last dimension of an assumed-size array is declared as an aster-
isk. An actual argument array must have a size (total number of elements) at least as big as
an associated explicit-shape or assumed-size dummy array (a condition that will automati-
cally be satisfied by an assumed-size array).

Array element sequence association treats the associated actual and dummy arrays each as
alinear sequence of array elementgith the corresponding elements of each sequence
being associated; thus the nth element of the actual array sequence is associated with the
nth element of the dummy array sequence. The order of such a sequence is Rordsan’s
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element orderwhich varies the first subscript first, the second subscript next, and so on.
Thus, for a two-dimensional array, array element order is the first column followed by the
second column, and so on; for the array declaredaas x(3,2) , array element order is
x(1,1), x(2,1), x(3,1), x(1,2), x(2,2), X(3,2).

Array element sequence association means, essentially, that the ranks of the actual and
dummy arguments are immaterial, and therefore the ranks are not required to match in this
form of argument association. If the actual argument is an array section (and the dummy
argument is not assumed shape) the processor must generate an array element sequence
for array element sequence association with the dummy argument; this may involve copy-
ing the array section into a contiguous area of memory before association with the dummy
array, and then refreshing the original array section from this copy after execution of the
procedure call is completed (copy-in, copy-out).

If character arrays are involved in array element sequence association there is one addi-
tional wrinkle - the sequences generated are character sequences, not array element
sequences, and the association is character by corresponding character. If the character
length of the actual and dummy array elements are the same (as they would be with
assumed length) then this character association is equivalent to array element association.
With array element sequence association both the array rank and character length can be
“changed” across procedure boundaries, with the indicated consequences for argument
association.

Array element sequence association is permitted in any procedure, by declaring the
dummy array as an explicit-shape or assumed-size array, and is the only option for proce-
dures with implicit interfaces - that is external procedures without interface blocks. In
those cases where the interface is explicit (all module and internal procedures, and exter-
nal procedures with interface blocks) both array element sequence association and
assumed-shape array association are permitted (and normally assumed-shape array associ-
ation is preferred).

Structure (derived type) argument association follows the same rules as for other types -
namely, the actual and dummy arguments must be the same type. This means they must be
derived from the same type definition. Another form of structure association, called struc-
ture sequence association, involves sequence strudR#22-@23. In this case the “same

type” rule for the actual and dummy arguments is relaxed in faveguif/alent types
Equivalent structure types are sequence types with the same type name and with compo-
nents that are all public and agree in order, name, and type (or equivalent type).

A caveat about procedure arguments, regardless of the association mechanism, is that if
the same entity becomes associated with two (or more) dummy arguments then, in order to
prevent nondeterminism in results, the procedure must treat both dummy arguments as
intent(in). There are two common instances of this situation. One is when an actual argu-
ment is an array section with at least one vector subscript; in this case two or more of the
actual array elements may be the same element of the section’s parent array and will be
associated with different dummy array elements. The second case is when the same data
entity is used two (or more) times in an actual argument list:calig3(x,y,x) .
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For procedures with explicit interfaces, the actual argument list may be keyworded
(R1211-1212 When the interface is explicit, the dummy argument names are known to

the procedure’s caller. This information allows the actual arguments to be placed in any
order, if the dummy argument names are used@snent keywords the call. For exam-

ple, in this call to subrouting (which has dummy arguments, d2, andds, in that order)

call s4(d2=x, d3=y, d1=2)

the actual arguments are not in the order of their associated dummy arguments, but
because the interface is explicit the processor can create the intended associations.

A dummy argument may be declaredagional (R503 R520. This effectively creates
overloaded (generic) versions of the procedure, and calls to such procedures are resolved
in accordance with the generic reference resolution rules (see below)edene intrinsic

function is available for use within the procedure to determine if in a given call to the pro-
cedure the optional dummy argument has an associated actual argument or not. Note that
eitheroptional arguments must be the last ones in the dummy argumentdadtsothat

omit actual arguments must be keyworded. In any event, optional arguments require
explicit interfaces.

Dummy arguments are references to (aliases for) their associated actual arguments. One
consequence of this is that any change to a dummy argument is reflected in the actual
argument. Théntentmay be specified for a dummy argument to control such “unbridled”
access in some respects. The intent attrilRB§ R511 R519 may limit the use of the
dummy argument tan, out, orinout. Intent(in) arguments are intended for input to the
procedure; the actual argument must be defined upon entrance to the procedure - it may be
a variable or an expression - and the dummy argument must not be defined in the proce-
dure. Intent(out) arguments are intended for procedure output - the dummy argument must
be defined at some point during execution of the procedure (thus the actual argument must
be a variable); the associated actual argument need not be defined upon entrance, so an
intent(out) dummy argument must not be referenced in the procedure before it is defined.
Intent(inout) specifies that the actual argument must be defined upon entrance and the
dummy argument may be defined in the procedure; the associated actual argument must be
a variable.

Procedures may be passed through argument lists. That is, a dummy argument may be
declared as a procedure name (in an external statement, intrinsic statement, or in an inter-
face block) or used as a procedure name (in a call statement or in a function reference).

The associated actual argument must be the name (without an argument list) of a specific

procedure (generic procedures cannot be passed). If the dummy argument is declared or
used as a function name, the associated actual argument must be the name of a function; if
the dummy argument is declared or used as a subroutine name, the actual argument must
be the name of a subroutine. Except for internal procedures and statement functions,

which cannot be used as actual arguments, any specific procedure, including any specific

intrinsic function, may be used as an actual argument.
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interface blocks

A procedure interface comprises the information needed to use that procedure correctly;
explicit interfaces make this information available to the calling environnetface

blocks are used to provide various explicit interfadesplicit interfaces include dummy
argument list characteristics, alternate names for a procedure (primarily used to define
procedure overloads - that is, generic procedures), and new operator and assignment defi-
nitions.

Interface blocks are not needed to make module and internal procedure interfaces explicit,
as these interfaces are automatically explicit wherever such procedures are accessible.
However, external procedure interfaces are not automatically explicit; interface blocks
(R1202) with one or more interface bodid’1209 may be used to make them explicit:

interface
interface-body
[ interface-body 1] ...
end interface

Each interface body specifies an external (or dummy) procedure name, its type (if it is a
function), and the order names, and types (and kinds) of all dummy arguments.

If a function has certain properties it may be giveperator interfacethereby creating
adefined operatgrand called using operator notation; it must have one (unary operator) or
two (binary operator) intent(in) arguments. Such a function may be called with either the
normal function syntax or infix operation format; in the latter form the first actual argu-
ment appears as the first operation operand and the second actual argument is the second
operand (for unary operators the operand follows the operator). The operator form of the
interface block is used to define a new operator and associate it with one (or more) func-
tions:

interface operator (  defined-operator ) ! suppose this defines an overload of “+”; then
[ interface-body 1 ... I'sum_char_int(c,i) the function form

[ module-procedure-stmt ] ... lc+i the operator form

end interface

An example of using an operator interface to define an overload ebierator is:

interface operator ( +)

integer function sum_char_int(c, i) 1'if code is a character variable and n is integer
character :: ¢ I sum_char_int can be called in two ways:
integer :: i ! sum_char_int(code,n) function form

end function I code+ n operator form

end interface

A defined operator can be either a user-defined dot operator or (an overload of) an intrinsic
operator R311J), as in the preceding example. If it is an intrinsic operator it must not rede-
fine an intrinsic operation - for example, theperator must not be given an operator
interface for a function with two integer arguments, as that would be an attempt to redefine
addition of two integer values. All operator definitions are considered to be generic proce-
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dure definitions and must be consistent with the generic reference resolution rules (see
below). The function(s) associated with a defined operator may be either external func-
tions (in which case the interface contains the corresponding interface bodies, as in the
above example) or accessible module functions (in which case the interface contains the
corresponding module procedure statements).

If a subroutine has two arguments, the first being intent(out) or intent(inout) and the sec-
ond being intent(in), then it may be givenassignment overload

interface assignment ( =)

[ interface-body ]...

[ module-procedure-stmt ]...
end interface

An example is:

interface assignment ( =)

subroutine to_char_from_int(c, i) 1'if code is a character variable and n is integer
character :: ¢ 1'to_char_from_int can be called in two ways:
integer :: i I call to_char_from_int(code,n) subroutine form
end subroutine I code=n assignment form

end interface

The purpose of such a subroutine is to convert the value of the second argument to an
appropriate value for the type of the first argument, and to assign this converted value to
the first actual argument; the subroutine defines the conversion that takes place in such an
assignment. Thassignment interfacmakes it possible to use assignment syntax for this
operation, as an alternative to using normal subroutine calls. In analogy with operator
interfaces, assignment interfaces define assignment overloads and thus must be consistent
with the generic reference resolution rules. Intrinsic assignments cannot be redefined
except for intrinsic assignment of structures (that is, derived type intrinsic assignment). As
with operator functions, assignment subroutines may be either external subroutines or
module subroutines.

Interface blocks may be used to define overloaded (generic) procedure names. Any proce-
dure name may be (further) overloaded, including an intrinsic procedure name:

interface generic-name

[ interface-body 1 ...

[ module-procedure-stmt ] ...
end interface

A generic namanay be associated with any number of external procedures and module
procedures. Such a procedure may be called using either its original (specific) name or the
generic name. A call to a procedure using the generic name is considered to be a generic
reference; any generic reference must be resolvable to a specific procedure, in accordance
with the generic reference resolution rules. Generally speaking, this means that each pro-
cedure sharing the same generic name must have a different argument “signature” (type
pattern). External and module procedures may be given generic interfaces.
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generic procedures

A generic procedure is one that can be called in more than one way. These include proce-
dures with generic as well as specific names, functions with operator interfaces (function
reference and operator form), and subroutines with assignment interfaces (subroutine call
and assignment syntax). The only restriction on the proliferation of generic procedures is
that each reference be resolvable to the appropriate underlying specific procedure.

There are two rules which allow generic procedure references to be resolved to a unique
specific procedure. the first of these rules (rule (a) below) derives from the positional sig-
nificance of an argument when keyworded calls are not involved; the second (rule (b))
imposes a further restriction in order to disambiguate keyworded calls. If two procedures
may be called with the same generic name (or with the same operator or assignment syn-
tax), one of the argument lists must have a nonoptional dummy argument thas @)
type/kind/rank pattern different from that of the dummy argument (if one) in the same posi-
tion in the other argument ligind (b) has a name/type/kind/rank pattern different from

that of all the dummy arguments in the other argumentTiisat is, there must be at least

one argument that disambiguates two generic references on the basis of it type/kind/rank
signature (and dummy argument name also, in the case of keyworded calls).

Most of Fortran’s intrinsic procedures are generic, and references to these intrinsics are
resolved in the same manner as described above. Intrinsic functions have an additional
generic form: many of them amemental An elemental function is one defined with a
scalar dummy argument and a scalar result. It may, however, be called with an array actual
argument, and in this case delivers an array result with the same shape; the value of each
result element is the same as if the function had been called with the corresponding actual
argument array element.

return statement

Thereturn statementR1224 is a separate statement that causes return from a procedure,
in the same way as the procedues's statementeturn can be used anywhere in the exe-
cution part, but is needed only in exceptional cases. See chapter 5 for alternate returns.

statement functions

A statement functiois a “one-liner” functioniR207, R1226, with scalar arguments and a
scalar result, for use only in the program unit in which it is defined. Statement functions
are not internal procedures, their interfaces are always implicit, they may not be used as
actual arguments, and they employ only intrinsic operations. Statement function calls have
the normal function call syntax and argument association rules. (See also chapter 5.)

entry statements

The entry statementR1223 can be used to provide alternate entry points into a proce-
dure; the entry statement has a name and an argument list, similar to the function or sub-
routine statement, and can be placed anywhere in a function or subroutine definition. The
original purpose of the entry statement was for data -sharing among different procedures,
a functionality now better provided by internal and module procedures.
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intrinsic pr ocedures

The rest of this chapter is devoted to summarizing and categorizing Fortran 90's 113
intrinsic procedures (108 intrinsic functions and 5 intrinsic subroutines). This summary
has nine categories of procedure, each with certain similar characteristics, and ends with a
concise alphabetical listing of all 113 intrinsic procedures and their arguments. Each
intrinsic procedure is described more fully, in alphabetical order, in the next chapter.

numeric inquiry functions

digits significant digits (e.qg., bits) for a given integer or real kind

epsilon a small value (small compared to 1) for a given real kind
exponent the exponent value for a given real value

fraction the fractional part of a given real value

huge the largest value representable for a given real or integer kind
minexponent the minimum exponent value for a given real kind

maxexponent the maximum exponent value for a given real kind

nearest the processor value nearest to a given real value, in a given direction
precision the decimal precision of a given real or complex kind

radix numeric base (typically binary) for a given real or integer kind
rrspacing reciprocal of the relative spacing near a given real value

range the decimal exponent range of a given numeric kind

scale change the exponent of a given real value by a specified amount
set_exponent set the exponent of a given real value to the specified amount
spacing the absolute spacing near a given real value

tiny the smallest positive value representable for a given real kind

array inquiry functions

allocated true if the given array is currently allocated (false otherwise)
Ibound lower bound(s) of a given array or a given dimension of an array
shape the number of elements in each dimension of a given array

size the size (total number of elements) of a given array

ubound upper bound(s) of a given array or a given dimension of an array

miscellaneous inquiry functions

associated true if the given pointer is currently allocated (false otherwise)

bit_size the number of bits (for bit computations) in a given integer kind

kind the value of the kind type parameter of a given data entity

len the number of characters in a given string value

present true if there is an actual argument for a given optional dummy argument

selected_int_kind the integer kind for a given integer decimal range
selected_real_kind  the real kind for a given decimal precision and range

conversion functions

achar the character in the specified position of the ASCII character set
aimag the imaginary part of a given complex value
aint a given real value truncated to an integer (result is still real)
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anint
char
cmplx
conjg
dble
iachar
ibits
ichar
int
logical
nint
real
transfer
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a given real value rounded to the nearest integer (result is still real)
the character in the specified position of the processor character set
the complex value of a given single or pair of integer or real values
the complex conjugate of a given complex value

the double precision value of a given numeric value of any type
position of the specified character in the ASCII character set

the specified substring of bits of a given integer value

position of the specified character in the processor character set
the (truncated) integer value of a given numeric value of any type
the logical value of specified kind for a given logical value

the (rounded) integer value of a given real value

the real value of a given numeric value of any type and kind
conversion to a specified type without change in the “bit pattern”

numeric computation functions

abs
acos
asin
atan
atan2
ceiling
cos
cosh
dim
dot_product
dprod
exp
floor
log
log10
matmul
max
min
mod
modulo
sign
sin
sinh
sqrt
tan
tanh

the absolute value of a given numeric value of any type

the arc cosine (radians) of a given real value

the arc sine (radians) of a given real value

the arc tangent (radians) of a given real value

the angle (radians) of given real and imaginary components

the smallest integer not less than a given real value

the cosine of a given real or complex value (given value in radians)
the hyperbolic cosine of a given real value

maximum of: zero and the difference of two real or integer values
the dot product of two given vectors of numeric or logical type

the double precision product of two single precision real values
the natural exponential function (real or complex)

the greatest integer not greater than a given real value

the natural logarithm function (real or complex)

the logarithm to the base 10 of a given real value greater than zero
matrix multiplication of two given numeric or logical matrices

the maximum of a set of given integer or real values

the minimum of a set of given integer or real values

the remainder function, having the sign of the first given value

the remainder function, having the sign of the second given value
apply a given sign to a given integer or real value

the sine of a given real or complex value (given value in radians)
the hyperbolic sine of a given real value

the square root of a given real or complex value greater than zero
the tangent of a given real value (given value in radians)

the hyperbolic tangent of a given real value

character computation functions

adjustl
adjustr
index

left-justify a given string value in the same-width field
right-justify a given string value in the same-width field
find the location of a given substring in a given string value
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len_trim
lge

Igt

lle

It
repeat
scan
trim
verify
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length of a given string after trailing blanks have been removed
greater than or equal to ASCIl comparison of two given strings
greater than ASCII comparison of two given string values

less than or equal to ASCIlI comparison of two given string values
less than ASCII comparison of two given string values
concatenate several copies of a given string value

search a given string value for any of a given set of characters
remove trailing blank characters from a given string value
position of a character in a string that is not one of a given set

bit computation functions

btest
iand
ibclr
ibset
ieor
ior
ishft
ishftc
not

the bit value of a specified position in a given integer value
bit-by-bit AND of two given integer values

set to zero the bit in a specified position in a given integer value
set the bit in a specified position to the specified (0 or 1) value
bit-by-bit exclusive-OR of two given integer values

bit-by-bit OR of two given integer values

end-off shift of the bits in a specified integer value

circular shift of the bits in a specified integer value

bit-by-bit complement of a given integer value

array computation functions

all

any
count
cshift
eoshift
maxloc
maxval
merge
minloc
minval
pack
product
reshape
spread
sum
transpose
unpack

true if all of the elements of a given logical array are true

true if any of the elements of a given logical array are true

the number of true elements in a given logical array

circular shift the elements of a given array of any type

end-off shift the elements of a given array of any type

a rank-one array locating the maximum element of a given array
the maximum element value of a given integer or real array
combines (merges) two arrays under control of a mask

a rank-one array locating the minimum element of a given array
the minimum element value of a given integer or real array

packs elements of an array into a vector, under control of a mask
the product of all elements of a given numeric array of any type
reshapes a given rank-one array into the specified array shape
replicates an array along a new dimension

the sum of all elements of a given numeric array of any type

the matrix transpose of a given rank-two array of any type
unpacks a vector into elements of an array, under control of a mask

intrinsic subroutines

date_and_time
mvbits
random_number
random_seed
system_clock

returns date and time information in several formats
copies a sequence of bits between given integer values
returns one or more pseudorandom numbers

allows setting of the random number generator seed value
returns various data from the processor’s real-time clock
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alphabetical listing of intrinsic procedures

generic procedure names, with optional specific names, specific

argument (keyword) names arguments arguments argument types

abs (a) abs (a) default real
cabs (a) default complex
dabs (a) double precision real
iabs (a) default integer

achar (i)

acos (x) acos (x) default real
dacos (x) double precision real

adjustl (string)
adjustr (string)

aimag (z) aimag (z) default complex
aint (a, kind) kind aint (a) default real
dint (a) double precision real
all (mask, dim) dim
allocated (array)
anint (a, kind) kind anint (a) default real
dnint (a) double precision real
any (mask, dim) dim
asin (x) asin (x) default real
dsin (x) double precision real
associated (pointer, target) target
atan (x) atan (a) default real
dtan (a) double precision real
atan2 (y, x) atan2 (a) default real
dtan2 (a) double precision real
bit_size (i)
btest (i, pos)
ceiling (a, kind) kind
char (i, kind) kind
cmplx (x, y, kind) y, kind
conjg (2) conjg (x) default complex
cos (x) cos (x) default real
ccos (x) default complex
dcos (x) double precision real
cosh (x) cosh (x) default real
dcosh (x) double precision real
count (mask, dim) dim
cshift (array, shift, dim) dim
date_and_time (date, time, zone, date, time,
values) zone, values
dble (a)
digits (x)
dim (x, y) dim (x,y) default real
idim (x,y) default integer
dot_product (vector_a, vector_b)
dprod (x, y)
eoshift (array, shift, boundary, dim) boundary,
dim
epsilon (x)

exp (x)
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generic procedure names, with
argument (keyword) names

exponent (x)

floor (a, kind) kind
fraction (x)

huge (x)

iachar (c)

iand (i, j)

ibclr (i, pos)

ibits (i, pos, len)

ibset (i, pos)

ichar (c)

ieor (i, j)

index (string, substring, back) back

optional

arguments arguments

int (a, kind) kind
ior (i, j)

ishft (i, shift)

ishftc (i, shift, size) size
kind (x)

Ibound (array, dim) dim
len (string)

len_trim (string)

lge (string_a, string_b)

lgt (string_a, string_b)

lle (string_a, string_b)

It (string_a, string_b)

log (x)

len (string)

alog (x)
clog (x)
dlog (x)
alog10 (x)
dlog10 (x)

10g10 (x)

logical (I, kind) kind
matmul (matrix_a, matrix_b)

max (al, a2, a3, ...) a3, ...
maxexponent (x)

maxloc (array, dim, mask) dim, mask
maxval (array, dim, mask) dim, mask
merge (tsource, fsource, mask)

min (al, a2, a3, ...) a3, ...
minexponent (x)

minloc (array, dim, mask) dim, mask
minval (array, dim, mask) dim, mask

mod (a, p) mod (a, p)

amod (a, p)
dmod (a, p)

modulo (a, p)
muvbits (from, frompos, len, to, topos)
nearest (X, s)

nint (a, kind) kind nint (a)

idnint (a)

index (string,
substring)

89

specific names, specific

argument types

default character

default character

default real
default complex
double precision real

default real
double precision real

default integer
default real
double precision real

default real
double precision real
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generic procedure names, with
argument (keyword) names

not (i)

pack (array, mask, vector)
precision (x)

present (a)

product (array, dim, mask)
radix (x)

random_number (harvest)
random_seed (size, put, get)
range (x)

real (x, kind)

repeat (string, ncopies)
reshape (source, shape, pad, order)
rrspacing (x)

scale (x, i)

scan (string, set, back)
selected_int_kind (r)
selected_real_kind (p, 1)
set_exponent (x, i)

shape (source)

sign (a, b)

sin (x)

sinh (x)

size (array, dim)

spacing (x)

spread (source, dim, ncopies)
sqrt (x)

sum (array, dim, mask)

system_clock
(count, count_rate, count_max)

tan (x)
tanh (x)

tiny (x)

transfer (source, mold, size)
transpose (matrix)

trim (string)

ubound (array, dim)

unpack (vector, mask, field)
verify (string, set, back)

optional

arguments arguments

vector

dim, mask

size, put, get

kind

pad, order

back

p. r
sign (a, b)
dsign (a, b)
isign (a, b)
sin ()
csin (x)
dsin (x)
sinh (x)
dsinh (x)

dim
sqrt (x)
csqrt (x)
dsqrt (x)

dim, mask

count,

count_rate,

count_max
tan (x)
dtanh (x)
tanh (x)
dtanh (x)

size

dim

back
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specific names, specific

argument types

default real
double precision real
default integer

default real
default complex
double precision real

default real
double precision real

default real
default complex
double precision real

default real
double precision real

default real
double precision real
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1@ Intrinsic Procedures

The 113 intrinsic procedures are introduced and organized in the previous chapter, and each is
described in detail in this chapter. A “pseudo” interface block, withouttth@ace ... end interface

bracketing keywords, describes the interface of each procedure; the semantics is described in com-
ments in the interface, often augmented by text following the interface. Constraints and other rele-
vant information are also included, either in the interface comments or in the following text.

Most of the intrinsic procedures are generic over the various kinds of the argument type - for exam-
ple,sart is generic for both single and double precision real arguments, and any other real kinds the
implementation might supply. Unless explicitly mentioned otherwise, each single-argument intrin-
sic procedure is generic in this sense, with the result kind being the same as the argument kind.
Similarly, each intrinsic function with one argument plusna argument is generic in this sense,

but with the result kind as specified by @ argument.

As described in the previous chapter, intrinsic procedures may be classified as either elemental or
transformational (most are elemental). If an intrinsic procedure is elemental the interface starts
with the keywordelemental ; otherwise that procedure is tranformational. (In a call to an elemental
function with two or more arguments, the actual arguments must be conformable; but note that a
scalar is conformable with any array.) Similarly, some intrinsic functions are identified as inquiry
functions with the keyworahquiry ; actual arguments to inquiry functions need not be defined.

All intrinsic function arguments atgtent(in) and so the intent for these arguments is not explicitly
given in the interface; however, the argument intent is explicitly specified for each argument of the
five intrinsic subroutines. The argument names can be used as actual argument keywords.

Many of the intrinsic procedures take array arguments of any rank. These arguments are shown as
rank one() in the following interfaces, and the descriptions identify which arguments may be
generic over rank and the resulting meaning of the different ranks.

abs (a)
elemental function abs(a) I the |a|
real :: abs ! or integer if a is of type integer
real :: a ! or type integer or type complex

end function

If a is complex with value (x,yjhbs returns an approximation tgx2 +y?

achar (i)
elemental function achar(i) ! the ith ascii character
character :: achar ! the result kind is kind (‘a")
integer :: i

end function
Note that achar(iachar(x)) is x for any character x of default kind represented by the processor.

acos (x)
elemental function acos(x) | the arccosine (inverse cosine)
real :: acos
real :: X lx| =1

end function

The result has a value equal to a processor-dependent approximation to arccos(x), expressed in
radians. It lies in the range@cos(XgTt
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adjustl (string)
elemental function adjustl(string) I remove leading blanks
character(len(string)) :: adjustl I (the same number of trailing blanks added)
character(*) :: string
end function

adjustr (string)
elemental function adjustr(string) ! remove trailing blanks
character(len(string)) :: adjustr I (the same number of leading blanks added)
character(*) :: string
end function

aimag (z)
elemental function aimag(z) limaginary part of z
real :: aimag lifz=(x,y), aimag isy
complex :: z
end function
aint (a, kind)
elemental function aint(a,kind) I truncate a
real(kind) :: aint lif kind is absent the result kind is kind(a )
real :: a ' may be any kind
integer, optional :: kind I'if present, must be a scalar initialization expression

end function

If |a|<1,aint (a) has the value 0; if=l, aint (a) has the sign of and a value equal to the integer
whose magnitude is the largest integer that does not exceed the magnitude of

all (mask, dim)

function all(mask,dim) ! returns true if all of mask (along dim) is true
logical :: all lall is an array if dim is present and mask rank > 1
logical :: mask(:) I may be any kind, any rank
integer, optional :: dim I'if present, 1<dim<n, where n is rank of mask

The result is scalar ifim is absent omask has rank one; otherwise, the result is an array of rank
n-1 and of shape {dh,...,%im-1.dim+1----0y) where (d,ds,...,d,) is the shape ofiask.

allocated (array)

inquiry function allocated(array) I check allocation status of argument
logical :: allocated I true if array is currently allocated; false otherwise
real :: array(:) 'array can be any type and any rank

end function
The actual argument farray must be an allocatable array with defined allocation status.

anint (a, kind)

elemental function anint(a,kind) ! integer value nearest a
real(kind) :: anint lif kind is absent the result kind is kind(a)
real :: a
integer, optional :: kind |'if present, must be a scalar initialization expression

end function
If a>0anint (a) iSaint (a +0.5); if a<0 anint (a) iSaint (a—0.5).

any (mask, dim)

function any(mask,dim) ! returns true if any of mask (along dim) is true
logical :: any l'any is an array if dim is present and mask rank > 1
logical :: mask(:) I may be any kind, any rank
integer, optional :: dim I'if present, 1<dim<n, where n is rank of mask

end function
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The result is scalar ifim is absent omask has rank one; otherwise, the result is an array of rank
n-1 and of shape {dh,...,%im-1.dim+1----0y) where (d,ds,...,d,) is the shape ofiask.

asin (x)
elemental function asin(x) I the arcsine (inverse sine)
real :: asin
real :: X Ix<1

end function

The result has a value equal to a processor-dependent approximation to arcsin(x), expressed in
radians. It lies in the rangay/2<asin(xgTv2.

associated (pointer, target)

inquiry function associated(pointer,target) ! check association status of argument
logical :: associated I true if pointer is currently associated, else false
real, pointer :: pointer(:) ! pointer can be any type, any rank
real, optional :: target(:) I target can be any type, any rank

end function

The actual argument fabinter must be a pointer with defined pointer association status. The
actual argument fotrget, if present, must be either a target or a pointer with defined pointer
association status. trget is absent, the result is truepifinter is currently associated with a
target and false otherwise. tafget is present and is a target, the result is trgeiifer is cur-
rently associated wittarget and false if it is not. lfarget is present and is a pointer, the result is
true If bothpointer andtarget are currently associated with the same target, and false otherwise.

atan (x)
elemental function atan(x) | the arctangent (inverse tangent)
real :: atan
real :: x
end function

The result has a value equal to a processor-dependent approximation to arctan(x), expressed in
radians, that lies in the range/2<atan(xxm/2.

atan2 (y, x)
elemental function atan2(x) | the arctangent (inverse tangent)
real :: atan2 ! of the nonzero complex number (X, y)
real ;1 y
real :: x

end function

The result has a value equal to a processor-dependent approximation to the arctan(y/x),
expressed in radians that lies in the rangatan2(y,xxm If y>0, the result is positive. If y=0,

the result is zero if x>0 amif x<0. If y<O0, the result is negative. If x=0, the absolute value of

the result igv2.

bit_size (i)
inquiry function bit_size(i) ! number of bits in argument i
integer :: bit_size
integer :: i i may be an array of any rank
end function ! (but note extension in chapter 12)

btest (i, pos)

elemental function btest(i,pos) I returns true if the bit in position pos of i is1
logical :: btest
integer :: i
integer :: pos ! 0<pos <bit_size(i)

end function



94 Fortran 90 Concise Reference

ceiling (a)
elemental function ceiling(a) I least integer greater than or equal to a
integer :: ceiling
real :: a
end function
char (i, kind)
elemental function char(i,kind) ! character in the ith position of the character set
character(kind) :: char I default character kind if kind is absent
integer :: | linrange 0 <i < n-1 where n is # of characters
integer, optional :: kind |if present, must be a scalar initialization expression

end function
Note thatichar(char(y,kind(x))) =y and char(ichar(x),kind(x)) = x.
cmplx (x, y, kind)

elemental function cmplx(x,y,kind) I complex number with real part x, imaginary part y
complex(kind) :: cmplx ! or default kind if kind is absent
real :: x ! or integer or complex
real, optional :: y ! or integer, or absent if x is complex
integer, optional :: kind |'if present, must be a scalar initialization expression

end function
If y is absent and x is not complex, then the imaginary part of the result is zero.

conjg (2)
elemental function conjg(z) I the conjugate of a complex number
complex :: conjg
complex :: z
end function

cos (x)
elemental function cos(x) ! the cosine of x
real :: cos | same type and kind as x
real :: X I may be complex
end function

If x is of type real, it is regarded as a value in radiansjsfof type complex, its real part is
regarded as a value in radians.

cosh (x)
elemental function cosh(x) I the hyperbolic cosine of x
real :: cosh
real :: x
end function

count (mask, dim)

function count(mask,dim) I count the number of true elements of mask
integer :: count I count is an array if dim is present and mask rank > 1
logical :: mask(:) I may be any kind, any rank
integer, optional :: dim |if present, 1<dim <n, where n is rank of mask

end function
If dim is present and n is greater than 1 then the result is an array of rank n-1. For example, if

mask IS a 3x2 array andm is 2, then the result is a one-dimensional array of size 3, with the
count taking place along each rownefsk .
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cshift (array, shift, dim)

function cshift(array,shift,dim) I circularly shift array
real :: cshift(:) | same type, kind, and shape as array
real :: array(:) I or any type, kind, and rank (not scalar)
integer :: shift I amount to be shifted, positive for left shifts
integer, optional :: dim lif present, 1<dim<n, where n is rank of array

end function

Positiveshift amounts are “left” shifts (e.g., cshift(i)=array(i+1)) and negative shifts are “right”;
values shifted “off” one end are routed into the other endimlfs absent it is assumed to be 1.

If array has rank greater than 1 then n-1 “one-dimensional shifts” take place along the dimen-
sion specified byim. For example, i&rray is a 3x2 array anéim=1, each of the two columns

of array are shifted an amount specifiedshit . shift is allowed to be an array of rank n-1, spec-
ifying a different shift amount for each “one-dimensional shift”. In the preceding examiple,

could be a one-dimensional array of two elements, having values, say, of 2 and -1; in this case
the first column of the array will be circularly shifted “up” two and the second column will be
shifted “down” one.

date_and_time (date, time, zone, values)

subroutine date_and_time(date,time,zone,values) I returns date and time information
character(*), optional, intent(out)) :: date ! date in CCYYMODD format
character(*), optional, intent(out)) :: time ! time in HHMMSS.SSS format
character(*), optional, intent(out)) :: zone ! zone in tHHMM format
integer, optional, intent(out)) :: values(:) | date, time, and zone in integer form

end subroutine

Returned results are compatible with the representations defined in ISO 8601:1988. CC is the
century, YY the year of the century, MO the month, DD the day of the month, HH the hour of
the day, MM the minutes of the hour , and SS.SSS the seconds/millisecondse Fibre result

is the hours and minutes from Coordinated Universal Timevdh@s , values(1) is the integer

form of CCYY - e.g., the yeavalues(2) is MO, values(3) is DD, values (4) is the zoneyalues(5)

is HH (range 0:23)alues(6) is MM (range 0:59)yalues(7) is the seconds (range 0:60), aad

ues(8) is the milliseconds.

dble (a)
elemental function dble(a) ! converts a to a double precision real value
real(DOUBLE) :: dble ! where DOUBLE is the double-precision kind value
real :: a ! or integer or complex, of any kind

end function
If ais complex, themble returns the real part afin double precision form.

digits (x)
inquiry function digits(x) I returns the model value of n if x is integer,
integer :: digits ! or q if x is real (see chapter 2)
integer :: X I may also be real and/or an array
end function
dim (x, y)
elemental function dim(x,y) ! returns max(0,x-y)
integer :: din I same type and kind as x (and y)
integer :: X, y I may also be real; y must have same type and kind as x

end function
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dot_product (vector_a, vector_b)

function dot_product(vector_a,vector_b) ! the dot-product multiplication of numeric or logical vectors
real :: dot_product I may also be logical or integer - see discussion
real :: vector_a(:), vector_b(:) ! one-dimensional arrays of the same size and both either
end function ! of type logical or of any numeric type

If the vectors are size zero, the result value is either zero or false; otherwise, if the vectors are of
type logical the result is type logical with value and kinda®f(vector_a.and.vector_b) , if

vector_a is of type integer or real the result value and kind are thosengfctor_a*vector_b) ,

and else the result value and kind are are thos@ngfonjg(vector_a)*vector_b)

dprod (x, y)
elemental function dprod(x,y) ! returns double-precision product of two default real values
real(DOUBLE) :: dprod I where DOUBLE is the double-precision kind value
real :: X, y

end function

eoshift (array, shift, boundary, dim)

function eoshift(array,shift,poundary,dim) ! end-off shift off array
real :: eoshift(:) | same type, kind, and shape as array
real :: array(:) ! or any type, kind, and rank (not scalar)
integer :: shift I amount to be shifted, positive for left shifts
integer, optional :: boundary I same type and kind as array - value for vacated positions
integer, optional :: dim 1if present, 1<dim <n, where n is rank of array

end function

eoshift i exactly the same asnift , except that values shifted “off” one end are not routed into
the vacated positions on the other end;pthedary value is placed in the vacated positions. If
boundary is omitted, the default value is 0, 0.0, (0.0,0.0), false, or blanks, depending on whether
array iS type integer, real, complex, logical, or character, respectboahdary is allowed to be

an array of rank n-1, specifying a different fill value amount for each vacated position. For

ABC JOAB
example, ifm is the character arra% E % , thesshift(m,shift=1,boundary="*",dim=2)  is {DD % ,
GHI OGH

OAB
andeoshift(m,shift=(/—1,1,0/),boundary=(/*",/',/),dim=2) S {E = /] .

GHI
epsilon (x)
inquiry function epsilon(x) | a positive value almost negligible compared to unity
real :: epsilon ! same type and kind as x
real :: x I may be any kind; may be an array of any rank

end function

exp (x)
elemental function exp(x) | an approximation to e*
real :: exp ! type and kind of x
real :: x I may be complex, in which case its imaginary part
end function ! is regarded as a value in radians

exponent (x)

elemental function exponent(x) I the real model exponent part of x - see chapter 2
integer :: exponent
real :: X

end function
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floor (a)
elemental function floor(a) | greatest integer less than or equal to a
integer :: floor
real :: a
end function

fraction (x)

elemental function fraction(x) I the real model fractional part of x - see chapter 2
real :: fraction
real :: X

end function

huge (x)
inquiry function huge(x) I the largest value for the type and kind of x
real :: huge ! same type and kind as x
real :: x I may be any kind; may be integer; may be an array

end function

iachar (c)
elemental function iachar(c) | same as ichar, except the ascii collating sequence
integer :: iachar ! (ISO 646:1983) is used instead of the processor’s

character :: ¢
end function

iand (i, j)
elemental function iand(i,j) ! perform logical and on bits of i and j
integer :: iand I same kind as i (and j)
integer 11, j I'any kind, but both must be the same kind

end function

The result is the bit-by-corresponding-aitd of the arguments; if both argument bits are 1 the
corresponding result bit is 1, otherwise the result bit is 0.

ibclr (i, pos)
elemental function ibclr(i,pos)
integer :: ibclr I same as i, but with the specified bit set to O
integer :: i ' may be any kind
integer :: pos ! position of bit in i to set to zero; 0<pos <bit_size(i)

end function

ibits (i, pos, len)

elemental function ibits(i,pos,len) | "extract" a string of bits from i
integer :: ibits ! same type and kind as i
integer :: i I may be any kind
integer :: pos | position of first bit to extract; pos =0
integer :: len I number of bits to extract; len=0 and pos+len < bit_size(i)

end function

The result has the sequenceeofbits fromi, beginning at bipos ; these bits are in the rightmost
bit positions of the result, with all other bits zero.

ibset (i, pos)
elemental function ibset(i,pos) I same as ibclr , except the specified bit is set to 1 instead of 0
integer :: ibset
integer :: i
integer :: pos
end function
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ichar (c)
elemental function ichar(c) ! position of a character in the processor collating sequence
integer :: ichar
character :: ¢

end function ! same as iachar if the processor collating sequence is ascii
ieor (i, j)
elemental function ieor(i,j) ! perform logical exclusive-or on bits of i and j
integer :: ieor I same kind as i (and j)
integer i1, I'any kind, but both must be the same kind

end function

The result is the bit-by-corresponding-bitclusive-orof the arguments; if one of the argument
bits is 1 and the other is 0, the corresponding result bit is 1, otherwise the result bit is 0.

index (string, substring, back)

elemental function index(string,substring,back) I search string for an substring of substring
integer :: index ! beginning position of substring in string (or zero)
character(*) :: string ' may be any kind
character(*) :: substring ! same kind as string
logical, optional :: back l'if present and true, search is from back of string

end function

If back is absent or present with the value false, the result is the minimum positive value of
such thatstring(i:i+len(substring)-1) == substring or zero if there is no such value;bick is
present with the value true, the result is the maximum valulesd than or equal ten(string)—
len(substring)+1 such thastring(i:i+len(substring)-1)==substring  or zero if there is no such value.
Zero is returned ilen(string)<len(substring) and one is returned lén(substring)==0 .

int (a, kind)
elemental function int(a,kind) ! convert a to an integer value (of specified kind)
integer(kind) :: int I the converted integer value
real :: a I may be any numeric type
integer, optional :: kind |'if present, must be a scalar initialization expression
end function lif kind is absent, the result kind is default integer

If ais of type integer, the result is this same value, but possibly of a different kirig.df type
real, the real value is truncated toward zero (eu(g,7) is 3 andnt(-3.7) is -3). Ifa is of type
complex, the result igt(real(a)) .

ior (i, j)
elemental function ior(i,j) I perform logical inclusive-or on bits of i and j
integer :: ior I same kind as i (and j)
integer :: i, j ! any kind, but both must be the same kind

end function

The result is the bit-by-corresponding-iitlusive-orof the arguments; if either one, or both,
of the argument bits is 1, the corresponding result bit is 1, otherwise the result bit is 0.

ishft (i, shift)
elemental function ishift(i,shift) !'logically end-off shift the bits of i the amount shift
integer :: ishft I same kind as i
integer :: i I may be any kind
integer :: shift I amount to shift the bit pattern of i; shift must have a
end function ! magnitude less than or equal to bit_size(i)

The result is the value obtained by shifting the bitshyfshift positions. Ifshift is positive, the
shift is to the left. Bits shifted out are lost; zeros are shifted in at the opposite end.
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ishftc (i, shift, size)
elemental function ishift(i,shift, size)

integer :: ishft
integer :: i
integer :: shift

integer, optional :: size
end function

99

I same as ishft , but the shift is circular rather than end-off
I same kind as i

' may be any kind

I amount to shift the bit pattern of i; shift < size

1 0 < size < bit_size(i)

! if size is omitted, bit_size(i) is assumed

The result has the value obtained by shifting the bitbpéhift positions. Ifshift is positive, the
shift is to the left. Bits shifted out are shifted into at vacated positions at the opposite end.

kind (x)
inquiry function kind(x)
integer :: kind
real :: x
end function

Ibound (array, dim)
inquiry function Ibound(array,dim)
integer :: Ibound
real :: array(:)
integer, optional :: dim
end function

I the kind type parameter value of any object
! the kind value of x
! may be any intrinsic type and any kind; may be an array

I the lower bound(s) of array

I scalar if dim is present; a rank one array otherwise
I may have any type, kind, and rank

l'if present, 1 < dim < n, where n is the rank of array

If dim is present the result is a scalar and is the lower bousithpfalong the dimensiodim . If

dim is absent the result is a one-dimensional array whose size is the eatak,aind the value

of each element of the result is the lower bound of that dimensiarapf If array is an array
expression other than an array name (e.g., an array section), the lower bound for each dimension

is 1.
len (string)
inquiry function len(string)
integer :: len

character(*) :: string
end function

len_trim (string)
elemental function len_trim(string)
integer :: len_trim
character(*) :: string
end function

Ige (string_a, string_b)
elemental function Ige(string_a,string_b)
logical :: Ige
character(*) :: string_a, string_b
end function

Igt (string_a, string_b)
elemental function Igt(string_a,string_b)
logical :: Igt
character(*) :: string_a, string_b
end function

I the length (numbers of characters) of a string

I the length of string

! may be any kind; may be an array

l'if string is an array, len is the length of each element

I same as len(trim(string))
! the length of string with all trailing blanks removed

! string comparison, based on ascii
I true if string_a >= string_b in the ascii collating sequence,
! false otherwise

I string comparison, based on ascii
I true if string_a > string_b in the ascii collating sequence,
! false otherwise
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lle (string_a, string_b)
elemental function lle(string_a,string_b)
logical :: lle
character(*) :: string_a, string_b
end function

lIt (string_a, string_b)
elemental function llt(string_a,string_b)
logical :: IIt
character(*) :: string_a, string_b
end function

log (x)
elemental function log(x)
real :: log
real :: x
end function

log10 (x)
elemental function log10(x)
real :: log10
real :: x
end function

logical (I, kind)
elemental function logical(l,kind)
logical(kind) :: logical
logical :: |
integer, optional :: kind
end function

matmul (matrix_a, matrix_b)
function matmul(matrix_a,matrix_b)
real :: matmul(:,:)
real :: matrix_a(:,:), matrix_b(:,:)
end function
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! string comparison, based on ascii
I true if string_a <= string_b in the ascii collating sequence,
! false otherwise

! string comparison, based on ascii
I true if string_a < string_b in the ascii collating sequence,
! false otherwise

I the natural logarithm, logex

! same type and kind as x

I may be complex; if real, x >0

! if complex, x must not be zero

I base-10 logarithm, log;gx
I same kind as x
Ix>0

! convert between logical kinds

I the value of I, but with kind kind

' may be any kind

|'if present, must be a scalar initialization expression
lif kind is absent, the result kind is default logical

! matrix multiplication of two numeric or logical matrices

! type and kind determined by the arguments - see below

! may be any kind; may be integer, complex or logical;

I one of the argument matrices (but not both) may be rank one

The two arguments must be both of type logical or of numeric (integer, real, complex) type. The
size of the first (or only) dimension e&trix_b must equal the size of the last (or only) dimen-

sion of matrix_a . There are three cases: (1) matrix_a has shape (n,k) and matrix_b has shape
(k,m), in which case the result has shape (n,m); (2) matrix_a has shape (k) and matrix_b has
shape (k,m), in which case the result has shape (m); (3) matrix_a has shape (n,k) and matrix_b
has shape (k), in which case the result has shape (n). For case (1) the (i,j) element of the result
has the value and kind efm(matrix_a(i,:)*matrix_b(:,j)) if the arguments are of numeric type and
any(matrix_a(i,)).and.matrix_b(:,j))  otherwise. For case (2) the (i) element of the result has the
value and kind ofsum(matrix_a(:)*matrix_b(:,ij))  if the arguments are of numeric type and
any(matrix_a(:).and.matrix_b(:,j)) otherwise, and for case (3) the (i) element of the result has the
value and kind ofsum(matrix_a(i,))*matrix_b(:)) if the arguments are of numeric type and
any(matrix_a(i,:).and.matrix_b(})) otherwise.

max (al, a2, a3, ...)
elemental function max(al,a2,a3,...) I return the maximum of the argument values
real :: max ! same type and kind as the arguments
real :: al, a2 ! may be integer,
real, optional :: a3, ... ! but all arguments must have the same type and kind
end function
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maxexponent (X)

inquiry function maxexponent(x) I maximum model exponent that this kind of real can have
integer :: maxexponent
real :: x I may be any kind; may be an array

end function

maxloc (array, mask)

function maxloc(array,mask) !'location in array of element with the maximum value
integer :: maxloc(:) ! result element values are the subscripts of the location
real :: array(:) 'any kind, any rank; can be type integer
logical, optional :: mask(size(array)) ! must be same shape as array

end function

The size of the result is equal to the rankrefy . The value of thetk element of the result is the
value of the k subscript of the location of the element with the maximum value. If more than
one element odrray has this maximum value, the location of the first, in array element order, is
returned. Ifmask is present, only those locationsainay corresponding to the true values in
mask are searched for the maximum value.

maxval (array, dim, mask)

function maxval(array,dim,mask) ! the maximum value in array, or along one of its diimensions
real :: maxval ! same kind and type as array
real :: array(:) 'any kind, any rank; can be type integer
integer, optional :: dim ! dimension along which to determine maximum values
logical, optional :: mask(size(array)) ! must be same shape as array

end function

The result is scalar ifim is omitted omrray has rank 1 (as illustrated in the interface), in which
case the value returned is the maximum element vahteayn If array has rank n greater than 1
anddim is present, &dim<n anddim specifies the dimension along which to determine the max-
imum values; in this case the result is an array of rank n-1 and shapg..(obim-1.
dgim+1:----&) where (d,d,,...,d,) is the shape afrray and each value of the result is the maxi-
mum value along théim dimension ofrray . If mask is present only those elementsieéy cor-
responding to the true valuesniask are searched for the maximum value.

merge (tsource, fsource, mask)

elemental function merge(tsource,fsource,mask) ! select one of two arguments, based on a mask
real :: merge | same type and kind as tsource
real :: tsource ! may be of any type and kind
real :: fsource ! same type and kind as tsource
logical :: mask ! return tsource if mask is true,
end function ! fsource if mask is false

merge iS an elemental function and is most often used to merge two arrays, based on the (con-
formable)mask .

min (a1, a2, a3, ...)

elemental function min(al,a2,a3,...) ! return the minimum of the argument values
real :: min ! same type and kind as the arguments
real :: al, a2 I may be integer,
real, optional :: a3, ... ! but all arguments must have the same type and kind

end function

minexponent (x)

inquiry function minexponent(x) I minimum model exponent that this kind of real can have
integer :: minexponent
real :: x ! may be any kind; may be an array

end function
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minloc (array, mask)
function minloc(array,mask)
integer :: minloc(:)
real :: array(:)
logical, optional :: mask(size(array))
end function

minval (array, dim, mask)
function minval(array,dim,mask)
real :: minval
real :: array(:)
integer, optional :: dim
logical, optional :: mask(size(array))
end function

mod (a, p)
elemental function mod(a,p)
integer :: mod
integer :: a
integer :: p

end function

modulo (a, p)
elemental function modulo(a,p)
integer :: modulo
integer :: a
integer :: p
end function

mvbits (from, frompos, len, to, topos)

elemental subroutine mvbits(from,frompos,len,to,topos)

integer, intent(in) :: from

integer, intent(in) :: frompos

integer, intent(in) :: len

integer, intent(inout) :: to

integer, intent(in) :: topos
end subroutine
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| same as maxloc ,
! but with minimum value rather than maximum value

I same as maxval ,
! but with minimum value rather than maximum value

I the remainder function (has sign of a)

! same type and kind as a; value is a-int(a/p)*p

! any kind; may be real

! same type and kind as a; the value of p must not be zero
I'mod and modulo are the same for positive values of a and p

! the modulo function (has sign of p)

! same type and kind as a; value is a-floor(a/p)*p

I any kind; may be real

| same type and kind as a; the value of p must not be zero
I'mod and modulo are the same for positive values of a and p

! move bits from from to to

I may be any kind

10 < frompos < bit_size(from)

10<len

! same kind as from (and may be the same object)
1 0 < topos ; (topos+len) < bitsize(to)

Copieslen bits from objectrom, starting at bit positiofiompos in from, to objectio, starting at

bit positiontopos in to.

nearest (X, s)
elemental function nearest(x,s)
real :: nearest
real :: x
real :: s
end function

nint (a, kind)
elemental function nint(a,kind)
integer(kind) :: nint
real :: a
integer, optional :: kind
end function

| the nearest value in the specified direction

I same kind as x; value is that nearest x, but not x
I may be any kind

! must not be zero; s > 0 means nearest > x

! s <0 means nearest <X

I integer nearest to a
I'value is int(a-sign(0.5,a))

|'if present, must be a scalar initialization expression
lif kind is absent, the result kind is default integer
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not (i)
elemental function not(i) ! logical bit-wise complement
integer :: not ! the bit complement of i
integer :: i
end function 11 bits in i become 0 in not; 0 bits in i become 1 in not

pack (array, mask, vector)

function pack(array,mask,vector) | pack an array of any shape into an array of rank 1
real :: pack(:) | same type and kind as array
real :: array(:) I maybe any type, kind, and shape
logical :: mask(size(array)) | same shape as array
real, optional :: vector(:) !'if present, must have at least count(mask) elements

end function

If vector is present the size qfack is the size ofvector; otherwise the size ofack is
count(mask) . The elements ofrray that correspond to true valuesniask are placed imack,
starting with the first element péck and in array element order frammay .

precision (x)

inquiry function precision(x) I the decimal precision of x
integer :: precision
real :: x ! may be any kind, may be complex, may be an array

end function

present (a)

inquiry function present(a) ! determine whether an optional argument is present

logical :: present I true if a is present, false otherwise

real :: a ! may be any type and kind; a must be an optional argument
end function ! of the procedure referencing the present function

product (array, dim, mask)

function product(array,dim,mask) ! product of the elements of array
real :: product ! same type and kind as array
real :: array(:) I may be any kind, any numeric type, and any rank
integer, optional :: dim l'if present, 1 < dim < n, where n is rank of array
logical, optional :: mask lif present, mask must have same shape as array

end function

The result is scalar iim is omitted orarray has rank 1, in which case the value returned is the
product of the elements afray . If array has rank n greater than 1 @md is presentgim speci-

fies the dimension along which to compute the products; in this case the result is an array of
rank n-1 and shape @b, ...,0im-1, Agim+1,----) where (d,0,,...,d,) is the shape adrray and

each value of the result is the product of the elements alonmgntltBmension ofrray . If mask

is present only those elementsaoéy corresponding to the true valuesrissk are used in com-

puting the product(s).

radix (x)
inquiry function radix(x) I radix (base) of the number model for x
integer :: radix
real :: x ! may be any kind, any numeric type; may be an array

end function

random_number (harvest)

subroutine randon_number(harvet) | generates one or more pseudorandom numbers
real, intent(out) :: harvest I may be any kind, may be an array
end subroutine



104 Fortran 90 Concise Reference

If harvest is a scalar, a single pseudorandom number from the uniform distribution between 0
and 1 is generated and assigneshteest ; if harvest is an arraysize(harvest) such numbers are
generated and assignechtovest .

random_seed (size, put, get)

subroutine random_seed(size,put,get) | set or retrieve the random_number seed
integer, optional, intent(out) :: size I number of integers (n) used for the value of the seed
integer, optional, intent(in) :: put(:) I size(put) must be equal to n; set the seed to put
integer, optional, intent(out) :: get(:) I size(get) must be equal to n; retrieve the seed into get
end subroutine ! a given call to random_seed has at most one argument

If a call torandom_seed is made without any arguments, the seed is set to an implementation-
determined value. When the argumenpds the seed is reinitialized to this value; when the
argument iget, the current value of the seed is retrieved.

range (x)
inquiry function range(x) ! decimal exponent range for x
integer :: range I'value is int(log10(huge(x))) - but see comment below
real :: x I may be any kind, any numeric type; may be an array

end function

If x is of type integemhuge(x) returns an integer, which is not legal k@10 ; the effect forange
is, however, as if the equivalent real value had been returned for hugs.df type real the
value actually returned bygnge is min(int(log10(huge(x)Bint(log10(tiny(x)))).

real (a, kind)
elemental function real(a,kind) I convert a to the equivalent real value of specified kind
real(kind) :: real I the converted real value
real :: a I may be any kind and any numeric type
integer, optional :: kind !'if present, must be a scalar initialization expression
end function lif kind is absent, the result kind is default real

If ais of type real, the result is this same value, but possibly of a different kirid.df integer,
the equivalent real value is returneda I§ complex, the result is the real partof

repeat (string, ncopies)

function repeat(string,ncopies) | concatenate several copies of a string
character(len(string)*ncopies) :: repeat I ncopies of string concatenated ; same kind as string
character(*) :: string ! may be any kind
integer :: ncopies 1 0 < ncopies

end function

reshape (source, shape, pad, order)

function reshape(source,shape,pad,order) ! reshape source into the array shape specified shape
real :: reshape(:) | same type and kind as source , with shape shape
real :: source(:) I may be any type, kind, and rank
integer :: shape(:) ! all element values must be positive
real, optional :: pad(:) ! same type and kind as source ; may be any rank
integer, optional :: order(size(shape)) | a permutation of (1, 2, 3, ..., size(shape) )

end function

Values are copied fromsource (and then, if needed, fropad) to reshape, in array element
order. Ifsize(source) > product(shape) , the extra values aburce are ignored. I6ize(source) <
product(shape) , pad must be supplied, witkize(pad) = product(shape)-size(source) . If order is
present it specifies the the array element order ofrdktepe subscripts. For example,

reshape((/1,2,3,4, 5,6/),(/2,3/)) IS & i j , andreshape((/1,2,3,4,5,61),(/2,4/),(/0,0/),(/2,1/)) iS & Z g j .
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rrspacing (x)
elemental function rrspacing(x)
real :: rrspacing
real :: X
end function

scale (x, i)
elemental function scale(x,i)
real :: scale
real :: x
integer :: i
end function

scan (string, set, back)
elemental function scan(string,set,back)
integer :: scan
character(*) :: string
character(*) :: set
logical, optional :: back
end function

selected_int_kind (r)
function selected_int_kind(r)
integer :: selected_int_kind
integer :: r
end function
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! recipocal of the relative spacing of values near x
I'value is x/(nearest(x,1.)-x) forx >0

I scales x by a specified amount

I same kind as x; value is x*radix(x)**i

' may be any kind

! scaling may be up (i > 0) or down (i < 0) (or i may be zero)

I search string for an occurrence of any character in set
I'value is first such position in string

' may be any kind

I same kind as string

lif present and true, search is from back of string instead
!'if no match, zero is returned

I determines kind value for specifed integer range
! the kind value, or -1 if there is no such integer type
| specifies an integer range of at least -10**r to +10**r

If more than one integer type meets the criteria, the kind value for the one with the smallest dec-
imal exponent range is returned or, if there are several such, the smallest of these kind values.

selected_real_kind (p, r)
function selected_real_kind(p,r)
integer :: selected_real_kind
integer, optional :: p
integer, optional :: r
end function

! determines kind value for real type with specified properties
I'the kind value, or a negative value if there is no such real type
| specifies a real type with at least p decimal digits of precision
| specifies an exponent range of at least 10**-r to 10**r

| at least one argument must be present

The result is the kind type parameter of a real data type with decimal precision, as returned by
theprecision function, of at least digits and a decimal exponent range, as returned byride
function, of at least; if no such type is available on the processor, the result is -1 if the preci-
sion is not available, -2 if the exponent range is not available, and -3 if neither is available. If
more than one real type meets the criteria, the kind value for the one with the smallest decimal
precision is returned or, if there are several such, the smallest of these kind values.

set_exponent (X, i)
elemental function set_exponent(x,i)
real :: set_exponent
real :: x
integer :: i
end function

shape (source)
inquiry function shape(source)
integer :: shape(:)
real :: source(:)
end function

I a value with the fractional part of x and exponent i
! same kind as x; value is x*radix(x)**(i-exponent(x))
' may be any kind

!'i may be positive, negative, or zero

| determine the shape of an array
I element values are the extents of source
I may be any type, kind, and rank; may be scalar
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The value of thetk element okhape is the size of thetk dimension oource . size(shape) is n,
where n is the rank aburce ; if source is a scalar, n is zersource must not be a dissassociated
pointer array, an unallocated allocatable array, or an assumed-size array.

sign (a, b)
elemental function sign(a,b)
real :: sign
real :: a
real :: b
end function

sin (X)
elemental function sin(x)
real :: sin
real :: X

end function

| set the sign of a value

lvalueis |al if b 20, -|a] if b < 0; type and kind of a
I may be any kind; may be integer

I same type and kind as a

I the sine of x
! same type and kind as x
I may be complex

If x is of type real, it is regarded as a value in radiansjsfof type complex, its real part is

regarded as a value in radians.

sinh (x)
elemental function sinh(x)
real :: sinh
real :: x

end function

size (array, dim)
inquiry function size(array,dim)
integer :: size
real :: array(:)
integer, optional :: dim
end function

spacing (x)
elemental function spacing(x)
real :: spacing
real :: X
end function

spread (source, dim, ncopies)
function spread(source,dim,ncopies)
real :: spread(:,:)
real :: source(:)
integer :: dim
integer :: ncopies
end function

I the hyperbolic sine of x;

| determine number of elements in (a dimension of) an array
! value is product(shape(array)) if dim is absent

I may be any type, kind, and rank

l'if present, 1 < dim < n, where n is the rank of array, and

! the returned value is the extent of the dim dimension

| absolute spacing near x
I value is nearest(x,1.)-x for x >0

! makes ncopies of source along a new dimension

| same type and kind as source ; rank 1 greater than source
I may be any type, kind, and rank; may be scalar

11 <dim <n+1, where n is the rank of source

I number of copies to spread is max(0,ncopies )

spread broadcasts several copiessofirce along a specified dimension (as in forming a book
from copies of a single page) and thus forms an array of rank one greatgwutt@anlf source

is a scalar theepread is an array of rank one and size maxdéhies ) and all element have the
value ofsource . If source is an array with shape(db,...,d,), spread has shape (¢, ...,0im-1,

23

max(Oncopies ),dgim,Adim=+1,--+-Ch)- An examplespread((/2,3,4/),1,3) iS |2 3

23
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sqrt (x)
elemental function sqrt(x) ! the square root of x
real :: sqrt ! same type and kind as x; value is J;(
real :: x ' may be complex
end function lif x is of type real, x >0

If x is complex, the real part of the result is nonnegative; if the real part is zero, the imaginary
part is nonnegative.

sum (array, dim, mask)

function sum(array,dim,mask) ! sum of the elements of array
real :: sum ! same type and kind as array
real :: array(:) I may be any kind, any numeric type, and any rank
integer, optional :: dim l'if present, 1 < dim < n, where n is rank of array
logical, optional :: mask lif present, mask must have same shape as array

end function

The result is scalar iim is omitted orarray has rank 1, in which case the value returned is the
sum of the elements afray. If array has rank n greater than 1 and is present, &dim<n and

dim specifies the dimension along which to compute the sums; in this case the result is an array
of rank n-1 and shapeq(d,,...,44im-1, Agim+1,----0y) Where (d,d,,...,d,) is the shape afiray and

each value of the result is the sum of the elements alongrttdimension ofrray. If mask is

present only those elementsaghy corresponding to the true valuesiissk are used in com-
puting the sum(s).

system_clock (count, count_rate, count_max)

subroutine system_clock(count,count_rate,count_max) linteger data from a real-time clock
integer, intent(out), optional :: count 10 < count < count_max
integer, intent(out), optional :: count_rate ! clock counts per second
integer, intent(out), optional :: count_max ! the maximum count can have

end subroutine

All values are processor dependentint_rate indicates how many timesunt is incremented
each second; when it reachesnt_max , it resets to zero. If there is no processor clackt
always returns -huge(Qunt_rate returns zero, anebunt_max returns zero.

tan (x)
elemental function tan(x) | the tangent of x
real :: tan
real :: X I'value is assumed to be radians
end function
tanh (x)
elemental function tanh(x) I the hyperbolic tangent of x
real :: tanh
real :: x
end function
tiny (x)
inquiry function tiny(x) | the smallest positive value for the type and kind of x
real :: tiny ! same kind as x
real :: x I may be any kind; may be an array

end function
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transfer (source, mold, size)

function transfer(source,mold,size) | same bit pattern, but different type/kind
real :: transfer | bit pattern of source ; type/kind of mold ; may be an array
real :: source I may be any type and kind; may be scalar or array
real :: mold I may be any type and kind; may be scalar or array
integer, optional :: size | specifies the shape of the result; the value must be positive

end function

If mold is scalar andize is absent the result is scalarmifid is an array andize is absent the

result is a rank 1 array; its size is the smallest possible to hold all of the dsitgcof If size is

present, the result is a rank 1 array of this size; if this makes transfer longer than source, the
extra part of transfer is undefined and if it makes transfer shorter than source the extra bits of
source are not transferred.

transpose (matrix)

function transpose(matrix) | transpose matrix
real :: transpose(size(matrix,2),size(matrix,1)) I element (i,j) is matrix(j,i)
real :: matrix(:,:) I may be any type and kind

end function

trim (string)

function trim(string) ! removes trailing blanks from a string
character(*) :: trim | same as string , except all trailing blanks removed
character(*) :: string I may be any kind

end function

ubound (array, dim)

inquiry function ubound(array,dim) ! the upper bound(s) of array
integer :: ubound ! scalar if dim is present; a rank one array otherwise
real :: array(:) I may have any type, kind, and rank
integer, optional :: dim l'if present, 1 < dim < n, where n is the rank of array

end function

If dim is present the result is a scalar and is the upper boundyofilong the dimensiogim . If

dim is absent the result is a one-dimensional array whose size is the saak,aind the value

of each element of the result is the upper bound of that dimensiamayoflf array is an array
expression other than an array name (e.g., an array section), the upper bound value is based on
the lower bound value being 1.

unpack (vector, mask, field)

function unpack(vector,maskfield) 'unpack a vector into an array, under control of a mask

real :: unpack(:) | same type and kind as vector ; same shape as mask

real :: vector(:) ! may be any type and kind

logical :: mask(:) I may be any rank

real :: field(size(mask)) ! same type and kind as vector ; same shape as mask -
end function ! field may be a scalar, in which case it is broadcast

The element of the result that corresponds to thérlte element ofmask, in array element
order, is vector(k), for all the true valuesriask . Each other element of the result is the value of
the corresponding elementfifd .

verify (string, set, back)

elemental function verify(string,set,back) I check that set contains all the characters in string
integer :: verify I value is first position in string that is not a set character
character(*) :: string I may be any kind
character(*) :: set I same kind as string
logical, optional :: back I'if present and true, check is from back of string instead

end function !if all characters in string are in set, zero is returned
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1 1 Syntax Rules

This chapter contains the complete syntax of Fortran 90. For reference purposes the syntax rules
are the same as in the Fortran 90 standard, with the Rihfeule) numbers; however, the con-
straints are not included here.

Each syntax rule defines a term with the synigabptionally followed by alternative definitions
introduced by the symbak. Optional parts of a definition are in closed in square bracket$, (

and repeated parts are enclosed in square brackets followed by threg dots (Abbreviations

are used liberally (e.gstmt for statement) and any term ending witdt represents a comma-sepa-
rated list (e.g.xyz-list is an abbreviation foxyz [ , xyz 1 ..); a term ending withname is aname

(R309. Syntactic classes (nonterminals) aredirized-font and literals are inold . Literal words,

such agunction are lower case, but upper-case letters are allowed. Where a syntax rule specifies
more than one line (statement) of actual code syntax, the rule for each code line is on a separate
syntax rule line (e.g., theconstruct, R802 involves multiple lines of actual code). In those few
cases where a syntax rule is too long to fit on one line#the tised to indicate its continuation on

the next line (e.g., the syntax rule for the function staterRaat,g is too long to fit on one line).

general structure (R201-216)

R201 executable-program is  program-unit
[ program-unit] ...

R202 program-unit is  main-program
or external-subprogram
or module
or block-data

R1101 main-program is [ program-stmt]
[ specification-part]
[ execution-part
[ internal-subprogram-part |
end-program-stmt

R203 external-subprogram is  function-subprogram
or  subroutine-subprogram

R1215 function-subprogram is  function-stmt
[ specification-part ]
[ execution-part
[ internal-subprogram-part |
end-function-stmt

R1219subroutine-subprogram is  subroutine-stmt
[ specification-part ]
[ execution-part |
[ internal-subprogram-part |
end-subroutine-stmt

R1104 module is  module-stmt
[ specification-part]
[ module-subprogram-part |
end-module-stmt
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R1110block-data

R204 specification-part

R205 implicit-part

R206

implicit-part-stmt

R207 declaration-construct

R208 execution-part

R209 execution-part-construct

R210 internal-subprogram-part

R211 internal-subprogram

R212 module-subprogram-part

R213 module-subprogram

R214 specification-stmt
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block-data-stmt
[ specification-part ]
end-block-data-stmt

[ use-stmt] ...
[ implicit-part ]
[ declaration-construct] ...

[ implicit-part-stmt] ...
implicit-stmt

implicit-stmt
parameter-stmt
format-stmt
entry-stmt

derived-type-def
interface-block
type-declaration-stmt
specification-stmt
parameter-stmt
format-stmt
entry-stmt
stmt-function-stmt

executable-construct
[ execution-part-construct] ...

executable-construct
format-stmt
data-stmt

entry-stmt

contains-stmt
internal-subprogram
[ internal-subprogram] ...

function-subprogram
subroutine-subprogram

contains-stmt
module-subprogram
[ module-subprogram] ...

function-subprogram
subroutine-subprogram

access-stmt
allocatable-stmt
common-stmt
data-stmt
dimension-stmt
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R215 executable-construct

R216 action-stmt

or
or
or
or
or
or
or
or
or

is
or
or
or
or

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

equivalence-stmt
external-stmt
intent-stmt
intrinsic-stmt
namelist-stmt
optional-stmt
pointer-stmt
save-stmt
target-stmt

action-stmt
case-construct
do-construct
if-construct
where-construct

allocate-stmt
assignment-stmt
backspace-stmt
call-stmt
close-stmt
computed-goto-stmt
continue-stmt
cycle-stmt
deallocate-stmt
endfile-stmt
end-function-stmt
end-program-stmt
end-subroutine-stmt
exit-stmt

goto-stmt

if-stmt

inquire-stmt
nullify-stmt
open-stmt
pointer-assignment-stmt
print-stmt
read-stmt
return-stmt
rewind-stmt
stop-stmt
where-stmt
write-stmt
arithmetic-if-stmt
assign-stmt
assigned-goto-stmt
pause-stmt

111
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tokens (names, operators ...) R301-313

R301 character is  alphanumeric-character
or special-character

R302 alphanumeric-character  is letter
or digit
or underscore

R303 underscore is _
R304 name is letter [ alphanumeric-character] ...
R305 constant is literal-constant

or named-constant

R306 literal-constant is int-literal-constant
or real-literal-constant
or complex-literal-constant
or logical-literal-constant
or char-literal-constant
or boz-literal-constant

R307 named-constant is  name

R308 int-constant is  constant

R309 char-constant is  constant

R310 intrinsic-operator is  power-op
or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op

or equiv-op

R708 power-op is **
R709 mult-op is *
or /
R710 add-op is +
or -
R712 concat-op is /I
R714 rel-op is .eq.
or .ne.
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R719

R720

R721

R722

R311

R704

R724

R312

R313

not-op
and-op
or-op

equiv-op

defined-operator

defined-unary-op
defined-binary-op
extended-intrinsic-op

label

data types (R401-435)

R401

R402

R403

R404

R405

R406

R407

signed-digit-string
digit-string
signed-int-literal-constant
int-literal-constant

kind-param

sign

boz-literal-constant

or
or
or
or
or
or
or
or
or

is
is

is

is

is

is
or
or

.not.
.and.
.or.

.eqv.
.neqv.

defined-unary-op
defined-binary-op
extended-intrinsic-op
. letter [ letter] ... .

. letter [ letter] ... .

intrinsic-operator

digit [ digit [ digit [ digit [ digit]]]]

[ sign] digit-string

digit [ digit] ...

[ sign] int-literal-constant
digit-string [ _ kind-param ]

digit-string
scalar-int-constant-name

+

binary-constant
octal-constant
hex-constant

113



114

R408

R409

R410

R411

R412

R413

R414

R415

R416
R417

R418

R419

R420

R421

R422

R423

binary-constant

octal-constant

hex-constant

hex-digit

signed-real-literal-constant

real-literal-constant

significand

exponent-letter

exponent
complex-literal-constant

real-part

imag-part

char-literal-constant

logical-literal-constant

derived-type-def

private-sequence-stmt

is

is
or

is
or

is
or

or
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B digit[ digit] ..."
B" digit[ digit] ... "
O digit[ digit] ..."
O " digit[ digit] ... "

Z' hex-digit [ hex-digit] ..."
Z" hex-digit[ hex-digit]..."

[ sign] real-literal-constant

significand [ exponent-letter exponent] [ _ kind-param ]
digit-string exponent-letter exponent [ _ kind-param ]

digit-string . [ digit-string ]
. digit-string

E
D

signed-digit-string
( real-part , imag-part)

signed-int-literal-constant
signed-real-literal-constant

signed-int-literal-constant
signed-real-literal-constant

[ kind-param _] * [ rep-char] ..."
[ kind-param _1" [ rep-char] ... "

true. [ _ kind-param ]
false. [ _ kind-param]

derived-type-stmt

[ private-sequence-stmt] ...
component-def-stmt

[ component-def-stmt] ...
end-type-stmt

private
sequence
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R424

R425

R426

R427

R428

R429

R430

R431

R432

R433

R434

R435

derived-type-stmt
end-type-stmt
component-def-stmt

component-attr-spec

component-array-spec

component-dec!
structure-constructor
array-constructor

ac-value

ac-implied-do
ac-implied-do-control

ac-do-variable

type [[, access-spec] :: ] type-name
end type [ type-name]
type-spec [ [ , component-attr-spec-list] :: | component-decl-list

pointer
dimension ( component-array-spec )

explicit-shape-spec-list
deferred-shape-spec-list

component-name [ ( component-array-spec) ] [ * char-length]
type-name ( expr-list)
(/ ac-value-list /)

expr
ac-implied-do

( ac-value-list , ac-implied-do-control)

ac-do-variable = scalar-int-expr , scalar-int-expr [ , scalar-int-expr]

scalar-int-variable

declarations and attributes (R501-549)

R501

R502

R503

type-declaration-stmt

type-spec

attr-spec

is

is
or
or
or
or
or
or

is
or
or
or
or
or
or
or
or
or
or

type-spec|[ [, attr-spec] ... :: ] entity-decl-list

integer [ kind-selector ]
real [ kind-selector ]
double precision
complex [ kind-selector ]
character [ char-selector]
logical [ kind-selector]
type ( type-name))

parameter
access-spec
allocatable
dimension ( array-spec)
external

intent ( intent-spec)
intrinsic

optional

pointer

save

target
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R504

R505

R506

R507

R508

R509

R510

R511

R512

R513
R514
R515
R516
R517
R518
R519
R520
R521

R522

entity-decl

kind-selector

char-selector

length-selector

char-length

type-param-value

access-spec

intent-spec

array-spec

explicit-shape-spec
lower-bound
upper-bound
assumed-shape-spec
deferred-shape-spec
assumed-size-spec
intent-stmt
optional-stmt
access-stmt

access-id
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object-name [ ( array-spec) ] [ * char-length] [ = initialization-expr ]
function-name [ ( array-spec) ][ * char-length ]

([ kind = ] scalar-int-initialization-expr)

length-selector

(len = type-param-value , kind = scalar-int-initialization-expr)
( type-param-value , [ kind = ] scalar-int-initialization-expr)

(kind = scalar-int-initialization-expr [, len = type-param-value])

([len =] type-param-value)
* char-length [ , ]

( type-param-value )
scalar-int-literal-constant

specification-expr

*

public
private

in

out

inout

explicit-shape-spec-list
assumed-shape-spec-list
deferred-shape-spec-list
assumed-size-spec

[ lower-bound : ] upper-bound
specification-expr

specification-expr

[ lower-bound] :

[ explicit-shape-spec-list, ] [ lower-bound : ] *
intent ( intent-spec) [ :: ] dummy-arg-name-list
optional [:: ] dummy-arg-name-list
access-spec [ [ :: ] access-id-list]

use-name
generic-spec
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R523

R524

R525

R526

R527

R528

R529

R530

R531

R532

R533

R534

R535

R536

R537

R538

R539

R540

R541

R542

save-stmt

saved-entity

dimension-stmt

allocatable-stmt

pointer-stmt

target-stmt

data-stmt
data-stmt-set

data-stmt-object

data-stmt-value

data-stmt-constant

data-stmt-repeat

data-implied-do

data-i-do-object

data-i-do-variable

parameter-stmt

named-constant-def

implicit-stmt

implicit-spec

letter-spec

save [ [ :: ] saved-entity-list]

object-name
| common-block-name /

dimension [ :: ] array-name ( array-spec)
[, array-name ( array-spec) ] ...

allocatable [:: ] array-name [ ( deferred-shape-spec-list) ]

[, array-name [ ( deferred-shape-spec-list)]] ...

pointer [:: ] object-name [ ( deferred-shape-spec-list) ]
[, object-name [ ( deferred-shape-spec-list)]] ...

target [ :: ] object-name [ ( array-spec) |
[, object-name [ ( array-spec)]1] ...

data data-stmt-set|[ [, ] data-stmt-set] ...
data-stmt-object-list | data-stmt-value-list/

variable
data-implied-do

[ data-stmt-repeat * | data-stmt-constant

scalar-constant
signed-int-literal-constant
signed-real-literal-constant
structure-constructor
boz-literal-constant

scalar-int-constant

( data-i-do-object-list , data-i-do-variable =
scalar-int-expr , scalar-int-expr [, scalar-int-expr])

array-element
scalar-structure-component
data-implied-do

scalar-int-variable
parameter ( named-constant-def-list)
named-constant = initialization-expr

implicit implicit-spec-list
implicit none

type-spec ( letter-spec-list)

letter [ — letter ]
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R543

R544
R545
R546

R547

R548

R549

namelist-stmt

namelist-group-object
equivalence-stmt
equivalence-set

equivalence-object

common-stmt

common-block-object

variables (R601-631)

R601

R602

R603

R604

R605

R606

R607

R608

R609

R610

R611

R612

variable

subobject

logical-variable
default-logical-variable
char-variable
default-char-variable
int-variable
default-int-variable
substring

parent-string

substring-range

data-ref

or
or

or
or
or
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namelist/ namelist-group-name | namelist-group-object-list
[[,]1/ namelist-group-name | namelist-group-object-list ] ...

variable-name
equivalence equivalence-set-list
( equivalence-object , equivalence-object-list)

variable-name
array-element
substring

common [/[ common-block-name]/] common-block-object-list

[[,]1/[ common-block-name]/ common-block-object-list] ...

variable-name [ ( explicit-shape-spec-list) ]

scalar-variable-name
array-variable-name
subobject

array-element
array-section
structure-component
substring

variable
variable
variable
variable
variable
variable
parent-string ( substring-range )

scalar-variable-name
array-element
scalar-structure-component
scalar-constant

[ scalar-int-expr] : [ scalar-int-expr]

part-ref [ % part-ref] ...
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R613

R614

R615

R616

R617

R618

R619

R620

R621

R622

R623

R624

R625

R626

R627

R628

R629

R630

R631

expressions (R701-743)

part-ref
structure-component
array-element
array-section
subscript

section-subscript

subscript-triplet
stride
vector-subscript
allocate-stmt
stat-variable
allocation

allocate-object

allocate-shape-spec
allocate-lower-bound
allocate-upper-bound
nullify-stmt

pointer-object

deallocate-stmt

R701

primary

or
or
or
or
or
or
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part-name [ ( section-subscript-list) |
data-ref

data-ref

data-ref [ ( substring-range) ]
scalar-int-expr

subscript
subscript-triplet
vector-subscript

[ subscript] : [ subscript] [ : stride ]
scalar-int-expr

int-expr

allocate ( allocation-list [, stat = stat-variable])
scalar-int-variable

allocate-object [ ( allocate-shape-spec-list) |

variable-name
structure-component

[ allocate-lower-bound : ] allocate-upper-bound
scalar-int-expr

scalar-int-expr

nullify ( pointer-object-list)

variable-name
structure-component

deallocate ( allocate-object-list [, stat = stat-variable])

constant
constant-subobject
variable
array-constructor
structure-constructor
function-reference
(expr)
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R702
R703
R704
R705
R706
R707
R708

R709

R710

R711
R712
R713

R714

R715
R716
R717
R718
R719
R720

R721

constant-subobject

level-1-expr

defined-unary-op

mult-operand
add-operand
level-2-expr
power-op

mult-op

add-op

level-3-expr
concat-op
level-4-expr

rel-op

and-operand
or-operand
equiv-operand
level-5-expr
not-op

and-op

or-op

is
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subobject

[ defined-unary-op ] primary

. letter [ letter] ... .

level-1-expr [ power-op mult-operand ]
[ add-operand mult-op ] mult-operand

[ [ level-2-expr] add-op | add-operand

*%

[ level-3-expr concat-op ] level-2-expr
I

[ level-3-expr rel-op ] level-3-expr
.eq.

.ne.

t.
le.

[ not-op ] level-4-expr

[ or-operand and-op | and-operand

[ equiv-operand or-op ] or-operand

[ level-5-expr equiv-op | equiv-operand
.not.

.and.

.or.
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R722

R723

R724

R725

R726

R727

R728

R729

R730

R731

R732

R733

R734

R735

R736

R737

R738

R739

R740

R741

R742

R743

equiv-op

expr
defined-binary-op
logical-expr

char-expr
default-char-expr
int-expr

numeric-expr
initialization-expr
char-initialization-expr
int-initialization-expr
logical-initialization-expr
specification-expr
assignment-stmt
pointer-assignment-stmt

target

where-stmt

where-construct

where-construct-stmt
mask-expr
elsewhere-stmt

end-where-stmt

is
is
is

is

.eqv.
.neqv.

[ expr defined-binary-op ] level-5-expr
. letter [ letter] ... .

expr

expr

expr

expr

expr

expr

char-expr

int-expr

logical-expr
scalar-int-expr

variable = expr
pointer-object => target

variable
expr

where ( mask-expr) assignment-stmt

where-construct-stmt

[ assignment-stmt] ...
[ elsewhere-stmt

[ assignment-stmt] ... ]
end-where-stmt

where ( mask-expr)
logical-expr
elsewhere

end where
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control structures (R801-844)

R801

R802

R803

R804

R805

R806

R807

R808

R809

R810

R811

R812

R813

R814

R815

R816

block

if-construct

if-then-stmt
else-if-stmt
else-stmt
end-if-stmt
if-stmt

case-construct

select-case-stmt
case-stmt
end-select-stmt

case-expr

case-selector

case-value-range

case-value

do-construct

is

is

[ execution-part-construct] ...

if-then-stmt
block

[ else-if-stmt
block] ...

[ else-stmt
block]

end-if-stmt

[ if-construct-name : | if ( scalar-logical-expr) then
else if ( scalar-logical-expr) then [ if-construct-name ]
else [ if-construct-name ]

end if [ if-construct-name ]

if ( scalar-logical-expr) action-stmt

select-case-stmt

[ case-stmt
block] ...

end-select-stmt

[ case-construct-name : ] select case ( case-expr)
case case-selector [ case-construct-name]
end select [ case-construct-name ]

scalar-int-expr
scalar-char-expr
scalar-logical-expr

( case-value-range-list)
default

case-value

case-value :

. case-value

case-value : case-value

scalar-int-initialization-expr
scalar-char-initialization-expr
scalar-logical-initialization-expr

block-do-construct
nonblock-do-construct
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R817 block-do-construct is  do-stmt
do-block

end-do
R818 do-stmt is label-do-stmt

or nonlabel-do-stmt

R819 label-do-stmt is [ do-construct-name : ] do label [ loop-control ]
R820 nonlabel-do-stmt is [ do-construct-name : ] do [ loop-control |
R821 loop-control is [,] do-variable = scalar-numeric-expr , scalar-numeric-expr #

[, scalar-numeric-expr ]
or [,]while ( scalar-logical-expr)

R822 do-variable iS  scalar-variable
R823 do-block is  block
R824 end-do is  end-do-stmt

or continue-stmt
R825 end-do-stmt is enddo [ do-construct-name ]

R826 nonblock-do-construct is  action-term-do-construct
or outer-shared-do-construct

R827 action-term-do-construct is  label-do-stmt
do-body
do-term-action-stmt

R828 do-body is [ execution-part-construct] ...
R829 do-term-action-stmt is  action-stmt

R830 outer-shared-do-construct is label-do-stmt
do-body
shared-term-do-construct

R831 shared-term-do-construct iS  outer-shared-do-construct
or inner-shared-do-construct

R832 inner-shared-do-construct is  label-do-stmt
do-body
do-term-shared-stmt

R833 do-term-shared-stmt is  action-stmt
R834 cycle-stmt is cycle [ do-construct-name |
R835 exit-stmt is exit [ do-construct-name |

R836 goto-stmt is goto label
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R837 computed-goto-stmt is goto ( label-list)[,] scalar-int-expr

R838 assign-stmt is assign label to scalar-int-variable

R839 assigned-goto-stmt iS goto scalar-int-variable [ [, ] ( label-list) ]
R840 arithmetic-if-stmt is  if ( scalar-numeric-expr) label , label , label
R841 continue-stmt is  continue

R842 stop-stmt is stop [ stop-code]

R843 stop-code is  scalar-char-constant

or digit[ digit[ digit[ digit[ digit]]]]

R844 pause-stmt is pause [ stop-code ]

input, output (R901-924)

R901 Jjo-unit is  external-file-unit
or *
or internal-file-unit

R902 external-file-unit is  scalar-int-expr

R903 internal-file-unit is  default-char-variable
R904 open-stmt is  open ( connect-spec-list)
R905 connect-spec is  [unit = ] external-file-unit

or ostat = scalar-default-int-variable
or err= label

or file = file-name-expr

or status = scalar-default-char-expr
or access = scalar-default-char-expr
or form = scalar-default-char-expr
or recl = scalar-int-expr

or blank = scalar-default-char-expr
or position = scalar-default-char-expr
or action = scalar-default-char-expr
or delim = scalar-default-char-expr
or pad = scalar-default-char-expr

R906 file-name-expr is  scalar-default-char-expr
R907 close-stmt is close ( close-spec-list)
R908 close-spec is  [unit = ] external-file-unit

or iostat = scalar-default-int-variable
or err= label
or status = scalar-default-char-expr
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R909

R910

R911

R912

R913

R914

R915

R916

R917

R918

R919

R920

R921

R922

R923

read-stmt

write-stmt
print-stmt

io-control-spec

format

input-item

output-item

io-implied-do

io-implied-do-object

io-implied-do-control

backspace-stmt

endfile-stmt

rewind-stmt

position-spec

inquire-stmt
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read ( io-control-spec-list) [ input-item-list ]
read format [, input-item-list |
write ( io-control-spec-list) [ output-item-list ]
print format [, output-item-list]
[ unit = ] io-unit
[ fmt = ] format
[ nml = ] namelist-group-name
rec = scalar-int-expr
iostat = scalar-default-int-variable
err = label
end = label
advance = scalar-default-char-expr
size = scalar-default-int-variable
eor = label
default-char-expr
label
scalar-default-int-variable
variable
io-implied-do
expr
io-implied-do
( io-implied-do-object-list , io-implied-do-control )
input-item
output-item
do-variable = scalar-numeric-expr, scalar-numeric-expr #

[, scalar-numeric-expr ]

backspace external-file-unit
backspace ( position-spec-list)

endfile external-file-unit
endfile ( position-spec-list)

rewind external-file-unit
rewind ( position-spec-list)

[ unit = ] external-file-unit
iostat = scalar-default-int-variable
err = label

inquire ( inquire-spec-list)
inquire (iolength = scalar-default-int-variable ) output-item-list
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R924 inquire-spec

1/0 formatting (R1001-1017)

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

R1001 format-stmt
R1002 format-specification

R1003 format-item

R1004r

R1005 data-edit-desc
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[ unit = ] external-file-unit

file = file-name-expr

iostat = scalar-default-int-variable

err = label

exist = scalar-default-logical-variable
opened = scalar-default-logical-variable
number = scalar-default-int-variable
named = scalar-default-logical-variable
name = scalar-default-char-variable
access = scalar-default-char-variable
sequential = scalar-default-char-variable
direct = scalar-default-char-variable
form = scalar-default-char-variable
formatted = scalar-default-char-variable
unformatted = scalar-default-char-variable
recl = scalar-default-int-variable

nextrec = scalar-default-int-variable
blank = scalar-default-char-variable
position = scalar-default-char-variable
action = scalar-default-char-variable
read = scalar-default-char-variable

write = scalar-default-char-variable
readwrite = scalar-default-char-variable
delim = scalar-default-char-variable
pad = scalar-default-char-variable

format format-specification
([ format-item-list] )

[ r] data-edit-desc
control-edit-desc
char-string-edit-desc
[ r]( format-item-list)

int-literal-constant

lw[.m]
Bw[.m]
oOwl[.m]
Zw[.m]
Fw.d
Ew.d[Ee]
ENw.d[E €]
ESw.d[Ee]
Gw.d[Ee]
Lw

Alw]
Dw.d
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R1006w is
R1007m is
R1008d is
R1009e is
R1010 control-edit-desc is
or
or
or
or
or
R1011k is
R1012 position-edit-desc is
or
or
or
R1013n is
R1014 sign-edit-desc is
or
or
R1015 blank-interp-edit-desc is
or
R1016 char-string-edit-desc is
or
R1017¢ is

program units (R1101-1112)

R1101 main-program is
R1102program-stmt is
R1103 end-program-stmt is
R1104 module is
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int-literal-constant
int-literal-constant
int-literal-constant
int-literal-constant

position-edit-desc

[rl/

sign-edit-desc
kP
blank-interp-edit-desc

signed-int-literal-constant

Tn
TL n
TR n
nX

int-literal-constant

S
SP
SS

BN
Bz

char-literal-constant
c H rep-char [ rep-char] ...

int-literal-constant

[ program-stmt

[ specification-part]

[ execution-part

[ internal-subprogram-part |
end-program-stmt

program program-name

end [ program [ program-name] ]
module-stmt

[ specification-part]

[ module-subprogram-part |
end-module-stmt
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R1105 module-stmt is
R1106 end-module-stmt is
R1107 use-stmt is

or
R1108rename is
R1109o0nly is

or
R1110block-data is
R1111 block-data-stmt is
R1112 end-block-data-stmt is

procedures (R1201-1226)

R1201 interface-block is
R1202 interface-stmt is
R1203 end-interface-stmt is
R1204 interface-body is

or

R1205 module-procedure-stmt is

R1206 generic-spec is
or
or

R1207 external-stmt is

R1208intrinsic-stmt is

R1209 function-reference is

R1210call-stmt is

R1211 actual-arg-spec is
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module module-name
end [ module [ module-name]]

use module-name [, rename-list]
use module-name , only : [ only-list]

local-name => use-name

access-id
[ local-name =>] use-name

block-data-stmt
[ specification-part]
end-block-data-stmt

block data [ block-data-name ]

end [ block data [ block-data-name]]

interface-stmt

[ interface-body ] ...

[ module-procedure-stmt] ...
end-interface-stmt

interface [ generic-spec]
end interface
function-stmt

[ specification-part]

end-function-stmt
subroutine-stmt

[ specification-part ]
end-subroutine-stmt
module procedure procedure-name-list

generic-name
operator ( defined-operator)
assignment (=)

external [ :: ] external-name-list
intrinsic [ :: ] intrinsic-procedure-name-list

function-name ( [ actual-arg-spec-list])

call subroutine-name [ ( [ actual-arg-spec-list]) ]

[ keyword =] actual-arg
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R1212 keyword

R1213actual-arg

R1214alt-return-spec

R1215 function-subprogram

R1216 function-stmt

R1217 prefix

R1218 end-function-stmt

R1219subroutine-subprogram

R1220 subroutine-stmt

R1221 dummy-arg

R1222 end-subroutine-stmt
R1223entry-stmt

R1224 return-stmt

R1225 contains-stmt

R1226 stmt-function-stmt
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dummy-arg-name

expr
variable
procedure-name
alt-return-spec

* label
function-stmt

[ specification-part]
[ execution-part]

[ internal-subprogram-part |
end-function-stmt

[ prefix] function function-name ([ dummy-arg-name-list]) #
[ result ( result-name) ]

type-spec [ recursive ]
recursive [ type-spec]

end [ function [ function-name]]
subroutine-stmt

[ specification-part]

[ execution-part |

[ internal-subprogram-part |
end-subroutine-stmt

[ recursive ] subroutine subroutine-name [ ([ dummy-arg-list])]

dummy-arg-name

*

end [ subroutine [ subroutine-name]]

entry entry-name [ ([ dummy-arg-list]) [result ( result-name)]]
return [ scalar-int-expr]

contains

function-name ( [ dummy-arg-name-list] ) = scalar-expr

O 0 0 0 0 0 O O 0
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12 A Fortran 90 Implementation

This chapter describes vendor-specific features of the Absoft Pro Fortran™ implementa-
tion of Fortran 90, including implementation-dependent values (kind values, I/O error val-
ues, etc.), language extensions, compiler directives, and command-line compiler options.
The implementation-dependent values will vary, but many of these extensions, directives,
and command-line options are typical of many commercial implementations.

implementation-dependent walues

kind values for all intrinsic data types

kind type parameters for| value example kind constant declarationd

default integer 4 | integer, parameter :: DEFAULT=kind(1)
short (2-byte) integer

2 integer, parameter :: SHORT=2

1 integer, parameter :: ONE_BYTE=1

4| integer, parameter :: SINGLE=kind(1E1
8

shorter (1-byte) integer

default real (and complex)

double real (and complex) integer, parameter :: DOUBLE=kind(1D1)
default logical 4 | integer, parameter :: LOG_KIND=kind(.trye.)
2-byte logical 2 | integer, parameter :: TWO_BYTE=2

1-byte logical 1 | integer, parameter :: BYTE=1

default character 1| integer, parameter :: CHAR_KIND=kind(| ")

a. Only four of these constants are really needed, one for each kind value.

jostat= variable values for EOF and EOR

iostat value I/0 condition
-1 end of file (triggers end=, if present)
-2 end of record, in nonadvancing read (triggers €or=)

iostat= variable values for various i/o error conditions (trigger err=, if present)

value error condition value error condition
2| no such file or directory 10026 block= valid only for unformatted sequential files
3| resource not found 10027 unable to truncate after rewind, backspace, or endfile
5| physical I/O error 10028 formatted I/O attempted on entire structure
6| no such device or address 10029 negative unit specifiers are not permitted
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le

value error condition value error condition
7| insufficient space for return argument 10p30 open specifiers do not match currently open fi
9| bad file number 10031 cannot implicitly open for direct access
12| not enough space 10032 status “new” specified for existing file
13| permission denied 10083 command not allowed for unit type
17| file exists 10034 MRWE is required for that feature
19| no such device 10085 bad specification for window

20

not a directory

1003

6 endian specifier not “big-endian” or “little_endial

ncing 1/0

21| is a directory 10037 cannot endian-convert entire structures

22| invalid parameter 10038 attempt to read past end of record

23| file table overflow; too many files open 10039 attempt to read past end of record in nonadval
24| too many files open 10040 illegal specifier for advance=

28| no space left on device; volume full 10041 illegal specifier for delim=

29| illegal seek 10042 illegal specifier for pad=

30| read-only file system access 10043 size= specified with advance="yes"

31

too many links; can't delete an open file

10

044 eor= specified with advance="yes"

10000

file not open for read

100}

45 cannot deallocate disassociated or unallocated

object

10001

file not open for write

1004

16 cannot deallocate a portion of an original allocg

tion

10002

file not found

1004

7 an allocatable array has already been allocated

10003

record length negative or zero

10

048 internal or unknown runtime library error

10004

buffer allocation failed

1004

19 unknown data type passed to runtime library

10005

bad io-list specifier

100

b0 illegal dim argument to an array intrinsic

100086

error in format string

100

bl source argument to reshape smaller than shap

e array

ed array

10007 illegal repeat count 100p2 shape array for reshape contains a negative value
10008 Hollerith count exceeds remaining format string 10053 cannot inquire about unallocated/disassociat]
10009 format string missing opening ( 10054 the ncopies to repeat is negative

10010 format string has unmatched parentheses 10055 the s argument to nearest is negative

10011 format string has unmatched quotes 10056 the order argument to reshape is illegal

10012 nonrepeatable format descriptor 10057 result of transfer with no size is smaller than 5

ource

10013

attempt to read past end of file

10

058 shape array for reshape is zero size

10014

bad file specification

100

B9 vector argument to unpack contains insufficien

values

length
e

i length
ngth

input
t group

allocated

10015 format group table overflow 10060 attempt to write a record longer than specified
10016 illegal character in numeric input 10061 advance= specified for direct or unformatted fi
10017 no record specified for direct access 10062 namelist name is longer than specified recor
10018 maximum record number exceeded 10063 namelist variable name exceeds maximum lg
10019 illegal file type for namelist I/O 10064 pad= specified for unformatted file

10020 illegal input for namelist 1/0 10065 namelist input contains multiple strided arrays
10021 variable not present in current namelist 10066 expected & or $ as first character in namelist|
10022 variable type or size does not match edit descriptor 10067 namelist group does not match current inpul
10023 illegal direct access record number 10068 pointer or allocatable array not associated or
10024 illegal use of internal file 10069 namelist input contains negative array stride
10025 recl= valid only for direct access files
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language extensions

dec-style structures\ structure typds a data type extension that is similar to a sequence
derived type, but components of objects of structure types are guaranteed to be physically
stored in the order defined. Note that the terms “structure” and “structured object” refer to
an object of derived-type; the terms “structure type” and “structure definition” will be
used to refer to this extended type, and the terms “record” and “record object” will refer to
objects of this extended type. A structure definition has the form:

structure [/ structure-name | ] [record-list ]
abx-component-def

[ abx-component-def ...

end structure

An abx-component-def is an Fortran 90 component-def-stiRi4@6), a structure definition
(structure definitions can contain structure definitions), a record statement, a union defini-
tion, or a%fil component. The structure hame can be omitted in a structure definition if
and only if that structure definition is an abx-component-def and has a record list. A struc-
ture-type name can be used in any context legal for a sequence derived-type name.

A %fill component is a component-def-stmt with a component namellgfsuch a com-
ponent, which cannot be referenced, serves to “pad” the storage sequence the specified
amount in order to achieve the desired alignment of the other components. For example,

structure /my_struct/
integer(1) :: first_byte
integer(1) :: %fill
integer(2) :: align_second_16
end structure

explicitly puts a padding byte betwefst_byte andalign_second_16 .

A record is a scalar or array variable having the specified structure type; if it is an array, it
may be dimensioned either in the record list or in a dimension statement. A record vari-
able may be declared in the structure definition itself or in a separate record statement,
specifying the structured-type name (or a sequence derived-type name):

record / structure-name | record-list [ , | structure-name | record-list]...

A uniondefines a data area which is shared by two or more grodiggdsfand has form

union

map-definition

map-definition I note that a union must contain at least two map definitions
[ map-definition ]...

end union

where amap-definition is

map
field-declaration

[ field-declaration]...
end map
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A field-declaration is a derived-type component declaration, a structure definition, a record
statement, or a union. A map definition defines a storage sequence and the map definitions
in a given union definition are storage associated. The storage size of a union is the size of
its largest map definition. The principal uses of unions are as components in structure def-
initions and as map fields, but unions may also be used as components in sequence
derived-type definitions. An object containing a union must not appear in an /O list, and
the name of a derived type containing a union must not be used as the name of a structure
constructor.

Individual structure type components may be referenced with the % component selection
operator, just as in derived type objects; in addition the dot (decimal point) may be used
instead of the % (for both structure types and derived types), but in this case the compo-
nent names must not be the same as the names of the intrinsic dot operators or any user-
defined dot operators. For example, given the declarations

type h; sequence; integer t; end type

structure /x/ g; type(h) :: gt; end structure

g%gtet lis a legal reference

g.gt.t lis not a legal reference, but would be if "gt" were spelled, say, "tg" instead

A principal rationale for structures and unions is to improve Fortran’s interoperability
with C - structures are equivalent to C structs and unions are equivalent to C unions.

O 0 0 0 0 0 O O 0

cray-style pointersAnother important, and widely-implemented, aid to interoperability is

a pointer data typehaving address values. Note that standard Fortran 90 pointers are
attributes, not data types; objects may have the pointer attribute but are not considered to
be pointer objects - the term “pointer object” applies to objects of this extended pointer
type. Declarations of such pointer objects have the form:

pointer ( pointer-name , target) [, ( pointer-name , target) ]...

where pointer-name is the name of the pointer variable being declaredtapet may be

any Fortran object, including a structure component, or an external function name. When
such a pointer is used as a dummy argument, the intent attribute applies to the pointer
value, not the value of the pointed-to object (if any).

The intrinsic functiongoc andpointer are added (see below), each of which returns the
address (pointer value) of its argument.

An example serves to illustrate the use of this pointer type; note that strict type-checking
of pointer arguments may be relaxed in “unambiguous” cases:
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module Mytypes
type Rect; sequence
integer(2) :: top
end type
type Picture; sequence
integer(2) :: picSize
end type
end module

module Mod
interface
subroutine drawPicture(h_myPicture, dstRect)
use mytypes
type(Picture) :: myPicture

pointer(p_myPicture, myPicture) ! pointer to a derived-type object
pointer(h_myPicture, p_myPicture) ! pointer to a pointer
value :: h_myPicture ! pass the pointer by value

type(Rect) :: dstRect
end subroutine
end interface
end module

subroutine foobar

use Mod

type(Rect) :: dstRect

pointer (p,i)

call drawPicture(p,dstRect) !legal - “p” is a pointer

call drawPicture(loc(j),dstRect) ! legal - type of "loc” is pointer

call drawPicture(708089,dstRect) ! error - an integer constant is not a pointer
end I (but may compile with a warning)

Pointer type matching is utilized, however, when resolving references to generic inter-
faces; for example:

interface bogus
subroutine point_bogus(p)
pointer (p,i)
end subroutine
subroutine real_bogus(z)
real z
end subroutine
subroutine int_bogus(i)
integer i
end subroutine
end interface

call bogus(0) ! reference to int_bogus
call bogus(loc(z)) ! reference to point_bogus
call bogus(1.0) ! reference to real_bogus

end
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Record statements in a structure definition may specify targets of the type of the structure
being defined. For example, the following is legal:

structure /outer/
record /outer/ pointee
pointer (next, pointee)

end structure

! but this is illegal:

! structure /outer/
! structure /outer/ pointee
|

! end structure

All of the records of such record statements (that specify the name of the structure being
defined) must appear as targets in pointer declarations in that structure, and forward refer-
ences to subsequent structure definitions are illegal. For example:

structure /outer/
structure /inone/
structure /intwo/
record /outer/ junk
pointer (p_outer, junk)
end structure
record /spaced/ nogood
end structure
record /outer/ circle
end structure
structure /spaced/
integer out
end structure

! legal reference because of...
! ...this pointer declaration

lillegal forward reference

lillegal - “circle” is not a pointer target

O 0 0 0 0 0 O O 0

Attribute ExtensionsSeveral attributes are added to the standard set of attributes:

attribute

effect

automatic | variable s are allocated on the stack; incompatible with static, save, and common

static equivalent to save, but statement form must have an object list

value applies to dummy arguments - specifies pass-by-value

volatile assignments and references occur, even if optimizations have eliminated these ohjects
stdcall standard calling sequence specified for procedures with this aftribute

dil_import | tags a procedure name as coming from a DLL

dil_export | tags a procedure name as an entry to be exported to a DLL

a. The stdcall attribute keyword can, alternatively, be specified on the function or subroutine
statement, in the same manner as the recursive keyword; stdcall and recursive are mutually
exclusive - either one or the other, or neither, appears. If stdcall appears on a subroutine statement,
the parentheses for the optional dummy argument list must also appear (otherwise the statement
looks like, and is interpreted as, a stdcall attribute statement rather than a subroutine statement).
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These attributes can be specified either in type declarations statements, in the normal way,
or in attribute statements, with syntax similar to that for the standard attributes:

automatic [[:: ] sym-name-list]

static [ :: ] sym-name-list

value [ :: ] sym-name-list

volatile [[:: ] sym-common-name-list]
stdcall [:: ] procedure-name-list
dil_import [:: ] procedure-name-list
dil_export [:: ] procedure-name-list

The name list is not required for thetomatic andvolatile statements, and if omitted that
attribute is applied to all of the local objects in the scopsynfname is an object name
and ansym-common-name in thevolatile Statement can be either an object namecat-
mon-name /. Thestdcall attribute can be specified only for external procedure names.

Module objects are inherently static/save, amdmatic (or the stack directive) cannot be
specified within the scope of a module. Othervédsematic andstatic take precedence

over save without a sym-name-list, the stack directive, anghtreommand-line option.
(Automatic is the same as the stack directive, and the -ev option is the same as save with-
out a sym-name-list.)

Thevalue attribute is incompatible (must not be used) with these other attributes: external,
intent, intrinsic, optional, parameter, pointer, private, public, save and stdcall. If the inter-
face of a procedure having a value dummy argument is explicit, all associated actual argu-
ments will be passed by value.

Thestdcall attribute is incompatible with these other attributes: allocatable, intent, param-
eter, pointer, target, save, and value. Stdcall functions cannot be: assumed-length (len=%*),
variable length (len=n) character functions, array-valued functions, derived-type func-
tions, or storage associated in any way. dtheall attribute can be appliezhly to exter-

nal procedure names, but not to: a function name specifieeténiaclause, a procedure
name specified by asntry statement, or a generic hame specified in an interface block.
Becausestdcall applies only to external functions, it is incompatible with: data initializa-
tion, namelist, statement functions, labels, block data, dll_import, and dll_export.

Stdcall is a platform-dependent extension specifically provided for direct communication
with the Windows Win32™ API; dll_import and dll_export are intended to interface with
DLLs that are not part of the Windows API. See also the compiler options -YIL, -
YDLL_STDCALL, and -YDDL_NAMES for compiler settings regarding these attributes.

O 0 0 0 0 0 O O 0
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Intrinsic procedure Extensions.

function purpose pa | gb
acosd, dacosd °© X X
asind, dasind © X X
atand, datand © X X
atand, datan2d © x| X
bit_size( ref) returns the number of bits in the argument - see below
bitest, bjtest specifics for generic btést X | X
carg( expr) same as %val except for character argunfeatsual argument only
cdabs, i2abs, iiabs, jiabs specifics for generic abs
clock equivalent to date_and_time
cosd, dcosd °© X X
cotan, dcotan °© x| X
cpu_time( [time=] real-variable) subroutine; returns the processor time in seconds, as the argument valug
date, jdate equivalent to date_and_time
eof([unit=] int-expr) returns .true. if unit is connected and of file; .false. otherwise
floati, floatj, dfloti, dflotj specifics for generic float X X
i2dim, iidim, jidim specifics for generic dim X X
i2max0, imax0, jmax0, imax1, jmax1, aimax0, ajmax0; purpose: specifics for generic max
i2min0, imin0, jmin0, iminl, jminl, aimin0, ajminO; purpose: specifics for generic max
i2mod, imod, jmod specifics for generic mod X|
i2nint, inint, jnint, iidnnt, jidnnt specifics for generic nint X X
i2sign,iisign, jisign specifics for generic sign X|
ibchng( [inta=] int-expr, [intb=] int-expr) | returns value of inta with bit intb reversed
iiand, jiand specifics for generic iafd X | X
iibclr, jibelr specifics for generic ib¢l X | X
iibits, jibits specifics for generic ibits X | X
iibset, jibset specifics for generic ibsbt X | X
iieor, jieor specifics for generic ie®r X | X
iior, jior specifics for generic ifr X X
iishft, jishft specifics for generic st X | X
iishftc, jishftc specifics for generic ishffc X | X
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function purpose pa | gP

imag( [z=] complex-expr) same as aimag; may be passed for default kind argument X
inot, jnot specifics for generic nbt X | X
int2, int4, iifix, iint, jint, iidint, jidint, iifix, jifix purpose: specifics for generic int
irtc, rtc equivalent to system_clock
isha([inta=] int-expr, [intb=1] int-expr) shift inta the amount specified by intb (positive intb shifts left)
ishc( [inta=] int-expr, [intb=1] int-expr) same as isha, but circular shift
ishl( [inta=] int-expr, [intb=1 int-expr) same as isha, but logical shift
izext, izext2, jzext, jzext2, jzext4 specifics for generic zext X
loc, log10 extended so that can be passed X X
Ishift( [i=] int-expr, [shift=] int-expr) same as ishft(i,shift), assuming shift is positive
pointer( ref) returns address o&f as a default integer value; otherwise same as |oc
rshift( [inta=] int-expr, [intb=1] int-expr) | same as ishft(i,-shift), assuming shift is positive
secnds( [x=] real-variable) subroutine; returns the seconds since midnight, as the argument value
sind, dsind © X X
tand, dtand ©
zext(int-expr) returns the integer argument with no sign extension
%loc( expr) the address of ref is passed; applies only to actual arguments
Y%val( expr) expris passed by-values; applies only to actual arguments

a. can be used as an actual argument - i.e., can be passed

b. function is elemental

c. for these functions the angle is in degrees rather than radians

d. the generic function may be passed

e. %val(%loc(char-expr // 0)) for character arguments (i.e., address of null-terminated string)

f. error if the unit is not currently connected

The bit_size function is extended from the standard version, which allows only integer
objects as actual arguments; the extended version allows derived-type and structure-type
nameg(not objects) as actual arguments as well. In the case of derived-type and structure-

type names, the result is the number of bitsabjgctof that type will occupy in memory

at runtime. For example:

type point
integer(kind=2) :: X, y, z

integer(kind=1) :: alpha, r, g, b

end type

print *, bit_size(Point)

! will output 80 on a Macintosh

O 0 0 0 0 0 O O 0
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Miscellaneous Extensions.

new open statement specifiers (last two are for the inquire statemi@n

specifier effect
form="binary" can be used only with sequential unformatted files - for stream 1/O
action= { "publish" |'subscribe" } for MacOS/IMRWE™
access="window [*]" for MacOS/MRWE™, the asterisk may be any string, checked at ruptime
access="transparent" same asorm="binary", blocksize= default-integer-expr
blocksize= default-integer-expr in bytes

carriagecontrol= {"Fortran" |'list" }

filetype= character-expr

creator= character—expr

convert= { "big_endian" |'little_endian" }

access= character-variable "transparent" is a valid return value in thequire statement

flen= default-integer-variable returns file length, in bytes, or zero if file is empty or nonexistent

L A VR VY

If a character constant is appended wity as in"now is the time"C , then (a) a backslash
character\J in the string is interpreted as an “escape character” that converts the subse-
quent character(s) in accordance with the following table and (b) appaot<iaracter

(ascii 0) to the end of the string. The intent is to simulate C-style strings.

\a audible alarm (BEL, ascii 07) \t horizontal tab (HT, ascii 09)
\b backspace (BS, ascii 08) \v vertical tab (VT, ascii 11)

\f form feed (FF, ascii 12) \xh[h] | hexadecimal digit(s), up to 2
\n newline (LF, ascii 10) \oo[o[o]] | octal digit(s), up to 3

\r carriage return (CR, ascii 13) \\ backslash

Any such escape sequence, including the backslash character, is replaced with the indi-
cated character. If a backslash precedes any other character it is ignored (and removed).
The-vycsLASH command-line compiler option allows these escape sequences to be used
in any character constant (i.e., not just C-strings).

Subsequent use of the intrinsic with a C-string value reflects the addition of the null;
for examplejen(‘nowttis\nthelttime"C)  has the value 16. Octal and hex values must fall in
the 0-255 (decimal) rangec is illegal, C-strings may not appear in format statements,
and the character constant must be default kind.
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Expressions of type integer or pointer may be used as logical expressions in if statements
and constructs. The forin( expr) in such a context has the meaniig expn/=0), where
expr is the integer or pointer expression.

Such expressions also can be used in logical assignment statevgeatsariable = expr,
with the (same) effeclogical-variable = (expn/=0.

O 0 0 0 0 0 0 0 90
The keywordecursive may be omitted from a directly recursive procedure definition.
O 0 0 0 0 0 0 0 0

The = initialization-expr in a declaration statement may be replaced daya-stmt-value I if
(and only if) that declaration statement does not contain separator.

A R A A

Thebyte type specifier is added and can be used anywheladfie type specifier can be
used; it cannot have a kind value, and is equivalent to integer(1).

A R A

Tabs in columns 1-5 in fixed-form source are interpreted as follows:
- if the next character is'athe line is a comment line,
- else if the next character is a nonzero digit (1-9) it is a continuation character,
- else the next character is the start of a statement.
If the f alt_fixed compiler option is in effect, the interpretation is a bit different:
- if the next character is a letter (a-z or A-Z) it is the start of a statement,
- else the next character is in column 6, with the normal fixed-form interpretation.

L R A A

For Absoft compilers running on systems other than Apple MacOS™, symbol names may
start with a leading dollar sigs)( for examplesubroutine $foo(); end

Implicit typing of $ is default real, and in the implicit statements ordered after; e.g.:

implicit integer (a-$) makes everything in the program type default integer, including, for
example gfoobar . (But note that names with leading dollar signs may not be the names of
variables associated with a namelist group.)

O 0 0 0 0 0 0 0 0
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compiler directives

Compiler directives are placed on (separate) lines in the Fortran source code and provide
the compiler with additional information over that in the Fortran code itself. Directive
lines are identified by an initial tokenir$ , not shown in the following table, and appear

as comment lines. In fixed-form sourceir$ also identifies a directive line, if tr@is in

column 1. All directives, including the directive-identifying token, are case insensitive,
andms$ anddec$ are acceptable alternativesdies in all cases; in addition, if (and only

if) the -Yms7D compiler option is specified, the initial token may be sintply the first

column for thefree[form], fixed [formlinesize ], nofreeform , andpack directives, but this

form (¢ in column 1) should be considered deprecated.

directive effect

attributes  attr-list :: sym-list the possiblattr values are:
alias, C, reference, stdcall, value, varying,

free[form] from this point on, source is free-form
nofreeform from this point on, source is fixed-form
fixed same as nofreeform

fixedformlinesize: {72|80]|132} | line length for fixed-form source

name (name="external-name") | mapping between internal (Fortran) names and external (e.g., C)ames

pack[on] [ = {1|2]4]mac68K} ] pack[on] and packoff specify that sequenced structure fields be aligned on byte,

packoff even byte, or word (four-byte) bounddtiedefault value is 1 (byte)

stack local scalar objects are allocated on the processor stack

a. The name directive can be applied to external procedure definitions as well as to external procedure names
(to put Fortran procedures into other language hamespaces)..

b. The mac68k packing is for 68K-Pascal structures, which is character, integer(1), and logical(1) aligned on
byte boundaries; all other objects aligned on even-byte boundaries.

The packing directives affect the current program unit being compiled (if there is one), or
the next program unit (when there is no current program unit). The packing directive is
reset to the default (packoff) after the end of each program unit. A packing directive
affects only derived-types found below the directive in the source code.

The alignment of any derived-type object (i.e. not its components) is dependent on the

highest alignment bound of any component. This holds true for packed structs, unions,

and maps. A union embedded in a derived type will start on a boundary based on the most
restrictive member of the union (i.e. padding may be inserted before the base of a union
and all maps will start at the padded boundary).

A component with the pointer attribute has an alignment which is the same as the align-
ment the most restrictive of either a natural-word-sized integer or a machine address on
the target machine, regardless of the object type. For examplge ifvo; character,

pointer :: p_c; end type  foo has a 32-bit alignment on Pentium™ Pro and PowerPC™ 601.
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command-line compiler options

Compiler options are placed on the command line, following the command sajne (

option

effect

-C [<name>]

compile to relocatable object code

-d {aljIn|plalv|B|R}

disable options (multiple options can be specified at 8nce)

-e {aljInlp|alvIBIR}

enable options (multiple options can be specified at once); same note as for -d

-f <form>

source code formagform> can be eithefree, fixed, oralt_fixed

-9

produce debugging information for use with the debugger

-| <search-path>

identify search path for include files; multiple search paths require multiple -1 options

-0 <name> specify compiler output file name

-0 optimize the program for faster execution speed

-p <file> specify module files and/or directories

-S allocate user declared local variables with save (static) attribute

-v verbose compilation - echo all process commands used to create the output file(s)

-V output version number; can be used without file(s) or other options, for example: f90 -V
-wW suppress all warnings

-W <line-length>

line length for fixed form source; must be from the set {72,80,132}

-x <directive>

disable specified source code directive; possible valudeeargixed , integer , name, stack

-YCHARV=ICHAR

%val(char-entity) is passed as: %val(ichar(char-entity(1:1)));
default is to pass it as %val(%loc(char-entity))

-YCOM_NAMES= {UCS|LCS}

specifies uppercase or lowercase for external common-block names; default is|

UcCs

-YCOM_PFX [=prefix-string]

specifies prefix (including null) for external common-block names; default is _C

-YCOM_SFX [=suffix-string]

specifies suffix (including null) for external common-block names; default is nu

-YCSLASH={0|1}

if 1, any character constant can contain C-string backslash escapes sequences; default is G

-YEXT_NAMES={ASIS|UCS|LCS}

specifies the case of external procedure names; default is UCS

-YEXT_PFX [=prefix-string]

specifies prefix (including null) for external representation of procedure na|

mes

-YEXT_SFX [=suffix-string]

specifies suffix (including null) for external representation of procedure naf

nes

-YMS7D

recognize Microsoft form of source code directive, which<directive> with the$ in column 1

-YNDFP=1

disallow use of period for component selection; default is that period can be used in ptace o

-YPEI={0]1}

1 (the default) makes the pointer type equivalent to integer; O turns this off
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option effect
J e MacOS/MPW™-specific options ---------------- \/

-launch launch application after successful compilation
-link <arg> pass<arg> directly to linker
-mrwe make an MRWE™ application (the default)
-N9 forces generated code to make very frequent checks for command period
-plainappl make a plain application (i.e. don't link MRWE™)
-ppc target the PowerPC™ architecture (the default)
-share use shared versions of intrinsic libraries and I/O libraries; default is to use static linkage
-tool make an MPW™ tool
-z <msg-level> suppress output message by level control (errors, warnings, cautions, notes, cdmments)
-Z <msg-number-list> | suppress the output of the specified messages (useful for turning off long warning lists)

V-mmmmmme e Windows™/PC-specific options ---------------- \
-YDLL_NAMES={ASIS|UCS|LCS} default treatment of dil_import/dll_export names (see also -YIL=)
-YDLL_STDCALL={0|1} 0 means callee does not pop the argument frame; 1 means the frame is popped
-YIL={AC90,ACC,AC77,MSVC,MSVB,BC,BD,WINAPI } for dll_import/dll_export; see below

e Unix™-specific options ---------------- \"
-I <library> specify library names to linker
-L <path> search path for library names
-m <msg-level> same as -z <msg-level> in the Mac-specific options
-M<msg-number-list> | same as -Z <msg-number-list> in the Mac-specific options
-r leave relocation information in file
-S produce an assembly source listing
-u <sym> force load of specified library name
-YCFRL={0|1} location of character length in argument list; 0 (default) at end of list, 1 after character value|

a. The meanings of the -e and -d options are:

a - if enabled compilation will halt after one error is encountered

j - if enabled cause loops to execute at least once

n - ANSI warnings generated for nonstandard code

p - if disabled then aHouble precision is internally treated as real with default kind

q - if disabled the compiler will continue parsing code after 100 errors

(the default is to stop compilation when the error count reaches 100)

v - specifysave for all local objects in all program units

R - give all functions and subroutines theursive attribute

B - disable to run front end only, to check for errors (no object code written)
b. The possible values in the -m<msg-level> and -z<msg-level> options are:

0 - compiler issues errors, warnings, cautions, notes, and comments

1 - compiler issues errors, warnings, cautions, and notes

2 - compiler issues errors, warnings, and cautions

3 - compiler issues errors and warnings

4 - compiler issues errors

The default value is 3.
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The -YIL= Windows option controls the calling mechanism and name mangling used in
the machine code when creating LIB and DLL files. The following table summarizes the

effect of the various -YIL= option values:

value | call mechanism name manglé
AC90P default uppercase
ACC default asis
ACT77 default asis
MSVC stdcall (callee pop) asis & @argsize
MSVB stdcall asis
BC stdcall asis
BD stdcall asis
WINAPI stdcall asis & @argsize

a. !'dir$ name directive takes precedence
b. AC90 is the default, if the -YIL= option not present

O 0 0 0 0 0 0 0 0

Trademark acknowledgments:

Pro Fortran™ is a trademark of Absoft Corporation

MacOS™, MRWE™, and MPW™ are trademarks of Apple Computer
CF90™ is a trademark of Cray Research

VAXIVMS™ are trademarks of Digital Equipment

PowerPC™ js a trademark of IBM Corp used under license

Pentium™ is a trademark of Intel Corporation

Windows™ and Win32™ are trademarks of Microsoft Corporation

Unix™ is a trademark of Santa Cruz Organization

O 0 0 0 0 0 O O 0
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Absoft, miscellaneous extensions 140
allocatable array 33
argument association 77, 79

actual argument 79

argument intent 81

argument keyword 79, 81

array element order 80

array element sequence association 79
assumed-length dummy argument 79
assumed-shape dummy argument 79
assumed-size dummy argument 79
dummy argument 79

dummy procedure 81

explicit-shape dummy argument 79
for derived types 80

for equivalent types 80

preventing nondeterminism 80
type/kind match 79

array 25

allocatable arrays 33

allocation status 33

array-valued expressions 25
array-valued functions 26, 35
assignment 25, 27

assumed size (deprecated) 45
assumed-shape dummy arguments 30
automatic arrays 33

broadcast, of scalars 26

computation functions 87
conformable, conformability 25, 26
constant 27

constructor 25

constructors 27

dimensions 11

element 30

element order 80
element-by-element operations 25, 26
example, Gauss elimination 37
example, picture refinement 36
implied-do, in constructors 27

inquiry functions 25, 85

lower bound 11

mask 28

masked array assignment (where) 28
pointer arrays 33, 34

rank 26

reduction operations 25
reshape, of a constructor 28
scalar subscript 31

section 30

shape 25

subscript 31

triplet subscript 31

upper bound 11

vector subscript 31, 32
whole array operations 25

assignment

array 27

character 15

masked array 28

numeric 14
assignment statement 4
assumed-shape dummy arguments 30
attribute extensions 136
attribute statements 3, 41

attributes
allocatable 12, 33
compatiblity between 12
dimension 12
external 12
intent 12
intrinsic 12
of data objects 12
optional 12
parameter 12, 13, 27
pointer 12, 34
private 12
public 12
save 12, 13, 33
target 12, 34

bit
computation functions 87
intrinsic functions 6
pseudo data type 6
role of logical 9

block data 2, 40, 43

BNF, syntax rules 1

character data type 9
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assignment 15
computation functions 86
computations 15
concatenation 15
constant 9
expression 15
intrinsic functions 10
kind 9
length 9
operator 9
strings 9
substring 15
character storage unit 23, 40
comment initiation 4, 45
common blocks 39
common, blank 40
common, named 40
compilation unit 2
compiler directives, Absoft 142
compiler options, Absoft 143
complex data type 8
comparison of values 8
constant 8
imaginary part 8
kind 8
numeric computation functions 86
operators 8
real part 8
components, of derived data types 17
computation
character 15
complex 8
integer 6
logical 9
real 7
concatenation, character 15

constant
array 27
character 9
complex 8
double precision 8
integer 5
logical 8
named 13
real 7
constraints, on syntax 1
constructs
case (select) 63, 64
case default 65
do - end do, with labels 65
do - end do, without labels 65
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do construct, original (no end do) 65
if (and else if, else, end if) 63
indexed loops 65

logical expressions in 63

loop cycling 67

loop exits 67

loops with exit 65

select (case) 63, 64

where 29

while loops 65

control edit descriptors 52

D
data edit descriptors 51
data type
character 9
complex 8
double precision 8
integer 5
logical 8
real 7
declaration 10
data type 10
implicit 16
defined assignment 83
defined operator 22, 75, 82
delimiters, of syntax elements 4
deprecated features 43
alternate return 44
arithmetic if 44
assign and assigned goto 44
assumed-size arrays 45
branch to end if (from outside) 43
character(*) function results 45
character* type specifier 45
computed goto 44
data statements in the execution part 45
do control variables of type real 43
double precision type 10
fixed source form 45
H edit descriptor 44
shared do termination 44
statement functions 44
the pause statement 44

derived data type
sequenced structure 40

derived data types 17
component 17
component definition 17
component selection 18, 19
constant 19
data abstraction, used for 18
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defined operators for 22
definition 17

equivalent types 23
input, output 21
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H
host association 77

I
object-oriented programming, aspects of }8gg floating point 7

operators, expressions 21
pointer component 17
private types 22
record structure 18
sequence type 23
character 23
numeric 23

structure constructor 20
structured objects 18
type specifier 18

do construct (see constructs) 65

double precision data type 8
constant 8
kind 8
numeric computation functions 86
type deprecated 10

dynamic arrays 33
dynamic structures 17

E

elemental procedure (see procedures) 84

end-of-line comments 2
environmental intrinsic functions 7
equivalence 40

example style 1

execution part, of a program unit 4
explicit procedure interface 30, 75

expression 4
character 15
evaluation order 6
logical 63

external procedure (see procedures) 75
external subprogram 2, 3

F

file, for data (see input/output) 56
file, for program compilation 2
fixed-form source 45

free-form source 2

function (see procedures) 75

G
generic procedure (see procedures) 83
global entities 3, 39

imaginary part, of a complex value 8
implicit

declaration 16

none 16

statement 16

type environment 3, 16

typing 16
implicit procedure interface 75
include line 3
initial value specification 11
initialization expression 11
input/output

control edit descriptors 50, 52

data edit descriptors 50, 51

data input 47

data output 47

direct (random) files 54, 56

end of file (EOF) 48

end of record (EOR) 47

end= and eor= 58

end=and err= 48

end-of-record (EOR) 58

file (unit) connection - open 48, 53

file (unit) disconnection - close 54

file (unit) reconnection 54

file close 53

file connection properties 53

file inquiry 55

file inquiry options 55

file open 53

file position 56

format 47, 50

format specification 50

input control specifiers 47

input list 47

internal files (data conversion) 58

io-control-list 50

keyboard input 48

list-directed 48

list-directed 1/0 60

name-directed (namelist) 61

namelist 61

namelist group name 61

nonadvancing 47

partial-record (nonadvancing) 47

partial-record (nonadvancing) 1/0 57

random (direct) files 54, 56
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records 47
repeat factor, for edit descriptors 52
repeat factor, for input values 60
scratch files 54
sequential files 54, 56
status variable (iostat=) 47
unformatted 48, 50
unit 47, 53
value separators 60
int 8
integer
operators 6
integer data type 5
constant 5
expressions 6
kind 5
numeric computation functions 86
integer division 6
intent specifier 42
interface block 75, 82
interfaces, procedure 75
internal procedure (see procedures) 75
intrinsic data types 5
intrinsic functions
abs 91
achar 91
acos 91
adjustl 92
adjustr 92
aimag 92
aint 92
all 92
allocated 33, 92
alphabetical listing 88
anint 92
any 92
array inquiry functions 85
asin 93
associated 34, 93
atan 93
atan2 93
bit computation functions 6, 87
bit_size 93, 139
btest 93
ceiling 94
char 94
character computation functions 10, 86
cmplx 8, 14, 94
conjg 8, 94
conversion functions 85
cos 94
cosh 94
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count 94

cshift 35, 95
date_and_time subroutine 95
dble 95

digits 7, 95

dim 95
dot_product 96
dprod 96

eoshift 96
epsilon 96

exp 96

exponent 96
extensions 138
floor 97

fraction 97

huge 5, 97
iachar 97

iand 97

ibclr 97

ibits 97

ibset 97

ichar 98

ieor 98

index 98

int 8, 14, 98

ior 98

ishft 98

ishftc 99

kind 5, 7, 8, 11, 14, 99
Ibound 99

len 99

len_trim 99

lge 99

Igt 99

lle 100

[t 100

log 100

log10 100

logical 100
matmul 100

max 100
maxexponent 101
maxloc 101
maxval 101
merge 101

min 101
minexponent 101
minloc 102
minval 102
miscellaneous inquiry functions 85
mod 102

modulo 102
mvbits subroutine 102
nearest 102
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nint 102

not 103

numeric computation functions 86
numeric environmental 7
numeric inquiry functions 85
pack 103

precision 103

present 81, 103

product 25, 103

radix 7, 103
random_number subroutine 103
random_seed subroutine 104
range 5, 104

real 8, 14, 104

repeat 104

reshape 11, 27, 28, 104
rrspacing 105

scale 105

scan 105

selected_int_kind 105
selected_real_kind 105
selected-int-kind 5
selected-real-kind 7
set_exponent 105

shape 25, 105

sign 106

sin 106

sinh 106

size 25, 33, 106

spacing 106

spread 38, 106

sqrt 107

sum 107

system_clock subroutine 107
tan 107

tanh 107

tiny 5, 107

transfer 11, 108

transpose 108

trim 108

ubound 108

unpack 108

verify 108

intrinsic procedure 75

intrinsic procedure extensions 138
intrinsic subroutine 85

iostat values for EOF and EOR 131
iostat values for error conditions 131

K

kind 8, 11
specification 10
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type parameter 5
kind values (for Absoft implementation) 131

L
length specification, character 10

logical data type 8
constant 8
default kind 8
expressions 9
operators 9

loop construct (see constructs) 65

M
main program 2, 3, 75
mixed-mode numeric computations 14

module 2, 3, 69
alternative to common blocks 40
applications, data abstraction 73
applications, global entities 71
applications, procedure interfaces 71
applications, procedure libraries 71
applications, user-defined types 72
general structure of 69
module procedures 75
rename of entities 70
use association 77
using a module 69
using selective parts of (use...only) 69

module procedure (see procedures) 75

N

named constants, parameter attribute 13
name-directed 1/O (namelist) 60

numeric storage unit 8, 23, 40

0]
operator precedence 6
output (see input/output) 47

P

parameter attribute, named constants 13
parent string 15

pass by value 137

pointer array 33

pointer data type (Absoft extension) 134

procedures 75
argument association 77, 79
arguments (see argument association) 79
array computation functions 87
array inquiry functions 85
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assignment interface 83

bit computation functions 87

call, call statement 75

character computation functions 86
common association in 77
conversion functions 85

defined assignment 83

defined operator 82

dummy procedure 81

elemental 84

entry statement 84

explicit interface 75

external 75

function 75, 76

function result value 76

generic procedure 83, 84

generic resolution rules 84

host association 77

host association, implicit typing in 78
implicit interface 75

interface 75

interface block 75, 82

internal 75

internal subprogram part 75
intrinsic (see intrinsic functions) 75
intrinsic procedures (listing) 88
intrinsic subroutines 87

invocation 75

miscellaneous inquiry functions 85
module 75

new operators defined by 75
numeric computation functions 86
numeric inquiry functions 85
optional argument 81

recursive 75, 76

statement function 84

subroutine 75

subroutine call 76

use association in 77

program units 2

R
real 8
real data type 7
constant 7
expressions 7
kind 7
numeric computation functions 86
numeric inquiry functions 85
operators 7
real part, of a complex value 8
record structure 17
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recursive dynamic structures 17
recursive procedure 75

relational operation 6

repeat factor, in data statements 42
return statement 84

S
specification expression, in declaring arrays 33
specification part, of a program unit 3
statement

computed goto 44

entry 84

equivalence 40

implicit 16
statement continuation 2, 4, 45
statement function 4
statement label 45
statement separation 2, 4
statements 2

allocatable 42

allocate 33, 34

assign and assigned goto 68

assignment 4

attribute statement extensions 136

backspace 56

call 75, 76

common 39, 40, 43

computed goto 68

continue 68

cycle 67

data 42, 43, 45

deallocate 33

dimension 42, 43

endfile 56

equivalence 43

exit 67

external 42

format 48

go to 63

goto 67

if

arithmetic 44, 68
logical 64

implicit 78

implicit none 78

inquire 55

intent 42

intrinsic 42, 43

namelist 61

open 48, 53

optional 42
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parameter 42, 43

pointer 42, 43

private 42

public 42

read 44, 47

return 84

rewind 56

save 40, 42, 43

statement function 84

stop 68

target 42, 43

use 43, 69

write 47, 49
statements (see also constructs) 4
storage association 39

storage unit
character 23, 40
numeric 8, 23, 40
unspecified 40

structure constructor 20

structure type (Absoft extension) 133
style, in examples 1

subroutine (see procedures) 75
subscript (see array) 31

substring (see character data type) 15

syntax rules 1, 109
control structures (R801-844) 122
data types (R401-435) 113

\Y,
value, pass by 137
variable 4

declarations and attributes (R501-549) 115

expressions (R701-743) 119
general structure (R201-216) 109
I/0 formatting (R1001-1017) 126
input and output (R901-924) 124
procedures (R1201-1226) 128
program units (R1101-1112) 127

tokens (names, operators, etc.) R301-313

112
variables (R601-631) 118

T
type declaration 10
type specifier 10

U

use association 77

user-defined
operators 75
operators for derived types 22
types 17

153
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syntax terms

access-id 116
access-spec 116
access-stmt 116
ac-do-variable 115
ac-implied-do 115
ac-implied-do-control 115
action-stmt 111
action-term-do-construct 123
actual-arg 129
actual-arg-spec 128
ac-value 115

add-op 112, 120
add-operand 120
allocatable-stmt 117
allocate-lower-bound 119
allocate-object 119
allocate-shape-spec 119
allocate-stmt 119
allocate-upper-bound 119
allocation 119
alphanumeric-character 112
alt-return-spec 129
and-op 113, 120
and-operand 120
arithmetic-if-stmt 124
array-constructor 115
array-element 119
array-section 119
array-spec 116
assigned-goto-stmt 124
assignment-stmt 121
assign-stmt 124
assumed-shape-spec 116
assumed-size-spec 116
attr-spec 115
backspace-stmt 125
binary-constant 114
blank-interp-edit-desc 127
block 122

block-data 110, 128
block-data-stmt 128
block-do-construct 123
boz-literal-constant 113
c127

call-stmt 128
case-construct 122
case-expr 122
case-selector 122
case-stmt 122
case-value 122
case-value-range 122
character 112

char-constant 112
char-expr 121
char-initialization-expr 121
char-length 116
char-literal-constant 114
char-selector 116
char-string-edit-desc 127
char-variable 118
close-spec 124

close-stmt 124
common-block-object 118
common-stmt 118
complex-literal-constant 114
component-array-spec 115
component-attr-spec 115
component-decl 115
component-def-stmt 115
computed-goto-stmt 124
concat-op 112, 120
connect-spec 124
constant 112
constant-subobject 120
contains-stmt 129
continue-stmt 124
control-edit-desc 127
cycle-stmt 123

d 127

data-edit-desc 126
data-i-do-object 117
data-i-do-variable 117
data-implied-do 117
data-ref 118

data-stmt 117
data-stmt-constant 117
data-stmt-object 117
data-stmt-repeat 117
data-stmt-set 117
data-stmt-value 117
deallocate-stmt 119
declaration-construct 110
default-char-expr 121
default-char-variable 118
default-int-variable 118
default-logical-variable 118
deferred-shape-spec 116
defined-binary-op 113, 121
defined-operator 113
defined-unary-op 113, 120
derived-type-def 114
derived-type-stmt 115
digit-string 113
dimension-stmt 117
do-block 123

do-body 123
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do-construct 122
do-stmt 123
do-term-action-stmt 123
do-term-shared-stmt 123
do-variable 123
dummy-arg 129

e 127

else-if-stmt 122
else-stmt 122
elsewhere-stmt 121
end-block-data-stmt 128
end-do 123

end-do-stmt 123
endfile-stmt 125
end-function-stmt 129
end-if-stmt 122
end-interface-stmt 128
end-module-stmt 128
end-program-stmt 127
end-select-stmt 122
end-subroutine-stmt 129
end-type-stmt 115
end-where-stmt 121
entity-decl 116
entry-stmt 129
equivalence-object 118
equivalence-set 118
equivalence-stmt 118
equiv-op 113, 121
equiv-operand 120
executable-construct 111
executable-program 109
execution-part 110
execution-part-construct 110
exit-stmt 123
explicit-shape-spec 116
exponent 114
exponent-letter 114

expr 121
extended-intrinsic-op 113
external-file-unit 124
external-stmt 128
external-subprogram 109
file-name-expr 124
format 125

format-item 126
format-specification 126
format-stmt 126
function-reference 128
function-stmt 129
function-subprogram 109, 129
generic-spec 128
goto-stmt 123
hex-constant 114
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hex-digit 114 m 127 save-stmt 117
if-construct 122 main-program 109, 127 section-subscript 119
if-stmt 122 mask-expr 121 select-case-stmt 122
if-then-stmt 122 module 109, 127 shared-term-do-construct 123
imag-part 114 module-procedure-stmt 128  sign 113

implicit-part 110 module-stmt 128 signed-digit-string 113
implicit-part-stmt 110 module-subprogram 110 signed-int-literal-constant 113
implicit-spec 117 module-subprogram-part 110 sign-edit-desc 127
implicit-stmt 117 mult-op 112, 120 signed-real-literal-constant 114
initialization-expr 121 mult-operand 120 significand 114
inner-shared-do-construct 123 n 127 specification-expr 121
input-item 125 name 112 specification-part 110
inquire-spec 126 named-constant 112 specification-stmt 110
inquire-stmt 125 named-constant-def 117 stat-variable 119
int-constant 112 namelist-group-object 118 stmt-function-stmt 129
intent-spec 116 namelist-stmt 118 stop-code 124
intent-stmt 116 nonblock-do-construct 123 stop-stmt 124
interface-block 128 nonlabel-do-stmt 123 stride 119

interface-body 128 not-op 113, 120 structure-component 119
interface-stmt 128 nullify-stmt 119 structure-constructor 115
internal-file-unit 124 numeric-expr 121 subobject 118
internal-subprogram 110 octal-constant 114 subroutine-stmt 129
internal-subprogram-part 110 only 128 subroutine-subprogram 109, 129
int-expr 121 open-stmt 124 subscript 119
int-initialization-expr 121 optional-stmt 116 subscript-triplet 119
int-literal-constant 113 or-op 113, 120 substring 118
intrinsic-operator 112 or-operand 120 substring-range 118
intrinsic-stmt 128 outer-shared-do-construct 123 target 121

int-variable 118 output-item 125 target-stmt 117
io-control-spec 125 parameter-stmt 117 type-declaration-stmt 115
io-implied-do 125 parent-string 118 type-param-value 116
io-implied-do-control 125 part-ref 119 type-spec 115
io-implied-do-object 125 pause-stmt 124 underscore 112

io-unit 124 pointer-assignment-stmt 121 upper-bound 116

k 127 pointer-object 119 use-stmt 128

keyword 129 pointer-stmt 117 variable 118

kind-param 113 position-edit-desc 127 vector-subscript 119
kind-selector 116 position-spec 125 w 127

label 113 power-op 112, 120 where-construct 121
label-do-stmt 123 prefix 129 where-construct-stmt 121
length-selector 116 primary 119 where-stmt 121
letter-spec 117 print-stmt 125 write-stmt 125
level-1-expr 120 private-sequence-stmt 114

level-2-expr 120 program-stmt 127

level-3-expr 120 program-unit 109

level-4-expr 120 r126

level-5-expr 120 read-stmt 125

literal-constant 112 real-literal-constant 114

logical-expr 121 real-part 114

logical-initialization-expr 121  rel-op 112, 120
logical-literal-constant 114 rename 128
logical-variable 118 return-stmt 129
loop-control 123 rewind-stmt 125
lower-bound 116 saved-entity 117
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