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Prologo

La investigacién de las propiedades fisicas de medios desordenados (aleatorios) representa
uno de los problemas de mayor actualidad en la Fisica moderna. Uno de los més import-
antes descubrimientos del siglo XX en este campo es el relacionado con el fenémeno de
localizacion dinamica de ondas clasicas y particulas cuanticas. Resulta que su movimi-
ento en un campo potencial aleatorio frecuentemente ocurre en un espacio confinado (loc-
alizandose) incluso cuando la energia cinética de la particula (onda) es mucho mayor que
su energia potencial aleatoria. En otras palabras, el fendmeno de localizaciéon dindmica es
profundamente cuantico y tiene lugar en condiciones de la asf llamada reflexién sobre bar-
rera. La localizacion de electrones en conductores desordenados fue predicha tedricamente
por Anderson en 1958, por lo que se conoce ahora como localizacién de Anderson o
fuerte. La localizacién de Anderson se manifiesta en las propiedades de conduccién (trans-
porte) por el hecho que el metal deja de conducir la corriente eléctrica, es decir se vuelve
practicamente un aislante.

La segunda caracteristica notable de un sistema de electrones que no interactian entre
si consiste en que sus propiedades de conduccién (transporte) estan determinadas por la
dimensién del espacio. Es bien sabido que en los conductores tridimensionales comunes
la resistencia residual (es decir la resistencia a la temperatura del cero absoluto) estd
determinada por la longitud de recorrido libre de los electrones. Esta longitud se debe a
su dispersion elastica con defectos de diferente naturaleza en la muestra. Si no hubiese
dispersién, es decir si la muestra fuera un medio ordenado ideal, entonces la resistencia
seria igual a cero. Resulta que en conductores unidimensionales atin en la ausencia de
cualquier dispersién la resistencia residual y su cantidad inversa, la conductancia, siempre
son finitas. Mas aun, ellas no dependen de los parametros del conductor, sino que son una
combinacion de constantes universales: la carga del electrén e, la constante de Planck 7, el
numero 7. Es asi como surgié una constante universal nueva: el cuanto de la conductancia,
e?/mh. El transporte electrénico bajo las condiciones en que la dispersién de los electrones
puede despreciarse se llama balistico.

Actualmente esta rigurosamente establecido que en los conductores unidimensionales
desordenados se realiza ya sea el régimen balistico o el de localizacion, dependiendo de
la relacion entre la longitud del conductor y la asi llamada longitud de localizacién. Esta
longitud de localizacion estd determinada por las caracteristicas estadisticas del poten-
cial aleatorio dispersor (su amplitud y rango de variacién), asi como las propiedades del
sistema electrénico (energia de Fermi). Si la longitud del conductor es mucho menor
que la longitud de localizacién, se lleva a cabo el régimen de transporte balistico. En el
caso contrario tiene lugar la localizacion fuerte de los estados electrénicos y la conduct-
ancia resulta ser una cantidad exponencialmente pequena del cociente de la longitud de
la muestra entre la longitud de localizacion.

Como conclusion de esta breve descripcién del transporte electrénico en conductores
desordenados unidimensionales queda solamente agregar lo siguiente. De hecho, cualquier
solido es un medio desordenado. Incluso los cristales lo son gracias a la presencia de
diferentes tipos de defectos en la red cristalina (vacancias, impurezas, dislocaciones, inter-
faces microcristalinas, etc.). Ademds, resulta que es imposible, aiin teéricamente, crear
una red cristalina unidimensional estrictamente ordenada. Tal creacién es absolutamente
inestable y se transforma en un sistema aleatoriamente desordenado bajo la accién de
cualquier perturbacién, cuan pequena que esta sea.



En el curso que se impartird se exponen los fundamentos de la teoria de transporte
electronico en conductores unidimensionales desordenados. La solucion de cualquier prob-
lema comienza con el andlisis del espectro uni-particula del sistema investigado. Por esta
razon, el presente curso consta de dos partes. En la primera, se calcula una caracteristica
uni-particula importante de los electrones: su funciéon de Green promediada. Con su
ayuda se introducen tales cantidades espectrales basicas como la longitud de recorrido
libre total (saliente) de los electrones, las longitudes electrénicas de dispersion hacia ad-
elante y hacia atras. En la segunda parte, se expone sistematicamente, precisamente, la
teoria del transporte electrénico. Los resultados obtenidos describen los regimenes tanto
balistico como de localizacién, asi como la transicion entre ellos. Se llega a una importante
conclusion segin la cual el conductor unidimensional desordenado representa un ejemplo
tipico de los sistemas mesoscopicos.

Una caracteristica importante del presente curso consiste en que no sélo se discute el
problema fisico, sino que en él también se ensenan métodos de la Fisica Teorica, los cuales
pueden ser utilizados en otros campos de investigacién. Asi, por ejemplo, en la primera
parte del curso se expone detalladamente el método ya tradicional para resolver la ecuacion
de Dyson, se introducen los conceptos de operador de auto-energia. El procedimiento de
promediacion se lleva a cabo con ayuda de la técnica elegante, recientemente desarrollada
por Maradudin y colaboradores. En la segunda parte del curso se presenta el modelo de
oscilaciones de escala doble, los métodos de promedicacién de fases rapidas y el célculo de
los correladores (funciones de correlacién) para campos aleatorios. Aqui se formulan los
elementos de la teoria general de dispersion de ondas en medios aleatorios, se introducen
los conceptos de reflectancia y transmitancia, asi como sus momentos. En la segunda parte
del curso también se presenta la férmula de Furutsu-Novikov y aprendemos a utilizarla en
la deduccion de las ecuaciones necesarias para los momentos de reflectancia. Finalmente,
se muestra el método de las funciones de distribucién el cual es un instrumento potente
para resolver ecuaciones diferenciales y de diferencias, y a su vez es ampliamente aplicado
en problemas de muchas particulas en la Fisica moderna de sistemas desordenados.

Las presentes notas de curso estan dirigidas a los estudiantes de los tltimos cursos
de la carrera en Fisica, a los estudiantes de posgrado y a todos los fisicos interesados en
problemas de la Fisica moderna.

Agradecimientos

El autor agradece profundamente al Dr. F. Pérez Rodriguez por su iniciativa para que
se escribieran y publicaran las presentes Notas de Curso, su amable atencién, gran ayuda
y utiles consejos. Expreso mi reconocimiento al Dr. A. Moroz al estudiante de doctorado
J.A. Méndez Bermidez por su ayuda en la redaccién del texto de estas notas. Agradezco a
los primeros asistentes a este curso. Sus preguntas y observaciones en las clases influyeron
en gran medida sobre el contenido de las presentes Notas de Curso. Estoy sinceramente
agradecido a todos los trabajadores del IFUAP por el agradable y creativo ambiente que
impera en este instituto. Finalmente, agradezco al CONACY'T por su apoyo financiero.

Nykolay Makarov

Proélogo traducido del idioma ruso al espanol por F. Pérez Rodriguez.



Contents

1 Green’s Function of 1D Disordered Conductor 5
1.1 General concepts . . . . . . . . .. 5)
1.2 Problem Statement . . . . . . . . . . . .. ... 8
1.3 Unperturbed Problem (Perfect Wire, No Disorder). . . . . . ... .. ... 10

1.3.1 Traditional construction of solution . . . . . .. .. ... ... ... 11
1.3.2  Fourier representation . . . . . . . .. ... Lo 12
1.4 Problem with Disorder . . . . . . . . . . . . . ... ... ... ... 15
1.4.1 Averaging procedure. Dyson equation . . . . . . . ... .. ... .. 16
1.4.2  Solving Dyson equation . . . . .. .. .. ... .. ... ... 18
1.4.3  Average Green’s function . . . . . . .. ... oL Lo 20
1.4.4 Electron mean free path . . . . . . .. ... ... ... ... 22

2 Conductance of 1D Disordered Conductor 26
2.1 Conductance-Problem Formulation . . . . ... ... ... ......... 26
2.2 Two-scale Model . . . . . . . . . . . . . 28

2.2.1 Dynamic equations for smooth amplitudes . . . . . ... ... ... 29
2.2.2 Correlation relations for the random fields . . . . . . ... ... .. 32
2.2.3  Symbolic solution of equations
for smooth amplitudes. Unimodularity relations . . . . . . . . . .. 39
2.3 Transmittance and Reflectance
of 1D Disordered Conductor . . . . . . . . . . . . ... ... ... ... .. 41
2.3.1 Landauer formula for conductance . . . . . . . . .. ... ... ... 41
2.3.2 Transmission and reflection coefficients . . . . . . . ... ... ... 42
2.3.3 Correlators of new random fields . . . ... .. ... ... ..... 44
2.3.4 Intermediate summary . . . . . .. . ..o 45
2.4 Moments of Reflectance . . . . . . . . . ... ... 46
2.4.1 Differential-difference equation for reflectance moment . . . . . . . 47
2.4.2 Reflectance distribution function . . . . . . ... ... ... .... 49
2.5 Moments of Transmittance . . . . . . . . . . . . . . e 53
2.5.1 Average dimensionless conductance . . . . . .. .. .. ... .. o4
2.5.2  Average dimensionless resistance . . . ... ... ... ... ... 25
2.6 Brief Discussion . . . . . . . . . .. e e 55



Chapter 1

Green’s Function of 1D Disordered
Conductor

1.1 General concepts

In these lectures we discuss distinctive spectral and conducting properties of one-dimen-
sional (1D) electron systems. Such systems possess two significant features. From the
physical point, the effect of strong (Anderson) localization of electron states due to elec-
tron scattering from impurities is particularly pronounced in 1D conductors. From the
mathematical point, the theory of the 1D localization has been built completely.

One of the most important spectral characteristics of a quantum system is single-
particle Green’s function. The physical meaning of single-particle Green’s function is the
probability for a free particle placed at a given point of space to reach another given
point in specified time. As good texts for getting familiar with Green’s functions we can
recommend a very accessible and illustrative book [1] and more rigorous and advanced
book [2]. Tt is remarkable that once the Coulomb repulsion between electrons can be
neglected, the conductivity or conductance of an electron system can be expressed in
terms of certain products of two single-particle Green’s functions. Therefore it seems
plausible to approach the conducting properties of 1D conductors by considering first
single-particle Green’s function.

To start with, let us consider the following Schrodinger equation:

(e—H)V =0, (1.1)
where H is the Hamiltonian, ¢ is the energy and W is the wave function of an electron.
The Green function (or the Green operator) G of the Schrédinger equation (1.1) is
a solution of the corresponding inhomogeneous equation with the unit-operator on the
right-hand side (r.h.s.):
(e—H)G(e) =1. (1.2)

Obviously, a formal solution of this equation is the following inverse operator:

Gle)=(s—H)". (1.3)

One can consider this equality as a definition of the Green function G(¢).



Using Eq. (1.3) we can rewrite the Green function G(¢) in the representation of the
eigenfunctions ¥, of the Hamiltonian 7{. By definition, in this representation the Hamilto-
nian H is a diagonal matrix, i.e.

HY, =e,¥,. (1.4)
The Green function G(g) turns out to be a diagonal matrix as well:

Gale) = — (1.5)

£—€q4

Here the symbol “a” labels matrix elements and denotes a complete set of quantum num-
bers (both continuous and discrete) of the problem, ¢, is an eigenvalue of the Hamiltonian
‘H corresponding to a quantum number a.

In the coordinate space defined by the position vector 7 the unit-operator 1 is described
by the Dirac delta-function (7 — ') and the equation for the Green function G() is
rewritten as:

(e = M) G(F 1y 2) = 6(F — ). (1.6)

Since the Hamiltonian H of any physically meaningful quantum system is an Hermitian
operator, its eigenfunctions W, (7) form a complete set of orthogonal and normalized (i.e.
orthonormal) functions that can be chosen as a basis in the Hilbert space of complex-
valued functions of 7 [3]. Mathematically, the orthonormalization and completeness of
the set of functions ¥, () are defined as

-
!

[ 4V (7)) = b > WL (T (7) = 57~ 7). (1.7)

respectively. The Lh.s of the first equation is nothing else but the scalar product (dot
product) of the wave functions W, () and ¥,(7). The asterisk “«”stands for complex
conjugation. In general, the symbol d,, on the r.h.s. of the first equation implies the
product of Dirac delta-functions and Kronecker delta-symbols. Dirac delta-functions are
related to continuous eigenvalues of the spectrum {a}, while Kronecker delta-symbols are
associated with its discrete part. The second equation in Eq. (1.7) (the completeness
condition) follows from the first one and represents an expansion of the Dirac delta-
function §(7—77) in the basis W, (7). The symbol of the sum over a implies an integration
over continuous eigenvalues and summation over discrete eigennumbers.

According to the equation (1.6) and conditions (1.7), the Green function G(7,r7; £) can
be presented as the Hilbert—Schmidt series:

g(ﬁﬁ;g) — Zw

a

(1.8)

€ — &,

—

This series is the expansion of the Green function G(7, r/;¢) in the complete set of the
orthonormal wave functions ¥, ().

From the formula (1.8), as well as from the representation (1.5), we see that the
Green function G(e) has singularities at the values of the external energy £ equal to any
of the eigenvalues 4, i.e. at ¢ = &,. In the representation (1.5) these singularities are
simple poles, whereas in the coordinate representation (1.8) they can be weaker due to
summation or integration over the complete set {a}. Thus, as it was mentioned above, if
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one calculates the Green function of a quantum system and reveals its singularities, these
singularities provide complete information about the spectral properties of the system.

We note that the quantity € is an external parameter in the Green function problem.
It has the meaning of energy and therefore is real in all physical applications. Owing to
the hermicity of the Hamiltonian #, the eigenvalues ¢, are also real. Hence the above
mentioned poles € = ¢, lie exactly on the path of the summation (integration) in the
Hilbert-Schmidt series (1.8). Since the summand (integrand) diverges at the poles, a
problem of correct taking the poles ¢ = ¢, into account arises. Usually this problem
is solved by going around poles along infinitely small contours. Surprisingly, the Green
function depends on a direction of going around the poles. As a consequence of this
dependence, three different Green’s functions were introduced: retarded G, (¢), advanced
G (g), and causal G.(¢).

The retarded G, (¢) and advanced G_(g) Green functions satisfy the following equa-
tions:

— —

(e £i0 — H7) Go(7,175e) = 0(F — 1), (1.9)

whence the Hilbert—Schmidt series for them take the form:

gi(Fa 771 6) - Z

a

U, (F)WE(r7)

. 1.10
€ —¢g,£10 ( )

Hereinafter the symbols ”£i0” stand for an arbitrarily small, tending to zero, positive
(+i0) or negative (—i0) imaginary quantity. In other words, the symbol ”+i0” implies
approaching the real axis of the complex energy plane from above, while the symbol ” —i0”
requires to approach the real axis from below. We point out that the energy parameter £
is considered real in Egs. (1.9) and (1.10).

So, we see that the energy € acquires a positive infinitely small imaginary shift for
the retarded Green function Gy (g) and a negative infinitely small imaginary shift for the
advanced Green function G_(£).

The retarded G (¢) and advanced G_(g) Green functions are related as

G (7,15 e) = G (1,7 2). (1.11)
The causal Green function G.(¢) is defined as the difference between the advanced
G_(e) and retarded G, (¢) Green functions:

Go(e) = G_(2) — G e). (1.12)

Let us substitute the equalities (1.10) into the definition (1.12) for the causal Green
function G.(¢) and use the following Dirac identity:

1 1

2mid (e — g,) = — — —.
mid(e — £) e—¢ec,—10 e—¢4+4+10

(1.13)

As a result, we obtain the Hilbert—Schmidt series for the causal Green function G.(¢):
(7, 1752) = 210 Y (e — £4) W (F) WL (). (1.14)

In accordance with Eq. (1.14) the causal Green function G.(¢) has an evident property:



Gi (7, e) = —=Go(r!, 7 ¢) (1.15)

Since all three Green’s functions introduced above can be uniquely expressed via each
other, it suffices to analyze only one of them to find out properties of all the three func-
tions. Following a commonly accepted tradition, we will discuss below the retarded Green
function G, (¢) for our 1D disordered problem. For simplicity, we will omit the subscript
“+” at the retarded Green function. In addition to this, we will leave out the positive
infinitely small imaginary energy shift +:0 every time when it does not lead to misunder-
standing.

1.2 Problem Statement

We consider a 1D wire (straight line) of infinite length. The z axis is directed along the
wire. We assume that there always exist conduction electrons of fixed concentration in
the wire. As far as the spectral and conducting properties are of our interest, we will deal
with the conduction electrons only. For simplicity, we choose the free electron model for
the conduction electrons. Within this model the dispersion law of electrons is assumed to
be quadratic and isotropic,

e = h?k*/2m. (1.16)

Here m is the effective mass and k is the wave vector of electrons.

Our goal is to study the Green function of a disordered (imperfect) 1D wire. As
a physically plausible model for disorder we introduce the random potential V'(z) that
specifies the potential energy of electrons due to disorder at any point x of the wire. We
assume that V' (x) is a continuous, statistically homogeneous and isotropic random process
with zero mean value. These assumptions lead to the following correlation properties of
the potential V' (z):

(V@)=0, (V)=V (V(@V())=VyW(z—a). (1.17)

The angular brackets (. ..) stand for statistical averaging over the ensemble of realizations
of the random function V' (z). Here V} is the root-mean-square (r.m.s.) value and Vg
is the dispersion of the potential V(x). The function W(|z|) is the binary coefficient
of correlation characterized by the unit amplitude W(0) = 1 and by the scale R, of
monotonous decrease. The scale R, is called the correlation radius. The dispersion Vi of
the potential V' (z) does not depend on the coordinate z, while the correlation coefficient
W(|z — 2'|) depends only on the distance between points 2 and z’. These two facts are
direct consequences of the statistical homogeneity and isotropy of the random process
(i.e., the homogeneity and isotropy of our problem on average). The random potential
V(z) is the only source of electron scattering in our problem.

An important and relatively well studied mechanism of electron scattering in low di-
mensional solid-state devices is scattering from non-magnetic static impurities. The con-
centration of impurities is usually sufficiently low so that the average distance between
neighboring scattering centers can be quite large. Therefore successive collisions of elec-
tron with impurities are statistically independent and the correlation between them is
absent. In this case the random potential V'(x) is regarded as the Gaussian “white noise”,



i.e. a process with extremely small correlation radius R.. As a result, for electron-
impurity scattering the binary coefficient of correlation W(|z|) is replaced by the Dirac
delta-function:

W(lx — 2'|) = Red(z — o). (1.18)

Such random processes are known as random delta-correlated processes.
According to all the above assumptions, the 1D Hamiltonian Hy takes the form:
n o d?

Therefore the equation for the retarded Green function G(x,z';¢) is written as

n o d
<% prolaas iO) G(z,2'se) = V()G (x,2"5¢) = 6(x — 2'). (1.20)
To get rid of the constant factor h*/2m in subsequent calculations it is convenient
to introduce the renormalized Green function G"*(x,z’;k) and renormalized random
potential V"™ (x):

G (z, 2" k) = (A?/2m)G"(z,a'; €); (1.21)

Vrew(r) = (2m/h?)Vo(x), View = (2m/h?) Ve (1.22)

Note that the new random potential V"¢ (x) has the dimension of squared wave number.
It should be emphasized that V™" (x) possesses the same statistical properties (1.17) with
the same binary coefficient of correlation W(|x|) as the “old” potential V().

We will discuss below the new retarded Green function omitting the superscript “new”
for simplicity. So, according to definitions (1.21) and (1.22) and Eq. (1.16) we obtain the
following equation for the retarded Green function of a 1D disordered conductor:

d2
(P +E + iO) Gz, 2's k) = V()G (z,2'; k) = 0(x — o). (1.23)
x
The equation (1.23) should be complemented by boundary conditions. As the boundary
conditions we adopt reasonable requirements of finiteness of the Green function at the
infinitely remote points x = +o0:

|G (2 = o0, 2")| < c0. (1.24)

Such boundary conditions are often called the radiative conditions. We remind that a
problem with boundary (not initial and not periodic) conditions is called boundary-value
problem or problem with open ends.

In accordance with Eq. (1.23), the Green function satisfies the corresponding homo-
geneous equation at x # ', i.e. Eq. (1.23) with zero in place of the delta-function on the
r.h.s. At the point x = z' the Green function is continuous but its first derivative with
respect to x has a unit jump. Let us write down the conditions for the continuity of the
Green function and for the unit jump of the derivative:



Gx=2"40,2") — Gx=2"-0,2")=0,

Gx=2"40,2") — Gx=2"-0,2")=1. (1.25)

Hereinafter a prime at a function stands for the derivative of this function with respect
to x. The symbols 40" denote an arbitrarily small, tending to zero, positive (+0) or
negative (—0) quantity. In other words, the symbol “—0" (“+0”) implies taking the left-
hand (right-hand) limit. The second of Eqs. (1.25) is derived by integrating Eq. (1.23)
over x over the interval (z' — 0, 2" +0). We emphasize that the Green function of any 2nd
order differential equation with a unit factor standing at the second derivative satisfies
the conditions (1.25).

Thus, we always have two ways to solve the Green function problem. The first way
is to solve the inhomogeneous equation (1.23) with two boundary conditions (1.24). The
second one is to solve the corresponding homogeneous equation with four conditions: two
boundary conditions (1.24) and two conditions (1.25) at the internal point = = 2.

In most practically important cases one is interested in the Green function averaged
over the ensemble of realizations of the random potential V' (x) rather than in the exact
Green function itself. Moreover, often one is unable to solve the problem exactly because
of an unknown explicit form of the potential V(z). What is known are the statistical
properties (1.17) of the random process V(z). Therefore, our goal here is to find the
average Green function (G(z,z'; k)) of the boundary-value problem (1.23), (1.24), (1.25).

1.3 Unperturbed Problem (Perfect Wire, No Dis-
order)

First of all, let us analyze the corresponding unperturbed boundary-value problem, i.e. the
problem with zero random potential (V' (x)=0). In this case the retarded Green function
Go(z, 2'; k) satisfies the equation

2
(% + k% + i0> Go(x,2's k) = d(x — 2') (1.26)
and the radiative boundary conditions (1.24) at x = f00.

Certainly, at the point x = x' the unperturbed Green function Go(x,z'; k) satisfies the
conditions (1.25) for the continuity of the Green function and for the unit jump of its
derivative.

Now we will write down the solution of the homogeneous boundary-value problem
(1.26), (1.24), (1.25). We postpone the rigorous derivation of the solution until next
subsections. The retarded Green function Gy(z,2';k) of a 1D homogeneous (perfect)
conductor has the following form:

Go(z —a';k) = ﬁ {explik(z' — 2)]O(2" — x) + exp[ik(z — 2")]O(z — ')} =
_ eXp(“;';f_ "”'D, k — k + 0. (1.27)
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Here ©(z) is the Heaviside unit-step ©-function. One should keep in mind that the symbol
k should be regarded as k + 0.

We see that the unperturbed Green function Gy(z —2'; k) depends only on the distance
between points z and z’. This fact is caused by the homogeneity and isotropy of the
unperturbed problem.

1.3.1 Traditional construction of solution

There exists a “traditional” method for finding the Green function of a 1D boundary-
value problem (i.e. a problem with open ends). This method is based on solving the
corresponding homogeneous equation with four conditions: two boundary conditions and
two conditions (1.25) for the continuity of the Green function and for the unit jump of
its derivative at the point x = a’.

First of all, we will explain briefly the essence of the method and then apply it to our
unperturbed problem (1.26), (1.24), (1.25).

1. General construction of solution:

Our objective is to obtain the Green function of a 2nd order homogeneous differential
equation with a unit factor standing at the second derivative and boundary conditions
formulated at the ends of some interval.

Let 11 (x) be two linearly independent solutions of the homogeneous equation, chosen
so that ¢_(z) satisfies the boundary condition at the left open end and () at the right
open end of the interval.

Then the Green function is built as follows:

6o <) = b (D)0s(e)
Gr> ') = (o) (). (1.28)

Here W is the Wronskian of the functions ¢4 () defined as

W = ("), (2) = i ()L (a). (1.29)
We point out that the Wronskian of any Hermitian problem does not depend on the
coordinate z'.

It is easily verifiable that the expression (1.28) is the Green function of the problem.
Indeed, it satisfies the initial differential equation and boundary conditions due to the
proper chosen functions ¢4 (x). Evidently, at the point x = 2’ the function (1.28) satisfies
the continuity and unit-jump conditions (1.25). We note that the unit amplitude of
the jump has been achieved by introducing the normalization factor in the form of the
Wronskian (1.29).

Thus, the problem of deriving an explicit formula for the Green function reduces to
seeking two linearly independent solutions 1 (x) of the homogeneous equation. Note that
these solutions are defined up to a constant factor which cancels out in Eq. (1.28) owing
to the Wronskian.

2. Solutions Y1 (x) of the unperturbed problem (1.26), (1.24):

Obviously, two linearly independent solutions . (x) of the homogeneous equation
(1.26) can be written in the form of plane waves:

11



i () = exp(Likx), k — k + 0. (1.30)

The plane wave ¢, () = exp(ikz) propagates to the right while the plane wave ¢ _(z) =
exp(—ikx) propagates to the left. It is easy to verify that the function ¢_(z) = exp(—ikx)
satisfies the boundary condition (1.24) at the left open end z = —oo and the function
Y4 (x) = exp(ikx) satisfies the boundary condition (1.24) at the right open end x = 400
of the wire. To do this we should take into account that the symbol £ stands for k£ 4+ 0.

By the definition (1.29), the Wronskian of the “left” and “right” plane waves (1.30) is

W = 2ik. (1.31)

After the substitution of the solutions (1.30) and their Wronskian (1.31) into the
general expression (1.28) we arrive at the explicit expression (1.27) for the Green function
Go(z — 2’5 k).

1.3.2 Fourier representation

Since our problem is defined within a continuous infinite interval (—oco < z < 00), we
can seek the unperturbed Green function Gy(x — 2'; k) in the form of the double Fourier
integral,

, o0 dkx dk’x . ' SN
Go(z —2") = /ﬂo o) exp(tk,x)Go(ky, k) exp(—ik,z'), (1.32)

The Fourier transform Gg(k,, k.) is defined as

Go(ky, kL) = /_oo dx dx' exp(—ik,z)Go(x — z') exp(ikLa'). (1.33)

So, to find the Green function Gy(z — 2'; k) we need to calculate the Fourier transform
Go(ks, k) from the initial equation (1.26). To this end, let us apply the integral Fourier
operator

/OO dx dx' exp|—i(k,x — kla')] (1.34)

to the both sides of this equation. Then we should perform a double integration by parts
for the first term on the lLh.s. of the equation. At the same time, we should use the
following representations for the Dirac delta-functions:

Sz —2') = /oo % exp|Lik, (z — 2')],

—oo 4T

S(ky — k) = / ;l—iexp[j:i(km ~ k). (1.35)
It is interesting that the first equality in the representations (1.35) is the condition of
completeness and the second one is the condition of orthonormalization for the basis
U, (z) = (27) Y2 exp(ikyx). Indeed, for our 1D homogeneous problem (1.26), (1.24)
defined within the continuous infinite interval (—oco < & < co) the complete set of eigen-
values {a} consists of the single continuous wave number k£, and the eigenfunctions ¥, (7)
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are Uy (). Therefore the equalities (1.35) coincide with the corresponding conditions
from Eq. (1.7) when rewritten explicitly for our case.

As a result of the above calculations, we obtain the following.

Owing to the homogeneity of the unperturbed problem, the Green matrix Go(k) turns
out to be diagonal in the k,-representation:

Golkn, k) = Golky)2m(ky — kL), (1.36)
1

Therefore, the inverse (1.32) and direct (1.33) Fourier transforms assume simpler forms:

ol ) = [ T Golk) exlik (o — )],

—00 2T
Golks) = /_o;dxgg(x)exp(—ikxx). (1.38)

Thus, the Fourier integral expansion for the Green function Gy(x — 2'; k) of the unper-
turbed problem (1.26) and (1.24) reads as:

p o [ dky explik, (v — 2')]
g[’(‘”_x’k)_/_ooﬁ k2 — k2 + i0
We emphasize that this Fourier representation is nothing else but the Hilbert-Schmidt
series (1.10) for the 1D retarded Green’s function defined within the continuous infinite
interval (—oo < z < 00).

Evidently, the Fourier transform (1.37) and consequently the representation (1.39) can
be obtained by direct applying the Fourier transformations (1.33) or (1.38) to the explicit
formula (1.27). On the other hand, we can come to the explicit expression (1.27) by
evaluating the integral in the Fourier representation (1.39). Let us do it now.

We should take the Fourier integral over k, in equation (1.39) according to the residue
theorem from the complex-variable theory. Details of the calculation can be found in any
textbook on the complex-variable theory, e.g. [4].

As a first step, we need to find the singularities of the integrand. The integrand has
only two simple poles which are determined by equating the denominator to zero:

(1.39)

k> — k24140 =0 — ke = +(k +140). (1.40)

It is very important that our external parameter k2 + i0 has a positive imaginary part.

Owing to this fact the poles do not lie on the integration path which is the real axis of

the complex plane k,. The first pole k, = k+ 10 is in the upper half-plane and the second
one k, = —k — 10 lies in the lower half-plane.

Let us calculate the residues of the integrand at the points k, = +(k + ¢0). To do

that, we should expand the integrand in the Laurent series in the vicinity of these poles:

1 expliky(z —a')] 1 exp[Eik(z —2')]
or kK2 _kEti0 - dnk ke F (k1i0)
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at |kx F (k+140)| < 1. (1.41)

By definition, the residues of the integrand are the factors at [k, F (k + i0)]™' in the
expansion (1.41):

exp|tik(x — z')]
47k '

Now we are in a position to evaluate the Fourier integral (1.39).

For definiteness, suppose that the difference x — 2’ is positive (z — 2’ > 0). In this
case the integrand is an analytical function of the integration variable k, within the upper
half-plane of the complex plane k,. Therefore, we can make the integration path closed
by adding to its ends k, = +o00 an infinitely far semi-circle R, in the upper half-plane. In
this way we obtain a new closed contour C', that consists of the initial integration path
—o0 < k,; < oo and the infinitely far semi-circle R, in the upper half-plane. We see that
the first pole k, = k + 10 only lies within the closed contour C.. So, according to the
residue theorem, the integral along the closed contour ', is equal to 27¢ multiplied by
the integrand residue at the point &k, = £k + :0:

Res{integrand(k, = +(k +i0))} = F

(1.42)

dk, explik,(z —2')]  explik(z — 2')]
cp 2m kK2 —k24+40 2ik

when  z—2' >0. (1.43)

We next take into account that the integral along the infinitely far semi-circle R, vanishes
because the exponent explik,(z —z')] for  — 2’ > 0 goes to zero at any infinitely far point
in the upper half-plane of the complex plane k,. Therefore the Fourier integral (1.39) is
equal to the integral (1.43) along the closed contour C';. As a result we get

o dk, expliky(x — 2')]

_ pl. — e
Golz =5 k) /m or k2 — k240
explik(x — z')]

2k

when r—1x >0. (1.44)

If the difference z —z' is negative (z—2’ < 0), then the integral (1.39) can be taken in a
similar manner except for the integrand being now an analytical function of &, in the lower
(not upper) half-plane of the complex plane k,. Therefore we can modify the integration
path by closing it with the infinitely far semi-circle R_ in the lower half-plane. Hence, we
get a new closed contour C'_ that consists of the initial integration path —oo < k, < oo
and the infinitely far semi-circle R_ in the lower half-plane. Now only the second pole
k, = —k — 40 lies within the closed contour C_. So, in line with the residue theorem, the
integral along this closed contour C_ is equal to —27: multiplied by the integrand residue
at the point k, = —k — 10:

[ b o0fitls )] _ eofibla )

_ f _ 2 <0, 1.4
W Rk 40 ik or  w-ao<l (1.45)

Note that we have used the factor —27¢ instead of 27i because we went along the contour
C'_ clockwise but not counter-clockwise as we did for positive x—z’. The integral along the
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infinitely far semi-circle R vanishes because the exponent exp[ik,(z — z')] for z — 2’ < 0
is equal to zero at any infinitely far point in the lower half-plane of the complex plane k,.
Therefore the initial integral (1.39) is equal to the integral (1.45) along the closed contour
C_. As a result we get

0 dk, expliky(x — 2')]
— r k = / =
Golr =25k = | % Rkt
exp|—ik(z — 2')]

= f -7 . 1.4
5ir or r—2x2 <0 (1.46)

From a straightforward comparison one can make sure that the expressions (1.44) and
(1.46) are identical with the equation (1.27) obtained earlier for the unperturbed Green
function.

1.4 Problem with Disorder

Now let us return to the derivation of the averaged Green function (G(x,2';k)) of the
1D disordered conductor. At the beginning we can state that the average Green function
(G(z,2';k)) depends only on the difference x — ' of coordinates owing to the statistical
homogeneity of the problem on average, i.e., owing to the statistical homogeneity (1.17)
of the scattering potential V(). So, we can write

(G(z,2";k)) = G(z — 2; k). (1.47)

In these Lecture Notes we will obtain the average Green function via deriving and
solving the Dyson equation.

First of all, we need to derive the starting Green formula to relate the perturbed Green
function G(z,z'; k) to the unperturbed Green function Gy(z, z'; k). Note that the Green
formula is nothing else but the closed integral equation for G(x, z'; k). To derive it we will
use the initial differential equation (1.23) with the radiative boundary conditions (1.24).

We now describe briefly how to obtain the Green formula. First, we write down the
equation (1.26) for Gy(z1, z; k) and the equation (1.23) for G(z1,2'; k). Then we multiply
the former from the left through by G(x1,2'; k), while the latter by Go(z1,x; k). We next
subtract the latter from the former cancelling out identical terms. The result is integrated
over 1 over the interval (—oo,00). Terms that include derivatives are cancelled after
integration by parts. Finally, we apply the symmetry property Go(2', z; k) = Go(z, 2'; k).
In this way we arrive at the required Green formula which has the usual form:

G(x,2'; k) = Go(x — 2'; k) + /_oo dr1Go(x — z1; k)V (21)G (21, 25 ). (1.48)

Next, from the Green formula (1.48) for the exact (i.e., random) Green function
G(z,2'; k) we should derive an equation for the average Green function (G(z,z';k)). To
this end, we can try some different ways. For example, we can average directly both
sides of the Green formula (1.48), in which case the correlator (V(x1)G(z1,2'; k)) appears
which can unlikely be decoupled in a plausible way.

A second way is to apply a diagrammatic technique similar to that introduced by
R. Feynman to the quantum electrodynamics. The diagrammatic approach suggests to
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iterate the Green formula (1.48) with the unperturbed Green function taken as a zero
approximation. As a result, we obtain an infinite series of iterations that should be
averaged term by term. The summation of some infinite subsequence of diagrams yields
an approximate equation for the average Green function (G(x,z'; k)).

In these Lectures we will average the Green formula (1.48) with the use of a technique
developed by A. Maradudin et al. [5]. This technique is similar to diagrammatic but is
simpler and more elegant.

1.4.1 Averaging procedure. Dyson equation

For clarity of forthcoming calculations we rewrite the integral equation (1.48) in the
symbolic form:

G =Go+GoVG. (1.49)

Here we introduce the operator V of the surface scattering. The explicit (integral) action
of this operator should be interpreted as: (i) write the random potential V' instead of
the operator V; (ii) put variables adjacent to V' (i.e. next to V from the left and from
the right) equal to the argument of V; (iii) integrate over this argument over the interval
(—00, 00).

Let us define two operators: (i) the averaging operator P which averages everything to
its right over the ensemble of realizations of the random potential V' (z); (ii) the fluctuation
operator () which extracts fluctuations from everything to its right.

Obviously, any random value is a sum of its average and fluctuations. For instance,

G = PG +QG. (1.50)

Therefore the both introduced operators are related as

P+Q=1. (1.51)

Recall that the symbol 1 stands for the unit operator. In this case the unit operator is
simply a number.
Since the unperturbed Green function Gy is deterministic (not random), we have

PGy = Gy, QGo = 0. (1.52)

So, we need to seek the equation for the average Green function (G) = PG.

Let us act separately on the both sides of the Green formula (1.49) by the averaging
P and the fluctuation @ operators. Then we use the relation (1.50) and equalities (1.52)
on the r.h.s. of the obtained equations. As a result, we get

Pg = Gp +g015f/(15g +Qg)7 (1.53)

QG = GoQV (PG + QG). (1.54)

So, we have come to a set of two algebraic operator equations that determine two unknown
functions PG and QG.
We now express the function QG in terms of PG using the second equation (1.54):
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QG = (1—GoQV) 'GQV PG. (1.55)

We next substitute the expression (1.55) into the first equation (1.53). After some
identical operator transformations we obtain for the average Green function (G) = PG
the operator equation which is known as the Dyson equation:

PG = Gy + GoMPG. (1.56)

Here we introduce the new operator M that enters the Dyson equation (1.56) as the
self-energy operator. 1t is equal to

~

M = PV[1+(1-GQV)'GQV] =
= PV[1—(1-GQV)"'(1-GQV —1)] =

= PV(1—GQV)™". (1.57)

We see that this is exactly the self-energy operator M that describes the electron inter-
action with the random potential V.

Notice that the Dyson equation (1.56) with the self-energy (1.57) is the exact general
equation for the average Green function (G) = PG. However we cannot solve it because
it is unlikely to rewrite the symbolic representation (1.57) for the self-energy operator M
in a finite analytical (integral) form. Therefore, we have to simplify the self-energy M.

Let us consider electron scattering at the random potential V as a weak scattering, in
a sense. The conditions of the weak scattering approrimation will be formulated below.
In other words, we assume the scattering operator V to be a small perturbation in the
expression (1.57). This assumption allows to expand the exact formula (1.57) for the
self-energy M in powers of the scattering operator v,

M ~ PV(1+GoQV). (1.58)

We take into account that, according to the correlation properties (1.17), the potential 1%
has zero average and, therefore, is equal to the fluctuating part,

(Vy=PV =0, QV =V. (1.59)

Thus, in the first non-vanishing (quadratic) order in the scattering operator V the
self-energy operator M is given by the following formula:

M ~ PVGyV = (VG V). (1.60)

Note that such approximation for the self-energy M is equivalent to the so-called Bourret
approzimation [6] in the diagrammatic technique which includes only the simplest (first)
term of the diagrammatic series for the self-energy. On the other hand, in the quantum
scattering theory any weak scattering approrimation of the second order in the scattering
potential is known as the Born approrimation. So, we can conclude that the expression
(1.60) for the self-energy operator M is written within the Born approximation.
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At the end of the averaging procedure, let us substitute the formula (1.60) into the
general equation (1.56), whereupon the Dyson equation for the average Green function
(G) = PG within the Born approximation takes the following symbolic form:

(G) = Go + Go(VGoV)(G). (1.61)

This form allows a simple analytical interpretation.

1.4.2 Solving Dyson equation

Let us write down the Dyson equation (1.61) for the average Green function (G(z,z'; k))
in an analytical form. In accordance with the definition of the random scattering operator
V and the property of the statistical homogeneity (1.47) of the average Green function
(G(z,2';k)), the Dyson equation can be rewritten as follows:

Gz —a'k) = Golw—a'sk) + (1.62)
+ /_oo dxy /_oo dzy Go(x — z1; k)M (21 — 22)G (20 — 2’5 k).

At the same time, in the Born approximation the kernel M(x — z') of the self-energy
operator M reads as:

M(z —a') = (V(2)Go(z — 2")V(a")) = VeW(|z — 2'[)Go(x — o). (1.63)

Here we have applied the correlation properties (1.17) of the random potential V(x). We
draw attention to the fact that the self-energy M (x) is an even function of the argument
x.

Owing to all functions in the Dyson equation (1.62) being dependent only on the
difference of coordinates, it is effective to apply the Fourier transformations to solve this
equation.

So, we will seek the average Green function G(z — 2') in the Fourier representation
similar to Eq. (1.38) for the unperturbed Green function Gy(z — 2'):

Glr—a) = [ SEG) expliko — o),

—00 2

Glk,) = /_o:odxg(x)exp(—ikmx). (1.64)

Let us substitute the Fourier integrals (1.64) and (1.38) for the average and unper-
turbed Green functions in the Dyson equation (1.62). In doing so, it is more comfortable
to transfer the unperturbed Green function from the r.h.s of the Dyson equation (1.62)
to the Lh.s.:

S explika (e — 4] [Gke) — Golk)] = (1.65)
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00 00 () dkx
= / d:z:I/ d:zrg/ exp(ik,x)Go(k,) exp(—ikyxq) X

—00 2T
o dki’lf <11 al ! <70 1
X Mz — xg)/ 5 exp(ikl,zy)G (k) exp(—ik,x").

—o0 4T
Then we need to replace the integration variable z; with z7*” = x; — x9 omitting the
index “new” for simplicity:

o dk, , =
[ = explik, (@ — )] [Glk) — Go(k,)] = (1.66)

= /OO % exp(itk,x)Go(ky) {/0:0 dxy M(z1) eXp(_ikm«Tl)] X

—oo 4T

o dk' _ oo
X / o G(k') exp(—ik.a") / diy expli(k! — ko)2).

—00 27’(’

It is easy to see that the expression within the square brackets on the l.h.s. of the equation
(1.66) is nothing else but the Fourier transform Mpg(k,) of the self-energy (1.63),

M=oy = [ 0 k) explik, (o — ),

—c0 2T
Mp(k,) = / dx M(z) exp(—iksz). (1.67)
At the same time, according to the representation (1.35), the integral over x5y is equal

to 2mo(k!, — k). Therefore we take the integral over £ with the help of this Dirac’s
delta-function:

[ expliba(r — )] [G(k) ~ Golka)] = (1.65)

oo T

© dk, . _
=[5 expliku(e — 2)]Go(k) Ma (k)G (k).
—oo 4T
As a result, we obtain that in the k,-representation the Dyson equation turns out to

be a simple algebraic one:

Its solution with respect to the Fourier transform G(k,) of the average Green function is:

— Go(kz) 1
G(ky) = = : 1.70
(kz) 1 — Mg(ky) Go(ky)  k? — k2 — Mp(k,) (1.70)
Here in the last expression we have used the explicit formula (1.37) for the Fourier trans-
form Gy(k,) of the unperturbed Green function.
In the Born approximation the formulas (1.64), (1.70), (1.67) and (1.63) complete
nominally the solution of the disordered problem.
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1.4.3 Average Green’s function

In agreement with the Fourier representation (1.64) and the expression (1.70) for the
Fourier transform G(k,) we can write down the average Green function G(z — 2';k) as
the Fourier integral:

— , o dk, expliky(x — 2')]
— ; k f— / .
Gl —25k) = | S = k2 = My (k)

This integral should be taken over residues in the way we applied to evaluate the Four-
ier integral (1.39) for the unperturbed Green function Gy(x — 2'; k) (see the end of the
subsection 1.3.2).

First of all, we need to find the poles of the integrand in Eq. (1.71), i.e. the singularities
of the Fourier transform G(k,). This problem reduces to solving the dispersion equation

(1.71)

k* — k2 — Mp(kg) = 0. (1.72)

Owing to the complicated dependence of the self-energy Mp(k,) on the wave number
k, we cannot solve this equation (1.72) in a finite analytic form. At the same time,
when deriving the self-energy M (z — 2') we already assumed weak electron scattering.
As a consequence, the exact expression (1.57) for the self-energy operator M was treated
perturbatively and we have obtained the self-energy M (x — z') as the Born (quadratic)
approximation (1.63) in the random scattering potential V(x). Therefore, there seems
to be no other way to proceed but to solve the dispersion equation (1.72) perturbatively
considering the self-energy Mp(k,) as a perturbation.

So, we solve the dispersion equation (1.72) by iterations in the small self-energy Mg (k)
which is assumed much smaller than the “energy” k* (|Mp(k,)| < k?). At the first step
of iterations we neglect the self-energy Mp(k,) and get the unperturbed result k, = +k.
At the second step we include a small correction 6k to the unperturbed wave number k.
In other words, we seek the solution of the dispersion equation (1.72) in the form:

ky = +(k + 6k). (1.73)

Obviously, we should calculate the correction ¢k under the same restrictions that were
used for the derivation of the self-energy M(z). Hence, an important point now is to
formulate explicitly the conditions of weak electron scattering. A detailed analysis, which
we do not perform here, shows that the assumed Born approximation for the self-energy
Mpg(k;) is valid as long as the following two inequalities hold:

|0k| <k, (1.74)

|0k|R. < 1. (1.75)

These conditions mean that the deviation dk from the unperturbed wave number k& must
be the smallest parameter of the dimension of wave number. Indeed, so far there were
just two parameters with the wave-number dimensions in our problem. Those are the
electron wave number k and the inverse correlation radius R, !. The former specifies the
unperturbed electron states, while the latter characterizes the perturbation of electron
states by the random scattering potential V(z). So, the shift dk has to be small in
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comparison with both of them. We point out that we do not assume any predetermined
interrelation between the electron wave length k~! and the correlation radius R,.

Thus, we should solve the dispersion equation (1.72), i.e. find the correction 0k, under
the conditions (1.74) and (1.75). Notice that we have used the inequality (1.74) when we
present the solution of the equation in the form (1.73).

Let us now substitute the expression (1.73) into the dispersion equation (1.72) and
take into account that the Fourier transform Mpg(k,) (1.67) is an even function of the
argument k,:

k* — (k + 6k)? — Mp(k + 0k) = 0. (1.76)

Then, owing to the condition (1.74), we can expand the second term on the Lh.s of
Eq. (1.76) up to linear in 0k terms inclusive and neglect second and higher order terms
in dk. After cancelling identical terms we get the wave number shift 0k:

5k = — Mg (k + 6k)/2k. (1.77)

Next we would like to eliminate the correction dk from the argument of the self-energy
Mpg(k + 0k). To understand if we can do it we use the explicit expression for Mp(k + dk)
that stems directly from the definition (1.67) and formula (1.63):

Mp(k+8k) = Vg /O:O dz W(|z])Go(x) exp(—ikz) exp(—idkzx). (1.78)

The first multiplier WW(|z|) in the integrand has a maximum at x = 0 and monotonously
decreases over the correlation radius R.. The second factor Gy(r)exp(—ikz) varies over
the electron wave length k1. The variation scale 6k of the third term exp(—idkx) is the
longest. In other words, the function exp(—idkz) is a smooth function in comparison with
the rapidly oscillating exponents Gy(x) exp(—ikz) and the correlation coefficient W(|z|)
as far as the conditions (1.74) and (1.75) hold. So, we can replace the function exp(—idkx)
by one. This means that the deviation dk can safely be removed from the argument of the
self-energy Mp(k + 0k) in the equation (1.77) as far as the weak scattering limit (1.74)
and (1.75) is concerned.

As a result of the above simplifications, we come to the following expression for the
wave-number shift dk:

5k = — My (k) /2k. (1.79)

Thus, within the Born approximation (1.74) and (1.75) the poles of the Fourier trans-
form G(k,) of the average Green function are

ke = £(k — Mp(k)/2k). (1.80)

Let us now recall that we are evaluating the integral over k, in the equation (1.71)
to obtain the explicit formula for the average Green function G(z — 2';k). We have
found the poles (1.80) of the integrand. A next step should be taking the integral over
residues as it was done for the unperturbed Green function Gy(x — 2'; k) (see the end of
the subsection 1.3.2). Fortunately, we do not need to do this. To write down an answer it
is sufficient to compare the expressions (1.40) and (1.80) for the poles of the unperturbed
Go(k;) and average G(k,) Green functions. The comparison leads to the conclusion: In
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the Born approzimation (1.74) and (1.75) the average Green function G(x—x'; k) is always
equal to the unperturbed Green function Go(x — z') with the wave number k reduced by the
value Mg(k)/2k:

Gz —a';k) = Go(x — a's k — Mp(k)/2k). (1.81)

It is necessary to emphasize that this conclusion is valid if the imaginary part of the
self-energy Mp(k) is negative or zero. This is the only case when the poles of both Green
functions are similar to each other. However, such limitation on the imaginary part of
Mg (k) should not be considered strict because in systems with no energy sources the
non-positiveness of Mg (k) is dictated by the energy conservation law (see, e.g., [1, 7]).

We will see below that the self-energy Mp(k) is complex. Basing on this fact, let us
extract the real and the imaginary part of the correction dk:

Sk = vy +i/2L4; (1.82)
v = —RMp(k)/2k, (1.83)
1/Lis = —SMp(k)/k, Lis > 0. (1.84)

Hereinafter the symbols “R” and “3I” stand for the real and imaginary parts respectively.
After the lengthy algebra we are in a position now to write down the explicit formula
for the average Green function G(x—a'; k) of a 1D disordered conductor. According to the
conclusion (1.81) and the equation (1.27) for the unperturbed Green function Gy(x —z'; k)
using the notation (1.83) and (1.84) we get:
o eplitk e =) e
Gx —2'sk) = S0k exp(—Tts
Brief analysis of the expression (1.85) for the average Green function of a 1D disordered
conductor: Electron scattering by a random potential gives rise to the complex deviation
0k of the electron wave number from the unperturbed value k. This fact causes the phase
renormalization and attenuation of the average Green function along the length of the
conductor. The real part v of the complex shift §k is responsible for the disorder-induced
modification to the phase of the Green function. The quantity L;s which is specified by
the imaginary part of & has the meaning of the attenuation length.

). (1.85)

1.4.4 Electron mean free path

We now need to derive explicit expressions for the phase modification v and the attenu-
ation length L;, to associate them with the properties of the random scattering potential
V(z). According to definitions (1.83) and (1.84) this problem reduces to the derivation
of the explicit expression for the self-energy Mp(k).

Let us substitute the equation (1.63) for M (z) into the formula (1.67) at k, = k:

Mp(k) = V2 / dx W(|z])Go () exp(—ikz). (1.86)
Then we apply the Fourier representation (1.38) for the unperturbed Green function Gy (z):
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< dk,
My(k) = Vi [

—oo 4T

Golky) /_Z dx W(|z|) exp[—i(k — k,)z]. (1.87)

We next take into account that the integral over x is nothing else but the Fourier transform
of the correlation coefficient W(|z|):

~ dk, |
Wial) = [ S W (k) explika),
—00 271'
W(k,) = /°° dz W(|z]) exp(—ik.z). (1.88)
So, the self-energy Mp(k) takes the form:
, (% dks
Mu(k) = Vi [~ S2W (k= k) Golk). (1.89)

At this step of our calculations let us substitute the explicit expression (1.37) for the
Fourier transform Gg(k,) of the unperturbed Green function Gy(z) into Eq. (1.89). In
this way we arrive at the result:

My(h) =17 [ B TR 2K (1.90)

o0 2T k2 — k% +ZO

We now should present the self-energy Mp(k) as an explicit complex value. In other
words, we need to extract the real and the imaginary parts from the equation (1.90). To
this end we divide the Fourier transform Gg(k,) into two terms:

1 1 1 1
Golks) = 75— = :—( : ) 1.91
oke) = om0 " % \F— R hrh (1.91)
After that we use the following Dirac identity:
1
— =PV ) — k). 1.92
[ — ’PVk_kx$m§(k k.) (1.92)

Here the symbol P.V. stands for a principal value of an integral. According to the identity
(1.92), the Fourier transform Gy(k,) is given by

1
Golhe) = 2 Thz w0
PV T — k) 4 0k + k) (1.93)
= PV w s o)l '

We next substitute this expression (1.93) into the formula (1.90) and take some integrals
with the help of the Dirac delta-functions. At the end we find out that the self-energy is
described by

o dky, W(k—k,) V2
_ 12 z r) .70
Mp(k) = Vo P-V. /,oo or k2 k2 4k

It is necessary to emphasize that the evenness of the correlation coefficient W(|z|) implies
the reality of the Fourier transform W (k,). Therefore, in the representation (1.94) the

(W (0) + W (2k)]. (1.94)
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first term is the real part and the second one is the imaginary part of the self-energy
Mg (k).

Thus, in accordance with the definitions (1.83) and (1.84), the explicit expressions
for the phase modification v and the attenuation length L, take the following ultimate
forms:

12 < dky W(k — ky)
——PV. _— 1.95
1= Y o e (1.95)
LY o) 4wk Ly > 0 (1.96)
T. 412 ’ ts > 0: '

The real spectrum shift v does not play any role in the conducting properties of 1D
disordered electron systems. At the same time, the imaginary part 1/2L;, of the spectrum
deviation 6k changes these properties drastically. Nothing else but the imaginary part
1/2L;s forms the conductance and causes the effect of the strong localization. Therefore,
hereinafter we will analyze only the attenuation length L;; of the average Green function
of a 1D disordered conductor.

It is a quite general result of the quantum scattering theory that the attenuation length
Ly of the average single-particle Green function is just the “outgoing” mean free path of
electrons which is formed by scattering from a given state into all possible states (including
the given one). Indeed, the attenuation length L, is originated from the imaginary part
of the self-energy (see Eq. (1.84), where L,;' = —SMp(k)/k). On the other hand, the
imaginary part of the self-energy Mp(k) is proportional to the outgoing term of the
quantum integral of collisions. Since the outgoing term is proportional to the full cross
section of scattering, the corresponding outgoing mean free path is inversely proportional
to the full cross section. Therefore it is often referred to as the full (total) mean free path.

We know that the full cross section of scattering is proportional to the probability of
electron scattering from a given state into all possible states (including the given one). In
the 1D case an electron has only two possibilities for scattering: It can be scattered either
forward or backward only. Let us recall that we consider an elastic scattering because
the random potential V' (z) is time-independent and hence the Schrédinger equation has
stationary (with well-defined energy) solutions. Elastic scattering does not change the
initial energy (and hence the modulus of the wave vector, i.e. the wave number k) of an
electron. It changes only the direction of the electron motion, i.e. only the sign of the
velocity (the sign of the wave vector E) Therefore, the modulus of the modification Ak of
the electron wave vector is equal to zero (|AK| = 0) at the forward elastic scattering and
is equal to the double initial wave number (|Ak| = 2k) at the backward elastic scattering.
Let us now recall that the scattering probability is a function of the modification |AE | of
the electron wave vector by a scattering process.

In agreement with the above statements, we can conclude that the first term in the
formula (1.96) is proportional to the probability of the forward electron scattering and the
second one is proportional to the probability of the backward electron scattering. Based
on this conclusion, the full electron mean free path can be presented as

L' = L;j + L}
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LW Vo
Ly = mW(O), L, = mW@ ). (1.97)
In this expression the length Ly, is related to the forward electron scattering, while the
length L, is associated with the backward scattering. Therefore, the length Ly, is called
the mean free path of forward electron scattering and the length Lys is referred to as the
backscattering mean free path.

Usually, the backscattering length Ly is larger than the length L, because W (2k) <
W(0). So, L' ~ L}?sl and the average Green function attenuates along the conductor
mainly on the scale of the mean free path of forward electron scattering Lg,. However,
in the second part of the Lectures we will see that the conductance of 1D disordered
conductors is completely determined by the backscattering length L, alone but not by
Lys.

Concluding this subsection we would like to point out that, owing to the Born restric-
tions (1.74) and (1.75), the outgoing mean free path L; of electrons far exceeds both the
electron wave length k~' and the correlation radius R,:

kL > 1, Lis > R.. (1.98)

It is clear that the first requirement allows to think of electrons as “quasifree” (but not
quasiclassical!) particles. The second inequality is, in fact, the necessary and sufficient
condition for the statistical approach to the problem of electron interaction with a random
potential.
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Chapter 2

Conductance of 1D Disordered
Conductor

The previous Lectures discussed the spectral properties of disordered 1D electron systems.
To this end we derived and analyzed the single-particle average Green function. Now
we are starting to consider conducting (transport) properties of such systems. More
specifically, we will obtain and study the conductance of disordered 1D electron systems.
The main effects which we expect to find out are the ballistic and strong-localization
regimes of conduction. It is necessary to emphasize that the strong localization is caused
by coherent multiple scattering of electrons by a random potential. Presently the complete
self-consistent theory of these phenomena exists only in a 1D case.

2.1 Conductance-Problem Formulation

We consider a conducting 1D disordered wire of finite length L. Let the x axis be directed
along a straight line of the wire which occupies the following spatial interval:

~L/2<x<L)2 (2.1)

Note that in our discussion devoted to the average Green function we treated an infinitely
long disordered 1D wire. It is important to point out here that the localization makes the
conductance of an infinite 1D wire to vanish. So, it is sensible to consider a 1D conductor
of finite length L in order to analyze both the ballistic and localization regimes as well as
the crossover between them.

As before, we choose the free electron model, i.e. the dispersion law of electrons is
assumed to be quadratic and isotropic (1.16).

For convenience of further calculations, we introduce the dimensionless conductance
T(L) of the system. It is defined as the conductance G(L) of the wire divided by the
conductance quantum e?/7h:

G(L)
e2/rh’

Here e is the elementary charge. Below we will see that the dimensionless conductance
T(L) has an independent physical meaning.

T(L) = (2.2)
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In accordance with the standard linear response theory by R. Kubo [8], the conduct-
ance (as well as conductivity) of a non-interacting system is expressed via the product of
differences between the advanced and retarded single-electron Green functions (see, e.g.,
papers [9, 10] and the book [11]). It has been proved [12, 13] that under the conditions
of weak electron scattering one can neglect the products of the identical Green func-
tions (both retarded and both advanced) in the general expression for the conductance.
Then, taking into account that the advanced Green function transforms into the retarded
Green function by simultaneous complex conjugation and swapping the arguments, the
dimensionless conductance T'(L) at zero temperature can be presented as

T(1)= / " / b2 006 2l k) 0G” (2, 2" kr)

. d . 2.3
L? )12 ~L/2 ¢ ox ox' (2:3)

The asterisk “x” stands for complex conjugation. Note that the Fermi wave number kg
replaces the wave number k in this and all further equations because the electron gas is
assumed degenerate, i.e. obeying the Fermi-Dirac statistics.

The retarded single-electron Green function G(x,x'; kr) was introduced in the previous
Lectures. For completeness of the problem statement we rewrite here the equation for the
retarded Green function of a disordered 1D conductor:

2
(% + k% + iO) Gz, 2"y = V(x)G(z,2") = 6(x — a'). (2.4)
Hereinafter the symbol “/0” means an arbitrarily small, tending to zero, positive imaginary
quantity. As before, the Green function satisfies the radiative boundary conditions at the
wire ends x = +L/2. In the next section we will give the explicit expressions for the
radiative boundary conditions in the case of a conductor of finite length L.

To describe the electron scattering we have introduced the random potential V(x)
in the equation (2.4), which specifies the inhomogeneity (disorder) of the problem. Its
correlation properties are defined by the formula (1.17) from the previous part of the
Lectures.

We managed to solve the problem of the average Green function under the conditions
of weak electron scattering only, i.e. within the Born approrimation. The same condi-
tions of the weakness of the random potential V' (z) will be assumed here in deriving
the conductance. Since the real spectrum shift v obtained in the previous Lectures does
not contribute to the conductance, the weak-scattering restrictions should be formulated
for the electron total (outgoing) mean free path L;;. As we found out earlier, the elec-
tron relaxation length L;; must be large in comparison with the “microscopic” lengths
of our problem, namely, with the electron wavelength &k, and the correlation radius R.:
krLis > 1 and L;s > R.. Moreover, to make averaging over the realizations of the ran-
dom potential V() meaningful we need to assume similar requirements for the conductor
length L, i.e., kpL > 1 and L > R.. All these conditions can be collected into the
following inequality:

max{kp', R.} < min{L;,, L}. (2.5)

We point out that we do not assume any predetermined interrelations between the Fermi
wavelength k' and the correlation radius R, or between the wire length L and the total
relaxation length L.
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Our goal is to calculate the dimensionless conductance T(L) (2.2) averaged over the
ensemble of realizations of the random potential V' (z). According to the Kubo formula
(2.3), this problem is reduced to averaging the product of two retarded Green’s functions,
i.e., to searching the average two-particle Green function. It is very important to underline
that for the 1D case this procedure can not be performed by an approximate method of
solving the Dyson equation which we used to calculate the average single-particle Green
function. Therefore, below we will apply one of more rigorous methods that allow correct
solution of 1D two-particle quantum problems with disorder. We mention that those
methods give the same result for the average single-particle Green function which can be
derived by the traditional procedure of solving the Dyson equation.

2.2 Two-scale Model

According to the weak-scattering assumption (2.5), there exist two groups of substantially
different spatial scales in our problem. On the one hand, there is a group of “macroscopic”
lengths: the wire length L and the relaxation length L;;. On the other hand, there is a
pair of “microscopic” lengths: the electron wavelength k' and the correlation radius R..
The existence of two scales allows to apply the two-scale model of oscillations for treating
the equation (2.4) for the retarded Green function G(z,z').

We start with the well-known representation for the 1D Green function G(x,z’) (see
Eq. (1.28) from the previous Lectures):

G(z,2") =W 'y (1) (2/)O(z — ') + ¥ (' )¢_(2)O(2" — 2)] . (2.6)

Recall that in this representation the functions 4 () are two linearly independent solu-
tions of the corresponding homogeneous equation, i.e. equation (2.4) with zero instead
of the delta-function on the r.h.s. The solution ¢ _(z) satisfies the radiative boundary
condition at the left open end x = —L/2 and the solution v, (x) satisfies the radiation
boundary condition at the right open end x = +L/2 of the wire. The Wronskian W of
the functions ¢ (z) is defined as usual,

W = (@) (&) — s (2L (). (2.7)
Hereinafter a prime at a function stands for the derivative of this function with respect
to its argument. Note that the Wronskian W of any Hermitian problem does not depend
on the coordinate x’. Therefore, we can calculate it at any convenient point within the
interval (2.1). The symbol ©(x) in Eq. (2.6) denotes the Heaviside unit-step ©-function.

We know that two linearly independent solutions " (x) of the unperturbed (when
V(z) = 0) boundary-value problem are the plane waves:

W (2) = exp(Fikpa), kr — kr + 0. (2.8)

The plane wave ¢$’) (z) = exp(ikpx) propagates to the right and the plane wave ¢_(2)(®) =
exp(—ikpx) propagates to the left. It is clear that in the 1D perturbed problem these
“initial” electron waves can be scattered by the random potential V'(x) both forward and
backward. As a result, the electron state will be made up by the sum of transmitted and
reflected waves. Therefore, we can seek the functions 14 (x) as superposition of modulated
waves propagating in opposite directions along the z-axis,
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Vi (z) = 74 (2) exp(ikpx) — iv4(x) exp(Fikr). (2.9)

The radiative boundary conditions for the wave functions v () imply the absence of
waves scattered by the wire ends x = +L/2. Tt means that the perturbed wave functions

Y4 () have to transform into the respective plane waves T (x) at the ends © = +£L/2,

Yy (£L/2) = exp(tikp). (2.10)

In this way the radiation boundary conditions (2.10) for the functions 14 (x) lead to the
“initial” conditions for the amplitudes 74 (z) and 4 (z):

T (£L/2) =1, vi(£L/2) = 0. (2.11)

Obviously, if the random scattering potential V(x) tends to zero, the introduced amp-
litudes 74 (x) tend to unity and v4(z) tend to zero as well.

It is noteworthy that scales of variation of the amplitudes 7 () and v4 (z) in Eq. (2.9)
as functions of the coordinate x are macroscopic: they are determined by either the
relaxation length L, or the wire length L. Thus, within the two-scale approximation (2.5)
they are smooth functions of the coordinate x in comparison with the rapidly oscillating
exponents exp(+ikpx) and the correlation coefficient W(z).

2.2.1 Dynamic equations for smooth amplitudes

According to the representations (2.6) and (2.9), the problem of calculating the Green
function G(z, ') is reduced to finding the smooth amplitudes 74 (z) and v+ (x). Therefore,
first of all, we should derive equations for these functions. Under the weak-scattering
condition (2.5) the appropriate equations are deduced by a standard method of averaging
over rapid phases (see, e.g., the book [14]). Let us now apply that method to our problem.

We start from the homogeneous equation for the functions ¢, (x). This equation
corresponds to the equation (2.4) for the Green function G(z,z') but has zero instead of
the delta-function on the r.h.s.:

(2 + 42 va(0) = Vioata) =0 (212)

da?

We need to calculate explicitly the second derivative of ¢4 (x) with respect to z. The
first derivative of 1)L (x) are

—xwi (r) = 7' (2)exp(Fikpz) — iy (x) exp(Fikpr) +
+ ikpry(z) exp(Likpx) F kpy+(x) exp(Fikpz), (2.13)

whence we get the second derivative:

d2

@wi (r) = 7'(z)exp(+ikpz) — iy} (x)exp(Fikpz) +
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+ 2ikpn, (x) exp(tikpz) F 2kpy (z) exp(Fikpz) —

—  kpmi(w) exp(dikpa) + ikays(2) exp(Fikpr). (2.14)

We next take into account the following estimations for the derivatives of the smooth
amplitudes 74 (z) and 4 (z). Since a derivative of a function can be roughly estimated
as the value of the function itself divided by a scale of its variation, we have:

' (x) ~ /Ly or ~my/L, 7'l (x) ~ 7y /LE, or ~ my/L?

Vi (x) ~vi/Lys or ~vi/L, Yi(z) ~ ye/L;, or ~ g /L (2.15)

In accordance with these estimations we can neglect the first two terms containing the
second derivatives of the smooth amplitudes m.(z) and 4 (x) in the exact equation (2.14).
So, within the two-scale model (2.5) the second derivative of ¢, (x) looks like

d? ) . .
@T/& (z) ~ £2ikpr’ () exp(Fikpz) F 2kpyy (2) exp(Fikpz) — kiibe(z). (2.16)

Here we have used the explicit expression (2.9) for the wave functions ¢4 (z).

We now substitute the formulas (2.16) and (2.9) into the equation (2.12) and cancel
identical terms proportional to the “Fermi energy” k%. As a result, we come to the
equations:

+2ikpr!, (z) exp(Fikpx) F 2kpvy (z) exp(Fikpx) —

—7my (2)V(x) exp(Likpz) + ive(z)V (x) exp(Fikpz) = 0. (2.17)

So, we have got only two equations with respect to four unknown functions 7 (z) and
v+ (x). Moreover, these equations contain functions which vary over both scales of our
problem. Indeed, the smooth amplitudes m.(z) and 4 (x) vary over the macroscopic
lengths (either the wire length L or the mean free path L;) while the random potential
V(z) and the exponents exp(+ikpz) vary over the microscopic lengths: the correlation
radius R, and the electron wavelength k,' respectively. Obviously, we need four instead
of just two equations. Moreover, in those four equations sought-for all terms should have
only macroscopic variation scales. To deduce the required four equations we will average
our two equations (2.17) over the microscopic lengths kz' and R,.

The averaging procedure consists of the following steps:

(i) First, we multiply both sides of the equations (2.17) from the left through by the
exponent exp(Fikr).

(ii) Then we replace the variable z with 2/ and integrate the obtained equations ob-
tained term by term over x’ within the spatial interval (z — [,z +1). At the same time we
divide them, also term by term, by the interval length 2/. In other words, at this step of
averaging we act on the both sides of the equations from the left through by the integral
operator:
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CE+l dl‘l
—_— ... 2.18
/x—l 21 ( )
To eliminate the microscopic scales k' and R, but retain the macroscopic scales L and Ly,
the length 2/ of the averaging interval must be intermediate between the above-introduced

microscopic and macroscopic scales. This means that the length [ must be much larger
than k;l and R, while much smaller than L and L:

max{kp', R.} < | < min{Ly,, L}. (2.19)
Within the domain (2.19) the length [ can be varied arbitrarily.

(iii) Under the conditions (2.19) the smooth amplitudes 7 (z) and ~v4(z) should be
taken outside the integral operator (2.18) at the point =’ = x.

(iv) In this way we arrive at two equations for the four unknown functions 7. (x)
and 4 (z). To deduce the other pair of the equations we need to repeat all the averaging
operations (i) — (iii) using the multiplier exp(+ikpx) instead of the exponent exp(Fikpz).

At the end of the averaging procedure we obtain the set of four first order differential
dynamic (causal) equations with variable coefficients:

mi(z) £in(z)re(z) £ CL(z)y(z) =0,
(2.20)
Vi (@) Fin(@)ys(z) £ Ce(2)me(2) = 0.
These equations are complemented by the four initial conditions (2.11).

In the equations (2.20) the variable coefficients 7(z) and (i (z) are defined by the
expressions

1 et d
n(z) = —/ — exp(Fikpa")V(2") exp(Likpa') =
QkF e—1 2l

1 ypetbds
= %/M 2V @),

1 v+ dg! . ’ / . /
(+(x) = . /4 o exp(tikpa' )V (2") exp(Likpa') =

(2.21)

1 petlda
= — +2ikpa )V (2').
57 /Ifz 51 exp(+2ikpx’)V (z')

According to these definitions the coefficients n(x) and (s (z) represent the space-averaged
random fields associated with the scattering potential V(x) of the electron-disorder inter-
action. Since the random potential V(z) is real, the function n(x) is real too. At the
same time the random fields (. (z) are complex conjugate to each other,

(i(2) = (). (2.22)

Thus, we have come from the boundary-value problem (2.4) for the Green function

G(x,x") to the dynamic problem (2.20) with the initial conditions (2.11) for the smooth

amplitudes 71 (x) and v.(z). The coordinate x plays the role of time in our dynamic
problem.
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2.2.2 Correlation relations for the random fields

It follows from the dynamic equations (2.20) that the smooth amplitudes 74 (x) and v (z)
are causal functionals of the space-averaged random fields n(z) and (i (z). Since we are
interested in quantities averaged over realizations of the random potential V' (x), statistical
properties of the fields n(z) and (. (z) become crucial.

As long as the average of the scattering potential V' (x) is equal to zero (see Eq. (1.17)),
the random fields n(xz) and (1 (x) are also zero-averaged according to the definitions (2.21),

(n(z)) = (Cz(z)) = 0. (2.23)

From this equation and the weak scattering conditions (2.5) it follows that all the fields
n(x) and (4 (z) can be considered as Gaussian random processes whose properties are
completely specified by their binary correlators. We will calculate the correlators at the
end of this subsection and here we give and discuss just the ultimate expressions for them:

(n(z)Cx(2")) = (Ca(2)Ce(a")) = O;
(2.24)

((@)n(x')) = Lyjo(x —a'),  (Ce(x)Ci(a")) = Ly'd(x — )
It is essential that the both known electron-relaxation lengths (1.97), Ly, and Ly, emerge

in the correlators (2.24) of the random fields n(x) and (4(z). They are given by the
expressions:

1 Ve
L7l = % 2.2
fs 4k%W(0), ( 5)
V2
Ly = —LW(2kp). (2.26)
4k,

The function W (k,) is the Fourier transform of the correlation coefficient W(|z|) from
Eq. (1.17),

Wial) = [ W (k) explik,a),

00271'

L/2

Wik) = [ L//2 dae W(|) exp(—ik,z). (2.27)
Note that now the integration over the coordinate x is performed within the finite interval
(2.1) instead of the infinite one (—o00,00). This is precisely the interval occupied by the
disordered 1D wire of the finite length L.

We know from the previous Lectures that the length L¢, is related to the forward
electron scattering (i.e. without changing the sign of the electron velocity), while Ly, is
associated with the backward scattering. In our consideration the length L, specifies
the correlator (n(x)n(z')) whereas the backscattering length L, controls the correlator
(C+ ()% (2")). Hence we can conclude that the real random field n(x) is responsible for the
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forward electron scattering. At the same time, the complex random fields (1 (x) describe
the backscattering of electrons.

Recall that the superposition of the inverse lengths (2.25) and (2.26) is the inverse
outgoing length of attenuation of the average Green function (G(z,2'; kr)) = G(x—2'; kr),

L, =L, + 1L, (2.28)

This electron outgoing mean free path is exactly the scattering length that enters the
weak scattering condition (2.5).

In consequence of the correlation properties (2.23) and (2.24) the random fields n(x)
and (i (x) turn out to be statistically independent of each other and delta-correlated.
Therefore we can regard them as real or complex, respectively, Gaussian “white noise”.
We emphasize that this is a general result for a weak overbarrier scattering. This fact
plays a dominating role in averaging procedures. Strictly speaking, the delta-functions
are not exact in the expressions (2.24). As we will see below, the correlators we deal with
are sharp (of the order of the space averaging scale [ (2.19)) functions of the coordinate
difference x —z'. Recall that in the equations (2.20) for the smooth amplitudes 71 (z) and
v+ (x) all the terms vary essentially only over macroscopic scales (either the wire length
L or the mean free path L;s). Thus, due to conditions (2.19) such correlators should be
replaced with the corresponding delta-functions.

Useful integrals

Before calculating the binary correlators (2.24) we need to take and analyze some useful
integrals that will appear in the calculations.
(i) A first useful integral is

e+ . U dx . sin(k,l

/zfz 2—11 exp|tik,(x; — )] = g 2—l1 exp(tik,xi) = k(ml )
This integral has the highest (absolute) maximum at k, = 0 as a function of the wave
number k, and decreases towards the both sides of the maximum with the typical scale
Ak, ~ 171, So, this integral is a sharp function in comparison with functions varying over
scales larger than [~!.

(ii) A second very important integral is

(2.29)

oo dk, sin®(k,l) _
Note that this integral describes a function whose Fourier transform is presented by the
squared first integral (2.29). After exact calculation we get

1= |x]/21

Fi(w) = —=0(2] - |z]). (2.31)

In accordance with the explicit representation (2.31) the function Fj(z) is different
from zero only within the interval (—2/ < x < 2[) of width 4/. It has a single maximum
equal to 1/2[ at the point x = 0 and monotonously decreases to the left and to the right
of the maximum along the straight lines 21 F;(xz) = 1 & 2:/2l respectively. At the interval
ends = 2/ the function Fj(x) vanishes, Fj(+2[) = 0. We underline that the integral of
F,(x) along any symmetrical interval (—2a, 2a) with a > [ is one:
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2a 20 1 —|z|/21 2l dx ||
F) = [ o= el = [ S (1-5) =
L B Eil) N R Ll Y ( 2

—2

2l dx x

= 2/—(1——):1 f > 1. 2.32

0 20 21 o (2:32)

Summarizing all the peculiarities of the function Fj(z), we see that it is nothing else
but the prelimit delta-function:

%Lr)réFl(x) = 0(x). (2.33)

Thus we can conclude that the function Fj(z) is a sharp function and can be replaced
by the delta-function within the variation scales much larger than the space averaging scale
[. In particular, according to the conditions (2.19), we can do it within the macroscopic
scales (either the wire length L or the mean free path L) of variation of the smooth
amplitudes 74 (x) and y4(x).

(iii) The third and last integral we should analyze is introduced by the expressions:

© dk, sin[(k, + kr)l] sin[(k, F kr)(]

Q) (z; kp) = /,oo 2 (ke £ kp)l (ks F kr)l exp(ik,x) =
o dk, sin[(k, — kr)l] sin[(k, + kp)!] _
/—oo o (ky — kp)l (b + Fop)l exp(ik,x). (2.34)

This integral describes a function whose Fourier transform is presented by the product of
the two first integrals (2.29) with arguments shifted by 2kr (k, — k, F kr respectively).
If kr will be set to zero, the third integral (2.34) coincides with the second one (2.30):

Bi(2;0) = Fi(x). (2.35)

To evaluate the integral (2.34) we can use the residue theorem from the complex-variable
theory. To this end we need to present the sines as sums of exponential functions and
recall that kr is in fact kg + 0. The calculations are then performed in a way similar
to that we applied to obtain the Fourier integral for the unperturbed Green function
Go(x — 2'; kr) in the previous Lectures. So, we have

sin[2kpl(1 — |x|/20)]
Akpl?

We will now discuss the behavior of the function ®;(x; kr) keeping in mind the relations
(2.19) between different spatial scales. As well as Fj(z), the function (2.36) is different
from zero only within the interval (—2] < x < 2[) of width 4/. But in contrast to the
former, ®;(x; kr) rapidly oscillates within this interval. The scale of the oscillations is
of the order of k' being much less than [ (k' < ). Moreover, the amplitude of the
oscillations, 1/4kpl?, is 2kpl > 1 times less than the maximum 1/2/ of the function Fj(z).
As a consequence of such oscillations the integral of ®;(x;kr) along any symmetrical
interval (—2a,2a) with a > [ is small with the parameter (krl) 2 < 1:

&y (a; kr) = o2l — |z|). (2.36)

2a in2(kwl
0 By (1 o) = S D)

W fOI' a > l. (237)
—2a F
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Thus we come to the following conclusion: the function ®;(x; kr) is small both locally
and integrally. Therefore, within the same accuracy that allows to replace Fj(z) by the
delta-function the function ®;(z;kr) can be set to zero,

Q) (z; kp) ~ 0. (2.38)

Derivation of correlators for the random fields

After having discussed the useful integrals we are now in a position to calculate the binary
correlators (2.24) of the random fields n(z) and (4 (x).
(i) First we derive the simplest correlator (n(z)n(z’)). By the definition (2.21),

1 T+ z' 41
/ dzy 2 )V (). (2.39)

Y [ — _ _
(nx)n(a')) = 42 Lo 2 o 20
Use the notation (1.17) for the binary correlator of the random potential V'(x):

12 o+l o'+
ny — 0 hatd 3 >r2
((xn(*)) = = /H 20 Ju 2

then substitute the Fourier representation (2.27) for the correlation coefficient W( |z, —x5])
into the integrand:

W(|z1 — x2)), (2.40)

V2 ro dk, T+l dx , o'+ dg _
(n(z)n(z")) = ﬁ /700 o W (k) /:1:7[ 2—l1 eXp(Zk‘”xl)/m,,l 2—; exp(—ikyra). (2.41)

Note that the integrals over z; and x5 are defined explicitly by the first useful integral
(2.29). So, we get

P dks in?(k, .
(o) = g [ W) T elike - (a2

The integrand of Eq. (2.42) contains two types of sharp functions. The first is the
Fourier transform W (k,) with maximum at k, = 0 and variation scale Ak, ~ R_'. The
second is sin?(k,l)/(k,[)? with the highest maximum at the same point k, = 0 but with
variation scale Ak, ~ [7'. Owing to the relations (2.19), the second function is the
sharpest (I7' < R;') in the integrand. This fact allows to take the smoother factor
W (k) outside the integral at the point k, = 0:

(n(@)n(a')) = % wio) [~ % # expliky (z — o). (2.43)

Let us apply the definition (2.25) for the forward-scattering length L, and find out that
the integral over k, is nothing else but the second useful integral (2.30). In this way we
obtain the formula:

(n(@)n(a")) = Ly, Fi(x — a'). (2.44)

Taking into account the preceding analysis, we replace the function Fj(z — z') by the
delta-function 6(z — ') and obtain the ultimate expression (2.24) for the binary correlator
(n(z)n(z")) of the real random field n(z).
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(ii) By the definition (2.21) of the complex random fields (;(x) we can write down the
correlator ((4(x)C%(z")) in the form:

(Cx(#)CL(2)) = (Ce(z)Cz () =

1 e d o+ d
= o [ S exp(2ikpan) [T exp(F2ikeza)(V(@)V(22). (2.45)
4I€F -1 2l -1 2l

Use again the notation (1.17) for the binary correlator of the random potential V' (z) and
substitute the Fourier representation (2.27) for the correlation coefficient W(|z; — z3|)
into the integrand:

. IV — Ve e dk,
(CECEEN = G@GEN = g [ 57 W k) X
z+1 d o'+l d
X /:vfl % expli(ky £+ 2kp)1] /a:uz % exp|—i(ky & 2kp)xs]. (2.46)

The integrals over z; and x5 are defined explicitly by the first useful integral (2.29). So,
we have:

(Cx(#)CL(2)) = (Ce(2)Cz () =

sin?[(k, & 2kp)l]
[(ky & 2kp)l]?

_V_02/°° dk,

— k.,
4k% —00 2T W( )

expli(k, £ 2kp)(x — 2")].  (2.47)

The integrand in Eq. (2.47) is similar to that in Eq. (2.42) for the correlator (n(x)n(z')).
The only distinction is the shifted argument k, £ 2kr of the sharpest function sin®{(k, +
2kp)l]/[(ks£2kp)I]?. Therefore this function has now the highest maximum at the shifted
pont k, = F2kp. So, we should take the smoother coefficient W (k,) outside the integral
at this point k, = F2kp:

(Ce(r)CL () = (Ce(2)Cz () =

2 0 dk, sin®[(k, + 2kp)l
_ V_O W (F2kz) / sin”[( 7))

= U 2 [ w2k P EA L2

Now we take into account that the Fourier transform W (k,) of the correlation coefficient
W (x) is an even function of the argument k, (W(—k,) = W (k,)) because W (x) is even.
In addition to this, we change the integration variable k, — k2" = k, £+ 2kr and omit
the index “new” in the final formula for simplicity. As a result, we get:

(C(2)¢i(2") = (Ce(2) ¢ (2) =

V2 o dky sin®(kgl) .
= 0 W(2k / —re 2 el ko(z — 2)]. 2.49
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We note that by the definition (2.26) the factor before the integral is the inverse
backscattering length L,!. At the same time the integral itself is nothing else but the
second useful integral (2.30). Owing to this we obtain the formula:

(Ce(@)CL(a) = (Ce(2)¢(2)) = Ly, Fi(w — ). (2.50)

Based on the previous analysis, we replace the function Fj(x — z') by the delta-function
d(z — ') and get the ultimate expression (2.24) for the binary correlator ({4 (x)(}(z")) of
the complex random fields (4 (x).

(iii) Now we are going to calculate the cross-correlator (n(x)(x(z')). As before we use
the explicit expressions (2.21) for n(z) and (4 (x). After that we apply the formula (1.17)
for the binary correlator of the scattering potential V' (z) and the Fourier representation
(2.27) for the correlation coefficient W(|z; — 5]). As a result we obtain:

)l = 3 [T FEW ) %

T+l '+ d
></ % exp(ik,z1) / % exp|—i(ks F 2kp)xs). (2.51)
x—l /=1

As usual, we next take the integrals over z; and x5 with the aid of the first useful integral
(2.29):

2

(n(x)Cs(2)) = ZTO% exp(+2ikpa’) x

R kol (kp F 2kp)l

expliky(z — z')]. (2.52)

At this step of calculations we should discuss properties of the functions entering the
integral over k, in Eq. (2.52). Unlike the previous cases, it is crucial that the integrand
of Eq. (2.52) now contains two (instead of one) equally sharp functions sin(k,l)/k,l and
sin[(k, F 2kp)l]/ (ks F 2kp)l. They have the same variation scale Ak, ~ [~' but different
highest maxima at the points k£, = 0 and k, = +2kp respectively. Moreover, owing to the
relations (2.19), the distance 2kp between the maxima is much larger than their width
[7' (I"" < kg). All these facts require to take the smoother factor W (k,) outside the
integral at the two mentioned points, k, = 0 and k, = £2kp:

2

(n(z)¢x(2")) = ﬁ

. /oo dliy sin(kyl) sin(k, T 2k5)]]
oo 2 kgl (ky F 2kp)l

(W(0) + W (+2kp)] exp(+2ikpz’) x

explik,(x — z')]. (2.53)

We now make use of the definitions (2.25), (2.26) and (2.28) for the total relaxation length
Lys as well as of the evenness of the Fourier transform W (k,) (W (—k,) = W(k,)). Then
we change the integration variable k, for k7 = k, F kr and omit the index “new” for
simplicity:
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(n(@)Cx(x)) = Ly, explFikp(z + )] x

) /oo dky sin[(ks % kp)l] sin[(ks F kr)l]

w2 (kaE k)l (ke Pl ) (2.54)

The integral in the last expression (2.54) is nothing else but the third useful integral
(2.34). So we obtain:

(n(x)¢e(2)) = L,;* exp|tikp(z +2")] ®)(x — 25 kp). (2.55)

From the previous discussion (see the estimation (2.38)) we can conclude that the function
®,(x — 2'; kr) and consequently the cross-correlator (n(z)(+(z")) vanish. This means that
the ultimate expression (2.24) implies statistical independence of the random fields 7(z)
and (4 (z).

(iv) The correlator ({4 (z)(x(2")) of the random fields (4 (z) is derived similarly to the
correlator (n(x)(+(x")). As always, we use the explicit expressions (2.21) for (. (x). Then
we apply the formula (1.17) for the binary correlator of the scattering potential V() and
the Fourier representation (2.27) for the correlation coefficient W(|z; — x2|). Finally we
get:

— —

(@) = 25 [ By

41{?% —00 2T

z+l x—l—ld
x/ | % expli(ky + 2] / | % exp[—i(ks F 2kp)zs].  (2.56)

We next take the integrals over x; and z, with the aid of the first useful integral (2.29):

2

(Ca()Ca(2")) = 4k2

> dk, f sin[(k, £ 2kp)l] sin[(k, F 2kp)(]
X/ ) = 2he)l (ko T 26l

exp[+2ikp(z + 2')] x

o explik,(x — 2')].  (2.57)
The sharp functions in the integrand of Eq. (2.57) have maxima at the points k, = F2kp
and k, = +2kp. Therefore, we take the Fourier transform W (k,) of the correlation
coefficient outside the integral at these two points:

2

(Co(x)Ce(a)) = ﬁ (W (F2kp) + W (£2kp)] exp[+2ikp(z + 2')] %

y /oo dk, sin[(k, £ 2k¢)1] sin(k, F 2kr)]
oo 21 (ko £ 2kp)l (ks F 2kp)l

explik,(z — 2')]. (2.58)

We now use the definition (2.26) for the backscattering length L, as well as the evenness
of the Fourier transform W (k,) (W (—k,) = W(k,)) and the fact that the integral in the
expression (2.58) is the third useful integral (2.34) with 2kp instead of kp. In this way
we come to the result:
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(Co(x)Ce(a")) = 2L, exp[+2ikp(z + 2')] ®)(z — 2; 2kF). (2.59)

According to the estimation (2.38) we can conclude that the function ®;(x — z'; 2kr) and
consequently the correlator ((4(z)(s(z')) vanish. It is exactly what we have written for
the correlator of the random fields (4 (x) in the ultimate expressions (2.24).

2.2.3 Symbolic solution of equations
for smooth amplitudes. Unimodularity relations

Our four first-order differential equations (2.20) are linear equations with four initial con-
ditions (2.11). The coefficients n(x) and (. (z) of the equations are continuous functions
within the variation interval of the variable x. Therefore the theory of differential equa-
tions states that a solution of the equations exists and it is unique. Unfortunately, it is
highly unlikely to obtain this solution in a finite analytic form because of the complicated
dependencies (2.21) of the variable coefficients n(z) and (. (z) on the “time” x. Neverthe-
less, we can write down the solution of the set (2.20) and (2.11) in some symbolic matrix
form which allows us to derive the very important so-called unimodularity relations for
the smooth amplitudes 74 (z) and vy (z).

Let us introduce matrices I (x) of the unknown smooth amplitudes 74 () and v (z):

_ (@) (@) _ (m=(z) (=)
L@ = (0 A r@=(70 wm) @0
Then we define the matrix b(z) of the random fields n(z) and (. (z) as

b(z) = (in(x) C(2) ) 2.61
D= Zinta) 200
We draw attention to the fact that the matrix b(z) is traceless:

Trb(z) = in(x) — in(z) = 0. (2.62)

In the new matrix notation (2.60) and (2.61) the dynamic equations (2.20) take the
following matrix representations:

I' () + I (z)b(z) = 0, (2.63)

I' (z) — b(a)I_(z) = 0. (2.64)

In addition, due to initial conditions (2.11) the matrices I (x) of the smooth amplitudes
are unit matrices at the points x = +L/2 respectively:

I(£L/2)=1= <(1) ?) : (2.65)

From the evolutional equations (2.63) and (2.64) it follows that the first derivatives
I' (x) of the functions I,(z) are equal to the functions themselves multiplied by the
variable factors :Fl;(x) We know that solutions of such equations are exponential functions
with the variable factors Tb(x) being the derivatives of the exponents. So, regardless of
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the matrix nature of the equations (2.63) and (2.64), we can state that their solutions
satisfying the initial conditions (2.65) are given by the following exponential functions:

exp [ﬂ: /x R E(x’)] . (2.66)

We stress that the matrix I, (z) is multiplied by the matrix b(z) from the right in the
equation (2.63) while the matrix I_(z) is multiplied by the matrix b(x) from the left in the
equation (2.64). This distinction is very important because in general the commutative
law does not hold for matrix multiplication (@b # ba). We then note that in Eq. (2.66) the
expression with the “4” sign, which is related to the matrix I, (), contains the matrix
b(z') whose argument 2’ is greater than z (—L/2 < z < 2’ < L/2) while the expression
with the “—” sign, which is associated with the matrix I_(z), contains the matrix b(z’)
whose argument z’ is smaller than z (—L/2 < 2’ < x < L/2). Summarizing, we see that
in both equations (2.63) and (2.64) the matrix multiplications are such that the matrix
b with a larger argument stands to the left of the matrix b with a smaller argument.
Therefore, to account for this fact properly we need to introduce the ordering operator T,
in the coordinate x. This z-ordering operator T, arranges all matrices b as well as their
functions to its right so that any matriz with a larger argument is placed to the left of any
matriz with a smaller argument. With the use of the ordering operator we can write the
required solutions as

+1./2

Lo(z) = T, exp l:l: / dz’ B(x')] . (2.67)

By a straightforward verification we can make sure that the structure (2.67) of the matrices
I (z) of the smooth amplitudes 7 (z) and 74 (x) are really the solutions of the equations
(2.63) and (2.64), respectively.

Let us apply the well-known identity for determinant of a matrix:

Indet A=TrnA, ie. det A = exp(Tr In A). (2.68)

In accordance with this property we easily find that the matrices I (x) are unimodular,
i.e. their determinants are equal to one:

det I (x) = exp [Tr In ()] = exp l:I:Tr /:EL/Q dx'l;(x')l = 1. (2.69)

This conclusion is also originated from the tracelessness (2.62) of the matrix b(z). On the
other hand, by the definition (2.60) the determinants of the matrices I, (x) are expressed
via the difference between squared moduli of the smooth amplitudes 7. (x) and . (x):

det I+ (z) = |r+(2)]” — |2 ()" (2.70)

Thus, we arrive at an essential statement: the structure of the dynamic equations (2.20)
is such that the the smooth amplitudes w1 (x) and y4(x) introduced within the two-scale
model (2.5) turn out to be related by the unimodularity conditions:

|ma(2)|* = [y (@) = 1. (2.71)
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2.3 Transmittance and Reflectance
of 1D Disordered Conductor

2.3.1 Landauer formula for conductance

A next step of our investigation within the two-scale description (2.5) is to express the
dimensionless conductance (2.2) via the smooth amplitudes 74 (x) and v4(z). To do this
we substitute the single-electron Green functions in the form (2.6) into the Kubo formula
(2.3):

4 1 L2 Lz
) = EAE /L/2 e /L/2 o
X [P (@) (2)O(r — o) + ¢y (+1)PL(2)O (" — )] X
X [ (e)9Z(a")O(r — o) + Y)Y (2)O(2" — )] =

]_ 4 L/2 ! * r ! ! Lo
T WP /L/2 o lT/)+ ()¢ (=) /L/2 doy-(@)o=@) T
L2

+ V@i [

dz'v, (2) i’(x')] (2.72)
T

We see that various products of the wave functions ¢4 (z) by their derivatives appear
in the equation (2.72), viz ¢/ ()¢} (z) and ¢4 (z)p (). To perform operations in these
products we should take into account the experience of the previous calculations within
the two-scale model (2.5): First, we use the two-scale representation (2.9) for the wave
functions ¢4 (z). Second, based on the exact expression (2.13) for the first derivatives
of 14 (z) and the estimations (2.15) we should differentiate the rapidly oscillating ex-
ponents exp(+ikpz) and exp(Fikpz) only when deriving the functions ¢/ (z). Third,
after multiplying out the wave functions ¢4 (z) and their derivatives we should neglect
terms containing the rapidly oscillating exponents and retain terms in which the rapidly
oscillating exponents cancel out. As a result we get

Vi (x)Yi(z) ~ +ikp [|7Ti($)|2 - |7i($)|2} = +ikp,
(2.73)
be(@)df(0) ~ Fikp [|me(0) — re(@)’] = Fikp.

We draw attention to the following surprising fact. In accordance with the unimodu-
larity relations (2.71), the products (2.73) and consequently the integrand in the equation
(2.72) turn out to be independent of the smooth amplitudes 7. (x) and v (z) and hence of
the integration variables x and z'. Thus we come to the conclusion that the conductance
is determined only by the squared modulus of the Wronskian W of the wave functions

T/Ji(fL')Z
T(L) = 4k3|W |2 (2.74)
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We now need to obtain the Wronskian (2.7) within the two-scale approximation (2.5).
As before, substituting the wave functions ¢4 (x) (2.9) in Eq. (2.7) we should differentiate
the rapidly oscillating exponents only and then multiplying the wave functions by the
derivatives we should retain only such terms in which the rapidly oscillating exponents
cancel out. In this way we have

W = 2ikp [r4 (@)1 (2) + 74 (2)7_(2)] = 2ikpms (FL/2). (2.75)

Here, in the last equality of Eq. (2.75), we have taken into account that the Wronskian W
of any Hermitian problem does not depend on the coordinate x and we can calculate it at
any convenient point within the interval (2.1). In accordance with the initial conditions
(2.11) for the smooth amplitudes (m4(£L/2) = 1,7+(£L/2) = 0), the most convenient
points are the wire ends v = +L/2.

Substitution of the expression (2.75) into the formula (2.74) gives us the required
relation between the dimensionless conductance (2.2) and the smooth amplitudes 7 (),

T(L) = =3 (¥L/2)]" (2.76)

Following the Landauer idea [15, 16] we assume that the dimensionless conductance of
a 1D disordered conductor is equal to the squared modulus of the amplitude transmission
coefficient. From this assumption and the equality (2.76) we can figure out that the
quantity |71'(FL/2)| can be regarded as the modulus of the amplitude transmission
coefficient of a conducting 1D disordered wire of the length L.

2.3.2 Transmission and reflection coefficients

A widely accepted and physically clear approach to studying transport properties and in
particular the conductance of one-dimensional and quasi-one-dimensional systems is to
express the conductance via the transmission and reflection coefficients of electron waves
scattered by the inhomogeneous structure. By analogy with the scattering theory we
introduce the transmission Y 1(x) and reflection Ty (x) local amplitude coefficients for an
electron wave.

The equality (2.76) for the conductance makes it clear that the modulus of the local
transmission coefficient Y4 (z) must be equal to

Te(@)| = |7 (2)]. (2.77)

At the same time the transmission and reflection coefficients must obey the flow conser-
vation law:

Ty (2))? +|Tx(z)]? = 1. (2.78)

From the unimodularity relations (2.71) for the smooth amplitudes 74 (x) and 4 (x) it
can be easily established that the modulus of the amplitude reflection coefficient 'y (x)
satisfies the flow conservation law (2.78) as long as

P ()] = [7+(2) /7 (2)]. (2.79)
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We see that only the moduli of the transmission and reflection coefficients are defined
uniquely from physical reasoning, while their phases can be fixed by additional consider-
ations.

The structure of the dynamic equations (2.20) is such that the real random field 7(z)
determines only the phases of the smooth amplitudes 74 (z) and v+ (x). In other words
the forward-scattering field n(z) can be eliminated from these equations by concurrent
phase transformations of the smooth amplitudes and the complex random fields (4 (z). In
view of this fact let us introduce the transmission Y4 (z) and reflection 'y (z) amplitude
local coefficients according to the following two conditions: (i) Their moduli coincide
with Eqs. (2.77) and (2.79), respectively. (ii) The equations for them do not contain the
random field 7(z) in explicit form. All these conditions are satisfied by the expressions:

Ti(z) = ﬂil(flf) exp [$i /;13/2 dx'n(x')] : (2.80)
Fi(z) = Zii)) exp l$2i /jL/z da:'n(a:')] : (2.81)

Indeed, the moduli of Eqs. (2.80) and (2.81) are given by the formulas (2.77) and (2.79),
respectively. The equations for the transmission and reflection coefficients are obtained
by a straightforward derivation of the definitions (2.80) and (2.81). Using the dynamic
equations (2.20) for the smooth amplitudes 71 (x) and vy4(x) we get

dTi(l‘) .

+ T = ()T L(2) T (2), (2.82)
LT pen g (a) - oo, (2.89)

So, the real random field n(z) certainly does not enter these equations explicitly.
According to the initial conditions (2.11) for the smooth amplitudes w4 (x) and v+ (x),
the equations (2.82) and (2.83) are complemented by the following initial conditions:

Yo (+L/2) =1, T, (+L/2) = 0. (2.84)

Note, the lower integration limits £L/2 in the expressions (2.80) and (2.81) have been
taken such that the exponential factors do not affect the initial conditions (2.84) for the
transmission and reflection local coefficients.

The new variable coefficients (1°"(x) appear in the equations (2.82) and (2.83). They
are related to the old complex random fields (4 (z) by

e (r) = (+(z) exp lj:Qi /:L/Q dx'n(x’)] : (2.85)

As well as (4(x), the new renormalized random fields (7 (x) are complex conjugate to

each other,
() = & (). (2.86)

Now we would like to make some significant remarks.
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The introduced transmission Y4 (z) and reflection 'y () amplitude local coefficients
have the following physical meaning: The coefficient Y (z) is the amplitude coefficient
of transmission of an electron wave through the interval (z, L/2) when impinged the
interval from the left. The coefficient T'; (x) is the amplitude coefficient of reflection of
the same electron wave and for the same interval (z, L/2). Regardless of the quantities
with the symbol “+”, the coefficient T _(z) is the amplitude coefficient of transmission of
an electron wave through the other interval (—L/2,x) when impinged the interval from
the right. The coefficient T'_(z) is the amplitude coefficient of reflection of the same
electron wave from the interval (—L/2,x). One can clearly understand that the first of
the mentioned electron waves is described by the formula with the factor exp(ikprx) while
the second is described by the expression proportional to exp(—ikpx).

All the equations obtained, i.e. Eq. (2.20) for the smooth amplitudes 74 (x) and v, (x)
as well as Egs. (2.82) and (2.83) for the transmission Y4 (x) and reflection I'y(x) coeffi-
cients, together with their initial conditions (2.11) and (2.84) respectively, are the dynamic
evolutional equations. Therefore their solutions are presented by causal functionals of the
random fields n(x) and (4 (x), or (1*(x). This means that all the solutions with the
index “+” at a given point x are specified by values of the random fields only within
the interval (z, L/2), whereas all the solutions with the index “—” at the same point z
are determined by values of the random fields only within the other interval (—L/2,x).
For the smooth amplitudes 74 (z) and v4(z) these statements result from the symbolic
solutions (2.67). In general, we can easily verify the validity of the previous statements
by a direct integration of the corresponding dynamic differential equations with the use
of the corresponding initial conditions.

In particular, the reflection coefficient Ty (x) satisfies the Riccati-type nonlinear evol-
utional equation (2.83) with the homogeneous initial conditions (2.84). It can be easily
shown that the set (2.83) and (2.84) is equivalent to the following integral equation:

Iy(z) =+ da' |G (@) T (') = ¢ (a')] (2.87)
+1./2
From this integral equation we see that the reflection amplitude local coefficients T'L(x)
actually belong to causal functionals of the renormalized complex random fields (7% (x).
The above remark is essential for the averaging procedure because, owing to the delta-
correlation of the random fields, it allows to average products of any functionals with
different indexes and arguments independently.

2.3.3 Correlators of new random fields

For further calculations we need to know the statistical properties of the complex random
fields (e (x).

To start with let us derive the averages of these fields. From the definition (2.85) we
have

+L/2

(C2(2)) = (G () exp [in’ / dx'n(x')] ) (2.88)
In consequence of the statistical independence (2.24) of the old fields (4 (z) and n(z), the

average of the product on the r.h.s. of the equation (2.88) is equal to the product of the
averaged multipliers:
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(o) = (e 221 [ arn(a)]) (2.9

Let us recall that the old random fields (4 (z) have zero averages (2.23). Owing to this,
we obtain that the averages of the renormalized fields (7 (x) are equal to zero too:

(¢E(z)) = 0. (2.90)

In the same way we come to the zero result for the binary correlator:

/

EOEED) = (oo i ( [+ [0 )ann)) -

+L/2  JxL/2

— (el |21 ([ 4 [ Y ante]) -
— 0. (2.91)

Here we have exploited the fact that according to Eq. (2.24) the binary correlator of the
old random fields (. () vanishes (((z(z)(x(z")) = 0).

Finally we should obtain the last correlator ({7 (z)(1¢"*(x")). By the definition (2.85)
this correlator is

D@ = Goc@ e w2 ( [0 <[ )] -

= (@G exp [£21 [ dnna)). (2.92)

We substitute here the expression for the correlator ((+(z)(%(2)) of the old complex fields
(+(x) from Eq. (2.24). Then we take into account that, because of the delta-function
d(x — x'), the exponent of the exponential function in Eq. (2.92) vanishes. In this way we
arrive at the result:

(G2 (2) ¢t (2')) = Ly, b (x — ). (2.93)

Thus we see that the new renormalized fields (1" (x) possess the same correlations
properties as the old random fields ((x) do. Hence, as well as the old fields, we can
consider the new fields (7*"(x) a complex Gaussian “white noise”.

2.3.4 Intermediate summary

According to equality (2.76) and definition (2.80) the dimensionless conductance (2.2) is
nothing else but the squared modulus of the amplitude coefficient YL (FL/2) of electron
transmission trough all 1D disordered wire of length L. Therefore, to solve the conductance
problem we need to find only the transmission local amplitude coefficient Y (z) and then
take its squared modulus at the points x = FL/2. For this purpose we would want to
solve the equation (2.82) with the initial condition (2.84).
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Unfortunately, the equation (2.82) for the transmission coefficient Y (z) is not closed.
Indeed, to solve it we must know ' (x). At the same time, we see that the equation
(2.83) for the reflection coefficient I'y.(x) is closed and, in addition, complemented by
the homogeneous initial condition (2.84). Hence, it is more convenient to deal with the
reflection local amplitude coefficient T'y(z) rather than the transmission coefficient Y ().

Within this approach the dimensionless conductance T'(L) is expressed via the squared
modulus of the reflection coefficient 'y (z) with the use of the flow conservation law (2.78),

T(L)=1-[PL(FL/2)]". (2.94)
As usual, let us call the squared modulus | Y+ (x)|? of the transmission coefficient Y 1 (z)
the local transmittance while the squared modulus |T+(z)|? of the reflection coefficient
['1(x) will be called the local reflectance. So, we will perform all forthcoming calculations
in terms of the reflectance.

We did emphasize above that the reflection coefficient I'(x) is in fact a causal func-
tional of the renormalized complex random fields (#¢“(z). Obviously, for the averaging
procedure the explicit definition (2.85) of these fields does not matter. Only the correl-
ation relations (2.90), (2.91) and (2.93) are important. At the same time, the non-zero
correlator (2.93) is specified by the electron backscattering length L,s and does not de-
pend on the forward scattering mean free path Lg,. Thus, we come to a non-trivial
conclusion: averaged values of the reflectance and conductance are only determined by the
backscattering of electrons while forward scattering is remouved.

Since the new renormalized fields (1¢“(x) possess the same correlations properties as
the old random fields (4 (z) we will omit the symbol “new” in all further calculations.

To treat the reflectance problem we are going to state below a very powerful and
useful method which allows to calculate not only the averaged reflectance, conductance
and resistance but any of their moments as well.

2.4 Moments of Reflectance

The averaged value of an n-th power of a random quantity is often called an n-th moment
of this quantity. Now let us introduce the n-th moment, RE(x), of the local reflectance

T ()%,

R (z) = (|04 (2)]?") = <[ri(x)r;(x)]">, n=0,1,23.... (2.95)

It is necessary to underline that the moment (2.95) represents the average of functions
taken at a same coordinate. If the conditions of statistical homogeneity are satisfied, then
such averages do not depend on the coordinate. At the same time, in line with our above
assumptions, we need to assume that the moment RF(z) depends on the coordinate x
and varies over either the backscattering length L, or the wire length L. This fact leads
to the statistical inhomogeneity of our problem over macroscopic scales of the order of
both Lys and L. We note that within the two-scale approach (2.5) quantities varying
over microscopic scales (for example, over the correlation radius R.) can be considered
statistical homogeneous. This is exactly the reason why the dispersion (VZ(x)) = V{
of the random potential V() does not depend on the coordinate x and the correlation
coefficient W(|z — z'|) depends only on the difference x — 2.
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So, if we derive the n-th reflectance moment R (x), then, according to the equation
(2.94), the average dimensionless conductance (T(L)) is given by the first moment R{ (z)
taken at the point z = FL/2,

(T(L)) =1- Ry (¥L/2). (2.96)

One way to find R (z) is to deduce a corresponding equation with initial conditions and
then solve it.

2.4.1 Differential-difference equation for reflectance moment

Let us differentiate the definition (2.95) with the use of the equation (2.83) for I'y (z) and
the corresponding equation for ' (x),

dR*(z)

+
dz

= 2R [(PF @)Y (@)¢ () — P @TE V@) @)] . (297)

Please, recall that the symbol “R” stands for the real part.
Every term (correlator) on the r.h.s. of the equation (2.97) is obtained with the aid
of the Furutsu-Novikov formula:

(€0 = [ d(eC W) )

Here ((z) is a complex Gaussian random process (field) with zero average ((((z)) = 0),
and ®(x) is a functional of this field. In calculating variational derivatives one must
consider the fields ((z) and (*(x) as independent variables, i.e.

0¢(x) _ 6¢(x) 0¢(z) _ o¢(x) _
0¢(a")  a¢*(a') 0C*(a")  o¢(at)
In the Furutsu-Novikov formula (2.98) the integral over z’ is taken over the definition
interval of the random field ((z).
Applying the Furutsu-Novikov formula (2.98) to the first term on the r.h.s. of the
equation (2.97) we have

). (2.98)

=0(z — '), 0. (2.99)

(T ()T (2) e (a)) = /LL/22 dx'<Ci(x)Cl(«T')><6F1J:5§(§()35;in(x)

So, we need to calculate the variational derivative in the integrand of Eq. (2.100). We
note that the variational derivative of a complicated functional is calculated according to
the same rules as the ordinary derivative,

). (2.100)

OrL (@)l (x) 0T+ (x) 0T («)
0CL(2") 0CL(2") 0¢t ()
The variational derivatives of the reflection coefficient 'y (z) and its complex conjugate

[ (z) are obtained by differentiating the integral equation (2.87) and the corresponding
complex conjugate equation, respectively,

= (n+ 1)|Ty(z) O R 0 ) Nl ) (2.101)
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ggj(f; — O+’ — 1)) l1 2 [ : dx”ci(x”)ri(x”)(;Eg:’))] ;

(2.102)
(SF*i(l') _ o *2( o 2 (2T (2 61—‘1(‘%”)
e ol o) |2 2 [ oG e S

We should remember that the variational derivatives of a causal integral functional of
some field with respect to this field differ from zero only if the argument of the field falls
into the integration interval. Taking into account the integration path in the integral
equation (2.87), we conclude that 6Ty (x)/dCi(2") and 0T (x) /5% (x") are proportional to
the ©-functions ©(%[z" — z]). Consequently, the variational derivatives standing in the
integrals over z” are proportional to ©(+[z' — z"]). Therefore in the expressions (2.102)
we have written down explicitly the first mentioned O-functions and cut off the limits of
the integration over z” due to the second O-functions.

Now let us substitute the expressions (2.102) into Eq. (2.101). Then we substitute the
result into the Furutsu-Novikov formula (2.100) and cut off the integration limits over
x’ with the use of O(£[z’ — z]). After that we apply the explicit form (2.93) for the
binary correlator ({4 (x)(i(2")). Owing to the delta-correlation of the random field (4 (z)
the integral over 2’ can be taken and gives a finite answer whereas the integrals over z”
vanish. So, taking into account the definition (2.95) we get the following result for the
first term on the r.h.s. of the equation (2.97):

(PEH @)Y (@) (@) = 57— |0+ DE3 (@) = 0l (0)] (2.103)
Analogous calculations of the second term on the r.h.s. of the equation (2.97) yield
*(n— 1
(7 ()T (@) () = oL [nRe_i(2) = (n = YR (x)] . (2.104)

Substituting the expressions (2.103) and (2.104) into the starting equation (2.97) we
arrive at the ultimate form of the differential-difference equation for the reflectance mo-
ment RE(z),

dRi 2
;I(x) = _[T/L— [Rrﬂfﬂ(x) — 2Ry (x) + Rr:::—l(l‘)] , n=01,23.... (2.105)
bs

+

We need to discuss now the initial conditions for the equation (2.105). We point out
that the reflectance moment R (z) is a function of two variables: the coordinate z and
the index n. Hence, we should formulate initial conditions for every variable, both x and
n.

[t is necessary to underline that the difference equation (2.105) relates three reflectance
moments R, (z), R (r) and R (). This means that it is equivalent to the second
order differential equation with respect to the index n and therefore requires two initial
conditions on n. They follow naturally from the definition (2.95). Actually, when the
index n is equal to zero, the moment R:(x) equals one. Next, according to the flow
conservation law (2.78), the reflectance |I'y(z)|? is always smaller than one (|T'y(z)|*> <
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1). Consequently, the moment RZ(z) tends to zero while the index n tends to infinity
(RE(z) — 0 as n — o). So, we can write

RE(z) =1, RE (r) = 0. (2.106)

The initial condition on the “time” x is originated from the homogeneous initial
condition (2.84) for the reflection coefficient I'y (z) and from the previous requirement
Ry(z) =1,

RE(£L/2) = 6,0. (2.107)

Here 6,,, denotes the Kronecker delta-symbol.

2.4.2 Reflectance distribution function

Following V. L. Berezinski [17] we seek the solution of the equation (2.105) in the form

1
R () :/0 dpPE(p, 1) p", n=01,23.... (2.108)
Here the variable p represents the local reflectance |T'1(x)|? and therefore the integration
is performed over the interval 0 < |T'1(z)[> < 1 of its possible values in line with the
flow conservation law (2.78). The function P7(p,z) is nothing else but the distribution
function (or probability density) of the local reflectance |U+(z)|?.
The first initial condition on n from Eq. (2.106) yields the normalization of the distri-
bution function Pi(p, x):

1 -
/0 dpPE(p,z) = 1. (2.109)

Obviously, this formula ensures integrability of the probability density PE(p, ) over the
variable p over the interval (0,1). In particular, the function P (p,x) must be integrable
in the vicinity of the points p = 0 and p = 1. This means that

lim P (p, ) = 0; lim(1 = p) PE(p, ) = 0. (2.110)

The requirements (2.110) are direct consequences of the normalization condition (2.109).
They will be used in the derivation of the differential equation for the distribution function
P (p, ). )

So, we need to derive the equation for the function P;i(p,z). It is noteworthy that
in what follows we consider a non-zero index n, i.e. n > 1. In this case the normaliza-
tion condition (2.109) is an additional independent condition imposed on the probability
density P (p, z).

Let us substitute the integral representation (2.108) into the differential-difference
equation (2.105). After double integration by parts we get

/ld wNan, 2+ 2,20 2 2| By a) +
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1

n+1 8(1 — p)QpLi(pa l’)]

" [np"u — PRE(p) — p )

= 0. (2.111)
0

Owing to the integrability conditions (2.110) the term outside the integral vanishes and
we have

1 0 0o 0 -
dp p" |£Lps— + —p—=—(1 — p)?| PE(p,z) = 0. 2.112
/0 ppl b8x+appap( p)] L (p, ) (2.112)
Since the set of power functions {p™} is complete in the interval (0, 1), the equality (2.112)
is satisfied only if the integrand is equal to zero. In this way we come to the differential
equation for the distribution function of the local reflectance,

oPF(p,x) 0 0

o op"op
This equation is complemented by the initial condition on the coordinate x which results
from the homogeneous (n # 0) initial condition (2.107) for the reflectance moment R (z)
and from the representation (2.108),

:l:Lbs (1 - p)QPf(p, 1‘) (2113)

PE(p,£L/2) = 6(p — [+0]). (2.114)

Recall that the symbol “40” stands for an arbitrarily small positive quantity. The con-
dition on the variable p is the normalization condition (2.109).

As it was expected, the obtained equation (2.113) for the probability density of the
local reflectance belongs to a class of diffusion equations. A typical way to treat such
equations in kinetic theories is to transform them into the well-known and thoroughly
studied Fokker-Plank equation. To perform such transformation it is convenient to switch
from the random quantity p, which has the meaning of the local reflectance and takes real
values 0 < p < 1, to a new random quantity v by the formula

u—1
u+1’
By definition, the distribution function P; (u,x) of the random quantity w is

p= 1 <u< oo (2.115)

PE(u,2) = ﬁf(p(u),x)dz(j) - f ol (Z—:x) | (2.116)

This function is also normalized to one owing to the normalization condition (2.109),

/oo duPE(u,z) = 1. (2.117)
1

The equation (2.113) and the definitions (2.115) and (2.116) lead a new distribution
function P (u,x) to satisfy the Fokker-Plank equation,

+ +
iLbsaPL (U,x) — —2(@[? o 1)6‘PL (U,IL')

0x ou ou

The initial condition on the coordinate x for the new probability density PLi(u, x) follows
from the initial condition (2.114) and the definition (2.116),

(2.118)

PE(u,+L/2) = §(u — [140]). (2.119)
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The condition on the variable p is the normalization condition (2.117).

The equation (2.118) with the conditions (2.119) and (2.117) is solved by the following
standard method. We point out that the differential operator on the r.h.s. of the equation
(2.118) is the differential operator for the Legendre function of first kind, P,(u). This
means that the Legendre function P,(u) is the eigenfunction of this differential operator.
The Legendre function at v = —3 + i\ is called the cone function, Pf%HA(u). The cone
function satisfies the equation

0 0 1
g0t = Dby (w) = (3 +0) Py (@), (2.120)

where ) is a real parameter. This function possesses some peculiarities. For instance, the
equation (2.120) reveals that the cone function is an even function of the parameter A,

P—%—i/\(u) = P—%Jm(u)- (2.121)
Next, P_1;,(u) is real for u > 1. Then we note that

P,(1) =1. (2.122)

Let us write down the integral representation for the cone function which we will need in
further calculations,

V2 o0 sin(Av)
P 1 \(cosha) = — coth(m\) /a dv (cosh v — cosh a) 172" a>0. (2.123)
It is significant that for a positive parameter A\ > 0 the functions
A tanh(r )] Py (u) (2.124)

form a complete and orthonormal basis in the space of functions defined in the interval
1 <u < oo. In other words,

/ T dAAtanh(TA) Py ()P s (i) = 6(u—u),
0 2 2
(2.125)
A tanh(r)) / T APy (W)Pos i (u) = S(A—N).
1 2 2

Therefore, we can seek the solution P;(u,z) of the Fokker-Plank equation (2.118) as an
expansion in the complete set (2.124),

P (u, ) = /0 T A tanh(TA) P_y o (0)QF (A, ),
(2.126)
Qi(na) = [ duP_y (W) P (u,2).

Such expansion is called the Mehler transformation (Mehler, 1881).
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Let us substitute the integral Mehler representation (2.126) for the distribution func-
tion P;"(u, ) into the Fokker-Plank equation (2.118). After that we get the first order
differential equation over the coordinate z for the Mehler transform Q7 (), z). This equa-
tion is simply solvable. As a result we arrive at the next expression for the probability
density P (u, ) of the random quantity u:

oo 1 T2
ch(u,gg):/0 XX tanh(TA) Py (u) exp —<Z+>\2> i x] (2.127)

2Ly

We now want to verify that the solution (2.127) actually satisfies the initial condition
(2.119). To this end it is sufficient to present the delta-function §(u — 1) as the Mehler
expansion (2.125) taking v’ = 1 and using the property (2.122) of the cone function.

Let us now use the integral representation (2.123) for the cone function entering the
expression (2.127). Then we can take explicitly the integral over A. In this way we obtain
the conventional form for the distribution function PZ(u,x),

1 (LF2z\ % LF2
Pf(cosha,x):—<£> exp (— i x) X

V 8T 2Lbs 8Lbs
o0 v2 /L F2x\ !
__ . 2.128
8 /a (coshv — COSh a)l/? P [ 4 ( 2Ly, ) ( )
u = cosh a, a > 0.

At the end of our calculations we need to make sure that the probability density (2.128)
actually satisfies the normalization condition (2.117). So, we should take the integral

" dupt il L) [ da sinh
/1 u L(u,x)—ﬁexp<—4—a>/0 « sinh o X

x/oo vdv exp [~ (2.129)
o (coshv — cosh a)!/? P 4 ) '

Let us change the order of integration over the variables o and v. After that the integral
over « is easily taken. Next, we have to change the integration variable v for z = v/2:

duPi = g (--) x
/1 uPp(u,w) = Zma e~ o

X / dz z sinh z exp (—azQ) =1, a = 2Ly /(L F 2z). (2.130)
0

The integral over z is equal to the inverse value of the factor outside the integral. So, we
conclude that the distribution function P;*(u, z) in the form (2.128) is in fact normalized
to one.

Thus, we have completely solved the electron transport problem in a 1D disordered
conductor by deriving the formula (2.128) for the distribution function PE(u,z). As a
matter of fact, knowing P (u, z) allows us to calculate any local moment of the reflectance
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and, consequently, transmittance and conductance. Setting the coordinate = equal to
FL/2 (x = FL/2), we get the corresponding moments for a whole wire of length L.

For example, in accordance with the definitions (2.108), (2.115) and (2.116), the n-th
moment (2.95) of the local reflectance |T+(x)|? is expressed via the distribution function
Pi(u,x) as

00 — 1\"
R;f(x):/ duP¥ (u, ) (Z+1> , n=01,2,3.... (2.131)
1

2.5 Moments of Transmittance

Let us introduce the n-th moment, T-(x), of the local transmittance |Y+(z)[? in line with
the general definition for the moments of a random quantity and according to the flow
conservation law (2.78):

TEz) = (ITe@)) = (L - Pe@)?]),  n=0£1,42,+3... (2.132)

We can find this quantity with the aid of the probability density P (u,z) (2.128).

It is interesting to emphasize that in contrast to the n-th reflectance moment R (x),
the transmittance moment 7 (z) may take not only positive but also negative values of
the number n. Indeed, the integral in the representation (2.108) for RE(x) converges at
the lower limit p = 0 only for n > 0. At the same time, by expanding Eq. (2.132) in
power series, the moments T:5(z) even with negative numbers n can be expressed via
the moments R (x) of positive numbers m only. This means that in order to calculate
the transmittance moment 75(z) with a number n of either sign we can use the same
distribution function P (u, ).

The quantity 7.5 () is determinative characteristic of the system under consideration.
Indeed, the transmittance moment of zeroth order, Toi(x), must be equal to one by the
definition (2.132) and the normalization condition (2.117),

T (r) = 1. (2.133)

According to the expression (2.94) and the definition (2.132), the first moment T:5(FL/2)

taken at the wire ends x = FL/2 coincides with the average dimensionless conductance,

(T(L)) = T{"(¥L/2). (2.134)

Then, the minus-first moment T% (FL/2) gives us the average dimensionless resistance
(TY(L)) of a 1D disordered conductor,

(T-Y(L)) = TH,(FL/2). (2.135)

Second moments, T5°(FL/2) and T, (FL/2), specify dispersions of the conductance and
resistance, respectively.

So, according to definitions (2.132) for the local transmittance moment and (2.108)
for the reflectance distribution function, the local transmittance | Y (x)[? is presented by
the following random functions:
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2
1—p= e cosh?(a/2). (2.136)

This leads to the following formula for the n-th moment T (z),

© do sinh o«

—————P#(cosh : 2.137
COSth(Oé/Q) L(COS O[,IL') ( )

TE(2) = /loo dqu(u,x)% :/0

Let us substitute here the expression (2.128) for the distribution function P (cosh o, z).
It is convenient to introduce the notation a from Eq. (2.130) to manage intermediate
transformations. After the substitution we change the integration variables oz and v for
t=a/2and z =v/2:

4 1\ [ dtsinht [~  zdz exp(—az?)
T (z) = ——a*? (——) / / . 2.138
(z) CEPAT4a) Jo cosh® Tt (cosh? z — cosh? t)1/2 ( )

Then we change the order of integration over the variables ¢ and z:

4 1 oo ¢ dt sinhtcosh' 2" ¢
TF(x) = —a*? exp <_4_a> /0 zdz exp(—azQ)/O (cosh? 2 — coshZ1)172° (2.139)

Finally we change the integration variable ¢ by y with the formula cosh ¢ = cosh z/ cosh y.
In this way we get the ultimate expression for the n-th moment of the local transmittance,

4 LF2x —3/2 L F2x
- /T < > <_ )
(IL’) \/_71 2Lbs xp 8L(,s %

©  z2dz o (LF2r\7! /Z 2(n—1
—_— — d W21 . 2.140
X /0 coshQ"_lzeXp[ ‘ < 2Ly, ) ] 0 Y cos Y ( )

The formula (2.140) is the most suitable one for analysis.

2.5.1 Average dimensionless conductance

Let us calculate the average of the dimensionless conductance (2.2). According to the
relation (2.134), we take the number n equal to one and set the coordinate x = FL/2 in
the expression (2.140) for the local transmittance moment 7= (z). The integral over y is
calculated elementary and we get a relatively simple and conventional result

r= e () o) [ e ()] e

The formula (2.141) specifies completely the averaged transport characteristic of a
1D disordered conductor. Depending on the ratio between the wire length L and the
backscattering mean free path L, it could have the following asymptotics:
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(T(L)) ~ 1 — L/ Ly, if L)L, <1;
(2.142)

a5/2 [\ 32 I
T(L) ~ — | — — if Ly,/L < 1.
Ty~ (75) () i In/b<

2.5.2 Average dimensionless resistance

Let us consider the average dimensionless resistance (T!(L)) of a 1D disordered con-
ductor. According to the definition (2.135) we set n = —1 and x = FL/2 in the equation
(2.140). After that the integrals over y and z are taken exactly. So, the average dimen-
sionless resistance is represented by the surprisingly simple formula,

(TN (L)) = % [1 1 exp (%)] . (2.143)

The minus-second moment, T%,(FL/2), which specifies the dispersion of the resistance
has a simple form too,

(T2(L)) = T, (F1)2) = é [2 +3exp (if) + exp (ZL)] . (2.144)

2.6 Brief Discussion

The results obtained, in particular Eqs. (2.141) — (2.144), agree absolutely with concepts
of the strong localization theory for 1D disordered conductors.

First of all, it is necessary to emphasize once more that, unlike the spectral single-
particle properties, the transport properties of a 1D disordered wire do not depend on
the total (outgoing) mean free path L of electrons. They are completely specified by the
backscattering length Ly, only while the forward electron scattering length L, is canceled.
Indeed, this is only L;s that enters all the transport characteristics from the distribution
function Pi(u,z) to the average conductance and resistance.

If the wire length L is much smaller than the backscattering length L, then the regime
of ballistic transport is realized. In this case the dimensionless conductance and resistance
are equal to one in zeroth-order approximation in the parameter L/L,; < 1. Electron
relaxation enters only starting from the first-order approximation. This statements result
from the asymptotic (2.142) for the conductance and the exact expression (2.143) for the
resistance.

The localization regime arises in a sufficiently long wire when its length L exceeds 4 L.
Here the asymptotic (2.142) shows an exponential decrease of the average conductance
over the spatial scale 4L, which is four times as larger than the backscattering length
Lys. This scale is called the localization length L.,

Lloc = 4Lbs- (2145)

The formula (2.143) describes an exponential growth of the average resistance with grow-
ing the conductor length L.
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We would like to point out the following two facts. First, from comparison of the
expressions for the average conductance with those for the resistance we conclude that
the average resistance is not equal to the inverse average conductance,

(T~H(L)) #(T(L) ™" (2.146)

Second, from the equalities (2.143) and (2.144) for the average resistance and its second
moment it follows that the dispersion of the resistance is of the order of the squared average
resistance itself (or the r.m.s. deviation of the resistance is of the order of the average
resistance itself). These two facts mean that both the conductance and the resistance are
not self-averaged quantities. Hence, depending on the wire length L, their behavior “on
average” must be accompanied by fluctuations called mesoscopic oscillations.

Thus, a 1D disordered conductor represents an example of a mesoscopic system.
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