BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Vicerrectoría de Investigación y Estudios de Posgrado Dirección General de Estudios de Posgrado

TERMODINÁMICA Y CINÉTICA DE MATERIALES

OBJETIVO:

Aprender los conocimientos básicos de la termodinámica clásica aplicada a los métodos de preparación de materiales.

TEMAS Y SUBTEMAS

	TEMAS Y SUBTEMAS	TEORÍA (HR)	PROBLEMAS (HR)	LABORATORIO (HR)	SEMANAS (NO)
I	INTRODUCCIÓN AL POTENCIAL QUÍMICO 1 Potencial Químico de una Sola Componente y de una Mezcla de Gases Ideales 2 Fugacidades y Función de Actividad 3 Propiedades Molares Parciales 4 Derivación de la Condición de Equilibrio en un Sistema Heterogéneo. 5 Casos de Estudio.	8	6	2	2.0
П	TERMODINÁMICA Y CINÉTICA DE REACCIONES QUÍMICAS 1 Ley de Acción de masas 2 Principio de Le Chatelier 3 Reacciones Simultáneas 4. Reacciones Químicas Dependiente de la Temperatura 5 Diagramas de Potencial para el Oxígeno y Azufre 6 Velocidades de Reacción Química: Determinación de la Ley de Velocidad 7 Reacciones de Primero y Segundo Orden 8 Reacciones Complejas: Reacción en Cadena, Explosiones, Reacciones Fotoquímicas y Catálisis 9 Casos de Estudio	12	9	3	3.0
Ш	EQUILIBRIOS Y DIAGRAMAS DE FASES 1 Equilibrios estables, Metaestables e inestables 2 Discusión general de estabilidad con respecto a pequeñas fluctuaciones 3 Línea Espinodal y punto crítico 4 Fenómeno de nucleación y descomposición Espinodal 5 Clasificación de Ehrenfest de Transiciones de Fase	16	12	4	4.0

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Vicerrectoría de Investigación y Estudios de Posgrado Dirección General de Estudios de Posgrado

		1		ī	
	6 Reglas de Fase de Gibbs				
	7 Regla de Lever				
	8 Funciones Termodinámicas de Mezclado				
	9 Ecuación de Clausius – Clapeyron				
	10 Ley de Henry-Raoult				
	11 Sistemas Binarios: Puntos Eutécticos y				
	Peritécticos				
	12 Sistemas Ternarios: Representación				
	Gráfica, Cálculo de la Composición.				
	13 Cálculo de Diagramas de Fase				
	Multicomponentes				
	14 Ejemplos de Equilibrio de Fases para				
	Espumas, Emulsiones, Geles y Compósitos				
	(Materiales Compuestos)				
	15 Casos de Estudio				
IV	TRANSPORTE IÓNICO Y DIFUSIÓN	12	9	3	3.0
	1 Descripción Matemática de Difusión				
	2 Ley de Fick				
	3 Difusión como un Proceso de Camino				
	Aleatorio				
	4 Difusión en Metales, de Polímeros y en				
	Sistemas Multifases				
	5 Movilidad iónica				
	6 Descripción de la Doble Capa Eléctrica				
	7 Aproximaciones de Debye-Huckel y Guy-				
	Chapman				
	8 Relaciones de Einstein –Nernst y Stoke-				
	Einstein				
	10 Teoría de Percolación Clásica y sus				
	Variables				
	9 Casos de Estudio				
V	SÍNTESIS DE MATERIALES.	16	2	14	4.0
	1 Métodos de Química Suave:				
	Coprecipitación, sol-gel, Hidrotérmico				
	2 Reacción en Estado Sólido				
	3 Transporte Químico				
	4 Casos de Estudio				

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Vicerrectoría de Investigación y Estudios de Posgrado Dirección General de Estudios de Posgrado

VI	INTRODUCCIÓN A LA	16	2	14	4.0
	TERMODINÁMICA DEL CRECIMIENTO				
	DE MATERIALES.				
	1 Nucleación Homogénea y Heterogénea				
	3 Mecanismos y Cinética de Crecimiento				
	4 Impurezas y Crecimiento de Cristales				
	5 Transformación de Fases Cristalinas				
	6 Morfología				
	7 Métodos Físicos de Crecimiento:				
	Czochralski, Bridgman, Epitaxia en Fase				
	Líquida, Epitaxia con Haces Moleculares,				
	Evaporación, Deposición Catódica,				
	8 Métodos Químicos de Crecimiento:				
	Deposición Química en Fase Vapor (CVD),				
	Pirólisis.				
	9 Casos de Estudio **				
TOTAL 160		80	40	40	20

BIBLIOGRAFÍA:

- 1) Chemical Thermodynamics of Materials, C.H.P.Lupis, North-Holland (1983).
- 2) Thermodynamics and Kinetics in Materials Science, B. Bokstein, M. Mendelev; D. J. Srolovitz, Oxford University Press, USA (2005)
- 3) Physical Chemistry, P. W. Atkins., J. Depaula, 9th edition, W H Freeman& Co. (2010)
- 4) The Colloidal Domain: Where Physic, Chemistry, Biology and Technology Meet, F. Evans, H. Wennerström, Wiley-VCH; 2 edition (1999)
- 5) Foundations of Materials Science and Engineering, W. F. Smith, J. Hashemi, McGraw-Hill, 5th edition (2009).
- 6) Introduction to materials Science for Engineers 7th edition, J. F. Shackelford, Prentice Hall (2009).
- 7) Handbook of Crystal Growth, Vol. I, edit. D. T. J. Hurle (Elsevier, 1993)
- 9) Handbook of Crystal Growth, Vol. II, edit. D. T. J. Hurle (Elsevier, 1994).
- 10) Springer Handbook of Crystal Growth, G. Dhanaraj, K. Byrappa, V.Prasad and M. Dudley, Springer 1st edition (2010).
- 11) Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, I. V. Markov, World Scientific Publishing Company, 2nd edition (2003).
- 12) Statistical Physics of Crystal Growth, Y. Saito, World Scientific, 1st edition (1996).

Metodología: Curso impartido por el profesor, exposición por estudiantes, entrenamiento de laboratorio. Calificación: 75% teoría y problemas, 25% prácticas.

Exámenes parciales por tema y examen oral final.