BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Vicerrectoría de Investigación y Estudios de Posgrado Dirección General de Estudios de Posgrado

CRISTALOGRAFÍA GENERAL

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

- > Conocer los elementos básicos de la simetría cristalina
- > Reconocer el lenguaje empleado para describir la estructura cristalina
- > Superer las dificultades para la representación mental de los arreglos cristalinos
- > Explicar las características cristalográficas de los tipos estructurales más comunes en materiales

TEMAS Y SUBTEMAS

		TEMA	TEORÍA	PROBLEMA	LABORATORI	NO. DE
			(HRS/SE	S	О	SEMAN
			M)	(HRS/SEM)	(HRS/SEM)	AS
1	RE	D Y SIMETRÍA	14	14	28	7
	1.	Celdas Primitivas y No primitivas:				
	2.	Elementos y Operaciones de Simetría:				
		Translaciones Elementales de la Red; Ejes				
		Directos e Inversos de Rotación de Orden n;				
		Ejes Helicoidales y Planos de Reflexión con				
		translación.				
	3.	Sistemas Cristalinos y Redes de Bravais:				
		Representación Matricial de la Malla; Posiciones				
		Equivalentes.				
	4.	Descripción de Estructuras: Determinación del				
		Motivo de la Malla de un Modelo de Estructura;				
		Determinación del Número de Unidades				
		Fórmula y del Modo de Red; Cálculo Teórico de				
		la Densidad.				
	5.	Planos y Direcciones: Índices de Miller;				
		Distancias Inter-Reticulares.				
	6.	Zonas y Formas Cristalinas. Red Recíproca y				
		Zonas de Brillouin.				
2	GRUPOS PUNTUALES		8	8	24	4
	1.	Las 32 Clases de Simetría: Notación de				
		Hermann-Mauguin; proyección estereográfica.				
	2.	Introducción a la Teoría de Grupos: Tablas de				
		multiplicación; grupos abelianos y no abelianos;				
		orden de un grupo; Matrices Unitarias;				
		representación matricial de los 32 grupos				
		puntuales.				
	3.	Clasificación de un Cristal en un Grupo				
		Puntual: Análisis morfológico; análisis de la				
		simetría de las figuras de corrosión; pruebas de				
		actividad óptica; pruebas de piezoelectricidad;				
		pruebas de piroelectricidad.				

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Vicerrectoría de Investigación y Estudios de Posgrado Dirección General de Estudios de Posgrado

3	GR	RUPOS PLANOS Y ESPACIALES	12	6		3
	1.	Los 17 grupos planos.				
	2.	Los 230 grupos espaciales: Posiciones				
		equivalentes y su representación en las Tablas				
		Internacionales de Cristalografía.				
4	CR	RISTALOQUÍMICA DESCRIPTIVA	18	12	16	6
	1.	Empaquetamientos Compactos: Cúbico y				
		hexagonal.				
	2.	Materiales que pueden describirse como				
		estructuras empaquetadas: metales (Cu, Ag, Ni				
		Ti, etc.), aleaciones (AuCu,AuCu3, etc.),				
		estructuras iónicas (NaCl, ZnO, Al2O3, etc);				
		enrrejados covalentes (diamante; SiC).				
	3.	Estructuras Descritas Mediante la Conectividad				
		entre Poliedros de Coordinación de los Cationes				
		(o aniones): los silicatos.				
	4.	Algunos Tipos Estructurales Importantes:				
		o Sal de roca (NaCl),				
		o Zinc blenda o esfalerita (ZnS),				
		o Antifluorita (Na ₂ O),				
		o Wurtzita (ZnS) y Arsenuro de níquel				
		(NiAs),				
		o Rutilo (TiO ₂),				
		o Perovskita (CaTiO ₃)				
		HORAS IMPARTIDAS EN EL SEMESTRE	52 hrs	40 hrs	68 hrs	=160 hrs

BIBLIOGRAFÍA

- 1. C. Giacovazzo, Editor, Fundamentals of Crystallography, 3rd ed. Oxford, (2011).
- 2. S.K. Chatterjee, Crystallography and the world of symmetry, Springer, (2008).
- 3. B.K. Vainshtein, V.M. Fridkin, V.L. Indebom, Structure of Crystals, Modern Crystallography II 3rd. ed. Springer-Verlag, (2000).
- 4. T. Hahn Ed., International Tables of Crystallography Vol. A: Space group symmetry, Reidel, (2005).
- 5. D. E. Sands, Introduction to Crystallography, Dover, (1993).
- 6. D. E. Sands, Vectors and Tensors in Crystallography, Dover (1994).
- 7. A.R. West, Solid state chemistry and its applications, 2nd. ed. John Wiley & Sons, (2014).
- 8. W. Borchardt-Ott, Crystallography. An Introduction, 3rd. ed. Springer, (2011).

ACTIVIDADES DE APRENDIZAJE

- Discusión de problemas en clase.
- Construcción de modelos.
- Exposición de artículos de investigación recientes relacionados con la disciplina.
- Prácticas de laboratorio.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Vicerrectoría de Investigación y Estudios de Posgrado Dirección General de Estudios de Posgrado

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

- Exámenes parciales mensuales (80%)
- > Tareas (10%)
- Reportes de laboratorio (10%)