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Pr�ologoEstas son unas notas del urso impartido en The International Shool of Physis \Enrio Fermi" (Varenna, ITALIA,Julio de 1999). El material de estas notas tambi�en ha sido utilizado en el urso optativo \Temas seletos de la f��siate�oria (aos, uantizai�on y teor��a de muhos uerpos)" del Dotorado en Cienias (F��sia) del Instituto de F��sia dela BUAP. Pueden ser �utiles para estudiantes interesados en la teor��a del Caos Cu�antio y sus apliaiones a la f��siaat�omia, nulear, de estado s�olido, de puntos u�antios, et.En estas notas se presenta una revisi�on sobre el problema atual de part��ulas interatuantes en sistemas u�antiosaislados. Como es sabido, en la me�ania l�asia la interai�on entre part��ulas om�unmente ondue al iniio del aosel ual permite desribir sistemas din�amios de una manera estad��stia. El punto importante es que el movimientode un sistema l�asio puede tener propiedades a�otias a�un para un n�umero muy peque~no (dos o m�as) de part��ulas(interatuantes). El meanismo de este fen�omeno es una inestabilidad extremadamente fuerte del movimiento debidaal ar�ater no lineal de la equai�on de movimiento de Newton.Contrariamente a la me�ania l�asia, en un sistema u�antio aislado no hay inestabilidad del movimiento ya queel espetro de energ��a es disreto y el movimiento de un sistema siempre es uasi-peri�odio. Sin embargo, un tipo deomplejidad del movimiento ourre tambi�en en los sistemas u�antios los uales son a�otios en el l��mite l�asio. Estasituai�on se onoe omo el \aos u�antio". En tal situai�on, la aproximai�on estad��stia paree ser tambi�en v�alidapara sistemas aislados.En estas notas de urso, el problema de la desripi�on de sistemas u�antios aislados se trata en detalle. Se sugiereun nuevo m�etodo que se basa en una estrutura a�otia de auto-valores. Este m�etodo es v�alido tanto para sistemasdesordenados sin l��mite l�asio omo para sistemas din�amios que son a�otios en el l��mite l�asio.Para mostrar este enfoque, se onsidera un modelo espe���o que ahora es onoido omo el \modelo de interai�onaleatoria de dos uerpos". En este modelo se supone que la interai�on de dos uerpos es ompletamente a�otia, porlo que surge la pregunta: >Cu�ales son las propiedades del sistema en este l��mite \a�otio" extremo? Resulta que apesar de la ompleta aleatoriedad de la interai�on, el sistema puede ser desrito estad��stiamente bajo ondiionesespe���as. En las presentes notas de urso disutimos esas ondiiones y mostramos omo un enfoque estad��stiopuede ser desarrollado uando las ondiiones son satisfehas. Se ha puesto una ateni�on partiular al arranque de latermalizai�on y la posibilidad de introduir una temperatura del sistema aislado on propiedades a�otias.Existen muhas situaiones f��sias donde el enfoque sugerido puede apliarse: �atomos omplejos, mol�eulas y n�uleos,�umulos at�omios, espines interatuantes, et. F.M. IzrailevPr�ologo traduido del idioma ingl�es al espa~nol por F. P�erez Rodr��guez
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Quantum Chaos and Thermalization for Interating PartilesF.M.IzrailevInstituto de F�isia, Universidad Autonoma de Puebla, Apdo. Postal J-48, Puebla, 72570 M�exioIn this review the problem of statistial desription of isolated quantum systems of interatingpartiles is disussed. Main attention is paid to a reently developed approah whih is basedon haoti properties of ompound states in the basis of non-interating partiles. In order todemonstrate the most important aspets of this approah, the matrix model of two-body randominteration between Fermi-partiles has been used. Di�erent problems have been onsidered suhas the onset of haos and statistial equilibrium, the relation between the struture of eigenstatesand distribution of oupation numbers, the emergene of the Fermi-Dira distribution in isolatedsystems of �nite number of partiles and many others. The appliation of the approah to dynamialsystems with the lassial limit is disussed as well.PACS numbers: 05.45.+b, 31.25.-v, 31.50.+w, 32.30.-rI. INTRODUCTIONUntil reently, the quantum haos theory was mainly related to few-body physis. On the other hand, in realphysial systems suh as many-eletron atoms and heavy nulei, the origin of omplex behavior is quite stronginteration between many partiles. To deal with suh systems, famous statistial approah has been developed whihis based on the Random Matrix Theory (RMT) (see, for example, [1{4℄). The main idea of this approah is to forgetabout a detailed desription of the motion and to treat these systems statistially having in mind that the interationbetween partiles is so omplex and strong that generi properties are expeted to emerge. Simplest models of theRMT are full random matries of a given symmetry, the latter was shown to have a diret link with underlyingsymmetries of physial systems.One of the main results of the RMT is the predition of a spei� kind of orrelations in the energy spetra ofomplex quantum systems. Among many harateristis of these orrelations, the most popular is the distributionof spaings between nearest energy levels in the spetra. Exat analytial expression of this distribution is veryompliated, instead, one uses the so-alled Wigner-Dyson (WD) surmise (quite simple expression whih gives a verygood approximation to the exat result). A distintive property of this WD-distribution is the repulsion betweenneighboring levels in the spetra, the degree of this repulsion (linear, quadrati or quarti) depends on the symmetryof random matries. In fat, suh type of repulsion was observed experimentally very long ago (�rst experimentalobservation is reported in Ref. [5℄ for the energy spetra of heavy nulei), and disussed in many theoretial works.After this predition of the RMT, the WD-distribution has been on�rmed to our in heavy nulei and many-eletron atoms, see referenes in [3,6℄. Later on, it was found also in dynamial systems with haoti behavior inthe lassial limit, famous examples are the so-alled billiards (see for example, [6℄). As a result, it was understoodthat haoti properties of quantum systems are generi for both disordered models (when the randomness of matrixelements is postulated from the beginning) and dynamial systems for whih the pseudo-randomness appears as aresult of speial onditions, the latter are onvenient to explain by omparing with the lassial limit. Thus, onean say that limiting properties of quantum haos in the ase when all regular dynamial e�ets are negleted, aredesribed by the RMT.As one an see, the RMT an give a proper desription of a system (mainly, the properties of energy spetra)only loally, in a restrited region of energy spetra. Indeed, the RMT an not give any global energy dependeneneither for the energy spetrum nor for eigenstates, it is parameter-independent theory. In this sense, the onventionalRMT (ensembles of fully random matries) is very restrited and, for example, it an not be diretly applied to suhimportant phenomena as the loalization of eigenstates in disordered models. This is why new approahes in theRMT have been developed by imposing internal struture of random matries. The most known example is theso-alled Band Random Matries (BRM), or random matries with a band-like struture (see, for example, [7℄, [8℄ andreferenes therein). Inside the band, the matrix elements are assumed to be random and independent, and outsidethe band matrix elements are set to zero. The BRM-ensemble has been reently studied in details both numeriallyand theoretially, and muh is now known about the struture of eigenstates and spetrum statistis for both in�niteand �nite matries. The appliation of this kind of matries in physis is very broad. In partiular, they have beenused to desribe dynamial loalization in dynamial systems with time-periodi perturbation (paradigmati modelis the Kiked Rotor [7℄), and the loalization of eigenstates in quasi-1d disordered models in solid state physis [8℄.3



Another lass of band random matries has been introdued very long ago by Wigner in Ref. [9℄. The strutureof these Wigner Band Random Matries (WBRM) is haraterized by the leading diagonal with reordered (in aninreasing way) values, plus random and independent o�-diagonal elements inside the band of size b : This type ofmatries is muh loser to physial realisti systems, ompared to the standard full random matries. One an suggestthat the original motivation of Wigner for the study of these matries was a lose orrespondene to Hamiltoniansof omplex nulei, whih are typially desribed by the mean-�eld part H0 (leading diagonal) and the residualinteration V of the �nite energy range (o�-diagonal matrix elements inside the band). The main interest of Wignerwas the quantity whih nowadays is known as the strength funtion or loal density of states (LDOS). This quantity isextremely important when desribing the spread of energy, initially onentrated in a spei� state of the unperturbedHamiltonian H0 , between all other states due to the internal interation V . In partiular, it was analytially shownthat this funtion has the form of the Lorentzian if interation is suÆiently (but not extremely) large. This result isfundamental and it is used in very di�erent appliations.However, in spite of the suess of the standard RMT and its modern developments, the strong assumption ofrandomness of matrix elements, as well as a spei� (band) struture of matries do not allow to relate suh matriesdiretly to realisti many-partile Hamiltonians. One of the important reasons is that the underlying struture ofrealisti Hamiltonian matries results from the single-partile spetrum and two-body interation between partiles.In order to understand the role of k�body (random) interation, a new ensemble of matries has been suggested(see, for example, [10,11,3℄ and referenes therein ). In this approah the matries arise as a result of onstrutionfrom the single-partile basis, provided random harater of the k�body interation. The study of this ensemble ofmatries have shown that even when the interation V is very strong and the inuene of the leading diagonal may benegleted, there are serious di�erenes from the standard RMT. In partiular, it was disovered that for the two-bodyinteration, k = 2 , the spetral utuations are di�erent from those predited by the RMT, although the distributionof spaing between nearest levels has the form similar to the WD-distribution. It was shown that full random matriesour when the rank of interation is very large, k !1 :Due to very serious mathematial problems these two-body random interation (TBRI) matries were forgotten forquite a long time, and only reently they have been used in the ontext of quantum haos. In these letures, the authorgives a review of reent results obtained for the TBRI-model in ollaboration with the o-authors. Main attentionis paid to a novel approah developed in [12{16℄, whih is based on the haoti struture of eigenstates in a givenbasis of unperturbed many-partile states. This approah allows to relate statistial properties of exat eigenstatesin many-body representation diretly to properties of single-partile operators, in the �rst line, to the oupationnumber distribution of single-partile states.The struture of the paper is as follows. In the next Setion 2.1 the struture of the TBRI-matries is disussedin details. It was explained how these matries are onstruted from single-partile states and what are properties ofmatrix elements in many-body representation, also, the omparison is made with full random matries. A partiularpoint is that in spite of omplete randomness and independene of two-body matrix elements, o�-diagonal matrixelements of many-partile Hamiltonian matries have underlying orrelations whih are due to a two-body nature ofinteration.In Setion 2.2 generi properties of density of states and level spaing distribution are briey disussed, althoughthey are not the main interest of the study. Setion 2.3 deals with the struture of exat eigenstates in dependeneon the interation strength and exitation energy. The notion of the average shape of the eigenstates (F�funtion)is introdued and disussed in details sine the struture of haoti eigenstates plays a basi role in the approah.In next Setion 2.4 the struture of the strength funtion is onsidered and ompared with that of exat eigenstates.Main attention is paid to the onditions under whih this form is the Lorentzian, and how this form hanges withan inrease of interation strength. In Setion 2.5 very reent analytial results are disussed, whih are obtainedfor the shape of the strength funtion in the TBRI-model for any strength of interation. Setion 2.6 is devotedto non-statistial properties of this model. Spei�ally, it is shown that some quantities an not be desribed in astatistial way, in spite of ompletely random harater of the two-body interation.Next Setion 3.1 starts with the disussion of the basi relation between the struture of exat eigenstates and thedistribution of oupation numbers (DON). It is shown that the average shape of eigenstates plays a ruial role forthis distribution and pratially determines mean values of single-partile operators. In next Setion 3.2 the relevaneof the DON for isolated systems, to the standard anonial distribution is disussed. It is shown how the anonialdistribution emerges in isolated systems with an inrease of the number of interating partiles. In next Setion3.3 the problem of the Fermi-Dira distribution is onsidered for the TBRI-model of interating Fermi-partiles, inpartiular, onditions under whih this distribution ours in isolated systems are analyzed. An important problem ofthe statistial desription of the oupation number distribution is onsidered in Setion 3.4. An analytial approahhas been developed in order to obtain the DON in the ase of statistial equilibrium whih results from the haotistruture of eigenstates. This approah is valid even for small number of partiles, in the ase when the DON di�ersfrom the Fermi-Dira distribution. In next Setion 3.5 another approah is suggested for the desription of the DON,4



in the ase when its form is of the Fermi-Dira type. It was shown how the DON an be obtained by a properrenormalization of the total energy of a system, originated from the interation between partiles. General disussionof the meaning of temperature in isolated systems of �nite number of partiles is the ontent of Setion 3.6. The mainpoint is that for small number of partiles di�erent de�nitions of temperature give di�erent results. Therefore, is it ofinterest to ompare these de�nitions and to understand their meanings, if any. Finally, in Setion 3.7 main results aresummarized for the transition to haos and equilibrium in the TBRI-model in dependene on the interation strength.In last Setion 4 it is briey shown how the developed approah an be applied to dynamial systems.II. TWO-BODY RANDOM INTERACTION MODELA. Desription of the model1. Many-body HamiltonianThe model we disuss here deals with Hamiltonians whih an be separated in two parts,H = H0 + V (1)where H0 desribes the \unperturbed " part and V stands for the interation between partiles or between di�erentdegrees of freedom. In order to study statistial properties of suh models we assume in the following that theinteration is ompletely random. In ontrast with standard approah of the RMT where matrix elements of V aretaken as random variables, we would like to keep an important physial property of real systems and to take intoaount that the interation is of the two-body nature. Therefore, we start with the single-partile Hamiltonian whihrefers n non-interating partiles oupying m single-partiles levels, and assume that the matrix elements of thetwo-body interation Vs1s2s3s4 are independent random variables. Here, the indies s1; s2; s3; s4 indiate initial (s1; s3)and �nal (s2; s4) single-partile states oupled by the interation.In what follows we onsider Fermi-partiles, however, the approah an be easily extended to Bose-partiles [17,18℄.Therefore, in the Slater determinant basis the unperturbed part has simple formH0 =X �s aysas (2)and the perturbation an be represented asV = 12XVs1s2s3s4 ays1ays2as3as4 : (3)Here �s is the energy of a partile, orresponding to the single-partile state jsi and aysj , asjare reation-annihilationoperators. With these notations, exat eigenstates jii of the total Hamiltonian H (ompound states) an be expressedin terms of eigenstates k of the unperturbed part H0 (basis states) as followsjii =Xk C(i)k jki ; jki = ays1 : : : aysn j0i (4)where C(i)k is the k� th omponent of the ompound state jii in the unperturbed basis. These omponents determinethe important quantity whih will be disussed in great details below, the oupation numbers ns ,ns = hij n̂s jii =Xk ���C(i)k ���2 hkj n̂s jki (5)with n̂s = aysas as the oupation number operator. For Fermi-partiles the oupation number n(k)s = hkj n̂s jki isequal to 1 or 0 depending on whether any of the partiles in the basis state jki oupies or not the single-partile statejsi .As one an see, our model is desribed in terms of many-partiles basis states jki and exat (ompound) states jiiwhih are onstruted from the single-partile states jsi and two-body matrix elements Vs1s2s3s4 . In what follows weassume that the basis states are reordered in an inreasing way for the total energy Ek =Ps �sn(k)s with an inreaseof the index k = 1; : : : ; N . This way of the ordering of the unperturbed basis is ruial for the analytial desriptionof haoti ompound states whih are formed by the interation between many basis states, see below. The size N of5



the basis for the many-partiles Hamiltonian H an be found from the ombinatoris: if any single-partile state anbe oupied by one partile only, one an getN = m!n!(m� n)! � exp�n ln n + (m� n) ln mm� n� (6)where m is the number of single-partile states (orbitals). The latter estimate in (6) shows that total number ofmany-partile states inreases very fast (exponentially) with an inrease of the number of partiles and orbitals. Forexample, for m = 11 and n = 4 the size of the H�matrix is N = 330 . The model with these parameters has beenstudied in great details in [12{15℄ and ompared with diret omputations of the Ce atom [19{21℄. For this atom thereare n = 4 valene eletrons, and the ore an be e�etively desribed by the Hartree-Fok method. This method hasbeen used [19{21℄ in order to alulate the basis set of single-partile relativisti states with energies �s as well as thematrix elements Vs1s2s3s4 of interation between valene eletrons. The Ce atom is known to have good statistialproperties, and this was the reason in [12{15℄ to ompare diret alulations with the simplest model (1,2,3) we aregoing to disuss. In spite of the fat that this model does not take into aount the momentum (it depends only on theenergy and for this reason an be treated as \zero-dimensional ", it turns out to be instrutive for the omparison ofthe real (dynamial) Ce atom with the two-body random interation model (TBRI-model) desribed above (for detailssee [12{15℄). In what follows, for the single-partile energies �s we take a non-degenerate spetrum with onstantmean level spaing d0 =< �s+1 � �s > whih, without the loss of generality an be taken d0 = 1 . The unperturbedsingle-partile spetrum has been hosen at random, or aording to the expression �s = d0(1 + 1=s) (the resultsare statistially the same). As one an see, the model is de�ned by four parameters, m; n; d0 and V 20 = 
V 2s1s2s3s4�whih is the variane of two-body random matrix elements (we assume that the distribution of these elements is theGaussian with the zero mean).The Hamiltonian (1) with (2) and (3) is of general form, it appears in many physial appliations suh as whendesribing omplex atoms, nulei, atomi lusters et. In fat, the form of H disussed above is known as the mean�eld approximation for omplex quantum systems of interating partiles. In this desription, the unperturbed partH0 represents the zero-order mean �eld for the exited states with the ground state E1, and the residual two-bodyinteration is given by V . Therefore, the single-partile levels �s in suh appliations are, in fat, renormalizedquasi-partile energies (see details, for example, in [22℄). The onsidered here model does not take into aount suhphysial e�ets as momentum dependene, pairing e�ets and others, however, it ontains the main e�ets of quantumhaos and is very e�etive for the understanding generi features of omplex systems. Moreover, as was pointed out,the approah we disuss below, an be extended for dynamial quantum systems whih exhibits omplex behavior.From the view point of dynamial systems when the omplexity of the behavior appears as a result of dynamialhaos (both for the systems with or without the lassial limit), the separation of the total Hamiltonian in two parts iswell de�ned physial proedure. Spei�ally, the approah is expeted to be valid if the seond part V is as \random" as possible. In other words, one should �nd suh separation that the perturbation has no strong regular part, thelatter should be embedded into the \unperturbed " Hamiltonian H0 . In this way, the ompound states may betreated, for suÆiently strong perturbation, as haoti superposition of simple basis states. As is well known, suha situation is typial for many-eletron atoms and heavy nulei. Indeed, the number of basis states (number Np ofprinipal omponents ) is known to be about 104� 106 for exited nulei, and � 100 in exited rare-earth or atinideatoms.By assuming the omplete randomness of two-body elements in our models, we avoid the inuene of any regulare�ets. Therefore, our goal is to explore statistial properties of the model in its strongest \haoti " limit. Oneshould stress that the answer is far from being trivial sine the many-body Hamiltonian H turns out to be quitedi�erent from standard random matrix ensembles of the RMT and, as will be shown, some important quantities annot be desribed statistially.It should be noted that the TBRI-model we disuss here, for the �rst time was analyzed long ago (see [10,11℄,also, the review [3℄ and referenes therein). The original interest was related to the fat that for standard randommatries the density of states has the famous semiirle form, in ontrast with physial systems for whih the RMTwas addressed (omplex nulei). Moreover, the density of states for many-body systems inreases very fast, andhas nothing to do with the semiirle even on a loal sale. Therefore, the natural question is to understand whatis missed in the RMT. For this reason, another ensemble of matries has been suggested whih takes into aountk�body interation between partiles. The theoretial study has been shown that, indeed, fully random matries ofthe kind onsidered in the standard RMT, formally orrespond to the ase k !1 . On the other hand, with dereaseof k , the density of states tends to the Gaussian form. The latter form is loser to reality and on a loal sale, thedensity may be treated as the realisti one. Another question whih has been under lose investigation, is the roleof k-body interation on the spetrum statistis, see disussion below. For some reason, these studies have not beenextended until reently, when the role of two-body interation in di�erent appliations was questioned in the ontext6



of quantum haos. Unlike the previous studies, below we pay the main attention to haoti properties of eigenstates,and to the problem of how these properties an be linked to the properties of single-partile operators, suh as theoupation number distribution. 2. Struture of the Hamiltonian matrixLet us start with the struture of the Hamiltonian H in the hosen basis. For this, one should onstrut matrixelements Hij = hijH jji whih orrespond to the oupling between basis states jii and jji due to the interationV . One an immediately see that the number N2 = m2(m � 1)2=2 of independent matrix elements Vs1s2s3s4 of thetwo-body interation is muh less than the total number N(N + 1)=2 of the (symmetri) matrix elements Hij . It isvery important that due to a two-body harater of the interation, the matrix elements Hij are non-zero only whenbasis states jii and jji di�er by no more than two oupied single-partile states. In order to ount the total numberK of non-zero matrix elements Hij for the �xed i, we separately ount the numbers K0 ; K1 ; K2 of non-zero matrixelements whih orrespond to the transition between the basis states whih di�er by the positions of none, one andtwo partiles, respetively,K0 = 1; K1 = n(m� n); K2 = 14n(n� 1)(m� n)(m� n� 1): (7)As a result, the total number K in eah line of the matrix isK = K0 +K1 +K2 = 1 + n(m� n) + 14n(n� 1)(m� n)(m� n� 1) � 14n2m2 (8)where the last estimate is given for large number of partiles and orbitals, 1 � n � m . Comparing K with Nde�ned by Eq.(6) , one an see that the matrix H is sparse (only for n = 2 there is no forbidden transitions and thematrix is full).

FIG. 1. Sparsity of the Hamiltonian matrix Hn1;n2 for n = 4 partiles, m = 11 orbitals. Blak points are non-zero matrixelements.The presene of many zeros in the matrix means that, in a sense, there are strong orrelations between matrixelements sine the position of zeros are �xed for any random hoie of the two-body random matrix elements. Itshould by pointed out that the sparsity inreases with an inrease of the number of partiles, therefore, the morepartiles (and orbitals), the less relative number of non-zero elements. This fat is important for the desription ofsuh systems by the random matrix approah. One should remind that in the standard RMT, the sparsity is nottaken into aount at all.The sparsity of the matrix for m = 11 and n = 4 is shown in Fig.1 where blak points orrespond to non-zeroelements. First, one an see that the density of zero elements inreases when moving away from the prinipal diagonal.7



Seond, the positions of non-zero matrix elements are orrelated, there are some urves along whih the density ishigh, this reets the two-body nature of interation. In ontrast with full random matries of the standard RMT,the inuene of the o�-diagonal elements depends on the distane from the prinipal diagonal. To illustrate thispeuliarity, we averaged the modulo of the o�-diagonal matrix elements over bloks of the �xed size 10� 10 in suha way that instead of the matrix of the size N �N we have the redued size N=10 � N=10 . The result is shown inFig.2 where only o�-diagonal terms are presented. As one an see, the amplitude of these e�etive matrix elementsdereases when moving away from the diagonal. This means that the e�etive intensity of the o�-diagonal termsfar from the diagonal is less than of those lose to the diagonal. In some sense, one an treat the struture of theHamiltonian as the band-like, although it is lear that the amplitude of the averaged matrix elements deays quiteslowly.

FIG. 2. Shape of the Hamiltonian matrix (without leading diagonal Hi;i). The matrix for n = 4; m = 11; V0 = 0:12; d0 = 1:0has been divided into bloks of size 10 � 10 and the sum jHn;mj =Pi;j jHi;j j has been omputed inside eah blok (n;m) .This type of the average allows to see e�etive intensity of the o�-diagonal matrix elements.3. Correlations in o�-diagonal matrix elementsNow, let us analyze non-zero o�-diagonal elements of the matrix Hij . Aording to the de�nition (3), any of theseelements is just a sum of one or more two-body matrix elements. When the basis states jii and jji di�er by oneoupied orbital, jji = ays2as1 jii , the matrix element Hij is the sum of n� 1 two-body matrix elements,Hij = n�1X� Vs1� s2� = n�2X�6=� Vs1� s2� + Vs1� s2� (9)Here the last equality is given in order to show that among other matrix elements Hi0j0 there are suh elements whihdi�er from Hij by the last term only and the sum of n� 2 is exatly the same [13℄,8



Hi0j0 = n�1X� Vs1� s2� = n�2X�6=� Vs1� s2� + Vs1 � s2� (10)with � 6= � . This happens for those basis states whose many-partile energies di�er by the energy di�ereneorresponding to the move one partile from the orbital � to the orbital � ,Ei0 �Ei = Ej0 �Ej = �� � �� (11)One an see that these matrix elements, stritly speaking, an not be treated as ompletely independent variables.Therefore, if one averages over the ensemble of matries Hij whih onstruted from di�erent sets of two-body randomelements, the orrelations for suh elements remain, hHijHi0j0 i 6= 0 .The more striking result arises when onsidering matrix elements Hij whih orrespond to the oupling betweenthose basis states jii and jji whih di�er by two oupied orbitals, jji = ays2as1 jii . These matrix elements areequal to the orresponding single two-body matrix elements, in other words, there is only one term in the sum inEq. (3), Hij = Vs1�1 s2�2 . These matrix elements orrespond to the move of two partiles from the orbitals s1 ; s2to other orbitals �1 ; �2 . At the same time, the rest of partiles ( n � 2 partiles) an oupy di�erent m � 4orbitals. Therefore, the same matrix element stands for other basis states ji0i and jj0i with the same move of twopartiles, thus, Hi0j0 = Hij = Vs1�1 s2�2 . As a result, among matrix elements of the Hamiltonian matrix Hij thereare equal matrix elements, although they are hosen randomly from the ensemble of two-body random matries. Thisnon-trivial fat indiates that, in spite of ompletely random harater of the two-body interation, the (non-zero)matrix elements of the many-body Hamiltonian are not ompletely independent variables!
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FIG. 3. Distribution of normalized o�-diagonal matrix elements of the matrix Hi;j for the parameters of Figs.1-2. Eahof matrix element Hi;j has been normalized to its variane omputed from the average over Ng = 16 matries with di�erentrealizations of the (random) two-body matrix elements. The smooth urve is the best �t to the Gauss whih is expeted forunorrelated matrix elements.The role of the above underlying orrelations whih are due to a two-body harater of the interation, is aninteresting and important problem (see [13℄), we will disuss some results in Setion 2.6. Here, we would like to showthat these orrelations an be easily deteted by the study of the distribution of matrix elements Hij . For this, letus take the ensemble of the Hamiltonians H with di�erent two-body random matrix elements Vs1s2 s3s4 keeping allother parameters. Then, for any �xed values i and j , we an �nd numerially the distribution of non-zero matrixelements Hij . Finally, we normalize eah of these distributions to their varianes and make the summation. Theresulting normalized distribution is shown in Fig.3. The envelope of this distribution looks like the Gaussian, however,the deviations are non-statistial ones whih an be easily seen by the �2-test (for some bins of the histogram, thedi�erene is more than 100 standard deviations). 9



B. Density of states and spetrum statistisAs was pointed out, the density of states �(E) for the two-body random model was found to have the gaussianform [10,11℄. Rigorous proof is given for the limit ase of a very large number of partiles and orbitals. However,even for relatively small values of m and n the distribution is very lose to the Gaussian, see Fig.4. It is knownthat the density of realisti physial systems suh as omplex atoms and heavy nulei an be approximated as�(E) � exp(ApE �E0) where E0 is the ground energy. Therefore, the simplest model of the two-body interationdoes not give exat orrespondene to a real density, however, it reprodues very fast inrease of the density withthe energy. One should note that for full random matries of the standard RMT, the density has the semiirle formwhih is very far from the reality. It is lear that in order to ompare statistial properties of our Hamiltonian Hijwith those of omplex quantum systems, one should use the left part of the energy spetrum sine the derease of thedensity in the right part is due to arti�ial ut-o� of the single-partile spetrum (�nite values of m ).
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EFIG. 4. Density of states of the TBRI-model with the same parameters as in Figs.1-3. The average over Ng = 20 is taken.The smooth urve is the best �t to the Gaussian, with � = 5:72 and E = 25:1 .The interesting question is about the type of utuations in the energy spetrum of the TBRI-model in omparisonwith those predited by the RMT. A partiular interest is the distribution of normalized spaings S between nearestenergy levels. For standard random matries the RMT reveals spei� kind of the distribution known as the Wigner-Dyson distribution. In partiular, for symmetri real random matries (the so-alled, Gaussian Orthogonal Ensembleof random matries), the level spaing distribution P (S) with a high auray an be desribed by the following form,P (S) = 12� S exp���S24 � (12)where hSi = 1 . In [10,11℄ it was shown that for the limit ase of a very strong interation, when one an neglet theinuene of the mean �eld (or, the same, without the leading diagonal in the Hamiltonian Hij ), the form of P (s)turns out to be quite lose to the expression (12). On the other hand, when studying the distribution of spaingsbetween the levels Ei and Ei+k with k > 1 , the di�erene between the result of the RMT and the TBRI-ensemble isnotieable and inreases with k . This means that the level spaing distribution P (s) is quite insensitive quantity ofspetral orrelations and does not \feel " the di�erene of TBRI-matries from the full random matries.In physial appliations, the interation V is typially of the same order as the \unperturbed " Hamiltonian H0sine in the mean �eld approximation the term H0 absorbs regular part of the interation and V is the (haoti)part of the interation whih an not be inluded in H0 . However, there are many ases when the interation isweak ompared to H0 , therefore, the important question is how spetral utuations, in partiular, the level spaingdistribution, depend on the interation and on total energy Ei . The origin of the Wigner-Dyson distribution (12)is related to the onset of haos in the exat eigenstates (see, for example, [7℄). In standard random matries the10



WD-distribution ours for any energy sine all eigenstates are ompletely random (their omponents are distributedaording to the gaussian distribution for large size of the matries).Experimental data for omplex atoms [23℄, [24℄ and heavy nulei [25℄ (see also referenes in [6℄) agree with theWigner-Dyson statistis. The WD-distribution has been also observed in numerial alulations for the Ce atom[19{21℄ and the nulear shell-model [26{28℄.
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FIG. 5. Level spaing distribution for the parameters of Figs.1-3 with Ng = 10 . All but 10 levels from both edges of theenergy spetrum are taken into aount, with proper resaling to loal mean level spaings. Solid urve it the Wigner-Dysondistribution and the dotted urve is the Poisson, the latter ours for unorrelated energy sequenes.In the TBRI-model, the randomness of the omponents of eigenstates is di�erent for di�erent eigenstates. Thisfat inuenes the spetrum statistis if one average over a large part on energy spetrum. In Fig.5 the level spaingdistribution for the TBRI-model is shown for the parameters whih may be ompared with the Ce atom thoroughlystudied in [19{21℄, n = 4; m = 11; d = 0:5 ; V0 = 0:12 . The average over Ng = 10 di�erent matries Hij hasbeen done in order to have representative statistis. All but 10 levels from the spetrum edges have been taken intoaount. By searhing the struture of eigenstates, one an see that all eigenstates seem to be quite random (seeexamples below). However, one an detet lear non-statistial (regular) deviation from the WD-distribution whihshould be treated as quite strong, having in mind insensitive harater of P (s) . This result may be regarded as anindiation of not strong enough interation between partiles. Detailed study of the onset of the WD-distribution inthe TBRI model has been reently performed in Ref. [29℄.C. Struture of exat eigenstatesOur main interest in this Setion is in the struture of exat eigenstates. The hoie of the unperturbed basis,reordered in inreasing energy, allows us to understand what happens with an inrease of the interation. In thestandard perturbation theory the natural parameter whih ontrols the intensity of the perturbation is the ratio � ofthe interation to the mean level spaing D between the unperturbed energy levels. Sine the value of D is de�nedby the total density of states, D = ��1 (E) , one an expet that our ontrol parameter is � = V0=D . However, in[30℄ it was shown that due to a two-body harater of interation, the orret parameter is di�erent. Indeed, in the�rst order of the perturbation theory, the interation ouples not all unperturbed states but those basis states whihorrespond to the shift of not more than two partiles. This means that the density of states whih are oupled bythe two-body interation is muh less than the total density � (E) . Therefore, the orret mean level spaing df thathas to be ompared with the interation V0 , is muh larger than D .If the interation is very weak, V0 � df , the standard perturbation theory an be applied. In this ase any of theeigenstates in the unperturbed basis has the form of the delta-funtion (originated from the unperturbed state jn0i)plus small admixture of other omponents with amplitudes dereasing as jCnj � 1= jn� n0j , therefore, the numberof prinipal omponents is small, Np � 1 . In this ase one an speak about perturbative loalization of eigenstates11



in the unperturbed basis. This situation is quite typial for eigenstates orresponding to low energies, in the energyregion where the density of states is small.With an inrease of perturbation (or when passing to higher eigenstates for the �xed V0 ), the number Np ofprinipal omponents with essentially large amplitudes Cn inreases and an be very large, Np � 1 , even if V0 is lessthan df . Suh a situation ours when V0 � 1�2pDdf , see details in [15℄. In suh a ase the struture of eigenstatesis \haoti ", however, there are many \holes " inside suh eigenstates in a given basis. Therefore, in spite of largenumber of omponents, these sparse eigenstates are non-ergodi, whih leads to non-gaussian statistis. Namely, theutuations of the omponents Cn an be extremely large and statistial desription is not valid. One should stressthat in this ase the number of prinipal omponents an not be estimated as Np � �=D , as is typially assumed inthe literature (here � is an e�etive \size " of the eigenstates in unperturbed energy representation, see below).When the interation is relatively strong, V0 � df , spei� transition ours from non-ergodi to ergodi eigenstates.This transition has been disovered in [30℄ by onsidering the ow of the energy in the Fok-spae of exited states.For very large number of partiles this transition is sharp and may be ompared with the Anderson transition insolid state models (see for example details in [30,31℄). Therefore, the ondition V0 > df an be onsidered as thetransition to haos inside ompound eigenstates, thus, allowing to desribe the model in a statistial way, see below.An example of suh haoti eigenstates is given in Fig.6 for the parameters related to the Ce atom. One an see thatfor large exitation energy (n is the number of exat eigenstates reordered in inreasing energy E(n) ), the eigenstateslook more extended (deloalized) in the unperturbed basis. It is interesting to note that they look very similar to theeigenstates of the Ce atom, obtained in the diret quantum omputation based on the Hartree-Fok method [19{21℄.For the �rst time, haoti struture of eigenstates of the Ce atom has been revealed in [32℄.
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FIG. 6. Examples of the exat eigenstates of a matrix Hij for the same parameters as in the previous �gures. ComponentsCj of 8 eigenstates for exat eigenstates in the low part of the spetrum are shown.Let us now disuss how to quantitatively haraterize haoti eigenstates. First, we introdue the matrixw(n)j � ���C(n)j ���2 = ���Cj(E(n))���2 (13)onstruted from the exat eigenstates jni orresponding to the energy E(n). In what follows, we use the notationswhih refer low indies to the basis states, and upper indies to the exat (ompound) eigenstates. Thus, the strutureof eigenstates is given by the dependene w(n)j on j for �xed values of n . On the other hand, if we �x the index jand explore the dependene w(n)j on n , one an understand how the unperturbed state jji is oupled to other basisstates due to the interation. The latter quantity is very important sine it gives the information about the spreadof the energy, initially onentrated in a spei� basis state jji ; when swithing on the interation. The envelope of12



this funtion w(n)j in the energy representation is known as strength funtion or loal spetral density of states (LDOS)and will be disussed in details in next Setion.From Fig.6 one an onlude that when the number of prinipal omponents is large, Np � 1, suh eigenstatesmay be treated as random superposition of omponents C(n)j , although they do not oupy the whole unperturbedbasis. The gaussian harater of the utuations of C(n)j depending on the indies j or n , has been revealed in [19{21℄for the Ce atom, thus allowing to treat the exat eigenstates of a dynamial systems, as haoti eigenstates.The size of the basis whih they oupy an be assoiated with the \size " of eigenstates, or, with the loalizationlength. As is known, the notion of the loalization length is very important in solid state appliations, when studyingthe eigenstates of disordered models in in�nite basis in the position representation. In suh appliations the loalizationlength l1 is de�ned via exponential derease of the square of the amplitude of eigenstates . For the �nite basis, thede�nition of the loalization length an be generalized in a way desribed in [7℄. Following to [7,8℄ we de�ne here twoloalization lengths, namely, the \entropy loalization length" lh, and the loalization length lipr assoiated with theso-alled partiipation ratio. The �rst one is de�ned by the expressionlh = N exp(hHi �H0); (14)where hHi is the mean \ entropy" of eigenstates,hHi = � 1M MXn=1 NXj=1w(n)j ln (w(n)j ) (15)and H0 is the normalization onstant whih is equal approximately to 2:08 in the ase of pure gaussian utuationsof Cj (see details e.g. in [7℄). Here M is the number of eigenstates whih are taken for the average. This an be thenumber of eigenstates of one matrix Hij taken from a small energy window, or the number of eigenstates for the �xedn , omputed from di�erent matries Hij with di�erent realization of disorder in two-body matrix elements.The seond de�nition is ommonly used in solid state appliations (see e.g. [8℄). Assuming the gaussian haraterof utuations of the omponents of eigenstates, the loalization length lipr is de�ned bylipr = 3P ; P = 1M MXn=1 NXj=1 �w(n)j �2 (16)In the above expressions (14, 16) the fators 2:08 and 3 are, in fat, normalizing oeÆients whih provide, in thelimit ase of ompletely extended and gaussian eigenstates in the �nite basis of the size N , the \maximal" value ofthe loalization length lh = lipr = N . In other extreme ase of a strong (exponential) loalization in the unperturbedbasis, the above two loalization lengths are proportional to that found from the tails of eigenstates (see [7℄). Thedependene of the loalization lengths lh and lipr on the basis number and energy of exat eigenstates is given inFig.7a-b. The average over Ng = 50 matries Hij with di�erent realizations of two-body matrix elements has beentaken, in order to smooth strong utuations in the value of loalization lengths of individual eigenstates. The abovede�nitions of loalization length an be taken for the estimate of a number of prinipal omponents Np , and an beassoiated with the degree of \haotiity " of ompound eigenstates. The data of Fig.7 show quite good orrespondenewith diret omputations [19,20℄ performed for the Ce atom, for whih the loalization length lh was found to beabout lh � 110� 130. Comparing Fig.7b with Fig.4 of the density of states � (E) , one an see the similarity. Thisfat an be understood from the simplest estimate of Np as a total number of (basis) states de�ned by the \width"� , the latter an be approximated as the mean-square-root of the distribution w(n)j for the �xed n ,Np � �D = �� (E) (17)One should stress that this expression is valid for ergodi eigenstates ( V0 � df ) and shows the proportionality ofNp to the density. As for the width � , it is approximately independent of the exitation energy, see below.
13



FIG. 7. (a) Loalization lengths lh and lipr are given in dependene on the number n of exat eigenstates jni , see (14) and(16). The parameters are taken the same as in Figs.1-6, with Ng = 50 . (b) the same as in (a), but in the energy representation.Eq.(15) reets general relation between the number of prinipal omponents Np and the entropy of eigenstates,SEF = ln Np (18)where SEF stands for any reasonable de�nition of the entropy. In appliation to shell models of omplex nulei thisrelation has been studied in great details in [26,28℄. Combining Eq.(18) with Eq.(17), one an getSEF � ln � (E) + ln �(E) (19)In ontrast to the density of states, the width � is a weakly dependent funtion of the energy. Therefore, theentropy SEF found from exat eigenstates pratially oinides with the thermodynamial entropy, the fat whihwas mentioned for the �rst time in [26,28℄. D. Strength funtionIn this Setion we disuss the properties of the strength funtion whih is de�ned asW (E(m); j) =Xn jC(n)j j2Æ(E �E(n)) (20)Here C(n)j are the omponents of eigenstates jni ("ompound" states) of the total Hamiltonian H given in theunperturbed basis jji , and E(n) is the energy assoiated with the state jni. The sum is taken over a number ofeigenstates jni hosen from a small energy window entered at the energy E (m) . One an see that this funtionW (E; j) is originated from the same matrix w(n)j whih has been introdued in previous Setion when disussing thestruture of exat eigenstates. Indeed, an exat eigenstate is haraterized by the dependene w(n)j on j for the �xedvalue n (assoiated with the energy E(n) ). On the other hand, the strength funtion is haraterized by the same14



funtion w(n)j when index j is �xed and we are interested in the dependene on the energy E(m) due to the relationbetween E(n) and n therefore, W (E(m); j) ' F (n)j �(E); F (n)j � w(n)j : (21)Here we have introdued the F�funtion F (n)j whih gives the envelope of w(n)j in dependene on the indies j and n(the bar stands for the average inside small windows entered at j and n). In fat, the strength funtion is the (smooth)representation of a (simple) basis state jji in terms of exat eigenstates. This funtion is very important sine it anbe measured experimentally. It ontains an information about the internal interation between unperturbed states.Namely, it shows how the unperturbed state jji is oupled to the exat states jni due to the interation. An e�etivewidth of this funtion (spreading width ) de�nes the energy range assoiated with the \life time" of an unperturbedstate jni if initially one exites spei� basis state.In solid state models the role of the unperturbed energy in Eq.(20) plays the position j of an eletron and thefuntion W (E(m); j) ) W (E; j) has the meaning of the eletron density of states for the �xed position j . Forthis reason this funtion is known in solid state physis as the loal density of states (LDOS). One an see that if(apart from utuations) w(n)j is independent of the position (or, in our appliation, the energy of ompound state),it redues to the total density of states, W (E(m); j)) � (E) . Also, if the total density of states is onstant, � = ��1, the dependene of the LDOS on j is of the form W (E; n) =W (E � �j) . This means that the form of the LDOS isthe same for any j . In our ase of strong dependene of the density of states on the energy, the form of the LDOS isquite ompliated, see next Setion. Normalized to the mean energy level spaing, the strength funtion W (E(m); j)determines an e�etive number Np of prinipal omponents of ompound states jni whih are present in the basisstate jji.Similar to the analysis of the struture of the eigenstates in dependene on the interation, one an understandthat for a very weak interation V0 � df the LDOS is a delta-like funtion with a very small admixture of otheromponents whih an be found by the standard perturbation theory. With an inrease of the interation, the numberof prinipal omponents inreases and an be very large. However, if the interation is not strong enough [15℄ ,1� V0df � 1�2sDdf ; (22)the LDOS is sparsed, with extremely large utuations of omponents, see details in Ref. [31℄. In order to have ergodiLDOS, one needs to have the perturbation large enough, V0 � df (for a large number of partiles this transition issharp and, in fat, one needs the weaker ondition, V0 � df , see details in [15℄).
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For V0 � df the LDOS turns out to be ergodi and thransition to haos ours [30,33,31,34,29,35{37℄, therefore,statistial desription of the model is valid. Few examples of the LDOS for the TBRI-model are given in Fig.8 for theparameters of the Ce atom. One an see strong dependene of the shape of the LDOS on the position of basis statejji in the energy spetrum.Before we start with the disussion of analytial results, it is important to point out the orrespondene betweenthe shape of the LDOS, and that of exat eigenstates whih have been disussed in previous Setion. Spei�ally,from the analysis of the struture of the eigenstate matrix w(n)j one an expet the similarity between the LDOSand shape of the eigenstates. For the �rst time suh a similarity has been observed when studying band randommatrix ensembles [38,39℄. Moreover, the detailed study of some dynamial models [17,40℄ have revealed that evenwhen the shapes of the LDOS and EFs seem to be ompletely di�erent, after a proper resaling whih involves bothunperturbed and perturbed energy spetrum, both shapes are very similar. In order to ompare harateristis of theLDOS and EFs, in Fig.9 the dependene of the entropy loalization length on the energy is shown for both the LDOSand EFs. Apart from strong utuations (whih are due to a haoti nature of the omponents C(n)j ), in general, thedependenies lH (E) look very similar.The problem of the orrespondene between shapes of the LDOS and EFs is still open, however, from the studiesmade up to now (see also [17,40℄), one an onlude that if the width of the perturbed spetrum is of the same orderas the unperturbed one (or, the same, the perturbation is not very larger), one an expet that both shapes are verylose to eah other. The importane of this problem of similarity for the shapes of the LDOS and EFs will be learin next Setion when we disuss the relation between the shape of the EF and generi properties of the oupationnumber distribution.
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FIG. 9. Comparison of the loalization length lh for the LDOS (points) and eigenstates (line). The data are given for oneHamiltonian matrix with the same parameters as in Figs.1-7, for the same numbers j = n .For the �rst time the form of the LDOS in random matrix theory has been disussed in Ref. [9℄ where band randommatrix ensemble has been onsidered. The matries were assumed to onsist of the diagonal part H0 in the form ofreordered numbers Hjj = j D (thus, the unperturbed level density is onstant, �0 = D�1 ), and the perturbation V0with the random independent o�-diagonal matrix elements for ji� jj � b. Outside the band of size b � 1 matrixelements are zeros. The distribution of the o�-diagonal matrix elements is haraterized by the zero mean, hHiji = 0and the variane V 20 = 
H2ij� : For this model, the relevant parameter was found to beq = �20V 20b : (23)Wigner analytially proved [9℄ that for relatively strong perturbation, V0 � D in the limit q � 1 (when the inueneof the main diagonal Hjj is strong) the form of the LDOS is the Lorentzian,WBW ( ~E) = 12� �BW~E2 + �2BW4 ; ~E = E �Dn (24)whih is nowadays known as the Breit-Wigner (BW) form. Here �BW is the spreading width whih is half-width ofthe distribution (24), 16



�BW = 2��0V 20 (25)and the energy ~E = E � Dn refers to the enter of the distribution. In other limit q � 1 the inuene of theunperturbed part H0 an be negleted and the shape of the LDOS tends to the shape of the total density of statesof band random matries without the leading diagonal Hjj , whih is the semiirle.Reently, the shape of the LDOS has been studied rigorously for a more general distribution of the o�-diagonalelements vnm in the Wigner band random matrix model (WBRM). Namely, the variane of random matrix elementsis taken to depend on the distane r = jn�mj from the prinipal diagonal aording to an envelope funtion f(r)whih, for r ! 1, dereases suÆiently fast (see details in [41℄). In this ase the e�etive band size b is de�ned bythe seond moment of the funtion f(r) . Another important generalization of Ref. [41℄ is related to the sparsityinside the band, whih an be de�ned as a relative number of zero elements in eah line of the matrix. As was shownabove, suh a sparsity, whih is due to the two-body nature of the interation between the partiles, is important forstatistial properties of ompound states.The BW-form of the LDOS also ours in a more general model desribing the interation of an unperturbed statewith a large set of omplex states, see details in the book [42℄. It also appears for dynamial systems with omplexbehavior, suh as the Ce atom [19{21℄, the sd shell model [26{28℄, as well as in random models in appliation to solidstate physis [43,44℄.For a long time it was believed that the LDOS for omplex physial systems has the universal energy dependenedesribed by the BW-distribution (24). However, when studying the struture of the LDOS and EFs of the Ce atom,it was observed some deviation from the BW-shape for large distane from the enter. By applying the WBRM, in[19℄ it was analytially shown that the shape of the LDOS is highly non-universal for energies larger than the e�etivesize of the band in the energy representation, jEj � D b (in what follows by E we mean the distane from the enterE of the distribution, ~E ) E ), see also numerial data in [41℄. Namely, outside this range, the tails of the LDOSare highly non-trivial, deaying very fast (even faster than the exponent) when jEj ! 1 . Therefore, the range ofparameters for whih the form of LDOS has the BW-form in the WBRM-model, is given by the ondition [41℄ whihan be written as ��10 � �BW � b��10 (26)Here, the left-hand-side of the inequality is related to non-perturbative harater of the oupling sine the perturbationshould ouple many unperturbed states.The ondition (26) turns out to be of generi and an be applied to real physial systems. Moreover, it an be usedto �nd the e�etive band-width beff of interation when other de�nitions of b are obsure. In the TBRI-model withmany interating partiles the band-width is very large (pratially it is in�nite), and does not play any role in manysolid state appliations. On the ontrary, in appliation to omplex atoms and nulei, the number of partiles abovethe Fermi level is relatively small (four partiles in the Ce atom and 12 partiles in the sd shell models), and thise�et an be important. It should be pointed out that the BW-dependene has in�nite seond moment. At the sametime, in any physial appliation the seond moment is always �nite and is de�ned by the sum of the square of theo�-diagonal elements. This fat results in non-Lorentzian tails of the LDOS.The important question is about the shape of the LDOS for a strong interation, when the ondition (26) violates,�BW � b��10 . Sine in the mean �eld approximation the \regular " part of the interation is inluded in the mean�eld, very often the interation V is ompared with the unperturbed part H0 . Therefore, this situation when theshape of the LDOS is very di�erent from the BW-form, is quite physial. In order to understand what happens inthis ase, it is useful to study how the transition from the BW-form to the semiirle ours in the WBRM-model.As was pointed out, the semiirle form itself is unphysial and appears when negleting the unperturbed part H0 .However, the form of the LDOS in the transition region seems to be of quite generi.Numerial data in Refs. [41℄, [45℄ for the WBRM-model have shown that for the ase when �BW � b��10 the formof the LDOS an be approximately desribed by the Gaussian. The same fat has been observed and disussed inRefs. [26,28℄ when studying eigenstates and LDOS for shell model of nulei. Sine in the latter appliation the bandsize of the interation is not well de�ned, it is better to introdue one more parameter, in addition to the half-width�BW . As was shown in Ref. [45℄, in general, the form of the LDOS an be e�etively desribed by two independentparameters, �BW and �E where the latter is de�ned via the variane of the LDOS,(�E)2 = 4�2W = 4 Z (E �E)2WBW (E) dE (27)In the symmetri ase (in the TBRI-model, at the enter of the spetrum), E oinides with the unperturbed energy,E = Ej . 17



Then, if the parameter �BW is muh less than �E , the shape W (E) of the LDOS is the BW-dependene (24) and�BW has the meaning of the half-width of the distribution W (E) = WBW (E) . On the other hand, if �BW � �E ,the form of the LDOS is approximately the Gaussian,W (E) = 1�Wp2� exp � (E �E)22 (�W )2 ! (28)Detailed numerial study [45℄ of the form of the LDOS in the region �BW � �E have shown that the LDOS oinideswith the Gaussian with a very high auray. It is important to stress that in this ase, the parameter �BW hasnothing to do with the half-width �hw of the LDOS, the latter is proportional to the mean-square-root �W of theGaussian, �hw � C0 �W (see also disussion in [26,28℄). Note that the Gaussian form typially ours in \statistialspetrosopy" [10,46,47℄ when negleting the mean �eld term H0 in Eq.(1). One should note that sometimes thefat that the LDOS an deviate from the BW-form due to the inuene of the �niteness of �E , is missing in theliterature.It is important that the enter and variane of the LDOS an be expliitly expressed via diagonal and o�-diagonalmatrix elements respetively [15℄. Indeed, the enter is de�ned byE = �E(n)�j =Xn E(n)F (n)j �Xn E(n)w(n)j =Xn;m hjj ni hnjH jmi hmj ji = Hjj = Ej (29)where the relation hijH jji = Æij hijH jji is used for exat eigenstates. Correspondingly, the variane an be obtainedfrom the matrix elements of H2 ,��2W �j =Xn �E(n) �Ej�2 F (n)j �Xn �E(n) �Ej�2 w(n)j =Xp6=jH2jp (30)For the TBRI-model the sum of the o�-diagonal elements for any �xed value of p an be evaluated exatly [13℄,(�E)2j4 =Xp6=jH2jp = V 20 (n� 1)K1 + V 20 K2 = 14V 20 n (n� 1) (m� n) (3 +m� n) (31)where the expressions (7) have been used for K1 and K2 , and V 20 is the variane of the o�-diagonal matrix elements.One an see that with an inrease of the interation, the half-width of the LDOS hanges from the quadrati dependene�hw � V 20 to the linear one, �hw � V0 . It is interesting to note that the variane of the LDOS for Fermi-partilesdoes not depend on the index j whih stands for a spei� basis state, therefore, (�E)2j ) (�E)2E. Analytial solution for the LDOSVery reently, the form of the LDOS for the TBRI-model has been analytially found in [16℄ for any strength ofperturbation. In this Setion we disuss the approah of [16℄ and the obtained results. We would like to stress thatour aim is to �nd the LDOS in terms of matrix elements of the total Hamiltonian Hij , without its diagonalization.To start with, let us rewrite the general expression for the LDOS in the formWk (E) = F (Ek ; E) �(E) (32)where E is the total energy of the system (energy of an exat eigenstate). As was pointed out, the F�funtion givesthe shapes of both exat eigenstates and strength funtions depending on what is �xed, the total energy E � E(i)or the unperturbed one, Ek. The method used in [16℄ is an extension of the approah developed in [42,48℄, whihtakes into aount spei� struture of the Hamiltonian TBRI-matrix. Spei�ally, �rst, we �x some basis omponentjki and diagonalize the Hamiltonian matrix without this omponent. Then the problem is redued to the interationof this omponent with exat eigenstates jii whih are statistially desribed by the matrix omponents Vki. In thespirit of the approah of Ref. [42℄ let us introdue a small energy window � whih will be used for an average over thetotal energy inside this interval. As a result, the set of equations for the LDOS an be written in the following form,18



Wk(E) = 12� �k(E)(Ek + Æk �E)2 + 14 �2k(E) (33)where �k(E) ' 2�jVkij2�(E) (34)is some funtion whih an be assoiated with the half-width of the distribution Wk(E) , for the ase when the energydependene is weak, �k(E) ' onst . The energy shift Æk for the basis state jki ,Æk =Xi jVkij2 (E �E(i))(E �E(i))2 + �24 (35)is due to the asymmetry of the perturbation, if the energy Ek is not at the enter of the spetrum. This shift is just themodi�ed seond order orretion to the unperturbed energy level. For the alulation of the shape of the eigenvetorji > one should substitute the exat energy E = E(i) = Ei + Æi. Then, if the interation is not very strong, in theevaluation of the above equations the di�erene Æi � Æk an be negleted.One should stress that the summation in the above equations is performed over exat states. Sine the exateigenstates are unknown, one should express everything in terms of the basis states only. To do this, we express exateigenstates ji > through the basis omponents,jVkij2 =Xp ���C(i)p ���2 jHkpj2 +Xp6=qC(i)�q C(i)p HkpHqk (36)In previous Setions it was argued that for large number of prinipal omponents, Np � 1 and suÆiently stronginteration V0 � df , the omponents C(i)p;q an be treated as random variables, therefore, the seond term in (36)vanishes after averaging. Substitution of Eq. (36) into Eqs.(34, 35) gives�k(E) = 2�Xp6=k jHkpj2Wp(E) =Xp6=k jHkpj2 �p(E)(Ep + Æp �E)2 + �2p(E)4 (37)Æk =Xp6=k jHkpj2 Z dE(i)Wp(E(i))E �E(i) 'Xp6=k jHkpj2 (E �Ep � Æp)(E �Ep � Æp)2 + �2p(E)4 (38)where the integral is taken as the prinipal value. Last equality is valid in the approximation of slow variation of�p(E) and Æp. The equations for �k(E) and Æk allow to alulate the strength funtion (33) from the unperturbedenergy spetrum and matrix elements of the total Hamiltonian H .Now we have the set of equations (33,37,38) whih, in prinipal, give the solution for the LDOS Wk(E) and anbe solved numerially. However, for relatively large number of partiles (pratially, for n � 4), one an �nd anapproximate analytial solution of the problem [16℄. By analyzing these equations, in [16℄ it was proved that theondition of the self-onsistent solution for the LDOS (or the same, when the shape of the LDOS exists as a smoothfuntion of the energy), is just the ondition for the onset of haos in the TBRI-model, V0 � df , disussed in previousSetions.More spei�ally, for a very strong interation, � >> df the number Nf of e�etively large terms in the sums islarge, Nf � �=df , utuations of � are small, Æ� � �=pNf and Eq. (37) an be written in the form,�k(E) ' 2�jHkpj2�f ( ~E) (39)Here ~E = E�Æ and the energy shift Æ �< Æp > an be negleted in the ase of � << � with � standing for an e�etiveband-width � of the Hamiltonian matrix Hpq (see Eq.(41)). In order to perform the summation over p, it was assumedthat �(E) and �f (E) hange slowly within the energy interval of the size �. As a result, in order to have large numberof �nal states Nf � 2�H2kp=d2f and statistial equilibrium (small utuations of �), one needs Hkp >> df . In this asehaoti omponents of exat eigenfuntions in the unperturbed many-partile basis ergodially �ll the whole energyshell of the width �, with Gaussian utuations of the oeÆients C(i)k and the variane given by the F�funtion (21)(see also [42,19,21℄). 19



With a derease of the ratio Hkp=df , the utuations of � inrease and for Hkp < df the smooth self-onsistentsolution of Eqs.(37) does not exist. Indeed, in this ase the term �p in the denominator of Eq.(37,38) an be negletedand the sum in (37) is dominated by one term with the minimal energy E � Ep � df . Therefore, for a typialbasis state jk > formally one gets �k � �p(Hkp=df )2 << �p. This ontradits to the assumption of the equilibriumaording to whih all omponents are of the same order, �k � �p.One should stress again that the absene of a smooth solution for the shape of the eigenstates and the strengthfuntion does not mean that the number of prinipal omponents Np in exat eigenstates is small. It an be large,however, the distribution of the omponents is not ergodi, there are many \holes" inside exat eigenstates whihoupy the energy shell of the width 2�jHkpj2�f (E) (see [30,15℄). In suh a situation, the utuations of C(;i)k arevery large and non-Gaussian.It is important to note that the ensemble average (over many matries Hkp ) in this problem is not equivalent tothe energy average (inside spei� Hamiltonian matrix). Indeed, the average over the single-partile spetrum leadsto the variation of energy denominators in (37) and an �ll the \holes " in the F�funtion.From general equations for the shape of the LDOS one an make an unexpeted onlusion that the spreading width�(E) an be a strong funtion of exitation energy E due to the variation of the density �f (E) = d�1f of �nal statesin Eq. (39). In Ref. [16℄ it was shown that for the exited states, well above the ground state, the energy dependeneof �f (E) and �(E) an be quite lose to the Gaussian. This result is based on the estimate of the two-body density�f (E) , �f (E) = �(1)f (E) + �(2)f (E) (40)where the density �f is determined by the energy di�erene !(2)pk between the states jp > and jk > whih di�er bythe position of two partiles, and by !(1)pk between those states whih di�er by the position of one partile. Detailedanalysis [16℄ have shown that both �(1)f (E) and �(2)f (E) for large number of partiles are desribed by the Gaussian,�(1;2)f ( ~E) ' K1;2�1;2p2� exp0B��� ~E �Ek � !(1;2)�22�21;2 1CA (41)Normalization parameter K1;2 stands for the number of one or two-partile transitions, see Eq.(7). Here the averagefrequeny of one and two-partile transitions reads as!(1) � m=(m� n)(��Ek=n) (42)and !(2) = 2(�p � �k) � 2m=(m� n)(��Ek=n) (43)where �k = Ek=n is the mean single-partile energy in the basis state jk > ontaining n partiles, � is the single-partileenergy averaged over all m orbitals, and the mean energy of the empty orbitals �p an be found from the relationm� = �kn+ �p(m� n).The variane of �(1;2)f (E) for one and two-partile transitions is�21 = �2p + �2k + 2(n� 1)V 2 � �2� + 2(n� 1)V 2 (44)and �22 = 2�2p + 2�2k + (4n� 6)V 20 � 2�2� + (4n� 6)V 20 (45)where �2� is the variane of single-partile spetrum, and V 20 is the variane of non-diagonal matrix elements of theresidual interation. Note that in the ase of n << m for low-lying states the variane of the oupied orbital energies�2k is small and the variane of empty orbital energies is �2p � �2� .Thus, the width �(E) is given by the following expression,�(E) = 2� h(n� 1)V 2�(1)f (E) + V 2�(2)f (E)i (46)20



The fator n� 1 appears sine for single-partile transitions the summation in Hkp =P� V��!� is performed overoupied orbitals. When the ratio K2=((n � 1)K1) = (m � n � 1)=4 is larger than 1, the two-partile transitionsdominate and one an neglet the di�erenes in ! and � for two-partile and one-partile transitions. In this ase thespreading width is desribed by the simple Gaussian form,�k(E) ' 2�(�E)2k 1�kp2�exp(� ( ~E �Ek � !k)22�2k ) (47)where ~E = E � Æ. Here (�E)2k is the variane de�ned by Eq.(31) and !k and �k are lose to that for the two-partiletransitions. The maximum of �f (E) and �(E) is shifted by the value j!kj towards the enter of the spetrum,ompared to the maximum of the Breit-Wigner funtion. This leads to some distortion of the strength funtionEq.(33) and the shape of the eigenstates, whih is espeially large at the bottom of the spetrum.

FIG. 10. Shape of the LDOS (33) in the basis representation. Broken line is the result of numerial diagonalization of theTBRI-matrix. To redue utuations, the average over 50 di�erent matries Hik and over a number of nearby omponents hasbeen made. The omputation has been done for n = 6 partiles, m = 13 orbitals, therefore, the total size of the matrix isN = 1716: The interation strength is V 20 � 0:1 and d0 = 1:0 . Dashed and smooth full urves obtained by omputation ofEq.(33) with �k(E) given by Eqs.(37,38) and by Eq.(47) orrespondingly.
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FIG. 11. Dependene �k(E) is shown for the parameters of Fig.10. Full urve is the expression (47), the dashed urve is theomputation from Eqs.(37, 38).The above onsideration shows that if the interation is small, �� �k , the strength funtion has the Breit-Wignershape with a broad gaussian envelope desribed by the dependene �k(E) in the numerator of Eq. (33). In fat, suha dependene results in the orret (�nite) variane of the strength funtion. When the interation V inreases oneneeds to take into aount one more ontribution in Eq.(37) (it was negleted in Eq.(39)). It inreases the width ofWp(E) and leads to the estimate �2k ' �22 + �2p. With further inrease of interation, where the shape of Wp(E) islose to the Gaussian, one gets �2k ' �22 + (�E)2k .Diret numerial study of the model (1) with n = 6 Fermi-partiles and m = 13 orbitals [16℄ on�rmed that theabove analytial expressions give quite good desription of the shape of the strength funtion Wk(E) as well as theenergy dependene �k(E) , see Fig.10 and Fig.11. The size of the Hamiltonian matrix is N = Cnm = 1716 and theunperturbed state i0 = 440was taken.For the ase of quite strong interation, when � � �, the gaussian variation of �(E) in the numerator of Eq.(33)beomes as important as the variation of the Breit-Wigner energy denominator (E �Ek)2 + (�=2)2. In this ase thetransition from the Breit-Wigner type to Gaussian shape of the LDOS (strength funtion) takes plae. However, stillone an use Eqs.(37, 38) and (33) in order to alulate numerially �(E); Pk(E) and F (E;Ek), taking � from Eq.(47)with �2k ' �22 + (�E)2k as the zero approximation in the right-hand side of Eqs.(37, 38).F. Non-statistial properties of the TBRI-modelIn previous Setions we have onsidered statistial properties of the TBRI-model based on haoti struture of theeigenstates and LDOS. However, one should be very areful with this approah sine due to underlying orrelationsin matrix elements of H (see Setion 2.1.3), the approah is not always valid, even if all two-body random matrixelements are ompletely random and independent variables. This fat is due to a two-body nature of interation andshould be taken into aount in some ases. Below we show an example when statistial desription is inorret (seedetails in [13℄).Let us onsider a single-partile operatorM̂ =X�;� ay� a�M�� =X� ;� ��� M�� (48)where ay� and a� are the reation and annihilation operators and we have introdued the density matrix operator��� = ay�a� whih transfers a partile from the orbital � to the orbital �. The matrix element of M̂ between ompoundstates an be expressed through the projetion of the density matrix into the basis states,hn1j M̂ jn2i =X�� M�� hn1j ��� jn2i =X�� M�� �(n1;n2)�� (49)where �(n1;n2)�� �Xij C(n1)i hij ��� jjiC(n2)j (50)is determined by the exat eigenstates only. In what follows, we are interested in statistial properties of this many-body operator �̂(�; �) for the �xed orbitals � and � whih, on the other hand, determines statistial properties ofthe single-partile operator M̂ , see Eq.(48).One an see that this operator has zero mean,�(�; �) = hn1j ��� jn2i = 0 (51)if ompound eigenstates are truly random.In general ase, the variane of �̂(�; �) whih is of our main interest, has the form,�2(�; �) = hn1j ��� jn2i hn2j ��� jn1i =22



Xi;j; k;lC(n1)i C(n1)j C(n2)k C(n2)l hij ��� jki hlj ��� jji = S(n1;n2)d + S(n1;n2) (52)Here we separated the diagonal, S(n1n2)d =Xik ���C(n1)i ���2 ���C(n2)k ���2 jhij ��� jkij2 ; (53)and non-diagonal, S(n1;n2) = Xi6=j; k 6=lC(n1)i C(n1)j C(n2)k C(n2)l hij ��� jki hlj ��� jji : (54)ontributions to the sum (52) and assumed that eigenstates are real vetors (note that our matrix Hij is symmetri).Typial shape of the density matrix is shown in Fig.12. This shape an be ompared with the statistial approahdeveloped in Ref. [46,47℄ for a very large interation, in the ase when the role of the unperturbed part H0 is negleted(therefore, the inuene of the leading diagonal Hjj is small).
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FIG. 12. Form of the density matrix (50) for the TBRI-model with the parameters of Fig.1-5. The quantity�n;m = ���(n1n2)�� �2�1=2 is omputed with the average inside the bloks of size 10� 10 (in the same way as in Fig.2).As we have disussed in previous Setions, for suÆiently large interation ompound eigenstates jni of the TBRI-model may be onsidered as pseudo-random funtions due to a very large number of omponents C(n)i . Therefore,it is natural to expet that the non-diagonal part S(n1;n2) is zero and the variane is essentially determined by thediagonal term S(n1;n2)d whih an be desribed statistially (for this statistial approah see Refs. [49,19,50℄). Thisassumption has been used in the previous alulations of matrix elements between ompound states in [49,19,50,51℄.However, reently it was shown [13℄ that in many-body system these two terms are of the same order, S � Sd,even for ompletely random two-body interation. In order to show this very unexpeted e�et, in Ref. [13℄ diretomputations of the terms S and Sd have been performed for the TBRI-model, see Figs.13-14. One an see thatthe data reveal a systemati di�erene between the diagonal approximation and exat expression (52). In partiular,Fig.14 shows that non-diagonal term S is of the same order as Sd whih learly indiates the presene of orrelations.Below, we show how these orrelations emerge in the non-diagonal term S (for more details see Ref. [13℄). First,note that for a given i the sum over k in Eq. (53) for Sd ontains only one term, for whih jki = ay�a�jii � ji0i,determined by transferring one partile from the orbital � to the orbital � in the state jii (hereafter we use thenotation i0 to mark suh states). Aordingly, the index i runs over those states in whih � is oupied and � isvaant. For suh i and i0 the matrix element hij ��� ji0i = 1, otherwise, it is zero. Therefore, in fat, the sum in (53)is a single sum, with a number of items less than N , 23



S(n1n2)d =Xi 0 ���C(n1)i ���2 ���C(n2)i0 ���2 (55)where the sum Pi0 runs over the spei�ed i. Analogously, Eq. (54) an be written as the double sum over i and jspei�ed as above, S(n1n2) =Xi6=j 00C(n1)i C(n1)j C(n2)i0 C(n2)j0 ; (56)where j0 is a funtion of j, jj0i = ay�a�jji. Note that the energies of the basis states and their primed partners areonneted as Ei0 �Ei = �� � �� = Ej0 �Ej .

FIG. 13. Mean square matrix element (52) alulated in the TBRI-model for n = 7 partiles and m = 14 orbitals, � = 7,� = 8, as a funtion of the eigenstate n2 for n1 = 575 (total size of the matrix is N = 3432). Dots orrespond to the sumSd + S while the solid line represents the diagonal ontribution Sd only [see (53)℄.

FIG. 14. Ratio R = S=Sd of the orrelation ontribution to the diagonal ontribution for the same parameters as in Fig.13.24



One an expet that maximal values of the sum (55) and (56) orrespond to the terms for whih C�omponentsare prinipal omponents of the eigenstates. This means that mean square of the matrix element jhn1j ��� jn2ij2is maximal when the operator ��� ouples the prinipal omponents of the state jn1i with those of jn2i, i.e. forE(n1) � E(n2) � !�� � �� � �� . Far from the maximum (��E(n1) �E(n2) � !���� > �) a prinipal omponent of onestate, say, n1, is oupled to a small omponent k of the other state n2 (��Ek �E(n2)�� > �). The latter ase is simplerto onsider analytially, sine the admixture of a small omponent in the eigenstate an be found via the standardperturbation theory. This approah reveals the origin of the orrelations in the sum S, Eq. (56). For example, ifC(n1)j is a small omponent of the eigenstate n1, then it an be expressed as a perturbation theory admixture to thepriniple omponents. If the omponent C(n1)i is one of the latter, then there is a term in the sum (56), whih isproportional to the prinipal omponent squared, ���C(n1)i ���2.Based on this onsideration, in Ref. [13℄ was found that far from the maximum, ��E(n2) �E(n1) � !���� > �, thenon-diagonal terms readS(n1n2) � � 2�E(n2) �E(n1) � !���2 gXi;j0 00 ���C(1)i ���2 ���C(2)j0 ���2Hi0j0Hij (57)A similar alulation of the diagonal sum S(n1n2)d , Eq. (53), yieldsS(n1n2)d � 1�E(n2) �E(n1) � !���2�8<:gXi 0gXj0 ���C(n1)i ���2 ���C(n2)j0 ���2H2i0j0 +gXi gXj0 0 ���C(n1)i ���2 ���C(n2)j0 ���2H2ij9=; (58)Let us estimate the relative magnitudes of Sd and S. First, we onsider the ase when jii and jji di�er by twoorbitals, jji = ay�2a�1ay�2a�1 jii; in this ase Hij = V�1�1�2�2 . Sine the basis states ji0i and jj0i must di�er by the sametwo orbitals, we have Hi0j0 = V�1�1�2�2 = Hij (note that �1; �1; �2; �2 6= �; �, sine both states jii and jji ontain �and do not ontain �, whereas ji0i and jj0i ontain � and do not ontain �). Therefore, the averages over the non-zeromatrix elements between suh pairs of states give HijHi0j0 = H2ij = H2i0j0 = V 20 .Now, let us onsider the ase when jii and jji di�er by one orbital jji = ay�2a�1 jii only. In this ase the Hamiltonianmatrix elements are sums of the n�1 two-body matrix elements, see Eqs.(9) and (10). As was shown in Setion 2.1.3,the sums of n� 2 terms in Hij and Hi0j0 oinide and the di�erene is due to the one term only (orbital � is replaedby the orbital �). Thus, HijHi0j0 = (n� 2)V 2 ; (Hij)2 = (Hi0j0 )2 = (n� 1)V 2 (59)where we took into aount that V����V�1�1�1�1 = V 2Æ��1Æ��1Æ��1Æ��1 .The ontributions of one-partile and two-partile transitions in Eqs. (57) and (58) representing S and Sd respe-tively, are determined by the numbers of suh transitions allowed by the orresponding sums. For the single-primesums in Eq. (58) these numbers are proportional to K1 and K2, Eq. (7). In the double-prime sum in Eq. (57)these numbers are proportional to ~K1 and ~K2, the numbers of the two-body and one-body transitions i ! j, inthe situation when one partile and the two orbitals (� and �) do not partiipate in the transitions. These num-bers an be obtained from Eq. (7) if we replae n by n � 1, and m by m � 2, so that ~K1 = (n � 1)(m � n � 1),~K2 = (n�1)(n�2)(m�n�1)(m�n�2)=4. Finally one an obtain that for jE(n2)�E(n1)�!��j > � the ontributionof the orrelation term to the variane of the matrix elements of ��� an be estimated in the ratio asR � SSd = � (n� 2) ~K1 + ~K2(n� 1)K1 +K2 = � (n� 2)(m� n� 1)(m� n+ 2)n(m� n)(m� n+ 3) : (60)This equation shows that for n = 2 we have S = 0, whih is easy to hek diretly, sine in this ase Hi0j0Hij = 0 .For n > 2 the orrelation ontribution S is negative in the tails of the LDOS. This means that it indeed suppressesthe transition amplitudes o�-resonane (see Figs.13-14). For n;m� n� 1 the ratio R approahes its limit value �1.It is easy to obtain from Eq. (60) that for m� n� 1 25



Sd + SSd = 1 +R ' 2mn(m� n) : (61)Thus, surprisingly, the role of the orrelation ontribution inreases with the number of partiles. This result issupported by numerial data reported in Ref. [13℄. In Fig.14 one an see that the suppression of the matrix elements�2(�; �) due to the orrelation term at the tails, is quite strong, numerial ratio is R � �0:7 vs. R = �0:55obtained from Eq.(60); this should be ompared with the ase n = 4;m = 11; N = 330 for whih numerial value isR � �0:45; see details in [13℄. The orrelation ontribution should be even more important in ompound nulei, whereN � 105 . This ase an be modeled by the parameters n = 10, m = 20; then we have R = �0:66, or, equivalently,(Sd + S)=Sd = 0:34, whih means that the orrelations suppress the squared element �2 between ompound statesby a fator of 3 (far from its maximum).It is worth emphasizing that the existene of orrelations due to the perturbation theory admixtures of smallomponents to the haoti eigenstates, whih leads to a non-zero value of S (56), is indeed non-trivial. For example,if one examines the sum of Eq. (56) as a funtion of i and j, it would be hard to guess that the sum itself is essentiallynon-zero, sine positive and negative values of �ij � C(n1)i C(n1)j C(n2)i0 C(n2)j0 seem to be equally frequent, and haveroughly the same magnitude, see Fig.15. However, in spite of apparent random harater of the terms �ij , its meanvalue turns out to be non-zero and is of the same order as the diagonal term Sd . SinePn1 S(n1n2) =Pn2 S(n1n2) = 0(see below), the suppression of �2(�; �) at the tails should be aompanied by orrelational enhanement of the matrixelements near the maximum (for ��E(2) �E(1) � !���� < �).Thus, we ome to the important onlusion: even for a random two-body interation, the orrelations produesome sort of a \orrelation resonane" in the distribution of the squared matrix elements �2(�; �). One should notethat this inrease of the orrelation e�ets in the matrix elements of a perturbation an be explained by the inreasedorrelations between the Hamiltonian matrix elements when the number of partiles and orbitals inreases (N=n / en).In a similar way one an estimate the size of the orrelation ontribution S near the maximum of theM2 distribution(at ��E(n2) �E(n1) � !���� < �) [13℄.Sd + SSd = 1 +Rm = 2� (1 +Rt) ' 2 �1� mn(m� n)� : (62)Comparing the values of the ratio S=Sd at the maximum and at the tail in Fig.13 (n = 7; m = 14) , one an see thatindeed, Rm � �Rt. For larger n and m the orrelation enhanement fator asymptotially reahes its maximal valueof 2. This numerial example shows the enhanement of �2(�; �) with respet to Sd at the maximum even greaterin size than that predited by Eq. (62). This is not too surprising sine in Eqs. (24){(62) we estimated the averagevalue of Rm over an interval �E ' � around the maximum rather than the peak value at the maximum.
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FIG. 15. The distribution of the terms �ij = C(n1)i C(n1)j C(n2)i0 C(n2)j0 of the sum (56) for n1 = 55, n2 = 66, obtained in theTBRI-model for the same set of parameters as in Figs.1-5, averaged over Ng = 100 realizations of the interation. Indies iand j in the �gure run over those 84 omponents in whih � is oupied and � is vaant. (a) on the top: positive values, (b)on the bottom: negative values (absolute values).III. THERMALIZATION AND ONSET OF CHAOSA. Distribution of oupation numbersLet us now ome bak to the distribution of oupation numbers de�ned by Eq.(5). It gives the probability thatone of n partiles oupies an orbital s spei�ed by the one-partile state jsi , for the �xed exat (ompound) state jii. Aording to this expression, this probability an be found by projeting the state jii onto the basis of unperturbedstates, for whih the relation between the positions of all partiles in the single-partile basis and spei� many-partilebasis state is known by the onstrution of the latter. One an see that the probability ns = ns(E(i)) is the sum ofprobabilities over number of basis states whih onstrut the exat state. For Fermi-partiles, only one partile anoupy an orbital, this is why the oupation number n(k)s = 0 or 1 .It is lear that for haoti eigenstates the ns�distribution is a utuating funtion of the total energy E = E(i) ofa system, due to utuations of the omponents C(i)k of eigenstates. In order to obtain a smooth dependene, oneshould make an average over a small energy window entered at E(i) , whih is in the spirit of onventional statistialmehanis for systems in the ontat with the thermostat. In fat, suh an average is a kind of miroanonialaveraging sine it is done for the �xed total energy E of a system. Therefore, in what follows, by the ns�distributionwe assume the averaged distribution,ns(E) =Xk ���C(i)k ���2 hkj n̂s jki =Xk F (Ek ; E(i)) hkj n̂s jki (63)where the F�funtion disussed in previous Setion is used.We are going to show that the ns� distribution plays essential role in the statistial approah to �nite systems ofinteration partiles. Our interest to this quantity is of two-fold. First, the knowledge of the distribution of oupationnumbers gives the possibility to alulate mean value of any single partile operator hMi = Ps nsMss . Here Mssare diagonal matrix elements of a single-partile operator M̂ , whih very often an be found easily sine they refer27



single-partile physis. For quantum systems with omplex behavior, the non-trivial part is the F�funtion whihabsorbs the result of the two-body interation between many basis states. The important point is that in order to�nd the distribution of oupation numbers, there is no need to know exatly eigenstates of the system. Instead, theshape of eigenstates in the energy representation is needed, whih is de�ned by the F�funtion. Thus, if we knowthis funtion and properties of the unperturbed system, one an relate statistial properties of haoti systems tosingle-partile quantities.Moreover, the variane of the distribution of non-diagonal elements ofM , desribing transition amplitudes between\haoti" ompound states due to a weak external perturbation, an be also expressed through to the oupationnumbers ns . This variane is important from experimental point of view, for example, for the estimate of anenhanement of a weak interation (whih refers, for example, the parity violation in atoms and nulei) , see detailsin [51,19,13,21℄.Seond, the form of the distribution of oupation numbers is interesting itself. One of important questions whiharises in this respet, is whether the standard Fermi-Dira and Bose-Einstein distributions our for isolated systemsof �nite number of partile. If they our, then, under what onditions and how they an be desribed? One ansuggest that the role of the interation between partiles is ruial sine this is the only reason to result in a omplexbehavior (haos) of a system, and the latter is the mehanism for the statistial equilibrium. Another non-trivialquestion relates to the meaning of temperature for isolated systems. The study of the ns�distribution gives a newinsight on these and other problems.For the analytial treatment it is onvenient to represent the ns�distribution in the following form,ns(E) = Pk n(k)s ~F (Ek �E )Pk ~F (Ek �E) (64)Here the funtion ~F (Ek � E) is the part of the F�funtion, whih non-trivially depends on the di�erene Ek � Ebetween the unperturbed energy Ek only. Namely, we omitted the normalization term f (E) sine the summation inEq.(64) runs over the unperturbed energy, F (Ek; E) = f (E) ~F (Ek �E ) . Thus, the denominator appears due to thenormalization. This form (64) allows one to introdue a kind of the partition funtion,Z(E) =Xk ~F (Ek �E) (65)whih is entirely determined by the shape of haoti eigenfuntions.The above expression (64) gives a possibility of the statistial desription of omplex systems. Indeed, as wasmentioned above, the shape of the F� funtion has universal features and an be often desribed analytially.Therefore, in pratie there is no need to diagonalize huge Hamiltonian matrix of a many-body system in orderto �nd statistial averages. We would like again to stress that the summation in (64) is arried out over unperturbedenergies Ek de�ned by the mean �eld, rather than over the energies of exat eigenstates in the standard anonialdistribution. As a result, the distribution of oupation numbers an be derived analytially (see below) even for fewinterating partiles, in a situation when the standard Fermi-Dira distribution does not our.B. Miroanonial vs. anonial distributionLet us now ompare the ns�distribution (64) with oupation numbers given by the standard anonial distribution[15℄, ns(T ) = Pi n(i)s exp(�E(i)=T )Pi exp(�E(i)=T ) (66)Here T is the temperature of a heat bath and the index i stands for exat eigenstates. The important di�erenebetween the ns� distribution (64) and the anonial distribution (66) is that in Eq. (64) the oupation numbersare alulated for the �xed total energy E of a system unlike the �xed temperature T in Eq.(66). However, bothexpressions an be ompared with eah other using the relation between the energy E and the temperature T ,E = hEiT = Pi E(i) exp(�E(i)=T )Pi exp(�E(i)=T ) (67)28



One an show that the anonial distribution orresponds to the average of the \miroanonial" ns� distributionover some energy interval �T . To demonstrate this, let us substitute n(i)s and ���C(i)k ���2 from Eqs.(5,21) into Eq.(66)and replae the summation over i by the integration over �(E(i)) dE(i) where �(E(i)) is the density of exat energylevels, Xi n(i)s exp��E(i)=T� � Z n(i)s �(E(i)) exp��E(i)=T�dE(i) � (68)Xk n(k)s Z F (i)k (Ek ; E(i))�(E(i)) exp��E(i)=T�dE(i) =Xk n(k)s F (T;Ek)Here the funtion F (T;Ek) is the anonial average of F (i)k ,F (T;Ek) = Z F (i)k �T (E(i)) dE(i) (69)with another \anonial (thermal) averaging" funtion,�T (E) = �(E) exp (�E=T ) (70)As a result, one an transform the anonial distribution (66) into the form similar to the ns� distribution (64),ns(T ) = Pk n(k)s F (T;Ek)Pk F (T;Ek) (71)This distribution an be used for the alulation of the oupation numbers and other mean values in a quantumdot whih is in thermal equilibrium with an environment (with no partile exhange).In many-body systems with large number of partiles the funtion �T (E) has a very narrow maximum sine thedensity of states �(E(i)) typially grows very fast. The position Em of its maximum is de�ned by the expressiond ln �(E)dE = 1T (72)and the width is given by �T = ����d2 ln �(E)dE2 �����1=2 (73)Let us onsider the TBRI-model (1) for whih the density of states is known to be desribed by the Gaussian,�(E) = 1�p2� exp � (E �E)22�2 ! (74)with E and �2 as the enter and the variane of the spetrum. This allows easily to �nd the form of �T (E) whihalso has the gaussian form, �T (E) = 1�p2� exp � (E �Em)22�2 ! (75)with Em = E � �2T (76)One an see that the width �T of the thermal averaging funtion is equal to the gaussian width of the spetrum,�T = � . In Ref. [15℄ it was argued that for large number of partiles both widths �T and �E are muh smallerthan the typial energy interval, �= jE �Ej � 1=pn . Therefore, for large number of partiles the funtion �T anbe regarded as the delta-funtion at E = Em and the ns� distribution is lose to the anonial one, see Eq.(69).However, the anonial distribution (66) is not orret when desribing isolated systems with small number ofpartiles, instead, one should use the ns� distribution (64), see details below and in [12,15℄.29



C. Transition to the Fermi-Dira distributionIt is naturally to expet that for a very large number of partiles the standard Fermi-Dira distribution arises fromthe ns� distribution (64). Below we reprodue the derivation given in Ref. [15℄. By splitting the sum in two parts,whih orresponds to the separate summation over ns = 0 and ns = 1 , one an represent the expression (64) in theform ns(E) = 0 + Zs(n� 1; E � ~�s)Zs(n� 1; E � ~�s) + Zs(n;E) = 11 + Zs(n;E)Zs(n�1;E�~�s) (77)where two \partial" partition funtions Zs(n;E) and Zs(n � 1; E � ~�s) are introdued. For the �rst funtion thesummation is taken over all single-partile states of n partiles with the orbital s exluded, Zs(n;E) =P0k ~F (Ek�E).Correspondingly, the sum in Zs(n� 1; E � ~�s) is taken over the states of n� 1 partiles with the orbital s exluded.The latter sum results from the terms for whih the orbital s is �lled (ns = 1) , thus, one should add the energy~�s � Ek(n)�Ek(n� 1) of this orbital to the energy Ek(n� 1) of the basis state jki de�ned by n� 1 partiles. Sinethe F� funtion mainly depends on the di�erene Ek + ~�s � E , the adding term ~�s to Ek(n � 1) is the same as itssubtration from the total energy E . Note, that this term is de�ned by~�s = �s +Xp6=s uspn(k)p (78)where �s is the energy of a single-partile state and usp is the diagonal matrix element of the two-body residualinteration. By taking ~�s independent of k we assume that the averaging over the basis states near the energy E ispossible, in fat, this is equivalent to a loal (at a given energy) mean �eld approximation. One should stress thatthis approximation is important when omparing the simple TBRI-model (1) with realisti systems. For example,for the Ce atom there are orbitals from di�erent open sub-shells (e.g. 4f and 6s ) whih are quite lose in energies,however, they have very di�erent radius. As a result, the Coulomb interation between the orresponding eletrons isvery di�erent [52℄. In this ase the interation terms in Eq.(78) strongly depend on the oupation numbers of otherpartiles. As a result, the equilibrium distribution for oupation numbers ns is very di�erent from the Fermi-Diradistribution [52℄. However, the original ns� distribution (64) for oupation numbers is valid and gives orret result[53℄. In other ases like random two-body interation model [12,13,15℄ or nulear shell model [26,28℄, or the atom ofgold [54℄, suh a loal mean �eld approximation is quite aurate and results in the FD-distribution.For large number n � 1 of partiles distributed over m � 1 orbitals, the dependene of Zs on n and ~�s is verystrong sine the number of terms N in the partition funtion Zs is exponentially large, N = m!(m�n)!n! . Therefore, tomake the dependene on arguments smooth, one should onsider ln Zs instead of Zs . In this ase one an obtainln Zs(n��n;E � ~�s) � ln Zs(n;E)� �s�n � �s~�s (79)�s = � ln Zs�n ; �s = � ln Zs�E ; �n = 1This leads to the distribution of the Fermi-Dira type,ns = 11 + exp(�s + �s~�s) (80)If the number of substantially oupied orbitals in the de�nition of Zs is large, the parameters �s and �s are notsensitive as to whih partiular orbital s is exluded from the sum and one an assume �s = � � ��=T; �s = � � 1=Tas in the standard derivation of the Fermi-Dira distribution for systems in ontat with thermostat. Therefore, thehemial potential � and temperature T an be found from the onditions of �xed number of partiles and �xedenergy, Xs ns = n; Xs �sns +Xs>p uspnsnp =Xs ns(�s + ~�s)=2 = E (81)Note, that the sums in (81 , 78) ontaining the residual interation usp an be substantially redued by a proper hoieof the mean �eld basis (for instane, the terms usp an have di�erent signs in suh a basis). In pratie, the values �sand ~�s may be very lose. Sine in the above expressions (81) the nondiagonal matrix elements of the interation are30



not taken into aount, one an expet that the distribution of oupation numbers de�ned by these equations givesa orret result if the interation is weak enough (ideal gas approximation). However, below it will be shown that,in fat, even for strong interation the Fermi-Dira distribution an be also valid if the total energy E is resaledin a proper way, by taking into aount the inrease of the temperature due to statistial e�ets of the (random)interation.One should also note that the above onsideration is similar to the standard derivation (see e.g. [42℄) of the Fermi-Dira distribution from the anonial distribution (66) for the ase of many non-interating partiles (ideal gas). It isurious that the Fermi{Dira distribution is very lose to the anonial distribution (66) even for very small numberof partiles, n � 2; provided the number of essentially oupied orbitals is large (whih happens for T � � or �� � ).This fat results from the large number of \prinipal" terms in the partition funtion Zs , and allows one to replae�s by � in the term Zs(n; T )=Zs(n� 1; T ) � exp(�s + �T ) in the anonial distribution (66) (ompare with (77)).One should stress, however, that the temperature T in the Fermi-Dira distribution is di�erent from that in theanonial distribution. Indeed, using the expansion �s = �(�F ) +�0(�s� �F ) one an obtain the relation between theFermi-Dira (�FD) and anonial (�) inverse temperatures, �FD = � + �0�F . Conerning the hemial potential, itsde�nition also hanges, ��=T = �(�F ) � �0�F . More spei�ally, for the same total energy E of the system , theanonial and Fermi-Dira distributions give the same distribution ns de�ned, however, by di�erent temperatures,see details in [12,13,15℄ and disussion below.D. Analytial approah to the ns�distributionIn the previous setion it was shown how the standard Fermi-Dira distribution ours in the TBRI-model whennumber of partiles is very large. However, the expression (5) for the distribution of oupation numbers via the shapeof haoti eigenstates is of more general form and also valid even when the number of partiles is relatively small.In this ase the ns�distribution an be of the form very di�erent from the FD-distribution. Below we show howto analytially derive the ns�distribution and express it in terms of single-partile and unperturbed many-partilespetrum, using general properties of the F�funtion [15℄.For simpliity, we onsider the ase of relatively strong interation, when the shape of the LDOS and exat eigen-states an be desribed by the Gaussian. In order to alulate the oupation numbers ns, we use the expression (77)ontaining two partial partition funtions Zs(n;E) and Zs(n � 1; E � �s) whih orrespond to systems with n andn � 1 partiles, with the orbital s is exluded from the set of single-partile states. The partition funtion an befound from the relation Z(E) =Xk ~F (Ek �E) � Z �0(Ek) ~F (Ek �E)dEk (82)As was disussed above, the density of unperturbed states �0(Ek) in the TBRI-model it the Gaussian, s�0(Ek) = Np2��20 exp � (Ek �E)22�20 ! (83)where E is the enter of the energy spetrum and N is the total number of states. If the shape of eigenstates is alsodesribed by the Gaussian, ~F (Ek �E) = Np2�(�E)2 exp � (Ek �E)22(�E)2 ! (84)then the integration in (82) an be easily performed. The variane (�E)2 is de�ned by Eq.(31). It should bepointed out that, stritly speaking, in this expression the enter of the F�funtion is shifted by the value �(i)1 fromthe unperturbed energy, E = E(i) + �(i)1 , see details in [15℄. This shift is due to the level repulsion whih foreseigenvalues E(i) in the lower part of the spetrum to move down. The mean-�eld energies Ek = Hkk do not inludethe nondiagonal interation whih results in the repulsion. Therefore, the \enter " of the F�funtion is shifted bythe value �(i)1 = Hii �E(i) . This shift is estimated in Ref. [15℄ as follows,�(i)1 � �E �E(i)� (�E)22�20 (85)31



where �20 is the variane of the unperturbed spetrum. One an see that sine the variane (�E)2 of the LDOS istypially muh smaller than �20 , this shift in many ases an be negleted.Diret integration in Eq.(82) gets Z(E) = Np2��2 exp � (E �E)22�2 ! (86)where �2 = �20 + (�E)2 , therefore, the variane of the partition funtion Z(E) oinides with the variane of theperturbed spetrum. In order to alulate the oupation numbers ns, one should use the expression (77). Therefore,one needs to �nd the partition funtions Zs(n;E) and Zs(n� 1; E � �s) orresponding to n and n� 1 partiles, withthe orbital s exluded from single-partile spetrum. To do this, one needs to alulate the number of states Ns andthe enter Es for these trunated systems,Ns(n;m� 1) = (m� 1)!(m� 1� n)!n! ; Ns(n� 1;m� 1) = (m� 1)!(m� n)! (n� 1)!Es(n) = ��s n ; Es(n� 1) = (��s)(n� 1); ��s = Pp6=s �pm� 1 (87)The variane �0s of the energy distributions an be estimated as�20s(n) � �21s n ; �20s(n� 1) � (�21s) (n � 1)where �21s is the variane of single-partile spetrum with the exluded orbital s . Here, for simpliity, we havenegleted the Pauli priniple whih is valid for m � n . Finally, the distribution of oupation numbers takes theform ns(E) = 11 +RR = m� nn �s(n� 1)�s(n) exp"� (E �Es(n))22�2s(n) + (E � �s �Es(n� 1))22�2s(n� 1) # (88)where �2s = �2s0+(�E)2 . Numerial data for the TBRI-model are presented in Fig.16 from whih very good agreementwith (88) is seen.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

theory
F-D shifted

ns

sFIG. 16. Analytial desription of the oupation numbers. The data are given for the TBRI-model for the parameters ofFigs.1-5 (n = 4; m = 11; V0 = 0:12; d0 = 1): The histogram is obtained aording to (5) by the averaging over eigenstates withenergies taken from a small energy window entered at E = 17:33 and over 20 Hamiltonian matries (1) with di�erent realizationof the two-body random interation. Stars represent the analytial expression (88) with �0s found from the single-partile energyspetrum. Diamonds orrespond to the Fermi-Dira distribution with renormalized energy, see Setion 3.5.32



It is instrutive to ompare this result with the Fermi-Dira distribution whih is valid for large number of partiles.In this ase R = exp((�s � �)=Tth) where Tth = �2=(E � E) is the thermodynami temperature whih is disussedbelow, see (96). The hemial potential � an be found numerially from the ondition of �xed total number ofpartiles n. E. E�etive Fermi-Dira distribution for �nite systemsIn previous Setion the distribution of oupation numbers has been derived without any referene to the tempera-ture, from the F�funtion and properties of the unperturbed system. However, the ns�distribution in Fig.16 seemsto have a Fermi-Dira form. One should remind that the latter form in onventional statistial mehanis an bederived for ideal gas of very large non-interating partiles. In suh a derivation, the presene of the thermostat isassumed, atually, in order to have statistial equilibrium in the system. Indeed, for an isolated systems with largen ! 1 , any extremely weak interation with an environment results in strong statistial properties of a system.Using modern language, one an speak about the onset of haos due to this interation. In fat, the weakness of theoupling to the heat bath gives the possibility to treat the gas of partiles as an ideal gas. It is well known, that inthis ase one an write the following equations,Xs ns = n; Xs �sns = E (89)where n and E are total number of partiles and total energy, and ns is assumed to have Fermi-Dira form,ns = 11 + exp (�+ ��s) (90)When in an isolated system desribed by the TBRI-model, the number of partiles is very large, the above equationsresult in the FD-distribution, see Setion 3.3. However, in suh a ase the interation V0 has to be very weak. Now,if we onsider the model with �nite and not large number of partiles, for a weak interation there is no haos inthe sense that exat eigenstates have small number of prinipal omponents Np � 1 . Therefore, this model doesnot allow for its statistial desription, in other words, there is no statistial equilibrium. For example, if for suh aase we ompute the ns�distribution aording to the de�nition (5), there are very large utuations in oupationnumbers when slightly hanging the total energy E(i) , see Fig.17.
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In order to have haoti eigenstates, and, as a result, the possibility of statistial desription, one needs to inreasethe interation in order to exeed the threshold V0 � df (see also disussion in Setion 3.7). The less number ofpartiles, the stronger interation is needed sine the two-partile density �f = d�1f strongly depends on the numberof partiles. On the other hand, if interation is strong, the seond equation in Eq.(89) is not orret and an not beused for the derivation of the ns�distribution. To demonstrate this, in Ref. [15℄ the distribution of oupation numbersns for the two-body random interation model has been diretly omputed aording to Eq.(5) from exat eigenstatesof the Hamiltonian matrix (1), see also [12,15℄. These data for the \experimental" values of ns are shown in Fig.18by the histogram whih is obtained from the average over small energy window in order to smooth the utuations(with additional averaging over di�erent realizations of the two-body random matrix elements). To ompare with thestandard Fermi-Dira distribution, Eqs.(89) have been also numerially solved in order to �nd the temperature andhemial potential, the resulting ns�distribution is shown by irles. One should stress that the value of the energyE in (81) was taken the same as for the exat eigenstates from whih atual distribution of ns was omputed, namely,E � E(i) . The omparison of the atual distribution (histogram) with the \theoretial " one, reveals a big di�erenefor a hosen (quite strong) perturbation V = 0:20 :To desribe orretly the ns-distribution in terms of the Fermi-Dira distribution, in Ref. [15℄ it was suggested torenormalize the total energy of the systems due to the interation between partiles, and instead of Eq.(89) to solvethe following equations, Xs ns = n; Xs �sns = E +�E (91)where �E is the shift of the total energy due to the interation. In Ref. [15℄ it was argued that in the ase of randominteration, this term absorbs statistial inrease of the energy and gives the orret result for the ns�distribution.In fat, this assumption is based on a deep equivalene between the external haos originated by the heat bath in thease of open systems, and internal haos due to a random harater of the interation. Therefore, it was assumedthat random interation and haos in losed systems plays the role of a heat bath.
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FIG. 18. Fermi-Dira distribution with and without additional shift of energy due to a (strong) interation, V0 = 0:20 (otherparameters are the same as in Fig.16). Cirles stand for the Fermi-Dira distribution obtained for the total energy E = 17:3orresponding to the energy of eigenstates, see (81). Diamonds orrespond to the distribution obtained for the energy shiftedaording to Eq. (93).In order to �nd analytially the shift �E , one needs to onsider the struture of exat eigenstates in the unperturbedbasis, in partiular, to �nd the shift between the energy of an exat eigenstates and the mean energy of the omponentsof the same eigenstate [15℄. Sine the density of states rapidly inreases with the energy E , the number of higherbasis states admixed to an eigenstate due to the interation is larger than the number of lower basis states. As aresult, the mean energy 34



hEkii =Xk EkF (i)k � Z EkF (i)k �0(Ek)dEk (92)of the omponents in an exat eigenstate jii is higher than the eigenvalue E(i) orresponding to this eigenstate (weonsider here the eigenstates in the lower part of the spetrum). There is another e�et whih dereases the value ofhEkii , see (92), whih remains even if the density of states does not depend on the energy. This seond e�et is due torepulsion between energy levels, aording to whih the eigenvalues move down for this part of the spetrum, therefore,the di�erene between hEkii and E(i) inreases due to the interation. The seond e�et also shifts the \enter" ofthe F�funtion. One should stress that all e�ets leading to the above shift of the energy are automatially takeninto aount in the relation (92). Thus, one an analytially alulate this shift �E = hEkii �E(i) from the equation(92). For this, one needs to know the unperturbed density of states and the form of F�funtion. The evaluation ofthe shift �E has been done in [15℄ by assuming some generi form for the F� funtion whih is valid in a wide rangeof the interation strength V , �E = hEkii �E(i) = (�E)2�20 (E �E) (93)where E is the enter of the energy spetrum.Thus, to �nd orret values for the oupation numbers in the Fermi-Dira distribution, we should solve Eqs.(91)with �E de�ned by Eq.(93). The resulting ns�dependene is shown in Fig.18 by diamonds. As one an see, suha orretion gives quite good orrespondene to the numerial data. Similar di�erene ours for larger number ofpartile (and smaller interation strength), see Fig.19 where due to serious numerial problems, the data for theoupation number distribution are given without diret omparison with atual ns�distribution.
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give, in prinipal, di�erent values. Indeed, in the ase of the Gaussian form of �(E) the value of Tth given by (94)takes the form (see also [26,28℄), Tth = �2E �E (96)where E and � are the enter and the width of the total density �(E):On the other hand, diret evaluation of the relation (67) leads to the following de�nition of the anonial temperature,Tan = �2E �E +� (97)Here, the shift � is approximately given by the expression� = �K "exp � (Emin �Em)22�2 !� exp � (Emax �Em)22�2 !# (98)where K = xmaxZxmin exp��x22 � dx � p2� ; x = E �Em� ; Em = E � �2Tan (99)One an see that the shift � itself depends on the temperature, it is proportional to the width �T =� of the funtion�T (E). In the above expressions, Emin and Emax are the low and upper edges of the energy spetrum. Note thatthe relation � = 0 ours at the enter of the spetrum, therefore, at the enter the temperature diverges and in theupper part of the spetrum is negative. This fat is typial for systems with bounded spetrum, for example, for spinsystems. In fat, the TBRI-model (1) with �nite number m of orbitals an be treated as a model for one open shell inatoms, nulei, lusters, et. However, in realisti many-body systems there are always higher shells whih ontributeto the density of states for higher energy. Thus, the density of states �(E) is a monotoni funtion whih results inthe positive temperature. For suh physial appliations, the model (1) with �nite number of orbitals is reasonablein the lower part of the energy spetrum where the inuene of higher shells an be negleted.
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One an also see that the di�erene between the two equations of state T (E) de�ned by Eqs.(96) and (97), disappearsfor highly exited eigenstates (for whih Em � Emin � �); or in large systems with n � 1 . Indeed, one an obtain,E � E � n�1 , where �1 is the width of single-partile spetrum. On the other hand, aording to the entrallimit theorem, the variane of total energy spetrum an be estimated as �20 = Pn �21 � n�21 , therefore, the ratio�=(E � E) � 1=pn tends to zero at n ! 1 . As was mentioned above, in suh realisti �nite systems like atomsand nulei, the number of partiles in an open shell is relatively small (n = 4 for the Ce atom [19℄ and n = 12 innulear shell model [26,28℄), therefore, the orretions to the thermodynamial temperature (94) may be important,espeially, for low energies. The detailed disussion of di�erent temperatures in nulear shell model is given in [26,28℄.The energy dependene of temperatures Tth and Tan , as well as the temperature Texp found diretly from thenumerial simulation, is shown in Fig.21. The data refer the TBRI-model with n = 4 interating Fermi{partiles andm = 11 orbitals. The omparison of the thermodynamial temperature Tth de�ned by (96), with the \anonial"temperature (97) reveals quite strong di�erene in all the range of the resaled energy � = (E�Efermi)=(E�Efermi).Now let us �nd the shift of the temperature �T whih is due to the interation, see previous Setion. Sine it isdiretly related to the shift of total energy, E � hEkii = E(i) +�E , one an get,T = T0 +�T = �20E �E(i) ��E � �20E �E(i) + (�E)2E � E(i) (100)Therefore, statistial e�ets of random interation an be diretly related to the inrease of temperature of a system,�T=T0 = (�E)2=�20 .One of the important questions deals with thermodynamial desription of isolated systems of interating partiles.In any thermodynamial approah one needs to de�ne, in a onsistent way, suh quantities as entropy, temperatureand equation of state. This problem has been reently disussed [26,28℄ in appliation to shell models of heavy nulei.In partiular, it was shown that for a realisti residual interation di�erent de�nitions of temperatures give the sameresult. G. Transition to haos and statistial equilibriumLet us now summarize the disussed above results for the TBRI-model in what onerns transition to haos andthermalization. The latter term is not de�ned for isolated systems, our suggestion is to treat \thermalization " as theonset of statistial equilibrium. The latter allows to give a reasonable statistial desription and may be used to �ndthermodynamial desription.Depending on the strength of (two-body) interation between partiles , one an �x di�erent situations in themodel. First region (I) refers strong (perturbative) loalization. This ours when the interation is very weak,V0 � df and standard perturbation theory gives orret result. In this ase exat eigenstates have only few relativelylarge omponents (Np � 1) , in other words, the eigenstates are strongly loalized in the unperturbed basis. Thissituation is quite typial for lowest eigenstates (where the density of states is small) even if for higher energies theeigenstates an be onsidered as very \haoti" ones (Np � 1) .The seond region (II) is haraterized by an initial haotization of exat eigenstates whih orresponds to arelatively large, Np � 1 number of prinipal omponents and V < df . The latter ondition is essential sine itresults in very strong (non-Gaussian) utuations of omponents C(i)k [55℄ for the �xed energy E(i) of ompound statejii : Suh a type of utuations reets itself in a spei� harater of eigenstates, namely, they turn out to be sparsed.As a result, the number of prinipal omponents an not be estimates as Np � �=D , as is typially assumed inthe literature. In this ase the energy width � of both the LDOS and eigenstates an be approximately desribe as� � 2�V 20 =df . In Fig.17 it is shown how the distribution of oupation numbers ns looks like for the TBRI-model (1)with n = 4 partiles and m = 11 orbitals and very weak perturbation V=d0 � 0:02 . One an see that the distributionof oupation numbers has nothing to do with the Fermi-Dira distribution (full diamonds), it turns out to be eventhe non-monotoni funtion of the energy �s of orbitals (see also [12℄). Note that the averaging proedure used inFig.17 an not wash out strong utuations in oupation numbers ns .With further inrease of the interation, where Np � 1 and V > df , the region (III) of the statistial equilibriumemerges. In this region the utuations of eigenstate omponents C(i)k are of the Gaussian form [55℄ and one anintrodue the F�funtion (64) as the shape of exat eigenstates in the unperturbed energy basis. Correspondingly,the utuations of the oupations numbers ns are small in aordane with the entral limit theorem, �ns=ns �N�1=2p � 1 for ns � 1 . One should stress that in this region the value of Np is given by the ommon estimate,Np � �=D . As a result, the ns�distribution hanges slightly when hanging the energy of a system. Suh asituation an be naturally related to the onset of thermal equilibrium, though the form of the distribution ns an be38



quite di�erent from the Fermi-Dira distribution. In this ase, the F�distribution allows for a orret desription ofan atual distribution of oupation numbers in isolated quantum systems of interating partiles. One an see thatthe equilibrium distribution for the oupation numbers arises for muh weaker ondition ompared to that neededfor the Fermi-Dira distribution. Sine the energy interval df between diretly oupled basis states is small, it isenough to have a relatively weak residual interation V > df in order to have the equilibrium distribution (note, thatthe value of df dereases rapidly with the exitation energy).Next region (IV) is where the anonial distribution (66) ours; for this ase in addition to the equilibrium, oneneeds to have large number of partiles, n� 1: If, also, the ondition �� nd0 is ful�lled, the standard Fermi-Diradistribution is valid with a proper shift of the total energy due to the interation, see Setion 3.5. Typially, this regionis assoiated with the onset of the anonial thermalization (see, for example, [26,28℄). In pratie, the ondition (IV)of the anonial thermalization is not easy to satisfy in realisti systems like atoms or nulei sine n in the aboveestimates is, in fat, the number of \ative" partiles (number of partiles in a valene shell) rather than the totalnumber of partiles. Thus, the desription based on the F�distribution (64) whih does not require the anonialthermalization ondition (IV), is more aurate.The above statements are on�rmed by the diret numerial study of the two-body random interation model [12,15℄with few partiles when hanging the interation strength V=d0: If, instead, we inrease the number of partiles keepingthe interation small, V � d0 , the distribution (64) tends to the Fermi-Dira one as it is expeted for the ideal gas,see [15℄. IV. CONCLUDING REMARKSIn this paper we have disussed a novel approah to isolated systems of �nite number of interating partiles.The goal of this approah is a diret relation between the average shape of exat eigenstates (F�funtion), andthe distribution ns of oupation numbers of single-partile levels. From this relation one an see that there is noneed to know exatly the eigenstates, instead, if these eigenstates are haoti ( random superposition of a very largenumber of omponents of basis states), the F�funtion absorbs statistial e�ets of interation between partiles anddetermines the form of the ns�distribution. Therefore, the struture of haoti eigenstates in dependene on themodel parameters, is the entral question in this approah.The results disussed above relate to the TBRI-model for whih all two-body matrix elements are assumed to berandom and independent variables. This assumption was made in order to study limiting statistial properties ofthis model. In partiular, it was shown that even in this limit ase of ompletely random (two-body) interation,the Hamiltonian matrix in many-partile representation an not be treated as the random matrix, therefore, theRMT is, stritly speaking, not valid. However, under some onditions exat eigenstates turn out to be quite randomand statistial approah is orret, however, one should take into aount the form of eigenstates in a given basis ofunperturbed part H0 .Another reason for the study of this TBRI-model, is that it is very onvenient for the demonstration of thedeveloped approah. In this ase there are no any e�ets of regular motion in the system, and many of analytialestimates an be obtained in a lear way. In partiular, it was shown how to alulate the ns� distribution from theshape of eigenstates, provided the unperturbed spetrum of energy is known. One an stress that in this way onean analytially obtain the ns�distribution whih an have the form very di�erent from the standard Fermi-Diradistribution. On the other hand, for suÆiently large interation the ns�distribution is of the Fermi-Dira form,therefore, it is onvenient to introdue an e�etive \temperature " and \hemial potential " whih give orretdesription of atual ns�distribution in terms of the Fermi-Dira distribution. To do this, one needs to �nd the shiftof the total energy whih formally omes into equations determining the FD-distribution. One should stress that thisshift is diretly related to the F�funtion and an be found analytially.Now, we would like to point out that the approah disussed in this paper for the TBRI-model is of generi andan be applied both for random and dynamial interation. One of the most interesting problems is the appliationof the approah to dynamial systems with the well-de�ned lassial limit. In this situation exat eigenstates in theorresponding quantum model an be expeted to appear when two onditions are ful�lled. The �rst one is the stronghaos in the lassial ounterpart, and the seond is the semi-lassial limit (whih is typially equivalent to a highenergy of a system). Under these two onditions, eigenstates of quantum model have many omponents and theseomponents may be treated as pseudo-random, thus leading to a statistial equilibrium in the system and possibilityto apply the suggested approah.In Refs. [40,18,17℄ two quantum dynamial systems have been studied and ompared to their lassial limits. Inboth ases the main results refer the region of parameters where the lassial motion is strongly haoti. One of theimportant questions whih was under lose investigation is the quantum-lassial orrespondene for the F�funtion39



and the LDOS. As was pointed out in Ref. [39℄, there is a quite lear and easy way for �nding lassial F�funtionand lassial LDOS. It is instrutive to explain this approah sine it is of generi and an be used in many physialappliations (see details in [40,18,17℄).Let us start with the lassial F�funtion. We assume that the total Hamiltonian an be represented in the form,H = H0 + V ; H0 = nXk=1H 0k ; H 0k = H 0(pk; xk) (101)HereH0 stands for the \unperturbed " Hamiltonian whih is the sum of partial HamiltoniansHk desribing the motionof di�erent (non-interating) n partiles. The interation between partiles is embedded in V whih is assumed toresult in haoti behavior of the (total) system. Note that the same onsideration is valid if instead of partiles wemean di�erent degrees of freedom for one partile. Now let us �x the total energy E of the Hamiltonian H(t) and�nd (numerially) the trajetory pk(t) ; xk(t) by omputing Hamiltonian equations. Sine the total Hamiltonian ishaoti, there is no problem with the hoie of initial onditions pk(0) ; xk(0) , any hoie gives the same result if oneomputes for suÆiently large time. When time is running, let us ollet the values of unperturbed Hamiltonian H0(t)for �xed values t = T; 2T; 3T; ::: ; and onstrut the distribution of energies E0(t) along the (haoti) trajetory ofthe total Hamiltonian H . In suh a way, one an get some distribution W (E0;E = onst) . Comparing with thequantum model, one an see that this funtion W (E0;E = onst) is the lassial analog of the F�funtion whihis the average shape of eigenstates in energy representation. Indeed , any of exat eigenstates orresponds to a �xedtotal energy E = onst and it is represented in the unperturbed basis of H0 , in fat, F�funtion is the (average)projetion of exat eigenstate onto the set of unperturbed ones. Thus, one an expet that for haoti eigenstates ina deep semilassial region the two above quantities, lassial and quantum ones, orrespond to eah other.On the other hand, one an onsider the omplimentary situation. Let us �x the unperturbed energy E0 and omputea trajetory p(0)k (t) ; x(0)k (t) whih belongs to the unperturbed Hamiltonian H0(t) : Similar to the previous ase, let usput this unperturbed trajetory into the total Hamiltonian H(t) and ollet the values of total energy E(t) along theunperturbed trajetory for disrete values of time. In this way one an �nd the distribution ~W (E;E0 = onst) whihnow should be ompared with the LDOS in the orresponding quantum model. However, in this ase one should beareful and make an average over many initial onditions pk(0) ; xk(0) with the same energy E0 , if the unperturbedHamiltonian is regular. In fat, the above two lassial distributions W (E0;E = onst) and ~W (E;E0 = onst)determine the ergodi measure of energy shells, the �rst one, when projeting the phase spae surfae of H onto H0, and in the seond one, the surfae of H0 onto H (see disussion in [39℄).Numerial data for two di�erent dynamial models have shown amazingly good orrespondene between theF�funtion and the LDOS, and their lassial ounterparts, see details in Refs. [40,18,17℄. Reently, few othersystems have been studied both in lassial and quantum representations, and again, very good orrespondene hasbeen numerially found in the semilassial region. These data on�rm the theoretial preditions, and seems tobe very important in view of future developments of the semilassial theory of dynamial haoti systems. It isimportant to point out that the above orrespondene opens a new way for the semi-quantal desription of quantumsystem, when the form of the F�funtion is taken from a lassial model and used in order to �nd distribution ofoupation numbers ns of single-partile levels in the orresponding quantum system [56℄.Another interesting problem whih has been studied in dynamial systems, is the distribution of oupation numbersand the possibility of its analytial desription in the same way as it was done for the TBRI-model (see details in[17℄). One of the most interesting results obtained numerially, is that the anonial distribution ours in an isolated(dynamial) system of only two interating spin-partiles, if one randomize the non-zero elements of the interationV as lose as possible to the dynamial onstrains of the model. This means that random interation indeed plays arole of the heat bath and allows to use statistial and thermodynamial desription for isolated systems.V. ACKNOWLEDGMENTSI am very grateful to my o-authors F.Borgonovi, G.Casati, B.V.Chirikov, V.V.Flambaum, Y.Fyodorov,G.F.Gribakin and I.Guarneri, with whom the works have been done on the subjet disussed in this review. Thiswork was supported by CONACyT (Mexio) Grant No. 28626-E.
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