
REVISTA VIRTUAL DELINSTITUTO DE FISICA \LUIS RIVERA TERRAZAS"UNIVERSIDAD AUTONOMA DE PUEBLA
Editores: F. P�erez Rodr��guez y F. Rivas Silva

No.1, 1999Spectral and Transport Propertiesof One-Dimensional Disordered Conductors(Notas de Curso)N.M. MakarovInstituto de F��sica, Universidad Aut�onoma de Puebla,Apdo. Post. J-48, Puebla, Pue. 72570, M�exico

1



Pr�ologoLa investigaci�on de las propiedades f��sicas de medios desordenados (aleatorios) representauno de los problemas de mayor actualidad en la F��sica moderna. Uno de los m�as import-antes descubrimientos del siglo XX en este campo es el relacionado con el fen�omeno delocalizaci�on din�amica de ondas cl�asicas y part��culas cu�anticas. Resulta que su movimi-ento en un campo potencial aleatorio frecuentemente ocurre en un espacio con�nado (loc-aliz�andose) incluso cuando la energ��a cin�etica de la part��cula (onda) es mucho mayor quesu energ��a potencial aleatoria. En otras palabras, el fen�omeno de localizaci�on din�amica esprofundamente cu�antico y tiene lugar en condiciones de la as�� llamada re
exi�on sobre bar-rera. La localizaci�on de electrones en conductores desordenados fue predicha te�oricamentepor Anderson en 1958, por lo que se conoce ahora como localizaci�on de Anderson ofuerte. La localizaci�on de Anderson se mani�esta en las propiedades de conducci�on (trans-porte) por el hecho que el metal deja de conducir la corriente el�ectrica, es decir se vuelvepr�acticamente un aislante.La segunda caracter��stica notable de un sistema de electrones que no interact�uan entres�� consiste en que sus propiedades de conducci�on (transporte) est�an determinadas por ladimensi�on del espacio. Es bien sabido que en los conductores tridimensionales comunesla resistencia residual (es decir la resistencia a la temperatura del cero absoluto) est�adeterminada por la longitud de recorrido libre de los electrones. Esta longitud se debe asu dispersi�on el�astica con defectos de diferente naturaleza en la muestra. Si no hubiesedispersi�on, es decir si la muestra fuera un medio ordenado ideal, entonces la resistenciaser��a igual a cero. Resulta que en conductores unidimensionales a�un en la ausencia decualquier dispersi�on la resistencia residual y su cantidad inversa, la conductancia, siempreson �nitas. M�as a�un, ellas no dependen de los par�ametros del conductor, sino que son unacombinaci�on de constantes universales: la carga del electr�on e, la constante de Planck �h, eln�umero �. Es as�� como surgi�o una constante universal nueva: el cuanto de la conductancia,e2=��h. El transporte electr�onico bajo las condiciones en que la dispersi�on de los electronespuede despreciarse se llama bal��stico.Actualmente est�a rigurosamente establecido que en los conductores unidimensionalesdesordenados se realiza ya sea el r�egimen bal��stico o el de localizaci�on, dependiendo dela relaci�on entre la longitud del conductor y la as�� llamada longitud de localizaci�on. Estalongitud de localizaci�on est�a determinada por las caracter��sticas estad��sticas del poten-cial aleatorio dispersor (su amplitud y rango de variaci�on), as�� como las propiedades delsistema electr�onico (energ��a de Fermi). Si la longitud del conductor es mucho menorque la longitud de localizaci�on, se lleva a cabo el r�egimen de transporte bal��stico. En elcaso contrario tiene lugar la localizaci�on fuerte de los estados electr�onicos y la conduct-ancia resulta ser una cantidad exponencialmente peque~na del cociente de la longitud dela muestra entre la longitud de localizaci�on.Como conclusi�on de esta breve descripci�on del transporte electr�onico en conductoresdesordenados unidimensionales queda solamente agregar lo siguiente. De hecho, cualquiers�olido es un medio desordenado. Incluso los cristales lo son gracias a la presencia dediferentes tipos de defectos en la red cristalina (vacancias, impurezas, dislocaciones, inter-faces microcristalinas, etc.). Adem�as, resulta que es imposible, a�un te�oricamente, crearuna red cristalina unidimensional estrictamente ordenada. Tal creaci�on es absolutamenteinestable y se transforma en un sistema aleatoriamente desordenado bajo la acci�on decualquier perturbaci�on, cuan peque~na que esta sea.2



En el curso que se impartir�a se exponen los fundamentos de la teor��a de transporteelectr�onico en conductores unidimensionales desordenados. La soluci�on de cualquier prob-lema comienza con el an�alisis del espectro uni-part��cula del sistema investigado. Por estaraz�on, el presente curso consta de dos partes. En la primera, se calcula una caracter��sticauni-part��cula importante de los electrones: su funci�on de Green promediada. Con suayuda se introducen tales cantidades espectrales b�asicas como la longitud de recorridolibre total (saliente) de los electrones, las longitudes electr�onicas de dispersi�on hacia ad-elante y hacia atr�as. En la segunda parte, se expone sistem�aticamente, precisamente, lateor��a del transporte electr�onico. Los resultados obtenidos describen los reg��menes tantobal��stico como de localizaci�on, as�� como la transici�on entre ellos. Se llega a una importanteconclusi�on seg�un la cual el conductor unidimensional desordenado representa un ejemplot��pico de los sistemas mesosc�opicos.Una caracter��stica importante del presente curso consiste en que no s�olo se discute elproblema f��sico, sino que en �el tambi�en se ense~nan m�etodos de la F��sica Te�orica, los cualespueden ser utilizados en otros campos de investigaci�on. As��, por ejemplo, en la primeraparte del curso se expone detalladamente el m�etodo ya tradicional para resolver la ecuaci�onde Dyson, se introducen los conceptos de operador de auto-energ��a. El procedimiento depromediaci�on se lleva a cabo con ayuda de la t�ecnica elegante, recientemente desarrolladapor Maradudin y colaboradores. En la segunda parte del curso se presenta el modelo deoscilaciones de escala doble, los m�etodos de promedicaci�on de fases r�apidas y el c�alculo delos correladores (funciones de correlaci�on) para campos aleatorios. Aqu�� se formulan loselementos de la teor��a general de dispersi�on de ondas en medios aleatorios, se introducenlos conceptos de re
ectancia y transmitancia, as�� como sus momentos. En la segunda partedel curso tambi�en se presenta la f�ormula de Furutsu-Novikov y aprendemos a utilizarla enla deducci�on de las ecuaciones necesarias para los momentos de re
ectancia. Finalmente,se muestra el m�etodo de las funciones de distribuci�on el cual es un instrumento potentepara resolver ecuaciones diferenciales y de diferencias, y a su vez es ampliamente aplicadoen problemas de muchas part��culas en la F��sica moderna de sistemas desordenados.Las presentes notas de curso est�an dirigidas a los estudiantes de los �ultimos cursosde la carrera en F��sica, a los estudiantes de posgrado y a todos los f��sicos interesados enproblemas de la F��sica moderna.AgradecimientosEl autor agradece profundamente al Dr. F. P�erez Rodr��guez por su iniciativa para quese escribieran y publicaran las presentes Notas de Curso, su amable atenci�on, gran ayuday �utiles consejos. Expreso mi reconocimiento al Dr. A. Moroz al estudiante de doctoradoJ.A. M�endez Berm�udez por su ayuda en la redacci�on del texto de estas notas. Agradezco alos primeros asistentes a este curso. Sus preguntas y observaciones en las clases in
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Chapter 1Green's Function of 1D DisorderedConductor
1.1 General conceptsIn these lectures we discuss distinctive spectral and conducting properties of one-dimen-sional (1D) electron systems. Such systems possess two signi�cant features. From thephysical point, the e�ect of strong (Anderson) localization of electron states due to elec-tron scattering from impurities is particularly pronounced in 1D conductors. From themathematical point, the theory of the 1D localization has been built completely.One of the most important spectral characteristics of a quantum system is single-particle Green's function. The physical meaning of single-particle Green's function is theprobability for a free particle placed at a given point of space to reach another givenpoint in speci�ed time. As good texts for getting familiar with Green's functions we canrecommend a very accessible and illustrative book [1] and more rigorous and advancedbook [2]. It is remarkable that once the Coulomb repulsion between electrons can beneglected, the conductivity or conductance of an electron system can be expressed interms of certain products of two single-particle Green's functions. Therefore it seemsplausible to approach the conducting properties of 1D conductors by considering �rstsingle-particle Green's function.To start with, let us consider the following Schr�odinger equation:("�H)	 = 0; (1.1)where H is the Hamiltonian, " is the energy and 	 is the wave function of an electron.The Green function (or the Green operator) G of the Schr�odinger equation (1.1) isa solution of the corresponding inhomogeneous equation with the unit-operator on theright-hand side (r.h.s.): ("�H)G(") = 1: (1.2)Obviously, a formal solution of this equation is the following inverse operator:G(") = ("�H)�1 : (1.3)One can consider this equality as a de�nition of the Green function G(").5



Using Eq. (1.3) we can rewrite the Green function G(") in the representation of theeigenfunctions 	a of the HamiltonianH. By de�nition, in this representation the Hamilto-nian H is a diagonal matrix, i.e. H	a = "a	a: (1.4)The Green function G(") turns out to be a diagonal matrix as well:Ga(") = 1"� "a : (1.5)Here the symbol \a" labels matrix elements and denotes a complete set of quantum num-bers (both continuous and discrete) of the problem, "a is an eigenvalue of the HamiltonianH corresponding to a quantum number a.In the coordinate space de�ned by the position vector ~r the unit-operator 1 is describedby the Dirac delta-function �(~r � ~r0) and the equation for the Green function G(") isrewritten as: ("�H~r)G(~r; ~r0; ") = �(~r � ~r0): (1.6)Since the HamiltonianH of any physically meaningful quantum system is an Hermitianoperator, its eigenfunctions 	a(~r) form a complete set of orthogonal and normalized (i.e.orthonormal) functions that can be chosen as a basis in the Hilbert space of complex-valued functions of ~r [3]. Mathematically, the orthonormalization and completeness ofthe set of functions 	a(~r) are de�ned asZ d~r	�a0(~r)	a(~r) = �aa0 ; Xa 	a(~r)	�a(~r0) = �(~r � ~r0); (1.7)respectively. The l.h.s of the �rst equation is nothing else but the scalar product (dotproduct) of the wave functions 	a0(~r) and 	a(~r). The asterisk \�"stands for complexconjugation. In general, the symbol �aa0 on the r.h.s. of the �rst equation implies theproduct of Dirac delta-functions and Kronecker delta-symbols. Dirac delta-functions arerelated to continuous eigenvalues of the spectrum fag, while Kronecker delta-symbols areassociated with its discrete part. The second equation in Eq. (1.7) (the completenesscondition) follows from the �rst one and represents an expansion of the Dirac delta-function �(~r� ~r0) in the basis 	a(~r). The symbol of the sum over a implies an integrationover continuous eigenvalues and summation over discrete eigennumbers.According to the equation (1.6) and conditions (1.7), the Green function G(~r; ~r0; ") canbe presented as the Hilbert{Schmidt series:G(~r; ~r0; ") =Xa 	a(~r)	�a(~r0)"� "a : (1.8)This series is the expansion of the Green function G(~r; ~r0; ") in the complete set of theorthonormal wave functions 	a(~r).From the formula (1.8), as well as from the representation (1.5), we see that theGreen function G(") has singularities at the values of the external energy " equal to anyof the eigenvalues "a, i.e. at " = "a. In the representation (1.5) these singularities aresimple poles, whereas in the coordinate representation (1.8) they can be weaker due tosummation or integration over the complete set fag. Thus, as it was mentioned above, if6



one calculates the Green function of a quantum system and reveals its singularities, thesesingularities provide complete information about the spectral properties of the system.We note that the quantity " is an external parameter in the Green function problem.It has the meaning of energy and therefore is real in all physical applications. Owing tothe hermicity of the Hamiltonian H, the eigenvalues "a are also real. Hence the abovementioned poles " = "a lie exactly on the path of the summation (integration) in theHilbert{Schmidt series (1.8). Since the summand (integrand) diverges at the poles, aproblem of correct taking the poles " = "a into account arises. Usually this problemis solved by going around poles along in�nitely small contours. Surprisingly, the Greenfunction depends on a direction of going around the poles. As a consequence of thisdependence, three di�erent Green's functions were introduced: retarded G+("), advancedG�("), and causal Gc(").The retarded G+(") and advanced G�(") Green functions satisfy the following equa-tions: ("� i0�H~r)G�(~r; ~r0; ") = �(~r � ~r0); (1.9)whence the Hilbert{Schmidt series for them take the form:G�(~r; ~r0; ") =Xa 	a(~r)	�a(~r0)"� "a � i0 : (1.10)Hereinafter the symbols "�i0" stand for an arbitrarily small, tending to zero, positive(+i0) or negative (�i0) imaginary quantity. In other words, the symbol "+i0" impliesapproaching the real axis of the complex energy plane from above, while the symbol "�i0"requires to approach the real axis from below. We point out that the energy parameter "is considered real in Eqs. (1.9) and (1.10).So, we see that the energy " acquires a positive in�nitely small imaginary shift forthe retarded Green function G+(") and a negative in�nitely small imaginary shift for theadvanced Green function G�(").The retarded G+(") and advanced G�(") Green functions are related asG��(~r; ~r0; ") = G�(~r0; ~r; "): (1.11)The causal Green function Gc(") is de�ned as the di�erence between the advancedG�(") and retarded G+(") Green functions:Gc(") = G�(")� G+("): (1.12)Let us substitute the equalities (1.10) into the de�nition (1.12) for the causal Greenfunction Gc(") and use the following Dirac identity:2�i�("� "a) � 1"� "a � i0 � 1"� "a + i0 : (1.13)As a result, we obtain the Hilbert{Schmidt series for the causal Green function Gc("):Gc(~r; ~r0; ") = 2�iXa �("� "a)	a(~r)	�a(~r0): (1.14)In accordance with Eq. (1.14) the causal Green function Gc(") has an evident property:7



G�c (~r; ~r0; ") = �Gc(~r0; ~r; ") (1.15)Since all three Green's functions introduced above can be uniquely expressed via eachother, it su�ces to analyze only one of them to �nd out properties of all the three func-tions. Following a commonly accepted tradition, we will discuss below the retarded Greenfunction G+(") for our 1D disordered problem. For simplicity, we will omit the subscript\+" at the retarded Green function. In addition to this, we will leave out the positivein�nitely small imaginary energy shift +i0 every time when it does not lead to misunder-standing.1.2 Problem StatementWe consider a 1D wire (straight line) of in�nite length. The x axis is directed along thewire. We assume that there always exist conduction electrons of �xed concentration inthe wire. As far as the spectral and conducting properties are of our interest, we will dealwith the conduction electrons only. For simplicity, we choose the free electron model forthe conduction electrons. Within this model the dispersion law of electrons is assumed tobe quadratic and isotropic, " = �h2k2=2m: (1.16)Here m is the e�ective mass and ~k is the wave vector of electrons.Our goal is to study the Green function of a disordered (imperfect) 1D wire. Asa physically plausible model for disorder we introduce the random potential V (x) thatspeci�es the potential energy of electrons due to disorder at any point x of the wire. Weassume that V (x) is a continuous, statistically homogeneous and isotropic random processwith zero mean value. These assumptions lead to the following correlation properties ofthe potential V (x):hV (x)i = 0; hV 2(x)i = V 20 ; hV (x)V (x0)i = V 20W(jx� x0j): (1.17)The angular brackets h: : :i stand for statistical averaging over the ensemble of realizationsof the random function V (x). Here V0 is the root-mean-square (r.m.s.) value and V 20is the dispersion of the potential V (x). The function W(jxj) is the binary coe�cientof correlation characterized by the unit amplitude W(0) = 1 and by the scale Rc ofmonotonous decrease. The scale Rc is called the correlation radius. The dispersion V 20 ofthe potential V (x) does not depend on the coordinate x, while the correlation coe�cientW(jx � x0j) depends only on the distance between points x and x0. These two facts aredirect consequences of the statistical homogeneity and isotropy of the random process(i.e., the homogeneity and isotropy of our problem on average). The random potentialV (x) is the only source of electron scattering in our problem.An important and relatively well studied mechanism of electron scattering in low di-mensional solid-state devices is scattering from non-magnetic static impurities. The con-centration of impurities is usually su�ciently low so that the average distance betweenneighboring scattering centers can be quite large. Therefore successive collisions of elec-tron with impurities are statistically independent and the correlation between them isabsent. In this case the random potential V (x) is regarded as the Gaussian \white noise",8



i.e. a process with extremely small correlation radius Rc. As a result, for electron-impurity scattering the binary coe�cient of correlation W(jxj) is replaced by the Diracdelta-function: W(jx� x0j) = Rc�(x� x0): (1.18)Such random processes are known as random delta-correlated processes.According to all the above assumptions, the 1D Hamiltonian H~r takes the form:H~r = � �h22m d2dx2 + V (x): (1.19)Therefore the equation for the retarded Green function G(x; x0; ") is written as �h22m d2dx2 + "+ i0!G(x; x0; ")� V (x)G(x; x0; ") = �(x� x0): (1.20)To get rid of the constant factor �h2=2m in subsequent calculations it is convenientto introduce the renormalized Green function Gnew(x; x0; k) and renormalized randompotential V new(x):Gnew(x; x0; k) = (�h2=2m)Gold(x; x0; "); (1.21)V new(x) = (2m=�h2)V old(x); V new0 = (2m=�h2)V old0 : (1.22)Note that the new random potential V new(x) has the dimension of squared wave number.It should be emphasized that V new(x) possesses the same statistical properties (1.17) withthe same binary coe�cient of correlation W(jxj) as the \old" potential V (x).We will discuss below the new retarded Green function omitting the superscript \new"for simplicity. So, according to de�nitions (1.21) and (1.22) and Eq. (1.16) we obtain thefollowing equation for the retarded Green function of a 1D disordered conductor: d2dx2 + k2 + i0!G(x; x0; k)� V (x)G(x; x0; k) = �(x� x0): (1.23)The equation (1.23) should be complemented by boundary conditions. As the boundaryconditions we adopt reasonable requirements of �niteness of the Green function at thein�nitely remote points x = �1:jG(x = �1; x0)j <1: (1.24)Such boundary conditions are often called the radiative conditions. We remind that aproblem with boundary (not initial and not periodic) conditions is called boundary-valueproblem or problem with open ends.In accordance with Eq. (1.23), the Green function satis�es the corresponding homo-geneous equation at x 6= x0, i.e. Eq. (1.23) with zero in place of the delta-function on ther.h.s. At the point x = x0 the Green function is continuous but its �rst derivative withrespect to x has a unit jump. Let us write down the conditions for the continuity of theGreen function and for the unit jump of the derivative:9



G(x = x0 + 0; x0) � G(x = x0 � 0; x0) = 0;G 0(x = x0 + 0; x0) � G 0(x = x0 � 0; x0) = 1: (1.25)Hereinafter a prime at a function stands for the derivative of this function with respectto x. The symbols "�0" denote an arbitrarily small, tending to zero, positive (+0) ornegative (�0) quantity. In other words, the symbol \�0" (\+0") implies taking the left-hand (right-hand) limit. The second of Eqs. (1.25) is derived by integrating Eq. (1.23)over x over the interval (x0� 0; x0+0). We emphasize that the Green function of any 2ndorder di�erential equation with a unit factor standing at the second derivative satis�esthe conditions (1.25).Thus, we always have two ways to solve the Green function problem. The �rst wayis to solve the inhomogeneous equation (1.23) with two boundary conditions (1.24). Thesecond one is to solve the corresponding homogeneous equation with four conditions: twoboundary conditions (1.24) and two conditions (1.25) at the internal point x = x0.In most practically important cases one is interested in the Green function averagedover the ensemble of realizations of the random potential V (x) rather than in the exactGreen function itself. Moreover, often one is unable to solve the problem exactly becauseof an unknown explicit form of the potential V (x). What is known are the statisticalproperties (1.17) of the random process V (x). Therefore, our goal here is to �nd theaverage Green function hG(x; x0; k)i of the boundary-value problem (1.23), (1.24), (1.25).1.3 Unperturbed Problem (Perfect Wire, No Dis-order)First of all, let us analyze the corresponding unperturbed boundary-value problem, i.e. theproblem with zero random potential (V (x)=0). In this case the retarded Green functionG0(x; x0; k) satis�es the equation d2dx2 + k2 + i0!G0(x; x0; k) = �(x� x0) (1.26)and the radiative boundary conditions (1.24) at x = �1.Certainly, at the point x = x0 the unperturbed Green function G0(x; x0; k) satis�es theconditions (1.25) for the continuity of the Green function and for the unit jump of itsderivative.Now we will write down the solution of the homogeneous boundary-value problem(1.26), (1.24), (1.25). We postpone the rigorous derivation of the solution until nextsubsections. The retarded Green function G0(x; x0; k) of a 1D homogeneous (perfect)conductor has the following form:G0(x� x0; k) = 12ik fexp[ik(x0 � x)]�(x0 � x) + exp[ik(x� x0)]�(x� x0)g == exp(ikjx� x0j)2ik ; k ! k + i0: (1.27)10



Here �(x) is the Heaviside unit-step �-function. One should keep in mind that the symbolk should be regarded as k + i0.We see that the unperturbed Green function G0(x�x0; k) depends only on the distancebetween points x and x0. This fact is caused by the homogeneity and isotropy of theunperturbed problem.1.3.1 Traditional construction of solutionThere exists a \traditional" method for �nding the Green function of a 1D boundary-value problem (i.e. a problem with open ends). This method is based on solving thecorresponding homogeneous equation with four conditions: two boundary conditions andtwo conditions (1.25) for the continuity of the Green function and for the unit jump ofits derivative at the point x = x0.First of all, we will explain brie
y the essence of the method and then apply it to ourunperturbed problem (1.26), (1.24), (1.25).1. General construction of solution:Our objective is to obtain the Green function of a 2nd order homogeneous di�erentialequation with a unit factor standing at the second derivative and boundary conditionsformulated at the ends of some interval.Let  �(x) be two linearly independent solutions of the homogeneous equation, chosenso that  �(x) satis�es the boundary condition at the left open end and  +(x) at the rightopen end of the interval.Then the Green function is built as follows:G(x < x0) = 1W  �(x) +(x0);G(x > x0) = 1W  +(x) �(x0): (1.28)Here W is the Wronskian of the functions  �(x) de�ned asW =  �(x0) 0+(x0)�  +(x0) 0�(x0): (1.29)We point out that the Wronskian of any Hermitian problem does not depend on thecoordinate x0.It is easily veri�able that the expression (1.28) is the Green function of the problem.Indeed, it satis�es the initial di�erential equation and boundary conditions due to theproper chosen functions  �(x). Evidently, at the point x = x0 the function (1.28) satis�esthe continuity and unit-jump conditions (1.25). We note that the unit amplitude ofthe jump has been achieved by introducing the normalization factor in the form of theWronskian (1.29).Thus, the problem of deriving an explicit formula for the Green function reduces toseeking two linearly independent solutions  �(x) of the homogeneous equation. Note thatthese solutions are de�ned up to a constant factor which cancels out in Eq. (1.28) owingto the Wronskian.2. Solutions  �(x) of the unperturbed problem (1.26), (1.24):Obviously, two linearly independent solutions  �(x) of the homogeneous equation(1.26) can be written in the form of plane waves:11



 �(x) = exp(�ikx); k ! k + i0: (1.30)The plane wave  +(x) = exp(ikx) propagates to the right while the plane wave  �(x) =exp(�ikx) propagates to the left. It is easy to verify that the function  �(x) = exp(�ikx)satis�es the boundary condition (1.24) at the left open end x = �1 and the function +(x) = exp(ikx) satis�es the boundary condition (1.24) at the right open end x = +1of the wire. To do this we should take into account that the symbol k stands for k + i0.By the de�nition (1.29), the Wronskian of the \left" and \right" plane waves (1.30) isW = 2ik: (1.31)After the substitution of the solutions (1.30) and their Wronskian (1.31) into thegeneral expression (1.28) we arrive at the explicit expression (1.27) for the Green functionG0(x� x0; k).1.3.2 Fourier representationSince our problem is de�ned within a continuous in�nite interval (�1 < x < 1), wecan seek the unperturbed Green function G0(x� x0; k) in the form of the double Fourierintegral, G0(x� x0) = Z 1�1 dkx dk0x(2�)2 exp(ikxx)G0(kx; k0x) exp(�ik0xx0); (1.32)The Fourier transform G0(kx; k0x) is de�ned asG0(kx; k0x) = Z 1�1 dx dx0 exp(�ikxx)G0(x� x0) exp(ik0xx0): (1.33)So, to �nd the Green function G0(x�x0; k) we need to calculate the Fourier transformG0(kx; k0x) from the initial equation (1.26). To this end, let us apply the integral Fourieroperator Z 1�1 dx dx0 exp[�i(kxx� k0xx0)] (1.34)to the both sides of this equation. Then we should perform a double integration by partsfor the �rst term on the l.h.s. of the equation. At the same time, we should use thefollowing representations for the Dirac delta-functions:�(x� x0) = Z 1�1 dkx2� exp[�ikx(x� x0)];�(kx � k0x) = Z 1�1 dx2� exp[�i(kx � k0x)x]: (1.35)It is interesting that the �rst equality in the representations (1.35) is the condition ofcompleteness and the second one is the condition of orthonormalization for the basis	kx(x) = (2�)�1=2 exp(ikxx). Indeed, for our 1D homogeneous problem (1.26), (1.24)de�ned within the continuous in�nite interval (�1 < x <1) the complete set of eigen-values fag consists of the single continuous wave number kx and the eigenfunctions 	a(~r)12



are 	kx(x). Therefore the equalities (1.35) coincide with the corresponding conditionsfrom Eq. (1.7) when rewritten explicitly for our case.As a result of the above calculations, we obtain the following.Owing to the homogeneity of the unperturbed problem, the Green matrix Ĝ0(k) turnsout to be diagonal in the kx-representation:G0(kx; k0x) = G0(kx) 2��(kx � k0x); (1.36)G0(kx) = 1k2 � k2x + i0 : (1.37)Therefore, the inverse (1.32) and direct (1.33) Fourier transforms assume simpler forms:G0(x� x0) = Z 1�1 dkx2� G0(kx) exp[ikx(x� x0)];G0(kx) = Z 1�1 dxG0(x) exp(�ikxx): (1.38)Thus, the Fourier integral expansion for the Green function G0(x�x0; k) of the unper-turbed problem (1.26) and (1.24) reads as:G0(x� x0; k) = Z 1�1 dkx2� exp[ikx(x� x0)]k2 � k2x + i0 : (1.39)We emphasize that this Fourier representation is nothing else but the Hilbert-Schmidtseries (1.10) for the 1D retarded Green's function de�ned within the continuous in�niteinterval (�1 < x <1).Evidently, the Fourier transform (1.37) and consequently the representation (1.39) canbe obtained by direct applying the Fourier transformations (1.33) or (1.38) to the explicitformula (1.27). On the other hand, we can come to the explicit expression (1.27) byevaluating the integral in the Fourier representation (1.39). Let us do it now.We should take the Fourier integral over kx in equation (1.39) according to the residuetheorem from the complex-variable theory. Details of the calculation can be found in anytextbook on the complex-variable theory, e.g. [4].As a �rst step, we need to �nd the singularities of the integrand. The integrand hasonly two simple poles which are determined by equating the denominator to zero:k2 � k2x + i0 = 0 ! kx = �(k + i0): (1.40)It is very important that our external parameter k2 + i0 has a positive imaginary part.Owing to this fact the poles do not lie on the integration path which is the real axis ofthe complex plane kx. The �rst pole kx = k+ i0 is in the upper half-plane and the secondone kx = �k � i0 lies in the lower half-plane.Let us calculate the residues of the integrand at the points kx = �(k + i0). To dothat, we should expand the integrand in the Laurent series in the vicinity of these poles:12� exp[ikx(x� x0)]k2 � k2x + i0 � � 14�k exp[�ik(x � x0)]kx � (k + i0) ;13



at jkx � (k + i0)j � 1: (1.41)By de�nition, the residues of the integrand are the factors at [kx � (k + i0)]�1 in theexpansion (1.41):Resfintegrand(kx = �(k + i0))g = �exp[�ik(x� x0)]4�k : (1.42)Now we are in a position to evaluate the Fourier integral (1.39).For de�niteness, suppose that the di�erence x � x0 is positive (x � x0 > 0). In thiscase the integrand is an analytical function of the integration variable kx within the upperhalf-plane of the complex plane kx. Therefore, we can make the integration path closedby adding to its ends kx = �1 an in�nitely far semi-circle R+ in the upper half-plane. Inthis way we obtain a new closed contour C+ that consists of the initial integration path�1 < kx <1 and the in�nitely far semi-circle R+ in the upper half-plane. We see thatthe �rst pole kx = k + i0 only lies within the closed contour C+. So, according to theresidue theorem, the integral along the closed contour C+ is equal to 2�i multiplied bythe integrand residue at the point kx = k + i0:ZC+ dkx2� exp[ikx(x� x0)]k2 � k2x + i0 = exp[ik(x� x0)]2ik when x� x0 > 0: (1.43)We next take into account that the integral along the in�nitely far semi-circle R+ vanishesbecause the exponent exp[ikx(x�x0)] for x�x0 > 0 goes to zero at any in�nitely far pointin the upper half-plane of the complex plane kx. Therefore the Fourier integral (1.39) isequal to the integral (1.43) along the closed contour C+. As a result we getG0(x� x0; k) = Z 1�1 dkx2� exp[ikx(x� x0)]k2 � k2x + i0 == exp[ik(x� x0)]2ik when x� x0 > 0: (1.44)If the di�erence x�x0 is negative (x�x0 < 0), then the integral (1.39) can be taken in asimilar manner except for the integrand being now an analytical function of kx in the lower(not upper) half-plane of the complex plane kx. Therefore we can modify the integrationpath by closing it with the in�nitely far semi-circle R� in the lower half-plane. Hence, weget a new closed contour C� that consists of the initial integration path �1 < kx < 1and the in�nitely far semi-circle R� in the lower half-plane. Now only the second polekx = �k � i0 lies within the closed contour C�. So, in line with the residue theorem, theintegral along this closed contour C� is equal to �2�i multiplied by the integrand residueat the point kx = �k � i0:ZC� dkx2� exp[ikx(x� x0)]k2 � k2x + i0 = exp[�ik(x � x0)]2ik for x� x0 < 0: (1.45)Note that we have used the factor �2�i instead of 2�i because we went along the contourC� clockwise but not counter-clockwise as we did for positive x�x0. The integral along the14



in�nitely far semi-circle R� vanishes because the exponent exp[ikx(x� x0)] for x� x0 < 0is equal to zero at any in�nitely far point in the lower half-plane of the complex plane kx.Therefore the initial integral (1.39) is equal to the integral (1.45) along the closed contourC�. As a result we getG0(x� x0; k) = Z 1�1 dkx2� exp[ikx(x� x0)]k2 � k2x + i0 == exp[�ik(x � x0)]2ik for x� x0 < 0: (1.46)From a straightforward comparison one can make sure that the expressions (1.44) and(1.46) are identical with the equation (1.27) obtained earlier for the unperturbed Greenfunction.1.4 Problem with DisorderNow let us return to the derivation of the averaged Green function hG(x; x0; k)i of the1D disordered conductor. At the beginning we can state that the average Green functionhG(x; x0; k)i depends only on the di�erence x � x0 of coordinates owing to the statisticalhomogeneity of the problem on average, i.e., owing to the statistical homogeneity (1.17)of the scattering potential V (x). So, we can writehG(x; x0; k)i = G(x� x0; k): (1.47)In these Lecture Notes we will obtain the average Green function via deriving andsolving the Dyson equation.First of all, we need to derive the starting Green formula to relate the perturbed Greenfunction G(x; x0; k) to the unperturbed Green function G0(x; x0; k). Note that the Greenformula is nothing else but the closed integral equation for G(x; x0; k). To derive it we willuse the initial di�erential equation (1.23) with the radiative boundary conditions (1.24).We now describe brie
y how to obtain the Green formula. First, we write down theequation (1.26) for G0(x1; x; k) and the equation (1.23) for G(x1; x0; k). Then we multiplythe former from the left through by G(x1; x0; k), while the latter by G0(x1; x; k). We nextsubtract the latter from the former cancelling out identical terms. The result is integratedover x1 over the interval (�1;1). Terms that include derivatives are cancelled afterintegration by parts. Finally, we apply the symmetry property G0(x0; x; k) = G0(x; x0; k).In this way we arrive at the required Green formula which has the usual form:G(x; x0; k) = G0(x� x0; k) + Z 1�1 dx1G0(x� x1; k)V (x1)G(x1; x0; k): (1.48)Next, from the Green formula (1.48) for the exact (i.e., random) Green functionG(x; x0; k) we should derive an equation for the average Green function hG(x; x0; k)i. Tothis end, we can try some di�erent ways. For example, we can average directly bothsides of the Green formula (1.48), in which case the correlator hV (x1)G(x1; x0; k)i appearswhich can unlikely be decoupled in a plausible way.A second way is to apply a diagrammatic technique similar to that introduced byR. Feynman to the quantum electrodynamics. The diagrammatic approach suggests to15



iterate the Green formula (1.48) with the unperturbed Green function taken as a zeroapproximation. As a result, we obtain an in�nite series of iterations that should beaveraged term by term. The summation of some in�nite subsequence of diagrams yieldsan approximate equation for the average Green function hG(x; x0; k)i.In these Lectures we will average the Green formula (1.48) with the use of a techniquedeveloped by A. Maradudin et al. [5]. This technique is similar to diagrammatic but issimpler and more elegant.1.4.1 Averaging procedure. Dyson equationFor clarity of forthcoming calculations we rewrite the integral equation (1.48) in thesymbolic form: G = G0 + G0V̂ G: (1.49)Here we introduce the operator V̂ of the surface scattering. The explicit (integral) actionof this operator should be interpreted as: (i) write the random potential V instead ofthe operator V̂ ; (ii) put variables adjacent to V (i.e. next to V from the left and fromthe right) equal to the argument of V ; (iii) integrate over this argument over the interval(�1;1).Let us de�ne two operators: (i) the averaging operator P̂ which averages everything toits right over the ensemble of realizations of the random potential V (x); (ii) the 
uctuationoperator Q̂ which extracts 
uctuations from everything to its right.Obviously, any random value is a sum of its average and 
uctuations. For instance,G = P̂G + Q̂G: (1.50)Therefore the both introduced operators are related asP̂ + Q̂ = 1: (1.51)Recall that the symbol 1 stands for the unit operator. In this case the unit operator issimply a number.Since the unperturbed Green function G0 is deterministic (not random), we haveP̂G0 = G0; Q̂G0 = 0: (1.52)So, we need to seek the equation for the average Green function hGi � P̂G.Let us act separately on the both sides of the Green formula (1.49) by the averagingP̂ and the 
uctuation Q̂ operators. Then we use the relation (1.50) and equalities (1.52)on the r.h.s. of the obtained equations. As a result, we getP̂G = G0 + G0P̂ V̂ (P̂G + Q̂G); (1.53)Q̂G = G0Q̂V̂ (P̂G + Q̂G): (1.54)So, we have come to a set of two algebraic operator equations that determine two unknownfunctions P̂G and Q̂G.We now express the function Q̂G in terms of P̂G using the second equation (1.54):16



Q̂G = (1� G0Q̂V̂ )�1G0Q̂V̂ P̂G: (1.55)We next substitute the expression (1.55) into the �rst equation (1.53). After someidentical operator transformations we obtain for the average Green function hGi � P̂Gthe operator equation which is known as the Dyson equation:P̂G = G0 + G0M̂P̂G: (1.56)Here we introduce the new operator M̂ that enters the Dyson equation (1.56) as theself-energy operator. It is equal toM̂ = P̂ V̂ h1 + (1� G0Q̂V̂ )�1G0Q̂V̂ i == P̂ V̂ h1� (1� G0Q̂V̂ )�1(1� G0Q̂V̂ � 1)i == P̂ V̂ (1� G0Q̂V̂ )�1: (1.57)We see that this is exactly the self-energy operator M̂ that describes the electron inter-action with the random potential V̂ .Notice that the Dyson equation (1.56) with the self-energy (1.57) is the exact generalequation for the average Green function hGi � P̂G. However we cannot solve it becauseit is unlikely to rewrite the symbolic representation (1.57) for the self-energy operator M̂in a �nite analytical (integral) form. Therefore, we have to simplify the self-energy M̂ .Let us consider electron scattering at the random potential V̂ as a weak scattering, ina sense. The conditions of the weak scattering approximation will be formulated below.In other words, we assume the scattering operator V̂ to be a small perturbation in theexpression (1.57). This assumption allows to expand the exact formula (1.57) for theself-energy M̂ in powers of the scattering operator V̂ ,M̂ � P̂ V̂ (1 + G0Q̂V̂ ): (1.58)We take into account that, according to the correlation properties (1.17), the potential V̂has zero average and, therefore, is equal to the 
uctuating part,hV̂ i � P̂ V̂ = 0; Q̂V̂ = V: (1.59)Thus, in the �rst non-vanishing (quadratic) order in the scattering operator V̂ theself-energy operator M̂ is given by the following formula:M̂ � P̂ V̂ G0V̂ � hV̂ G0V̂ i: (1.60)Note that such approximation for the self-energy M̂ is equivalent to the so-called Bourretapproximation [6] in the diagrammatic technique which includes only the simplest (�rst)term of the diagrammatic series for the self-energy. On the other hand, in the quantumscattering theory any weak scattering approximation of the second order in the scatteringpotential is known as the Born approximation. So, we can conclude that the expression(1.60) for the self-energy operator M̂ is written within the Born approximation.17



At the end of the averaging procedure, let us substitute the formula (1.60) into thegeneral equation (1.56), whereupon the Dyson equation for the average Green functionhGi � P̂G within the Born approximation takes the following symbolic form:hGi = G0 + G0hV̂ G0V̂ ihGi: (1.61)This form allows a simple analytical interpretation.1.4.2 Solving Dyson equationLet us write down the Dyson equation (1.61) for the average Green function hG(x; x0; k)iin an analytical form. In accordance with the de�nition of the random scattering operatorV̂ and the property of the statistical homogeneity (1.47) of the average Green functionhG(x; x0; k)i, the Dyson equation can be rewritten as follows:G(x� x0; k) = G0(x� x0; k) + (1.62)+ Z 1�1 dx1 Z 1�1 dx2 G0(x� x1; k)M(x1 � x2)G(x2 � x0; k):At the same time, in the Born approximation the kernel M(x � x0) of the self-energyoperator M̂ reads as:M(x� x0) = hV (x)G0(x� x0)V (x0)i = V 20W(jx� x0j)G0(x� x0): (1.63)Here we have applied the correlation properties (1.17) of the random potential V (x). Wedraw attention to the fact that the self-energy M(x) is an even function of the argumentx. Owing to all functions in the Dyson equation (1.62) being dependent only on thedi�erence of coordinates, it is e�ective to apply the Fourier transformations to solve thisequation.So, we will seek the average Green function G(x � x0) in the Fourier representationsimilar to Eq. (1.38) for the unperturbed Green function G0(x� x0):G(x� x0) = Z 1�1 dkx2� G(kx) exp[ikx(x� x0)];G(kx) = Z 1�1 dxG(x) exp(�ikxx): (1.64)Let us substitute the Fourier integrals (1.64) and (1.38) for the average and unper-turbed Green functions in the Dyson equation (1.62). In doing so, it is more comfortableto transfer the unperturbed Green function from the r.h.s of the Dyson equation (1.62)to the l.h.s.: Z 1�1 dkx2� exp[ikx(x� x0)] hG(kx)�G0(kx)i = (1.65)18



= Z 1�1 dx1 Z 1�1 dx2 Z 1�1 dkx2� exp(ikxx)G0(kx) exp(�ikxx1)�� M(x1 � x2) Z 1�1 dk0x2� exp(ik0xx2)G(k0x) exp(�ik0xx0):Then we need to replace the integration variable x1 with xnew1 = x1 � x2 omitting theindex \new" for simplicity:Z 1�1 dkx2� exp[ikx(x� x0)] hG(kx)�G0(kx)i = (1.66)= Z 1�1 dkx2� exp(ikxx)G0(kx) �Z 1�1 dx1M(x1) exp(�ikxx1)��� Z 1�1 dk0x2� G(k0x) exp(�ik0xx0) Z 1�1 dx2 exp[i(k0x � kx)x2):It is easy to see that the expression within the square brackets on the l.h.s. of the equation(1.66) is nothing else but the Fourier transform MB(kx) of the self-energy (1.63),M(x� x0) = Z 1�1 dkx2� MB(kx) exp[ikx(x� x0)];MB(kx) = Z 1�1 dxM(x) exp(�ikxx): (1.67)At the same time, according to the representation (1.35), the integral over x2 is equalto 2��(k0x � kx). Therefore we take the integral over k0x with the help of this Dirac'sdelta-function: Z 1�1 dkx2� exp[ikx(x� x0)] hG(kx)�G0(kx)i = (1.68)= Z 1�1 dkx2� exp[ikx(x� x0)]G0(kx)MB(kx)G(kx):As a result, we obtain that in the kx-representation the Dyson equation turns out tobe a simple algebraic one:G(kx) = G0(kx) +G0(kx)MB(kx)G(kx): (1.69)Its solution with respect to the Fourier transform G(kx) of the average Green function is:G(kx) = G0(kx)1�MB(kx)G0(kx) = 1k2 � k2x �MB(kx) : (1.70)Here in the last expression we have used the explicit formula (1.37) for the Fourier trans-form G0(kx) of the unperturbed Green function.In the Born approximation the formulas (1.64), (1.70), (1.67) and (1.63) completenominally the solution of the disordered problem.19



1.4.3 Average Green's functionIn agreement with the Fourier representation (1.64) and the expression (1.70) for theFourier transform G(kx) we can write down the average Green function G(x � x0; k) asthe Fourier integral: G(x� x0; k) = Z 1�1 dkx2� exp[ikx(x� x0)]k2 � k2x �MB(kx) : (1.71)This integral should be taken over residues in the way we applied to evaluate the Four-ier integral (1.39) for the unperturbed Green function G0(x � x0; k) (see the end of thesubsection 1.3.2).First of all, we need to �nd the poles of the integrand in Eq. (1.71), i.e. the singularitiesof the Fourier transform G(kx). This problem reduces to solving the dispersion equationk2 � k2x �MB(kx) = 0: (1.72)Owing to the complicated dependence of the self-energy MB(kx) on the wave numberkx we cannot solve this equation (1.72) in a �nite analytic form. At the same time,when deriving the self-energy M(x � x0) we already assumed weak electron scattering.As a consequence, the exact expression (1.57) for the self-energy operator M̂ was treatedperturbatively and we have obtained the self-energy M(x � x0) as the Born (quadratic)approximation (1.63) in the random scattering potential V (x). Therefore, there seemsto be no other way to proceed but to solve the dispersion equation (1.72) perturbativelyconsidering the self-energy MB(kx) as a perturbation.So, we solve the dispersion equation (1.72) by iterations in the small self-energyMB(kx)which is assumed much smaller than the \energy" k2 (jMB(kx)j � k2). At the �rst stepof iterations we neglect the self-energy MB(kx) and get the unperturbed result kx = �k.At the second step we include a small correction �k to the unperturbed wave number k.In other words, we seek the solution of the dispersion equation (1.72) in the form:kx = �(k + �k): (1.73)Obviously, we should calculate the correction �k under the same restrictions that wereused for the derivation of the self-energy M(x). Hence, an important point now is toformulate explicitly the conditions of weak electron scattering. A detailed analysis, whichwe do not perform here, shows that the assumed Born approximation for the self-energyMB(kx) is valid as long as the following two inequalities hold:j�kj � k; (1.74)j�kjRc � 1: (1.75)These conditions mean that the deviation �k from the unperturbed wave number k mustbe the smallest parameter of the dimension of wave number. Indeed, so far there werejust two parameters with the wave-number dimensions in our problem. Those are theelectron wave number k and the inverse correlation radius R�1c . The former speci�es theunperturbed electron states, while the latter characterizes the perturbation of electronstates by the random scattering potential V (x). So, the shift �k has to be small in20



comparison with both of them. We point out that we do not assume any predeterminedinterrelation between the electron wave length k�1 and the correlation radius Rc.Thus, we should solve the dispersion equation (1.72), i.e. �nd the correction �k, underthe conditions (1.74) and (1.75). Notice that we have used the inequality (1.74) when wepresent the solution of the equation in the form (1.73).Let us now substitute the expression (1.73) into the dispersion equation (1.72) andtake into account that the Fourier transform MB(kx) (1.67) is an even function of theargument kx: k2 � (k + �k)2 �MB(k + �k) = 0: (1.76)Then, owing to the condition (1.74), we can expand the second term on the l.h.s ofEq. (1.76) up to linear in �k terms inclusive and neglect second and higher order termsin �k. After cancelling identical terms we get the wave number shift �k:�k = �MB(k + �k)=2k: (1.77)Next we would like to eliminate the correction �k from the argument of the self-energyMB(k+ �k). To understand if we can do it we use the explicit expression for MB(k+ �k)that stems directly from the de�nition (1.67) and formula (1.63):MB(k + �k) = V 20 Z 1�1 dxW(jxj)G0(x) exp(�ikx) exp(�i�kx): (1.78)The �rst multiplierW(jxj) in the integrand has a maximum at x = 0 and monotonouslydecreases over the correlation radius Rc. The second factor G0(x) exp(�ikx) varies overthe electron wave length k�1. The variation scale �k�1 of the third term exp(�i�kx) is thelongest. In other words, the function exp(�i�kx) is a smooth function in comparison withthe rapidly oscillating exponents G0(x) exp(�ikx) and the correlation coe�cient W(jxj)as far as the conditions (1.74) and (1.75) hold. So, we can replace the function exp(�i�kx)by one. This means that the deviation �k can safely be removed from the argument of theself-energy MB(k + �k) in the equation (1.77) as far as the weak scattering limit (1.74)and (1.75) is concerned.As a result of the above simpli�cations, we come to the following expression for thewave-number shift �k: �k = �MB(k)=2k: (1.79)Thus, within the Born approximation (1.74) and (1.75) the poles of the Fourier trans-form G(kx) of the average Green function arekx = �(k �MB(k)=2k): (1.80)Let us now recall that we are evaluating the integral over kx in the equation (1.71)to obtain the explicit formula for the average Green function G(x � x0; k). We havefound the poles (1.80) of the integrand. A next step should be taking the integral overresidues as it was done for the unperturbed Green function G0(x � x0; k) (see the end ofthe subsection 1.3.2). Fortunately, we do not need to do this. To write down an answer itis su�cient to compare the expressions (1.40) and (1.80) for the poles of the unperturbedG0(kx) and average G(kx) Green functions. The comparison leads to the conclusion: In21



the Born approximation (1.74) and (1.75) the average Green function G(x�x0; k) is alwaysequal to the unperturbed Green function G0(x�x0) with the wave number k reduced by thevalue MB(k)=2k: G(x� x0; k) = G0(x� x0; k �MB(k)=2k): (1.81)It is necessary to emphasize that this conclusion is valid if the imaginary part of theself-energy MB(k) is negative or zero. This is the only case when the poles of both Greenfunctions are similar to each other. However, such limitation on the imaginary part ofMB(k) should not be considered strict because in systems with no energy sources thenon-positiveness of MB(k) is dictated by the energy conservation law (see, e.g., [1, 7]).We will see below that the self-energy MB(k) is complex. Basing on this fact, let usextract the real and the imaginary part of the correction �k:�k = 
 + i=2Lts; (1.82)
 = �<MB(k)=2k; (1.83)1=Lts = �=MB(k)=k; Lts > 0: (1.84)Hereinafter the symbols \<" and \=" stand for the real and imaginary parts respectively.After the lengthy algebra we are in a position now to write down the explicit formulafor the average Green function G(x�x0; k) of a 1D disordered conductor. According to theconclusion (1.81) and the equation (1.27) for the unperturbed Green function G0(x�x0; k)using the notation (1.83) and (1.84) we get:G(x� x0; k) = exp[i(k + 
)jx� x0j]2ik exp(�jx� x0j2Lts ): (1.85)Brief analysis of the expression (1.85) for the average Green function of a 1D disorderedconductor: Electron scattering by a random potential gives rise to the complex deviation�k of the electron wave number from the unperturbed value k. This fact causes the phaserenormalization and attenuation of the average Green function along the length of theconductor. The real part 
 of the complex shift �k is responsible for the disorder-inducedmodi�cation to the phase of the Green function. The quantity Lts which is speci�ed bythe imaginary part of �k has the meaning of the attenuation length.1.4.4 Electron mean free pathWe now need to derive explicit expressions for the phase modi�cation 
 and the attenu-ation length Lts to associate them with the properties of the random scattering potentialV (x). According to de�nitions (1.83) and (1.84) this problem reduces to the derivationof the explicit expression for the self-energy MB(k).Let us substitute the equation (1.63) for M(x) into the formula (1.67) at kx = k:MB(k) = V 20 Z 1�1 dxW(jxj)G0(x) exp(�ikx): (1.86)Then we apply the Fourier representation (1.38) for the unperturbed Green function G0(x):22



MB(k) = V 20 Z 1�1 dkx2� G0(kx) Z 1�1 dxW(jxj) exp[�i(k � kx)x]: (1.87)We next take into account that the integral over x is nothing else but the Fourier transformof the correlation coe�cient W(jxj):W(jxj) = Z 1�1 dkx2� W (kx) exp(ikxx);W (kx) = Z 1�1 dxW(jxj) exp(�ikxx): (1.88)So, the self-energy MB(k) takes the form:MB(k) = V 20 Z 1�1 dkx2� W (k � kx)G0(kx): (1.89)At this step of our calculations let us substitute the explicit expression (1.37) for theFourier transform G0(kx) of the unperturbed Green function G0(x) into Eq. (1.89). Inthis way we arrive at the result:MB(k) = V 20 Z 1�1 dkx2� W (k � kx)k2 � k2x + i0 : (1.90)We now should present the self-energy MB(k) as an explicit complex value. In otherwords, we need to extract the real and the imaginary parts from the equation (1.90). Tothis end we divide the Fourier transform G0(kx) into two terms:G0(kx) = 1k2 � k2x + i0 = 12k � 1k � kx + i0 + 1k + kx + i0� : (1.91)After that we use the following Dirac identity:1k � kx � i0 = P:V: 1k � kx � �i�(k � kx): (1.92)Here the symbol P:V: stands for a principal value of an integral. According to the identity(1.92), the Fourier transform G0(kx) is given byG0(kx) = 1k2 � k2x + i0 == P:V: 1k2 � k2x � �i2k [�(k � kx) + �(k + kx)] : (1.93)We next substitute this expression (1.93) into the formula (1.90) and take some integralswith the help of the Dirac delta-functions. At the end we �nd out that the self-energy isdescribed byMB(k) = V 20 P:V: Z 1�1 dkx2� W (k � kx)k2 � k2x � iV 204k [W (0) +W (2k)] : (1.94)It is necessary to emphasize that the evenness of the correlation coe�cientW(jxj) impliesthe reality of the Fourier transform W (kx). Therefore, in the representation (1.94) the23



�rst term is the real part and the second one is the imaginary part of the self-energyMB(k).Thus, in accordance with the de�nitions (1.83) and (1.84), the explicit expressionsfor the phase modi�cation 
 and the attenuation length Lts take the following ultimateforms: 
 = �V 202k P:V: Z 1�1 dkx2� W (k � kx)k2 � k2x : (1.95)1Lts = V 204k2 [W (0) +W (2k)] ; Lts > 0: (1.96)The real spectrum shift 
 does not play any role in the conducting properties of 1Ddisordered electron systems. At the same time, the imaginary part 1=2Lts of the spectrumdeviation �k changes these properties drastically. Nothing else but the imaginary part1=2Lts forms the conductance and causes the e�ect of the strong localization. Therefore,hereinafter we will analyze only the attenuation length Lts of the average Green functionof a 1D disordered conductor.It is a quite general result of the quantum scattering theory that the attenuation lengthLts of the average single-particle Green function is just the \outgoing" mean free path ofelectrons which is formed by scattering from a given state into all possible states (includingthe given one). Indeed, the attenuation length Lts is originated from the imaginary partof the self-energy (see Eq. (1.84), where L�1ts = �=MB(k)=k). On the other hand, theimaginary part of the self-energy MB(k) is proportional to the outgoing term of thequantum integral of collisions. Since the outgoing term is proportional to the full crosssection of scattering, the corresponding outgoing mean free path is inversely proportionalto the full cross section. Therefore it is often referred to as the full (total) mean free path.We know that the full cross section of scattering is proportional to the probability ofelectron scattering from a given state into all possible states (including the given one). Inthe 1D case an electron has only two possibilities for scattering: It can be scattered eitherforward or backward only. Let us recall that we consider an elastic scattering becausethe random potential V (x) is time-independent and hence the Schr�odinger equation hasstationary (with well-de�ned energy) solutions. Elastic scattering does not change theinitial energy (and hence the modulus of the wave vector, i.e. the wave number k) of anelectron. It changes only the direction of the electron motion, i.e. only the sign of thevelocity (the sign of the wave vector ~k). Therefore, the modulus of the modi�cation �~k ofthe electron wave vector is equal to zero (j�~kj = 0) at the forward elastic scattering andis equal to the double initial wave number (j�~kj = 2k) at the backward elastic scattering.Let us now recall that the scattering probability is a function of the modi�cation j�~kj ofthe electron wave vector by a scattering process.In agreement with the above statements, we can conclude that the �rst term in theformula (1.96) is proportional to the probability of the forward electron scattering and thesecond one is proportional to the probability of the backward electron scattering. Basedon this conclusion, the full electron mean free path can be presented asL�1ts = L�1fs + L�1bs ; 24



L�1fs = V 204k2W (0); L�1bs = V 204k2W (2k): (1.97)In this expression the length Lfs is related to the forward electron scattering, while thelength Lbs is associated with the backward scattering. Therefore, the length Lfs is calledthe mean free path of forward electron scattering and the length Lbs is referred to as thebackscattering mean free path.Usually, the backscattering length Lbs is larger than the length Lfs because W (2k) <W (0). So, L�1ts � L�1fs and the average Green function attenuates along the conductormainly on the scale of the mean free path of forward electron scattering Lfs. However,in the second part of the Lectures we will see that the conductance of 1D disorderedconductors is completely determined by the backscattering length Lbs alone but not byLfs.Concluding this subsection we would like to point out that, owing to the Born restric-tions (1.74) and (1.75), the outgoing mean free path Lts of electrons far exceeds both theelectron wave length k�1 and the correlation radius Rc:kLts � 1; Lts � Rc: (1.98)It is clear that the �rst requirement allows to think of electrons as \quasifree" (but notquasiclassical!) particles. The second inequality is, in fact, the necessary and su�cientcondition for the statistical approach to the problem of electron interaction with a randompotential.
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Chapter 2Conductance of 1D DisorderedConductorThe previous Lectures discussed the spectral properties of disordered 1D electron systems.To this end we derived and analyzed the single-particle average Green function. Nowwe are starting to consider conducting (transport) properties of such systems. Morespeci�cally, we will obtain and study the conductance of disordered 1D electron systems.The main e�ects which we expect to �nd out are the ballistic and strong-localizationregimes of conduction. It is necessary to emphasize that the strong localization is causedby coherent multiple scattering of electrons by a random potential. Presently the completeself-consistent theory of these phenomena exists only in a 1D case.2.1 Conductance-Problem FormulationWe consider a conducting 1D disordered wire of �nite length L. Let the x axis be directedalong a straight line of the wire which occupies the following spatial interval:�L=2 � x � L=2: (2.1)Note that in our discussion devoted to the average Green function we treated an in�nitelylong disordered 1D wire. It is important to point out here that the localization makes theconductance of an in�nite 1D wire to vanish. So, it is sensible to consider a 1D conductorof �nite length L in order to analyze both the ballistic and localization regimes as well asthe crossover between them.As before, we choose the free electron model, i.e. the dispersion law of electrons isassumed to be quadratic and isotropic (1.16).For convenience of further calculations, we introduce the dimensionless conductanceT (L) of the system. It is de�ned as the conductance G(L) of the wire divided by theconductance quantum e2=��h: T (L) = G(L)e2=��h: (2.2)Here e is the elementary charge. Below we will see that the dimensionless conductanceT (L) has an independent physical meaning.26



In accordance with the standard linear response theory by R. Kubo [8], the conduct-ance (as well as conductivity) of a non-interacting system is expressed via the product ofdi�erences between the advanced and retarded single-electron Green functions (see, e.g.,papers [9, 10] and the book [11]). It has been proved [12, 13] that under the conditionsof weak electron scattering one can neglect the products of the identical Green func-tions (both retarded and both advanced) in the general expression for the conductance.Then, taking into account that the advanced Green function transforms into the retardedGreen function by simultaneous complex conjugation and swapping the arguments, thedimensionless conductance T (L) at zero temperature can be presented asT (L) = � 4L2 Z L=2�L=2 dx Z L=2�L=2 dx0 @G(x; x0; kF )@x @G�(x; x0; kF )@x0 : (2.3)The asterisk \�" stands for complex conjugation. Note that the Fermi wave number kFreplaces the wave number k in this and all further equations because the electron gas isassumed degenerate, i.e. obeying the Fermi-Dirac statistics.The retarded single-electron Green function G(x; x0; kF ) was introduced in the previousLectures. For completeness of the problem statement we rewrite here the equation for theretarded Green function of a disordered 1D conductor: d2dx2 + k2F + i0!G(x; x0)� V (x)G(x; x0) = �(x� x0): (2.4)Hereinafter the symbol \i0" means an arbitrarily small, tending to zero, positive imaginaryquantity. As before, the Green function satis�es the radiative boundary conditions at thewire ends x = �L=2. In the next section we will give the explicit expressions for theradiative boundary conditions in the case of a conductor of �nite length L.To describe the electron scattering we have introduced the random potential V (x)in the equation (2.4), which speci�es the inhomogeneity (disorder) of the problem. Itscorrelation properties are de�ned by the formula (1.17) from the previous part of theLectures.We managed to solve the problem of the average Green function under the conditionsof weak electron scattering only, i.e. within the Born approximation. The same condi-tions of the weakness of the random potential V (x) will be assumed here in derivingthe conductance. Since the real spectrum shift 
 obtained in the previous Lectures doesnot contribute to the conductance, the weak-scattering restrictions should be formulatedfor the electron total (outgoing) mean free path Lts. As we found out earlier, the elec-tron relaxation length Lts must be large in comparison with the \microscopic" lengthsof our problem, namely, with the electron wavelength k�1F and the correlation radius Rc:kFLts � 1 and Lts � Rc. Moreover, to make averaging over the realizations of the ran-dom potential V (x) meaningful we need to assume similar requirements for the conductorlength L, i.e., kFL � 1 and L � Rc. All these conditions can be collected into thefollowing inequality: maxfk�1F ; Rcg � minfLts; Lg: (2.5)We point out that we do not assume any predetermined interrelations between the Fermiwavelength k�1F and the correlation radius Rc or between the wire length L and the totalrelaxation length Lts. 27



Our goal is to calculate the dimensionless conductance T (L) (2.2) averaged over theensemble of realizations of the random potential V (x). According to the Kubo formula(2.3), this problem is reduced to averaging the product of two retarded Green's functions,i.e., to searching the average two-particle Green function. It is very important to underlinethat for the 1D case this procedure can not be performed by an approximate method ofsolving the Dyson equation which we used to calculate the average single-particle Greenfunction. Therefore, below we will apply one of more rigorous methods that allow correctsolution of 1D two-particle quantum problems with disorder. We mention that thosemethods give the same result for the average single-particle Green function which can bederived by the traditional procedure of solving the Dyson equation.2.2 Two-scale ModelAccording to the weak-scattering assumption (2.5), there exist two groups of substantiallydi�erent spatial scales in our problem. On the one hand, there is a group of \macroscopic"lengths: the wire length L and the relaxation length Lts. On the other hand, there is apair of \microscopic" lengths: the electron wavelength k�1F and the correlation radius Rc.The existence of two scales allows to apply the two-scale model of oscillations for treatingthe equation (2.4) for the retarded Green function G(x; x0).We start with the well-known representation for the 1D Green function G(x; x0) (seeEq. (1.28) from the previous Lectures):G(x; x0) = W�1[ +(x) �(x0)�(x� x0) +  +(x0) �(x)�(x0 � x)] : (2.6)Recall that in this representation the functions  �(x) are two linearly independent solu-tions of the corresponding homogeneous equation, i.e. equation (2.4) with zero insteadof the delta-function on the r.h.s. The solution  �(x) satis�es the radiative boundarycondition at the left open end x = �L=2 and the solution  +(x) satis�es the radiationboundary condition at the right open end x = +L=2 of the wire. The Wronskian W ofthe functions  �(x) is de�ned as usual,W =  �(x0) 0+(x0)�  +(x0) 0�(x0): (2.7)Hereinafter a prime at a function stands for the derivative of this function with respectto its argument. Note that the Wronskian W of any Hermitian problem does not dependon the coordinate x0. Therefore, we can calculate it at any convenient point within theinterval (2.1). The symbol �(x) in Eq. (2.6) denotes the Heaviside unit-step �-function.We know that two linearly independent solutions  (0)� (x) of the unperturbed (whenV (x) = 0) boundary-value problem are the plane waves: (0)� (x) = exp(�ikFx); kF ! kF + i0: (2.8)The plane wave  (0)+ (x) = exp(ikFx) propagates to the right and the plane wave  �(x)(0) =exp(�ikFx) propagates to the left. It is clear that in the 1D perturbed problem these\initial" electron waves can be scattered by the random potential V (x) both forward andbackward. As a result, the electron state will be made up by the sum of transmitted andre
ected waves. Therefore, we can seek the functions  �(x) as superposition of modulatedwaves propagating in opposite directions along the x-axis,28



 �(x) = ��(x) exp(�ikFx)� i
�(x) exp(�ikFx): (2.9)The radiative boundary conditions for the wave functions  �(x) imply the absence ofwaves scattered by the wire ends x = �L=2. It means that the perturbed wave functions �(x) have to transform into the respective plane waves  (0)� (x) at the ends x = �L=2, �(�L=2) = exp(�ikFx): (2.10)In this way the radiation boundary conditions (2.10) for the functions  �(x) lead to the\initial" conditions for the amplitudes ��(x) and 
�(x):��(�L=2) = 1; 
�(�L=2) = 0: (2.11)Obviously, if the random scattering potential V (x) tends to zero, the introduced amp-litudes ��(x) tend to unity and 
�(x) tend to zero as well.It is noteworthy that scales of variation of the amplitudes ��(x) and 
�(x) in Eq. (2.9)as functions of the coordinate x are macroscopic: they are determined by either therelaxation length Lts or the wire length L. Thus, within the two-scale approximation (2.5)they are smooth functions of the coordinate x in comparison with the rapidly oscillatingexponents exp(�ikFx) and the correlation coe�cient W(x).2.2.1 Dynamic equations for smooth amplitudesAccording to the representations (2.6) and (2.9), the problem of calculating the Greenfunction G(x; x0) is reduced to �nding the smooth amplitudes ��(x) and 
�(x). Therefore,�rst of all, we should derive equations for these functions. Under the weak-scatteringcondition (2.5) the appropriate equations are deduced by a standard method of averagingover rapid phases (see, e.g., the book [14]). Let us now apply that method to our problem.We start from the homogeneous equation for the functions  �(x). This equationcorresponds to the equation (2.4) for the Green function G(x; x0) but has zero instead ofthe delta-function on the r.h.s.: d2dx2 + k2F! �(x)� V (x) �(x) = 0: (2.12)We need to calculate explicitly the second derivative of  �(x) with respect to x. The�rst derivative of  �(x) areddx �(x) = �0�(x) exp(�ikFx)� i
0�(x) exp(�ikFx)�� ikF��(x) exp(�ikFx)� kF
�(x) exp(�ikFx); (2.13)whence we get the second derivative:d2dx2 �(x) = �00�(x) exp(�ikFx)� i
00�(x) exp(�ikFx)�29



� 2ikF�0�(x) exp(�ikFx)� 2kF
0�(x) exp(�ikFx)�� k2F��(x) exp(�ikFx) + ik2F
�(x) exp(�ikFx): (2.14)We next take into account the following estimations for the derivatives of the smoothamplitudes ��(x) and 
�(x). Since a derivative of a function can be roughly estimatedas the value of the function itself divided by a scale of its variation, we have:�0�(x) � ��=Lts or � ��=L; �00�(x) � ��=L2ts or � ��=L2;
0�(x) � 
�=Lts or � 
�=L; 
00�(x) � 
�=L2ts or � 
�=L2: (2.15)In accordance with these estimations we can neglect the �rst two terms containing thesecond derivatives of the smooth amplitudes ��(x) and 
�(x) in the exact equation (2.14).So, within the two-scale model (2.5) the second derivative of  �(x) looks liked2dx2 �(x) � �2ikF�0�(x) exp(�ikFx)� 2kF
0�(x) exp(�ikFx)� k2F �(x): (2.16)Here we have used the explicit expression (2.9) for the wave functions  �(x).We now substitute the formulas (2.16) and (2.9) into the equation (2.12) and cancelidentical terms proportional to the \Fermi energy" k2F . As a result, we come to theequations: �2ikF�0�(x) exp(�ikFx)� 2kF
0�(x) exp(�ikFx) ����(x)V (x) exp(�ikFx) + i
�(x)V (x) exp(�ikFx) = 0: (2.17)So, we have got only two equations with respect to four unknown functions ��(x) and
�(x). Moreover, these equations contain functions which vary over both scales of ourproblem. Indeed, the smooth amplitudes ��(x) and 
�(x) vary over the macroscopiclengths (either the wire length L or the mean free path Lts) while the random potentialV (x) and the exponents exp(�ikFx) vary over the microscopic lengths: the correlationradius Rc and the electron wavelength k�1F respectively. Obviously, we need four insteadof just two equations. Moreover, in those four equations sought-for all terms should haveonly macroscopic variation scales. To deduce the required four equations we will averageour two equations (2.17) over the microscopic lengths k�1F and Rc.The averaging procedure consists of the following steps:(i) First, we multiply both sides of the equations (2.17) from the left through by theexponent exp(�ikFx).(ii) Then we replace the variable x with x0 and integrate the obtained equations ob-tained term by term over x0 within the spatial interval (x� l; x+ l). At the same time wedivide them, also term by term, by the interval length 2l. In other words, at this step ofaveraging we act on the both sides of the equations from the left through by the integraloperator: 30



Z x+lx�l dx02l : : : : (2.18)To eliminate the microscopic scales k�1F and Rc but retain the macroscopic scales L and Ltsthe length 2l of the averaging interval must be intermediate between the above-introducedmicroscopic and macroscopic scales. This means that the length l must be much largerthan k�1F and Rc while much smaller than L and Lts:maxfk�1F ; Rcg � l� minfLts; Lg: (2.19)Within the domain (2.19) the length l can be varied arbitrarily.(iii) Under the conditions (2.19) the smooth amplitudes ��(x) and 
�(x) should betaken outside the integral operator (2.18) at the point x0 = x.(iv) In this way we arrive at two equations for the four unknown functions ��(x)and 
�(x). To deduce the other pair of the equations we need to repeat all the averagingoperations (i) { (iii) using the multiplier exp(�ikFx) instead of the exponent exp(�ikFx).At the end of the averaging procedure we obtain the set of four �rst order di�erentialdynamic (causal) equations with variable coe�cients:�0�(x)� i�(x)��(x)� ���(x)
�(x) = 0 ; (2.20)
0�(x)� i�(x)
�(x)� ��(x)��(x) = 0 :These equations are complemented by the four initial conditions (2.11).In the equations (2.20) the variable coe�cients �(x) and ��(x) are de�ned by theexpressions �(x) = 12kF Z x+lx�l dx02l exp(�ikFx0)V (x0) exp(�ikFx0) == 12kF Z x+lx�l dx02l V (x0); (2.21)��(x) = 12kF Z x+lx�l dx02l exp(�ikFx0)V (x0) exp(�ikFx0) == 12kF Z x+lx�l dx02l exp(�2ikFx0)V (x0):According to these de�nitions the coe�cients �(x) and ��(x) represent the space-averagedrandom �elds associated with the scattering potential V (x) of the electron-disorder inter-action. Since the random potential V (x) is real, the function �(x) is real too. At thesame time the random �elds ��(x) are complex conjugate to each other,���(x) = ��(x): (2.22)Thus, we have come from the boundary-value problem (2.4) for the Green functionG(x; x0) to the dynamic problem (2.20) with the initial conditions (2.11) for the smoothamplitudes ��(x) and 
�(x). The coordinate x plays the role of time in our dynamicproblem. 31



2.2.2 Correlation relations for the random �eldsIt follows from the dynamic equations (2.20) that the smooth amplitudes ��(x) and 
�(x)are causal functionals of the space-averaged random �elds �(x) and ��(x). Since we areinterested in quantities averaged over realizations of the random potential V (x), statisticalproperties of the �elds �(x) and ��(x) become crucial.As long as the average of the scattering potential V (x) is equal to zero (see Eq. (1.17)),the random �elds �(x) and ��(x) are also zero-averaged according to the de�nitions (2.21),h�(x)i = h��(x)i = 0: (2.23)From this equation and the weak scattering conditions (2.5) it follows that all the �elds�(x) and ��(x) can be considered as Gaussian random processes whose properties arecompletely speci�ed by their binary correlators. We will calculate the correlators at theend of this subsection and here we give and discuss just the ultimate expressions for them:h�(x)��(x0)i = h��(x)��(x0)i = 0; (2.24)h�(x)�(x0)i = L�1fs �(x� x0); h��(x)���(x0)i = L�1bs �(x� x0) :It is essential that the both known electron-relaxation lengths (1.97), Lfs and Lbs, emergein the correlators (2.24) of the random �elds �(x) and ��(x). They are given by theexpressions: L�1fs = V 204k2FW (0); (2.25)L�1bs = V 204k2FW (2kF ): (2.26)The function W (kx) is the Fourier transform of the correlation coe�cient W(jxj) fromEq. (1.17), W(jxj) = Z 1�1 dkx2� W (kx) exp(ikxx);W (kx) = Z L=2�L=2 dxW(jxj) exp(�ikxx): (2.27)Note that now the integration over the coordinate x is performed within the �nite interval(2.1) instead of the in�nite one (�1;1). This is precisely the interval occupied by thedisordered 1D wire of the �nite length L.We know from the previous Lectures that the length Lfs is related to the forwardelectron scattering (i.e. without changing the sign of the electron velocity), while Lbs isassociated with the backward scattering. In our consideration the length Lfs speci�esthe correlator h�(x)�(x0)i whereas the backscattering length Lbs controls the correlatorh��(x)���(x0)i. Hence we can conclude that the real random �eld �(x) is responsible for the32



forward electron scattering. At the same time, the complex random �elds ��(x) describethe backscattering of electrons.Recall that the superposition of the inverse lengths (2.25) and (2.26) is the inverseoutgoing length of attenuation of the average Green function hG(x; x0; kF )i = G(x�x0; kF ),L�1ts = L�1fs + L�1bs : (2.28)This electron outgoing mean free path is exactly the scattering length that enters theweak scattering condition (2.5).In consequence of the correlation properties (2.23) and (2.24) the random �elds �(x)and ��(x) turn out to be statistically independent of each other and delta-correlated.Therefore we can regard them as real or complex, respectively, Gaussian \white noise".We emphasize that this is a general result for a weak overbarrier scattering. This factplays a dominating role in averaging procedures. Strictly speaking, the delta-functionsare not exact in the expressions (2.24). As we will see below, the correlators we deal withare sharp (of the order of the space averaging scale l (2.19)) functions of the coordinatedi�erence x�x0. Recall that in the equations (2.20) for the smooth amplitudes ��(x) and
�(x) all the terms vary essentially only over macroscopic scales (either the wire lengthL or the mean free path Lts). Thus, due to conditions (2.19) such correlators should bereplaced with the corresponding delta-functions.Useful integralsBefore calculating the binary correlators (2.24) we need to take and analyze some usefulintegrals that will appear in the calculations.(i) A �rst useful integral isZ x+lx�l dx12l exp[�ikx(x1 � x)] = Z l�l dx12l exp(�ikxx1) = sin(kxl)kxl : (2.29)This integral has the highest (absolute) maximum at kx = 0 as a function of the wavenumber kx and decreases towards the both sides of the maximum with the typical scale�kx � l�1. So, this integral is a sharp function in comparison with functions varying overscales larger than l�1.(ii) A second very important integral isFl(x) � Z 1�1 dkx2� sin2(kxl)(kxl)2 exp(ikxx): (2.30)Note that this integral describes a function whose Fourier transform is presented by thesquared �rst integral (2.29). After exact calculation we getFl(x) = 1� jxj=2l2l �(2l � jxj): (2.31)In accordance with the explicit representation (2.31) the function Fl(x) is di�erentfrom zero only within the interval (�2l < x < 2l) of width 4l. It has a single maximumequal to 1=2l at the point x = 0 and monotonously decreases to the left and to the rightof the maximum along the straight lines 2lFl(x) = 1� x=2l respectively. At the intervalends x = �2l the function Fl(x) vanishes, Fl(�2l) = 0. We underline that the integral ofFl(x) along any symmetrical interval (�2a; 2a) with a > l is one:33



Z 2a�2a dxFl(x) = Z 2a�2a dx 1� jxj=2l2l �(2l � jxj) = Z 2l�2l dx2l  1� jxj2l ! == 2 Z 2l0 dx2l �1� x2l� = 1 for a > l: (2.32)Summarizing all the peculiarities of the function Fl(x), we see that it is nothing elsebut the prelimit delta-function: liml!0 Fl(x) = �(x): (2.33)Thus we can conclude that the function Fl(x) is a sharp function and can be replacedby the delta-function within the variation scales much larger than the space averaging scalel. In particular, according to the conditions (2.19), we can do it within the macroscopicscales (either the wire length L or the mean free path Lts) of variation of the smoothamplitudes ��(x) and 
�(x).(iii) The third and last integral we should analyze is introduced by the expressions:�l(x; kF ) � Z 1�1 dkx2� sin[(kx � kF )l](kx � kF )l sin[(kx � kF )l](kx � kF )l exp(ikxx) == Z 1�1 dkx2� sin[(kx � kF )l](kx � kF )l sin[(kx + kF )l](kx + kF )l exp(ikxx): (2.34)This integral describes a function whose Fourier transform is presented by the product ofthe two �rst integrals (2.29) with arguments shifted by 2kF (kx ! kx � kF respectively).If kF will be set to zero, the third integral (2.34) coincides with the second one (2.30):�l(x; 0) = Fl(x): (2.35)To evaluate the integral (2.34) we can use the residue theorem from the complex-variabletheory. To this end we need to present the sines as sums of exponential functions andrecall that kF is in fact kF + i0. The calculations are then performed in a way similarto that we applied to obtain the Fourier integral for the unperturbed Green functionG0(x� x0; kF ) in the previous Lectures. So, we have�l(x; kF ) = sin[2kF l(1� jxj=2l)]4kF l2 �(2l � jxj): (2.36)We will now discuss the behavior of the function �l(x; kF ) keeping in mind the relations(2.19) between di�erent spatial scales. As well as Fl(x), the function (2.36) is di�erentfrom zero only within the interval (�2l < x < 2l) of width 4l. But in contrast to theformer, �l(x; kF ) rapidly oscillates within this interval. The scale of the oscillations isof the order of k�1F being much less than l (k�1F � l). Moreover, the amplitude of theoscillations, 1=4kF l2, is 2kF l� 1 times less than the maximum 1=2l of the function Fl(x).As a consequence of such oscillations the integral of �l(x; kF ) along any symmetricalinterval (�2a; 2a) with a > l is small with the parameter (kF l)�2 � 1:Z 2a�2a dx�l(x; kF ) = sin2(kF l)(kF l)2 for a > l: (2.37)34



Thus we come to the following conclusion: the function �l(x; kF ) is small both locallyand integrally. Therefore, within the same accuracy that allows to replace Fl(x) by thedelta-function the function �l(x; kF ) can be set to zero,�l(x; kF ) � 0: (2.38)Derivation of correlators for the random �eldsAfter having discussed the useful integrals we are now in a position to calculate the binarycorrelators (2.24) of the random �elds �(x) and ��(x).(i) First we derive the simplest correlator h�(x)�(x0)i. By the de�nition (2.21),h�(x)�(x0)i = 14k2F Z x+lx�l dx12l Z x0+lx0�l dx22l hV (x1)V (x2)i: (2.39)Use the notation (1.17) for the binary correlator of the random potential V (x):h�(x)�(x0)i = V 204k2F Z x+lx�l dx12l Z x0+lx0�l dx22l W(jx1 � x2j); (2.40)then substitute the Fourier representation (2.27) for the correlation coe�cientW(jx1�x2j)into the integrand:h�(x)�(x0)i = V 204k2F Z 1�1 dkx2� W (kx) Z x+lx�l dx12l exp(ikxx1) Z x0+lx0�l dx22l exp(�ikxx2): (2.41)Note that the integrals over x1 and x2 are de�ned explicitly by the �rst useful integral(2.29). So, we geth�(x)�(x0)i = V 204k2F Z 1�1 dkx2� W (kx) sin2(kxl)(kxl)2 exp[ikx(x� x0)]: (2.42)The integrand of Eq. (2.42) contains two types of sharp functions. The �rst is theFourier transform W (kx) with maximum at kx = 0 and variation scale �kx � R�1c . Thesecond is sin2(kxl)=(kxl)2 with the highest maximum at the same point kx = 0 but withvariation scale �kx � l�1. Owing to the relations (2.19), the second function is thesharpest (l�1 � R�1c ) in the integrand. This fact allows to take the smoother factorW (kx) outside the integral at the point kx = 0:h�(x)�(x0)i = V 204k2F W (0) Z 1�1 dkx2� sin2(kxl)(kxl)2 exp[ikx(x� x0)]: (2.43)Let us apply the de�nition (2.25) for the forward-scattering length Lfs and �nd out thatthe integral over kx is nothing else but the second useful integral (2.30). In this way weobtain the formula: h�(x)�(x0)i = L�1fs Fl(x� x0): (2.44)Taking into account the preceding analysis, we replace the function Fl(x � x0) by thedelta-function �(x�x0) and obtain the ultimate expression (2.24) for the binary correlatorh�(x)�(x0)i of the real random �eld �(x). 35



(ii) By the de�nition (2.21) of the complex random �elds ��(x) we can write down thecorrelator h��(x)���(x0)i in the form:h��(x)���(x0)i � h��(x)��(x0)i == 14k2F Z x+lx�l dx12l exp(�2ikFx1) Z x0+lx0�l dx22l exp(�2ikFx2)hV (x1)V (x2)i: (2.45)Use again the notation (1.17) for the binary correlator of the random potential V (x) andsubstitute the Fourier representation (2.27) for the correlation coe�cient W(jx1 � x2j)into the integrand:h��(x)���(x0)i � h��(x)��(x0)i = V 204k2F Z 1�1 dkx2� W (kx)�� Z x+lx�l dx12l exp[i(kx � 2kF )x1] Z x0+lx0�l dx22l exp[�i(kx � 2kF )x2]: (2.46)The integrals over x1 and x2 are de�ned explicitly by the �rst useful integral (2.29). So,we have: h��(x)���(x0)i � h��(x)��(x0)i == V 204k2F Z 1�1 dkx2� W (kx) sin2[(kx � 2kF )l][(kx � 2kF )l]2 exp[i(kx � 2kF )(x� x0)]: (2.47)The integrand in Eq. (2.47) is similar to that in Eq. (2.42) for the correlator h�(x)�(x0)i.The only distinction is the shifted argument kx � 2kF of the sharpest function sin2[(kx �2kF )l]=[(kx�2kF )l]2. Therefore this function has now the highest maximum at the shiftedpont kx = �2kF . So, we should take the smoother coe�cient W (kx) outside the integralat this point kx = �2kF :h��(x)���(x0)i � h��(x)��(x0)i == V 204k2F W (�2kF ) Z 1�1 dkx2� sin2[(kx � 2kF )l][(kx � 2kF )l]2 exp[i(kx � 2kF )(x� x0)]: (2.48)Now we take into account that the Fourier transform W (kx) of the correlation coe�cientW (x) is an even function of the argument kx (W (�kx) = W (kx)) because W (x) is even.In addition to this, we change the integration variable kx ! knewx = kx � 2kF and omitthe index \new" in the �nal formula for simplicity. As a result, we get:h��(x)���(x0)i � h��(x)��(x0)i == V 204k2F W (2kF ) Z 1�1 dkx2� sin2(kxl)(kxl)2 exp[ikx(x� x0)]: (2.49)36



We note that by the de�nition (2.26) the factor before the integral is the inversebackscattering length L�1bs . At the same time the integral itself is nothing else but thesecond useful integral (2.30). Owing to this we obtain the formula:h��(x)���(x0)i � h��(x)��(x0)i = L�1bs Fl(x� x0): (2.50)Based on the previous analysis, we replace the function Fl(x � x0) by the delta-function�(x� x0) and get the ultimate expression (2.24) for the binary correlator h��(x)���(x0)i ofthe complex random �elds ��(x).(iii) Now we are going to calculate the cross-correlator h�(x)��(x0)i. As before we usethe explicit expressions (2.21) for �(x) and ��(x). After that we apply the formula (1.17)for the binary correlator of the scattering potential V (x) and the Fourier representation(2.27) for the correlation coe�cient W(jx1 � x2j). As a result we obtain:h�(x)��(x0)i = V 204k2F Z 1�1 dkx2� W (kx)�� Z x+lx�l dx12l exp(ikxx1) Z x0+lx0�l dx22l exp[�i(kx � 2kF )x2]: (2.51)As usual, we next take the integrals over x1 and x2 with the aid of the �rst useful integral(2.29): h�(x)��(x0)i = V 204k2F exp(�2ikFx0)�� Z 1�1 dkx2� W (kx) sin(kxl)kxl sin[(kx � 2kF )l](kx � 2kF )l exp[ikx(x� x0)]: (2.52)At this step of calculations we should discuss properties of the functions entering theintegral over kx in Eq. (2.52). Unlike the previous cases, it is crucial that the integrandof Eq. (2.52) now contains two (instead of one) equally sharp functions sin(kxl)=kxl andsin[(kx � 2kF )l]=(kx � 2kF )l. They have the same variation scale �kx � l�1 but di�erenthighest maxima at the points kx = 0 and kx = �2kF respectively. Moreover, owing to therelations (2.19), the distance 2kF between the maxima is much larger than their widthl�1 (l�1 � kF ). All these facts require to take the smoother factor W (kx) outside theintegral at the two mentioned points, kx = 0 and kx = �2kF :h�(x)��(x0)i = V 204k2F [W (0) +W (�2kF )] exp(�2ikFx0)�� Z 1�1 dkx2� sin(kxl)kxl sin[(kx � 2kF )l](kx � 2kF )l exp[ikx(x� x0)]: (2.53)We now make use of the de�nitions (2.25), (2.26) and (2.28) for the total relaxation lengthLts as well as of the evenness of the Fourier transform W (kx) (W (�kx) = W (kx)). Thenwe change the integration variable kx for knewx = kx � kF and omit the index \new" forsimplicity: 37



h�(x)��(x0)i = L�1ts exp[�ikF (x+ x0)]�� Z 1�1 dkx2� sin[(kx � kF )l](kx � kF )l sin[(kx � kF )l](kx � kF )l exp[ikx(x� x0)]: (2.54)The integral in the last expression (2.54) is nothing else but the third useful integral(2.34). So we obtain:h�(x)��(x0)i = L�1ts exp[�ikF (x + x0)] �l(x� x0; kF ): (2.55)From the previous discussion (see the estimation (2.38)) we can conclude that the function�l(x�x0; kF ) and consequently the cross-correlator h�(x)��(x0)i vanish. This means thatthe ultimate expression (2.24) implies statistical independence of the random �elds �(x)and ��(x).(iv) The correlator h��(x)��(x0)i of the random �elds ��(x) is derived similarly to thecorrelator h�(x)��(x0)i. As always, we use the explicit expressions (2.21) for ��(x). Thenwe apply the formula (1.17) for the binary correlator of the scattering potential V (x) andthe Fourier representation (2.27) for the correlation coe�cient W(jx1 � x2j). Finally weget: h��(x)��(x0)i = V 204k2F Z 1�1 dkx2� W (kx)�� Z x+lx�l dx12l exp[i(kx � 2kF )x1] Z x0+lx0�l dx22l exp[�i(kx � 2kF )x2]: (2.56)We next take the integrals over x1 and x2 with the aid of the �rst useful integral (2.29):h��(x)��(x0)i = V 204k2F exp[�2ikF (x+ x0)]�� Z 1�1 dkx2� W (kx) sin[(kx � 2kF )l](kx � 2kF )l sin[(kx � 2kF )l](kx � 2kF )l exp[ikx(x� x0)]: (2.57)The sharp functions in the integrand of Eq. (2.57) have maxima at the points kx = �2kFand kx = �2kF . Therefore, we take the Fourier transform W (kx) of the correlationcoe�cient outside the integral at these two points:h��(x)��(x0)i = V 204k2F [W (�2kF ) +W (�2kF )] exp[�2ikF (x + x0)]�� Z 1�1 dkx2� sin[(kx � 2kF )l](kx � 2kF )l sin[(kx � 2kF )l](kx � 2kF )l exp[ikx(x� x0)]: (2.58)We now use the de�nition (2.26) for the backscattering length Lbs as well as the evennessof the Fourier transform W (kx) (W (�kx) = W (kx)) and the fact that the integral in theexpression (2.58) is the third useful integral (2.34) with 2kF instead of kF . In this waywe come to the result: 38



h��(x)��(x0)i = 2L�1bs exp[�2ikF (x + x0)] �l(x� x0; 2kF ): (2.59)According to the estimation (2.38) we can conclude that the function �l(x� x0; 2kF ) andconsequently the correlator h��(x)��(x0)i vanish. It is exactly what we have written forthe correlator of the random �elds ��(x) in the ultimate expressions (2.24).2.2.3 Symbolic solution of equationsfor smooth amplitudes. Unimodularity relationsOur four �rst-order di�erential equations (2.20) are linear equations with four initial con-ditions (2.11). The coe�cients �(x) and ��(x) of the equations are continuous functionswithin the variation interval of the variable x. Therefore the theory of di�erential equa-tions states that a solution of the equations exists and it is unique. Unfortunately, it ishighly unlikely to obtain this solution in a �nite analytic form because of the complicateddependencies (2.21) of the variable coe�cients �(x) and ��(x) on the \time" x. Neverthe-less, we can write down the solution of the set (2.20) and (2.11) in some symbolic matrixform which allows us to derive the very important so-called unimodularity relations forthe smooth amplitudes ��(x) and 
�(x).Let us introduce matrices I�(x) of the unknown smooth amplitudes ��(x) and 
�(x):I+(x) = ��+(x) 
+(x)
�+(x) ��+(x)� ; I�(x) = � ��(x) 
��(x)
�(x) ���(x)� : (2.60)Then we de�ne the matrix b̂(x) of the random �elds �(x) and ��(x) asb̂(x) = � i�(x) �+(x)��(x) �i�(x)� : (2.61)We draw attention to the fact that the matrix b̂(x) is traceless:Tr b̂(x) � i�(x)� i�(x) = 0: (2.62)In the new matrix notation (2.60) and (2.61) the dynamic equations (2.20) take thefollowing matrix representations:I 0+(x) + I+(x)b̂(x) = 0; (2.63)I 0�(x)� b̂(x)I�(x) = 0: (2.64)In addition, due to initial conditions (2.11) the matrices I�(x) of the smooth amplitudesare unit matrices at the points x = �L=2 respectively:I�(�L=2) = 1̂ � � 1 00 1� : (2.65)From the evolutional equations (2.63) and (2.64) it follows that the �rst derivativesI 0�(x) of the functions I�(x) are equal to the functions themselves multiplied by thevariable factors�b̂(x). We know that solutions of such equations are exponential functionswith the variable factors �b̂(x) being the derivatives of the exponents. So, regardless of39



the matrix nature of the equations (2.63) and (2.64), we can state that their solutionssatisfying the initial conditions (2.65) are given by the following exponential functions:exp "� Z �L=2x dx0 b̂(x0)# : (2.66)We stress that the matrix I+(x) is multiplied by the matrix b̂(x) from the right in theequation (2.63) while the matrix I�(x) is multiplied by the matrix b̂(x) from the left in theequation (2.64). This distinction is very important because in general the commutativelaw does not hold for matrix multiplication (âb̂ 6= b̂â). We then note that in Eq. (2.66) theexpression with the \+" sign, which is related to the matrix I+(x), contains the matrixb̂(x0) whose argument x0 is greater than x (�L=2 � x � x0 � L=2) while the expressionwith the \�" sign, which is associated with the matrix I�(x), contains the matrix b̂(x0)whose argument x0 is smaller than x (�L=2 � x0 � x � L=2). Summarizing, we see thatin both equations (2.63) and (2.64) the matrix multiplications are such that the matrixb̂ with a larger argument stands to the left of the matrix b̂ with a smaller argument.Therefore, to account for this fact properly we need to introduce the ordering operator T̂xin the coordinate x. This x-ordering operator T̂x arranges all matrices b̂ as well as theirfunctions to its right so that any matrix with a larger argument is placed to the left of anymatrix with a smaller argument. With the use of the ordering operator we can write therequired solutions as I�(x) = T̂x exp "� Z �L=2x dx0 b̂(x0)# : (2.67)By a straightforward veri�cation we can make sure that the structure (2.67) of the matricesI�(x) of the smooth amplitudes ��(x) and 
�(x) are really the solutions of the equations(2.63) and (2.64), respectively.Let us apply the well-known identity for determinant of a matrix:ln det Â � Tr ln Â; i.e. det Â � exp(Tr ln Â): (2.68)In accordance with this property we easily �nd that the matrices I�(x) are unimodular,i.e. their determinants are equal to one:det I�(x) = exp [Tr ln I�(x)] = exp "�Tr Z �L=2x dx0b̂(x0)# = 1: (2.69)This conclusion is also originated from the tracelessness (2.62) of the matrix b̂(x). On theother hand, by the de�nition (2.60) the determinants of the matrices I�(x) are expressedvia the di�erence between squared moduli of the smooth amplitudes ��(x) and 
�(x):det I�(x) = j��(x)j2 � j
�(x)j2: (2.70)Thus, we arrive at an essential statement: the structure of the dynamic equations (2.20)is such that the the smooth amplitudes ��(x) and 
�(x) introduced within the two-scalemodel (2.5) turn out to be related by the unimodularity conditions:j��(x)j2 � j
�(x)j2 = 1: (2.71)40



2.3 Transmittance and Re
ectanceof 1D Disordered Conductor2.3.1 Landauer formula for conductanceA next step of our investigation within the two-scale description (2.5) is to express thedimensionless conductance (2.2) via the smooth amplitudes ��(x) and 
�(x). To do thiswe substitute the single-electron Green functions in the form (2.6) into the Kubo formula(2.3): T (L) = � 4L2 1jW j2 Z L=2�L=2 dx Z L=2�L=2 dx0 �� [ 0+(x) �(x0)�(x� x0) +  +(x0) 0�(x)�(x0 � x)]�� [ �+(x) �0�(x0)�(x� x0) +  �0+(x0) ��(x)�(x0 � x)] == � 1jW j2 4L2 Z L=2�L=2 dx " 0+(x) �+(x) Z x�L=2 dx0 �(x0) �0�(x0)++  0�(x) ��(x) Z L=2x dx0 +(x0) �0+(x0)# : (2.72)We see that various products of the wave functions  �(x) by their derivatives appearin the equation (2.72), viz  0�(x) ��(x) and  �(x) �0�(x). To perform operations in theseproducts we should take into account the experience of the previous calculations withinthe two-scale model (2.5): First, we use the two-scale representation (2.9) for the wavefunctions  �(x). Second, based on the exact expression (2.13) for the �rst derivativesof  �(x) and the estimations (2.15) we should di�erentiate the rapidly oscillating ex-ponents exp(�ikFx) and exp(�ikFx) only when deriving the functions  0�(x). Third,after multiplying out the wave functions  �(x) and their derivatives we should neglectterms containing the rapidly oscillating exponents and retain terms in which the rapidlyoscillating exponents cancel out. As a result we get 0�(x) ��(x) � �ikF hj��(x)j2 � j
�(x)j2i = �ikF ; (2.73) �(x) �0�(x) � �ikF hj��(x)j2 � j
�(x)j2i = �ikF :We draw attention to the following surprising fact. In accordance with the unimodu-larity relations (2.71), the products (2.73) and consequently the integrand in the equation(2.72) turn out to be independent of the smooth amplitudes ��(x) and 
�(x) and hence ofthe integration variables x and x0. Thus we come to the conclusion that the conductanceis determined only by the squared modulus of the Wronskian W of the wave functions �(x): T (L) = 4k2F jW j�2: (2.74)41



We now need to obtain the Wronskian (2.7) within the two-scale approximation (2.5).As before, substituting the wave functions  �(x) (2.9) in Eq. (2.7) we should di�erentiatethe rapidly oscillating exponents only and then multiplying the wave functions by thederivatives we should retain only such terms in which the rapidly oscillating exponentscancel out. In this way we haveW = 2ikF [�+(x)��(x) + 
+(x)
�(x)] = 2ikF��(�L=2): (2.75)Here, in the last equality of Eq. (2.75), we have taken into account that the WronskianWof any Hermitian problem does not depend on the coordinate x and we can calculate it atany convenient point within the interval (2.1). In accordance with the initial conditions(2.11) for the smooth amplitudes (��(�L=2) = 1; 
�(�L=2) = 0), the most convenientpoints are the wire ends x = �L=2.Substitution of the expression (2.75) into the formula (2.74) gives us the requiredrelation between the dimensionless conductance (2.2) and the smooth amplitudes ��(x),T (L) = j��1� (�L=2)j2: (2.76)Following the Landauer idea [15, 16] we assume that the dimensionless conductance ofa 1D disordered conductor is equal to the squared modulus of the amplitude transmissioncoe�cient. From this assumption and the equality (2.76) we can �gure out that thequantity j��1� (�L=2)j can be regarded as the modulus of the amplitude transmissioncoe�cient of a conducting 1D disordered wire of the length L.2.3.2 Transmission and re
ection coe�cientsA widely accepted and physically clear approach to studying transport properties and inparticular the conductance of one-dimensional and quasi-one-dimensional systems is toexpress the conductance via the transmission and re
ection coe�cients of electron wavesscattered by the inhomogeneous structure. By analogy with the scattering theory weintroduce the transmission ��(x) and re
ection ��(x) local amplitude coe�cients for anelectron wave.The equality (2.76) for the conductance makes it clear that the modulus of the localtransmission coe�cient ��(x) must be equal toj��(x)j = j��1� (x)j: (2.77)At the same time the transmission and re
ection coe�cients must obey the 
ow conser-vation law: j��(x)j2 + j��(x)j2 = 1: (2.78)From the unimodularity relations (2.71) for the smooth amplitudes ��(x) and 
�(x) itcan be easily established that the modulus of the amplitude re
ection coe�cient ��(x)satis�es the 
ow conservation law (2.78) as long asj��(x)j = j
�(x)=��(x)j: (2.79)
42



We see that only the moduli of the transmission and re
ection coe�cients are de�neduniquely from physical reasoning, while their phases can be �xed by additional consider-ations.The structure of the dynamic equations (2.20) is such that the real random �eld �(x)determines only the phases of the smooth amplitudes ��(x) and 
�(x). In other wordsthe forward-scattering �eld �(x) can be eliminated from these equations by concurrentphase transformations of the smooth amplitudes and the complex random �elds ��(x). Inview of this fact let us introduce the transmission ��(x) and re
ection ��(x) amplitudelocal coe�cients according to the following two conditions: (i) Their moduli coincidewith Eqs. (2.77) and (2.79), respectively. (ii) The equations for them do not contain therandom �eld �(x) in explicit form. All these conditions are satis�ed by the expressions:��(x) = 1��(x) exp "�i Z x�L=2 dx0�(x0)# : (2.80)��(x) = 
�(x)��(x) exp "�2i Z x�L=2 dx0�(x0)# : (2.81)Indeed, the moduli of Eqs. (2.80) and (2.81) are given by the formulas (2.77) and (2.79),respectively. The equations for the transmission and re
ection coe�cients are obtainedby a straightforward derivation of the de�nitions (2.80) and (2.81). Using the dynamicequations (2.20) for the smooth amplitudes ��(x) and 
�(x) we get�d��(x)dx = �new� (x)��(x)��(x); (2.82)�d��(x)dx = �new� (x)�2�(x)� �new�� (x): (2.83)So, the real random �eld �(x) certainly does not enter these equations explicitly.According to the initial conditions (2.11) for the smooth amplitudes ��(x) and 
�(x),the equations (2.82) and (2.83) are complemented by the following initial conditions:��(�L=2) = 1; ��(�L=2) = 0: (2.84)Note, the lower integration limits �L=2 in the expressions (2.80) and (2.81) have beentaken such that the exponential factors do not a�ect the initial conditions (2.84) for thetransmission and re
ection local coe�cients.The new variable coe�cients �new� (x) appear in the equations (2.82) and (2.83). Theyare related to the old complex random �elds ��(x) by�new� (x) = ��(x) exp "�2i Z x�L=2 dx0�(x0)# : (2.85)As well as ��(x), the new renormalized random �elds �new� (x) are complex conjugate toeach other, �new�� (x) = �new� (x): (2.86)Now we would like to make some signi�cant remarks.43



The introduced transmission ��(x) and re
ection ��(x) amplitude local coe�cientshave the following physical meaning: The coe�cient �+(x) is the amplitude coe�cientof transmission of an electron wave through the interval (x; L=2) when impinged theinterval from the left. The coe�cient �+(x) is the amplitude coe�cient of re
ection ofthe same electron wave and for the same interval (x; L=2). Regardless of the quantitieswith the symbol \+", the coe�cient ��(x) is the amplitude coe�cient of transmission ofan electron wave through the other interval (�L=2; x) when impinged the interval fromthe right. The coe�cient ��(x) is the amplitude coe�cient of re
ection of the sameelectron wave from the interval (�L=2; x). One can clearly understand that the �rst ofthe mentioned electron waves is described by the formula with the factor exp(ikFx) whilethe second is described by the expression proportional to exp(�ikFx).All the equations obtained, i.e. Eq. (2.20) for the smooth amplitudes ��(x) and 
�(x)as well as Eqs. (2.82) and (2.83) for the transmission ��(x) and re
ection ��(x) coe�-cients, together with their initial conditions (2.11) and (2.84) respectively, are the dynamicevolutional equations. Therefore their solutions are presented by causal functionals of therandom �elds �(x) and ��(x), or �new� (x). This means that all the solutions with theindex \+" at a given point x are speci�ed by values of the random �elds only withinthe interval (x; L=2), whereas all the solutions with the index \�" at the same point xare determined by values of the random �elds only within the other interval (�L=2; x).For the smooth amplitudes ��(x) and 
�(x) these statements result from the symbolicsolutions (2.67). In general, we can easily verify the validity of the previous statementsby a direct integration of the corresponding dynamic di�erential equations with the useof the corresponding initial conditions.In particular, the re
ection coe�cient ��(x) satis�es the Riccati-type nonlinear evol-utional equation (2.83) with the homogeneous initial conditions (2.84). It can be easilyshown that the set (2.83) and (2.84) is equivalent to the following integral equation:��(x) = � Z x�L=2 dx0 h�new� (x0)�2�(x0)� �new�� (x0)i : (2.87)From this integral equation we see that the re
ection amplitude local coe�cients ��(x)actually belong to causal functionals of the renormalized complex random �elds �new� (x).The above remark is essential for the averaging procedure because, owing to the delta-correlation of the random �elds, it allows to average products of any functionals withdi�erent indexes and arguments independently.2.3.3 Correlators of new random �eldsFor further calculations we need to know the statistical properties of the complex random�elds �new� (x).To start with let us derive the averages of these �elds. From the de�nition (2.85) wehave h�new� (x)i = h��(x) exp "�2i Z x�L=2 dx0�(x0)#i: (2.88)In consequence of the statistical independence (2.24) of the old �elds ��(x) and �(x), theaverage of the product on the r.h.s. of the equation (2.88) is equal to the product of theaveraged multipliers: 44



h�new� (x)i = h��(x)ihexp "�2i Z x�L=2 dx0�(x0)#i: (2.89)Let us recall that the old random �elds ��(x) have zero averages (2.23). Owing to this,we obtain that the averages of the renormalized �elds �new� (x) are equal to zero too:h�new� (x)i = 0: (2.90)In the same way we come to the zero result for the binary correlator:h�new� (x)�new� (x0)i = h��(x)��(x0) exp "�2i Z x�L=2+ Z x0�L=2! dx1�(x1)#i == h��(x)��(x0)ihexp "�2i Z x�L=2+ Z x0�L=2! dx1�(x1)#i == 0: (2.91)Here we have exploited the fact that according to Eq. (2.24) the binary correlator of theold random �elds ��(x) vanishes (h��(x)��(x0)i = 0).Finally we should obtain the last correlator h�new� (x)�new�� (x0)i. By the de�nition (2.85)this correlator ish�new� (x)�new�� (x0)i = h��(x)���(x0) exp "�2i Z x�L=2� Z x0�L=2! dx1�(x1)#i == h��(x)���(x0)ihexp ��2i Z xx0 dx1�(x1)�i: (2.92)We substitute here the expression for the correlator h��(x)���(x0)i of the old complex �elds��(x) from Eq. (2.24). Then we take into account that, because of the delta-function�(x� x0), the exponent of the exponential function in Eq. (2.92) vanishes. In this way wearrive at the result: h�new� (x)�new�� (x0)i = L�1bs �(x� x0): (2.93)Thus we see that the new renormalized �elds �new� (x) possess the same correlationsproperties as the old random �elds ��(x) do. Hence, as well as the old �elds, we canconsider the new �elds �new� (x) a complex Gaussian \white noise".2.3.4 Intermediate summaryAccording to equality (2.76) and de�nition (2.80) the dimensionless conductance (2.2) isnothing else but the squared modulus of the amplitude coe�cient ��(�L=2) of electrontransmission trough all 1D disordered wire of length L. Therefore, to solve the conductanceproblem we need to �nd only the transmission local amplitude coe�cient ��(x) and thentake its squared modulus at the points x = �L=2. For this purpose we would want tosolve the equation (2.82) with the initial condition (2.84).45



Unfortunately, the equation (2.82) for the transmission coe�cient ��(x) is not closed.Indeed, to solve it we must know ��(x). At the same time, we see that the equation(2.83) for the re
ection coe�cient ��(x) is closed and, in addition, complemented bythe homogeneous initial condition (2.84). Hence, it is more convenient to deal with there
ection local amplitude coe�cient ��(x) rather than the transmission coe�cient ��(x).Within this approach the dimensionless conductance T (L) is expressed via the squaredmodulus of the re
ection coe�cient ��(x) with the use of the 
ow conservation law (2.78),T (L) = 1� j��(�L=2)j2: (2.94)As usual, let us call the squared modulus j��(x)j2 of the transmission coe�cient ��(x)the local transmittance while the squared modulus j��(x)j2 of the re
ection coe�cient��(x) will be called the local re
ectance. So, we will perform all forthcoming calculationsin terms of the re
ectance.We did emphasize above that the re
ection coe�cient ��(x) is in fact a causal func-tional of the renormalized complex random �elds �new� (x). Obviously, for the averagingprocedure the explicit de�nition (2.85) of these �elds does not matter. Only the correl-ation relations (2.90), (2.91) and (2.93) are important. At the same time, the non-zerocorrelator (2.93) is speci�ed by the electron backscattering length Lbs and does not de-pend on the forward scattering mean free path Lfs. Thus, we come to a non-trivialconclusion: averaged values of the re
ectance and conductance are only determined by thebackscattering of electrons while forward scattering is removed.Since the new renormalized �elds �new� (x) possess the same correlations properties asthe old random �elds ��(x) we will omit the symbol \new" in all further calculations.To treat the re
ectance problem we are going to state below a very powerful anduseful method which allows to calculate not only the averaged re
ectance, conductanceand resistance but any of their moments as well.2.4 Moments of Re
ectanceThe averaged value of an n-th power of a random quantity is often called an n-th momentof this quantity. Now let us introduce the n-th moment, R�n (x), of the local re
ectancej��(x)j2,R�n (x) � hj��(x)j2ni = hh��(x)���(x)ini; n = 0; 1; 2; 3 : : : : (2.95)It is necessary to underline that the moment (2.95) represents the average of functionstaken at a same coordinate. If the conditions of statistical homogeneity are satis�ed, thensuch averages do not depend on the coordinate. At the same time, in line with our aboveassumptions, we need to assume that the moment R�n (x) depends on the coordinate xand varies over either the backscattering length Lbs or the wire length L. This fact leadsto the statistical inhomogeneity of our problem over macroscopic scales of the order ofboth Lbs and L. We note that within the two-scale approach (2.5) quantities varyingover microscopic scales (for example, over the correlation radius Rc) can be consideredstatistical homogeneous. This is exactly the reason why the dispersion hV 2(x)i = V 20of the random potential V (x) does not depend on the coordinate x and the correlationcoe�cient W(jx� x0j) depends only on the di�erence x� x0.46



So, if we derive the n-th re
ectance moment R�n (x), then, according to the equation(2.94), the average dimensionless conductance hT (L)i is given by the �rst moment R�1 (x)taken at the point x = �L=2, hT (L)i = 1� R�1 (�L=2): (2.96)One way to �nd R�n (x) is to deduce a corresponding equation with initial conditions andthen solve it.2.4.1 Di�erential-di�erence equation for re
ectance momentLet us di�erentiate the de�nition (2.95) with the use of the equation (2.83) for ��(x) andthe corresponding equation for ���(x),�dR�n (x)dx = 2n< hh�n+1� (x)��n� (x)��(x)i � h�n�(x)��(n�1)� (x)��(x)ii : (2.97)Please, recall that the symbol \<" stands for the real part.Every term (correlator) on the r.h.s. of the equation (2.97) is obtained with the aidof the Furutsu-Novikov formula:h�(x)�(x)i = Z dx0h�(x)��(x0)ih ��(x)���(x0)i: (2.98)Here �(x) is a complex Gaussian random process (�eld) with zero average (h�(x)i = 0),and �(x) is a functional of this �eld. In calculating variational derivatives one mustconsider the �elds �(x) and ��(x) as independent variables, i.e.��(x)��(x0) = ���(x)���(x0) = �(x� x0); ��(x)���(x0) = ���(x)��(x0) = 0: (2.99)In the Furutsu-Novikov formula (2.98) the integral over x0 is taken over the de�nitioninterval of the random �eld �(x).Applying the Furutsu-Novikov formula (2.98) to the �rst term on the r.h.s. of theequation (2.97) we haveh�n+1� (x)��n� (x)��(x)i = Z L=2�L=2 dx0h��(x)���(x0)ih��n+1� (x)��n� (x)����(x0) i: (2.100)So, we need to calculate the variational derivative in the integrand of Eq. (2.100). Wenote that the variational derivative of a complicated functional is calculated according tothe same rules as the ordinary derivative,��n+1� (x)��n� (x)����(x0) = (n+ 1)j��(x)j2n ���(x)����(x0) + n�n+1� (x)��(n�1)� (x)����(x)����(x0) : (2.101)The variational derivatives of the re
ection coe�cient ��(x) and its complex conjugate���(x) are obtained by di�erentiating the integral equation (2.87) and the correspondingcomplex conjugate equation, respectively, 47



���(x)����(x0) = �(�[x0 � x]) "1� 2 Z x0x dx00��(x00)��(x00)���(x00)����(x0) # ; (2.102)����(x)����(x0) = ��(�[x0 � x]) "��2� (x0)� 2 Z x0x dx00���(x00)���(x00)����(x00)����(x0) # :We should remember that the variational derivatives of a causal integral functional ofsome �eld with respect to this �eld di�er from zero only if the argument of the �eld fallsinto the integration interval. Taking into account the integration path in the integralequation (2.87), we conclude that ���(x)=����(x0) and ����(x)=����(x0) are proportional tothe �-functions �(�[x0 � x]). Consequently, the variational derivatives standing in theintegrals over x00 are proportional to �(�[x0 � x00]). Therefore in the expressions (2.102)we have written down explicitly the �rst mentioned �-functions and cut o� the limits ofthe integration over x00 due to the second �-functions.Now let us substitute the expressions (2.102) into Eq. (2.101). Then we substitute theresult into the Furutsu-Novikov formula (2.100) and cut o� the integration limits overx0 with the use of �(�[x0 � x]). After that we apply the explicit form (2.93) for thebinary correlator h��(x)���(x0)i. Owing to the delta-correlation of the random �eld ��(x)the integral over x0 can be taken and gives a �nite answer whereas the integrals over x00vanish. So, taking into account the de�nition (2.95) we get the following result for the�rst term on the r.h.s. of the equation (2.97):h�n+1� (x)��n� (x)��(x)i = 12Lbs h(n+ 1)R�n (x)� nR�n+1(x)i : (2.103)Analogous calculations of the second term on the r.h.s. of the equation (2.97) yieldh�n�(x)��(n�1)� (x)��(x)i = 12Lbs hnR�n�1(x)� (n� 1)R�n (x)i : (2.104)Substituting the expressions (2.103) and (2.104) into the starting equation (2.97) wearrive at the ultimate form of the di�erential-di�erence equation for the re
ectance mo-ment R�n (x),�dR�n (x)dx = � n2Lbs hR�n+1(x)� 2R�n (x) +R�n�1(x)i ; n = 0; 1; 2; 3 : : : : (2.105)We need to discuss now the initial conditions for the equation (2.105). We point outthat the re
ectance moment R�n (x) is a function of two variables: the coordinate x andthe index n. Hence, we should formulate initial conditions for every variable, both x andn. It is necessary to underline that the di�erence equation (2.105) relates three re
ectancemoments R�n+1(x), R�n (x) and R�n�1(x). This means that it is equivalent to the secondorder di�erential equation with respect to the index n and therefore requires two initialconditions on n. They follow naturally from the de�nition (2.95). Actually, when theindex n is equal to zero, the moment R�n (x) equals one. Next, according to the 
owconservation law (2.78), the re
ectance j��(x)j2 is always smaller than one (j��(x)j2 �48



1). Consequently, the moment R�n (x) tends to zero while the index n tends to in�nity(R�n (x)! 0 as n!1). So, we can writeR�0 (x) � 1; R�1(x) = 0: (2.106)The initial condition on the \time" x is originated from the homogeneous initialcondition (2.84) for the re
ection coe�cient ��(x) and from the previous requirementR�0 (x) � 1, R�n (�L=2) = �n0: (2.107)Here �nn0 denotes the Kronecker delta-symbol.2.4.2 Re
ectance distribution functionFollowing V. L. Berezinski [17] we seek the solution of the equation (2.105) in the formR�n (x) = Z 10 d� ~P�L (�; x)�n; n = 0; 1; 2; 3 : : : : (2.108)Here the variable � represents the local re
ectance j��(x)j2 and therefore the integrationis performed over the interval 0 � j��(x)j2 � 1 of its possible values in line with the
ow conservation law (2.78). The function ~P�L (�; x) is nothing else but the distributionfunction (or probability density) of the local re
ectance j��(x)j2.The �rst initial condition on n from Eq. (2.106) yields the normalization of the distri-bution function ~P�L (�; x): Z 10 d� ~P�L (�; x) = 1: (2.109)Obviously, this formula ensures integrability of the probability density ~P�L (�; x) over thevariable � over the interval (0; 1). In particular, the function ~P�L (�; x) must be integrablein the vicinity of the points � = 0 and � = 1. This means thatlim�!0 � ~P�L (�; x) = 0; lim�!1(1� �) ~P�L (�; x) = 0: (2.110)The requirements (2.110) are direct consequences of the normalization condition (2.109).They will be used in the derivation of the di�erential equation for the distribution function~P�L (�; x).So, we need to derive the equation for the function ~P�L (�; x). It is noteworthy thatin what follows we consider a non-zero index n, i.e. n � 1. In this case the normaliza-tion condition (2.109) is an additional independent condition imposed on the probabilitydensity ~P�L (�; x).Let us substitute the integral representation (2.108) into the di�erential-di�erenceequation (2.105). After double integration by parts we getZ 10 d� �n "�Lbs @@x + @@�� @@� (1� �)2# ~P�L (�; x) +
49



+ "n�n(1� �)2 ~P�L (�; x)� �n+1@(1� �)2 ~P�L (�; x)@� #�����10 = 0: (2.111)Owing to the integrability conditions (2.110) the term outside the integral vanishes andwe have Z 10 d� �n "�Lbs @@x + @@�� @@�(1� �)2# ~P�L (�; x) = 0: (2.112)Since the set of power functions f�ng is complete in the interval (0; 1), the equality (2.112)is satis�ed only if the integrand is equal to zero. In this way we come to the di�erentialequation for the distribution function of the local re
ectance,�Lbs@ ~P�L (�; x)@x = � @@�� @@�(1� �)2 ~P�L (�; x): (2.113)This equation is complemented by the initial condition on the coordinate x which resultsfrom the homogeneous (n 6= 0) initial condition (2.107) for the re
ectance moment R�n (x)and from the representation (2.108),~P�L (�;�L=2) = �(�� [+0]): (2.114)Recall that the symbol \+0" stands for an arbitrarily small positive quantity. The con-dition on the variable � is the normalization condition (2.109).As it was expected, the obtained equation (2.113) for the probability density of thelocal re
ectance belongs to a class of di�usion equations. A typical way to treat suchequations in kinetic theories is to transform them into the well-known and thoroughlystudied Fokker-Plank equation. To perform such transformation it is convenient to switchfrom the random quantity �, which has the meaning of the local re
ectance and takes realvalues 0 � � � 1, to a new random quantity u by the formula� = u� 1u+ 1 ; 1 � u � 1: (2.115)By de�nition, the distribution function P�L (u; x) of the random quantity u isP�L (u; x) � ~P�L (�(u); x)d�(u)du = 2(u+ 1)2 ~P�L �u� 1u+ 1 ; x� : (2.116)This function is also normalized to one owing to the normalization condition (2.109),Z 11 duP�L (u; x) = 1: (2.117)The equation (2.113) and the de�nitions (2.115) and (2.116) lead a new distributionfunction P�L (u; x) to satisfy the Fokker-Plank equation,�Lbs@P�L (u; x)@x = � @@u(u2 � 1)@P�L (u; x)@u : (2.118)The initial condition on the coordinate x for the new probability density P�L (u; x) followsfrom the initial condition (2.114) and the de�nition (2.116),P�L (u;�L=2) = �(u� [1 + 0]): (2.119)50



The condition on the variable � is the normalization condition (2.117).The equation (2.118) with the conditions (2.119) and (2.117) is solved by the followingstandard method. We point out that the di�erential operator on the r.h.s. of the equation(2.118) is the di�erential operator for the Legendre function of �rst kind, P�(u). Thismeans that the Legendre function P�(u) is the eigenfunction of this di�erential operator.The Legendre function at � = �12 + i� is called the cone function, P� 12+i�(u). The conefunction satis�es the equation� @@u(u2 � 1) @@uP� 12+i�(u) = �14 + �2�P� 12+i�(u); (2.120)where � is a real parameter. This function possesses some peculiarities. For instance, theequation (2.120) reveals that the cone function is an even function of the parameter �,P� 12�i�(u) = P� 12+i�(u): (2.121)Next, P� 12+i�(u) is real for u � 1. Then we note thatP�(1) = 1: (2.122)Let us write down the integral representation for the cone function which we will need infurther calculations,P� 12+i�(cosh�) = p2� coth(��) Z 1� dv sin(�v)(cosh v � cosh�)1=2 ; � � 0: (2.123)It is signi�cant that for a positive parameter � � 0 the functions[� tanh(��)]1=2 P� 12+i�(u) (2.124)form a complete and orthonormal basis in the space of functions de�ned in the interval1 � u � 1. In other words,Z 10 d� � tanh(��)P� 12+i�(u)P� 12+i�(u0) = �(u� u0); (2.125)� tanh(��) Z 11 duP� 12+i�(u)P� 12+i�0(u) = �(�� �0):Therefore, we can seek the solution P�L (u; x) of the Fokker-Plank equation (2.118) as anexpansion in the complete set (2.124),P�L (u; x) = Z 10 d� � tanh(��)P� 12+i�(u)Q�L(�; x); (2.126)Q�L (�; x) = Z 11 duP� 12+i�(u)P�L (u; x):Such expansion is called the Mehler transformation (Mehler, 1881).51



Let us substitute the integral Mehler representation (2.126) for the distribution func-tion P�L (u; x) into the Fokker-Plank equation (2.118). After that we get the �rst orderdi�erential equation over the coordinate x for the Mehler transform Q�L (�; x). This equa-tion is simply solvable. As a result we arrive at the next expression for the probabilitydensity P�L (u; x) of the random quantity u:P�L (u; x) = Z 10 d� � tanh(��)P� 12+i�(u) exp ���14 + �2� L� 2x2Lbs � : (2.127)We now want to verify that the solution (2.127) actually satis�es the initial condition(2.119). To this end it is su�cient to present the delta-function �(u � 1) as the Mehlerexpansion (2.125) taking u0 = 1 and using the property (2.122) of the cone function.Let us now use the integral representation (2.123) for the cone function entering theexpression (2.127). Then we can take explicitly the integral over �. In this way we obtainthe conventional form for the distribution function P�L (u; x),P�L (cosh�; x) = 1p8� �L� 2x2Lbs ��3=2 exp��L� 2x8Lbs ��� Z 1� vdv(cosh v � cosh�)1=2 exp "�v24 �L� 2x2Lbs ��1# : (2.128)u = cosh�; � � 0:At the end of our calculations we need to make sure that the probability density (2.128)actually satis�es the normalization condition (2.117). So, we should take the integralZ 11 duP�L (u; x) = a3=2p8� exp�� 14a� Z 10 d� sinh��� Z 1� vdv(cosh v � cosh�)1=2 exp �av24 ! : (2.129)Let us change the order of integration over the variables � and v. After that the integralover � is easily taken. Next, we have to change the integration variable v for z = v=2:Z 11 duP�L (u; x) = 4p�a3=2 exp�� 14a��� Z 10 dz z sinh z exp ��az2� = 1; a = 2Lbs=(L� 2x): (2.130)The integral over z is equal to the inverse value of the factor outside the integral. So, weconclude that the distribution function P�L (u; x) in the form (2.128) is in fact normalizedto one.Thus, we have completely solved the electron transport problem in a 1D disorderedconductor by deriving the formula (2.128) for the distribution function P�L (u; x). As amatter of fact, knowing P�L (u; x) allows us to calculate any local moment of the re
ectance52



and, consequently, transmittance and conductance. Setting the coordinate x equal to�L=2 (x = �L=2), we get the corresponding moments for a whole wire of length L.For example, in accordance with the de�nitions (2.108), (2.115) and (2.116), the n-thmoment (2.95) of the local re
ectance j��(x)j2 is expressed via the distribution functionP�L (u; x) asR�n (x) = Z 11 duP�L (u; x)�u� 1u+ 1�n ; n = 0; 1; 2; 3 : : : : (2.131)2.5 Moments of TransmittanceLet us introduce the n-th moment, T�n (x), of the local transmittance j��(x)j2 in line withthe general de�nition for the moments of a random quantity and according to the 
owconservation law (2.78):T�n (x) � hj��(x)j2ni = hh1� j��(x)j2ini; n = 0;�1;�2;�3 : : : : (2.132)We can �nd this quantity with the aid of the probability density P�L (u; x) (2.128).It is interesting to emphasize that in contrast to the n-th re
ectance moment R�n (x),the transmittance moment T�n (x) may take not only positive but also negative values ofthe number n. Indeed, the integral in the representation (2.108) for R�n (x) converges atthe lower limit � = 0 only for n � 0. At the same time, by expanding Eq. (2.132) inpower series, the moments T�n (x) even with negative numbers n can be expressed viathe moments R�m(x) of positive numbers m only. This means that in order to calculatethe transmittance moment T�n (x) with a number n of either sign we can use the samedistribution function P�L (u; x).The quantity T�n (x) is determinative characteristic of the system under consideration.Indeed, the transmittance moment of zeroth order, T�0 (x), must be equal to one by thede�nition (2.132) and the normalization condition (2.117),T�0 (x) = 1: (2.133)According to the expression (2.94) and the de�nition (2.132), the �rst moment T�1 (�L=2)taken at the wire ends x = �L=2 coincides with the average dimensionless conductance,hT (L)i = T�1 (�L=2): (2.134)Then, the minus-�rst moment T��1(�L=2) gives us the average dimensionless resistancehT�1(L)i of a 1D disordered conductor,hT�1(L)i = T��1(�L=2): (2.135)Second moments, T�2 (�L=2) and T��2(�L=2), specify dispersions of the conductance andresistance, respectively.So, according to de�nitions (2.132) for the local transmittance moment and (2.108)for the re
ectance distribution function, the local transmittance j��(x)j2 is presented bythe following random functions: 53



1� � = 2u+ 1 = cosh�2(�=2): (2.136)This leads to the following formula for the n-th moment T�n (x),T�n (x) = Z 11 duP�L (u; x) 2n(u+ 1)n = Z 10 d� sinh�cosh2n(�=2)P�L (cosh�; x): (2.137)Let us substitute here the expression (2.128) for the distribution function P�L (cosh�; x).It is convenient to introduce the notation a from Eq. (2.130) to manage intermediatetransformations. After the substitution we change the integration variables � and v fort = �=2 and z = v=2:T�n (x) = 4p�a3=2 exp�� 14a�Z 10 dt sinh tcosh2n�1 t Z 1t zdz exp(�az2)(cosh2 z � cosh2 t)1=2 : (2.138)Then we change the order of integration over the variables t and z:T�n (x) = 4p�a3=2 exp�� 14a� Z 10 zdz exp(�az2) Z z0 dt sinh t cosh1�2n t(cosh2 z � cosh2 t)1=2 : (2.139)Finally we change the integration variable t by y with the formula cosh t = cosh z= cosh y.In this way we get the ultimate expression for the n-th moment of the local transmittance,T�n (x) = 4p� �L� 2x2Lbs ��3=2 exp��L� 2x8Lbs ��� Z 10 zdzcosh2n�1 z exp "�z2 �L� 2x2Lbs ��1# Z z0 dy cosh2(n�1) y: (2.140)The formula (2.140) is the most suitable one for analysis.2.5.1 Average dimensionless conductanceLet us calculate the average of the dimensionless conductance (2.2). According to therelation (2.134), we take the number n equal to one and set the coordinate x = �L=2 inthe expression (2.140) for the local transmittance moment T�n (x). The integral over y iscalculated elementary and we get a relatively simple and conventional resulthT (L)i = 4p� � LLbs��3=2 exp�� L4Lbs� Z 10 z2dzcosh z exp "�z2 � LLbs��1# : (2.141)The formula (2.141) speci�es completely the averaged transport characteristic of a1D disordered conductor. Depending on the ratio between the wire length L and thebackscattering mean free path Lbs, it could have the following asymptotics:54



hT (L)i � 1� L=Lbs if L=Lbs � 1; (2.142)hT (L)i � �5=22 � LLbs��3=2 exp�� L4Lbs� if Lbs=L� 1:2.5.2 Average dimensionless resistanceLet us consider the average dimensionless resistance hT�1(L)i of a 1D disordered con-ductor. According to the de�nition (2.135) we set n = �1 and x = �L=2 in the equation(2.140). After that the integrals over y and z are taken exactly. So, the average dimen-sionless resistance is represented by the surprisingly simple formula,hT�1(L)i = 12 �1 + exp� 2LLbs�� : (2.143)The minus-second moment, T��2(�L=2), which speci�es the dispersion of the resistancehas a simple form too,hT�2(L)i � T��2(�L=2) = 16 �2 + 3 exp� 2LLbs�+ exp� 6LLbs�� : (2.144)2.6 Brief DiscussionThe results obtained, in particular Eqs. (2.141) { (2.144), agree absolutely with conceptsof the strong localization theory for 1D disordered conductors.First of all, it is necessary to emphasize once more that, unlike the spectral single-particle properties, the transport properties of a 1D disordered wire do not depend onthe total (outgoing) mean free path Lts of electrons. They are completely speci�ed by thebackscattering length Lbs only while the forward electron scattering length Lfs is canceled.Indeed, this is only Lbs that enters all the transport characteristics from the distributionfunction P�L (u; x) to the average conductance and resistance.If the wire length L is much smaller than the backscattering length Lbs, then the regimeof ballistic transport is realized. In this case the dimensionless conductance and resistanceare equal to one in zeroth-order approximation in the parameter L=Lbs � 1. Electronrelaxation enters only starting from the �rst-order approximation. This statements resultfrom the asymptotic (2.142) for the conductance and the exact expression (2.143) for theresistance.The localization regime arises in a su�ciently long wire when its length L exceeds 4Lbs.Here the asymptotic (2.142) shows an exponential decrease of the average conductanceover the spatial scale 4Lbs which is four times as larger than the backscattering lengthLbs. This scale is called the localization length Lloc,Lloc = 4Lbs: (2.145)The formula (2.143) describes an exponential growth of the average resistance with grow-ing the conductor length L. 55



We would like to point out the following two facts. First, from comparison of theexpressions for the average conductance with those for the resistance we conclude thatthe average resistance is not equal to the inverse average conductance,hT�1(L)i 6= hT (L)i�1: (2.146)Second, from the equalities (2.143) and (2.144) for the average resistance and its secondmoment it follows that the dispersion of the resistance is of the order of the squared averageresistance itself (or the r.m.s. deviation of the resistance is of the order of the averageresistance itself). These two facts mean that both the conductance and the resistance arenot self-averaged quantities. Hence, depending on the wire length L, their behavior \onaverage" must be accompanied by 
uctuations called mesoscopic oscillations.Thus, a 1D disordered conductor represents an example of a mesoscopic system.

56



Bibliography[1] R. D. Mattuck, A guide to Feynman diagrams in the many-body problem (McGraw-Hill, New York, 1976).[2] G. Rickayzen, Green's functions and condensed matter (Academic Press, London,1980).[3] L. D. Landau, E. M. Lifshitz, Quantum mechanics (Pergamon Press, Oxford, 1977).[4] M. R. Spigel, Theory and Problems of Advanced Mathematics for Engineers andScientists (Schaum's Outline Series, McGraw-Hill, Singapore, 1983).[5] A. R. McGurn, A. A. Maradudin, Phys. Rev. B 30, 3136 (1984); G. Brown, V. Celli,M. Haller, A. A. Maradudin, A. Marvin, Phys. Rev. B 31, No 8, 4993 (1985)).[6] R. C. Bourret, Nuovo Cimento 26, 1 (1962).[7] G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1986).[8] R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).[9] D. S. Fisher, P. A. Lee, Phys. Rev. B 23, 6851 (1981).[10] S. F. Edwards, Phil. Mag. 3, 1020 (1958).[11] T. Dittrich, P. H�anggi, G.-L. Ingold, B. Kramer, G. Sch�on, andW. Zwerger, QuantumTransport and Dissipation (Wiley-VCH, Weinheim, 1998).[12] A. A. Abrikosov, I. A. Ryzhkin, Adv. Phys. 27, 147 (1978).[13] K. B. Efetov, Adv. Phys. 32, 53 (1983).[14] N. N. Bogolyubov, Y. A. Mitropolskii, Asymptotic methods in a theory of non-linearoscillations, 4-th Ed. (Moscow: Nauka, 1974) in Russian.[15] R. Landauer, IBM Journ. Res. Development 1, 223 (1957); Philos. Mag. 21, 863(1970).[16] Localization, Interaction, and Transport Phenomena edited by G. Bergmann andY. Bruynseraede (Springer-Verlag, New York, 1985).[17] V. L. Berezinski, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493(1971)]; Zh. Eksp. Teor. Fiz. 65, 1251 (1973) [Sov. Phys. JETP 38, 620 (1974)].57


