BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

INSTITUTO DE FÍSICA "LUIS RIVERA TERRAZAS"

SEMINARIO "DR. JESUS REYES CORONA"

"SOME USES OF PADÉ APPROXIMANTS IN MOLECULAR PHYSICS"

Dr. R. Lefebvre

Institut des Sciences Moléculaires d'Orsay, Bât. 350, Univ. Paris-Sud (CNRS), 91405 Orsay, France and U.F.R. de Physique, Université Pierre et Marie Curie, 75321 Paris, France.

Padé approximants constitute a powerful method to make an analytic representation of a function as a ratio of two polynomials. We first consider a class of problems where Padé methods can be used to extract information about resonance energies and the associated wave functions, with an input resulting from a modification of the wave equation, made to ease the numerical treatment. The examples which are treated correspond either to the introduction of a so-called optical potential in the wave equation, with a strong distortion of the results, or to the replacement of the relative coordinate between two entities by a complex coordinate. In the latter case Padé approximants are used to calculate the unnormalizable wave function of a point in a parameter plane at which there is a failure of the method. This is useful in the context of the theory of exceptional points where there is a unique one. Because this point is a branch point, the Padé approximant breaks down. This failure provides in fact the desired information.

• R. Lefebvre and M. Garcia-Sucre in Stochasticity and Intramolecular Redistribution of Energy (Reidel, Dordrecht, 1987), pp123-132.

• R. Lefebvre, M. Sindelka and N. Moiseyev, Phys. Rev. A 72,052704(2005)

• R. Lefebvre and N. Moiseyev, J. Phys. B: At.Mol.Opt. Phys. 43,095401(2010)

• R. Uzdin and R. Lefebvre, J. Phys. B: At.Mol.Opt. Phys. 43,235004(2010)

Auditorio-IFUAP Viernes 3 de Febrero de 2012 **13:00 Hrs.**