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Pr�ologoEstas son unas notas del 
urso impartido en The International S
hool of Physi
s \Enri
o Fermi" (Varenna, ITALIA,Julio de 1999). El material de estas notas tambi�en ha sido utilizado en el 
urso optativo \Temas sele
tos de la f��si
ate�ori
a (
aos, 
uantiza
i�on y teor��a de mu
hos 
uerpos)" del Do
torado en Cien
ias (F��si
a) del Instituto de F��si
a dela BUAP. Pueden ser �utiles para estudiantes interesados en la teor��a del Caos Cu�anti
o y sus apli
a
iones a la f��si
aat�omi
a, nu
lear, de estado s�olido, de puntos 
u�anti
os, et
.En estas notas se presenta una revisi�on sobre el problema a
tual de part��
ulas intera
tuantes en sistemas 
u�anti
osaislados. Como es sabido, en la me
�ani
a 
l�asi
a la intera

i�on entre part��
ulas 
om�unmente 
ondu
e al ini
io del 
aosel 
ual permite des
ribir sistemas din�ami
os de una manera estad��sti
a. El punto importante es que el movimientode un sistema 
l�asi
o puede tener propiedades 
a�oti
as a�un para un n�umero muy peque~no (dos o m�as) de part��
ulas(intera
tuantes). El me
anismo de este fen�omeno es una inestabilidad extremadamente fuerte del movimiento debidaal 
ar�a
ter no lineal de la equa
i�on de movimiento de Newton.Contrariamente a la me
�ani
a 
l�asi
a, en un sistema 
u�anti
o aislado no hay inestabilidad del movimiento ya queel espe
tro de energ��a es dis
reto y el movimiento de un sistema siempre es 
uasi-peri�odi
o. Sin embargo, un tipo de
omplejidad del movimiento o
urre tambi�en en los sistemas 
u�anti
os los 
uales son 
a�oti
os en el l��mite 
l�asi
o. Estasitua
i�on se 
ono
e 
omo el \
aos 
u�anti
o". En tal situa
i�on, la aproxima
i�on estad��sti
a pare
e ser tambi�en v�alidapara sistemas aislados.En estas notas de 
urso, el problema de la des
rip
i�on de sistemas 
u�anti
os aislados se trata en detalle. Se sugiereun nuevo m�etodo que se basa en una estru
tura 
a�oti
a de auto-valores. Este m�etodo es v�alido tanto para sistemasdesordenados sin l��mite 
l�asi
o 
omo para sistemas din�ami
os que son 
a�oti
os en el l��mite 
l�asi
o.Para mostrar este enfoque, se 
onsidera un modelo espe
���
o que ahora es 
ono
ido 
omo el \modelo de intera

i�onaleatoria de dos 
uerpos". En este modelo se supone que la intera

i�on de dos 
uerpos es 
ompletamente 
a�oti
a, porlo que surge la pregunta: >Cu�ales son las propiedades del sistema en este l��mite \
a�oti
o" extremo? Resulta que apesar de la 
ompleta aleatoriedad de la intera

i�on, el sistema puede ser des
rito estad��sti
amente bajo 
ondi
ionesespe
���
as. En las presentes notas de 
urso dis
utimos esas 
ondi
iones y mostramos 
omo un enfoque estad��sti
opuede ser desarrollado 
uando las 
ondi
iones son satisfe
has. Se ha puesto una aten
i�on parti
ular al arranque de latermaliza
i�on y la posibilidad de introdu
ir una temperatura del sistema aislado 
on propiedades 
a�oti
as.Existen mu
has situa
iones f��si
as donde el enfoque sugerido puede apli
arse: �atomos 
omplejos, mol�e
ulas y n�u
leos,
�umulos at�omi
os, espines intera
tuantes, et
. F.M. IzrailevPr�ologo tradu
ido del idioma ingl�es al espa~nol por F. P�erez Rodr��guez
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Quantum Chaos and Thermalization for Intera
ting Parti
lesF.M.IzrailevInstituto de F�isi
a, Universidad Autonoma de Puebla, Apdo. Postal J-48, Puebla, 72570 M�exi
oIn this review the problem of statisti
al des
ription of isolated quantum systems of intera
tingparti
les is dis
ussed. Main attention is paid to a re
ently developed approa
h whi
h is basedon 
haoti
 properties of 
ompound states in the basis of non-intera
ting parti
les. In order todemonstrate the most important aspe
ts of this approa
h, the matrix model of two-body randomintera
tion between Fermi-parti
les has been used. Di�erent problems have been 
onsidered su
has the onset of 
haos and statisti
al equilibrium, the relation between the stru
ture of eigenstatesand distribution of o

upation numbers, the emergen
e of the Fermi-Dira
 distribution in isolatedsystems of �nite number of parti
les and many others. The appli
ation of the approa
h to dynami
alsystems with the 
lassi
al limit is dis
ussed as well.PACS numbers: 05.45.+b, 31.25.-v, 31.50.+w, 32.30.-rI. INTRODUCTIONUntil re
ently, the quantum 
haos theory was mainly related to few-body physi
s. On the other hand, in realphysi
al systems su
h as many-ele
tron atoms and heavy nu
lei, the origin of 
omplex behavior is quite strongintera
tion between many parti
les. To deal with su
h systems, famous statisti
al approa
h has been developed whi
his based on the Random Matrix Theory (RMT) (see, for example, [1{4℄). The main idea of this approa
h is to forgetabout a detailed des
ription of the motion and to treat these systems statisti
ally having in mind that the intera
tionbetween parti
les is so 
omplex and strong that generi
 properties are expe
ted to emerge. Simplest models of theRMT are full random matri
es of a given symmetry, the latter was shown to have a dire
t link with underlyingsymmetries of physi
al systems.One of the main results of the RMT is the predi
tion of a spe
i�
 kind of 
orrelations in the energy spe
tra of
omplex quantum systems. Among many 
hara
teristi
s of these 
orrelations, the most popular is the distributionof spa
ings between nearest energy levels in the spe
tra. Exa
t analyti
al expression of this distribution is very
ompli
ated, instead, one uses the so-
alled Wigner-Dyson (WD) surmise (quite simple expression whi
h gives a verygood approximation to the exa
t result). A distin
tive property of this WD-distribution is the repulsion betweenneighboring levels in the spe
tra, the degree of this repulsion (linear, quadrati
 or quarti
) depends on the symmetryof random matri
es. In fa
t, su
h type of repulsion was observed experimentally very long ago (�rst experimentalobservation is reported in Ref. [5℄ for the energy spe
tra of heavy nu
lei), and dis
ussed in many theoreti
al works.After this predi
tion of the RMT, the WD-distribution has been 
on�rmed to o

ur in heavy nu
lei and many-ele
tron atoms, see referen
es in [3,6℄. Later on, it was found also in dynami
al systems with 
haoti
 behavior inthe 
lassi
al limit, famous examples are the so-
alled billiards (see for example, [6℄). As a result, it was understoodthat 
haoti
 properties of quantum systems are generi
 for both disordered models (when the randomness of matrixelements is postulated from the beginning) and dynami
al systems for whi
h the pseudo-randomness appears as aresult of spe
ial 
onditions, the latter are 
onvenient to explain by 
omparing with the 
lassi
al limit. Thus, one
an say that limiting properties of quantum 
haos in the 
ase when all regular dynami
al e�e
ts are negle
ted, aredes
ribed by the RMT.As one 
an see, the RMT 
an give a proper des
ription of a system (mainly, the properties of energy spe
tra)only lo
ally, in a restri
ted region of energy spe
tra. Indeed, the RMT 
an not give any global energy dependen
eneither for the energy spe
trum nor for eigenstates, it is parameter-independent theory. In this sense, the 
onventionalRMT (ensembles of fully random matri
es) is very restri
ted and, for example, it 
an not be dire
tly applied to su
himportant phenomena as the lo
alization of eigenstates in disordered models. This is why new approa
hes in theRMT have been developed by imposing internal stru
ture of random matri
es. The most known example is theso-
alled Band Random Matri
es (BRM), or random matri
es with a band-like stru
ture (see, for example, [7℄, [8℄ andreferen
es therein). Inside the band, the matrix elements are assumed to be random and independent, and outsidethe band matrix elements are set to zero. The BRM-ensemble has been re
ently studied in details both numeri
allyand theoreti
ally, and mu
h is now known about the stru
ture of eigenstates and spe
trum statisti
s for both in�niteand �nite matri
es. The appli
ation of this kind of matri
es in physi
s is very broad. In parti
ular, they have beenused to des
ribe dynami
al lo
alization in dynami
al systems with time-periodi
 perturbation (paradigmati
 modelis the Ki
ked Rotor [7℄), and the lo
alization of eigenstates in quasi-1d disordered models in solid state physi
s [8℄.3



Another 
lass of band random matri
es has been introdu
ed very long ago by Wigner in Ref. [9℄. The stru
tureof these Wigner Band Random Matri
es (WBRM) is 
hara
terized by the leading diagonal with reordered (in anin
reasing way) values, plus random and independent o�-diagonal elements inside the band of size b : This type ofmatri
es is mu
h 
loser to physi
al realisti
 systems, 
ompared to the standard full random matri
es. One 
an suggestthat the original motivation of Wigner for the study of these matri
es was a 
lose 
orresponden
e to Hamiltoniansof 
omplex nu
lei, whi
h are typi
ally des
ribed by the mean-�eld part H0 (leading diagonal) and the residualintera
tion V of the �nite energy range (o�-diagonal matrix elements inside the band). The main interest of Wignerwas the quantity whi
h nowadays is known as the strength fun
tion or lo
al density of states (LDOS). This quantity isextremely important when des
ribing the spread of energy, initially 
on
entrated in a spe
i�
 state of the unperturbedHamiltonian H0 , between all other states due to the internal intera
tion V . In parti
ular, it was analyti
ally shownthat this fun
tion has the form of the Lorentzian if intera
tion is suÆ
iently (but not extremely) large. This result isfundamental and it is used in very di�erent appli
ations.However, in spite of the su

ess of the standard RMT and its modern developments, the strong assumption ofrandomness of matrix elements, as well as a spe
i�
 (band) stru
ture of matri
es do not allow to relate su
h matri
esdire
tly to realisti
 many-parti
le Hamiltonians. One of the important reasons is that the underlying stru
ture ofrealisti
 Hamiltonian matri
es results from the single-parti
le spe
trum and two-body intera
tion between parti
les.In order to understand the role of k�body (random) intera
tion, a new ensemble of matri
es has been suggested(see, for example, [10,11,3℄ and referen
es therein ). In this approa
h the matri
es arise as a result of 
onstru
tionfrom the single-parti
le basis, provided random 
hara
ter of the k�body intera
tion. The study of this ensemble ofmatri
es have shown that even when the intera
tion V is very strong and the in
uen
e of the leading diagonal may benegle
ted, there are serious di�eren
es from the standard RMT. In parti
ular, it was dis
overed that for the two-bodyintera
tion, k = 2 , the spe
tral 
u
tuations are di�erent from those predi
ted by the RMT, although the distributionof spa
ing between nearest levels has the form similar to the WD-distribution. It was shown that full random matri
eso

ur when the rank of intera
tion is very large, k !1 :Due to very serious mathemati
al problems these two-body random intera
tion (TBRI) matri
es were forgotten forquite a long time, and only re
ently they have been used in the 
ontext of quantum 
haos. In these le
tures, the authorgives a review of re
ent results obtained for the TBRI-model in 
ollaboration with the 
o-authors. Main attentionis paid to a novel approa
h developed in [12{16℄, whi
h is based on the 
haoti
 stru
ture of eigenstates in a givenbasis of unperturbed many-parti
le states. This approa
h allows to relate statisti
al properties of exa
t eigenstatesin many-body representation dire
tly to properties of single-parti
le operators, in the �rst line, to the o

upationnumber distribution of single-parti
le states.The stru
ture of the paper is as follows. In the next Se
tion 2.1 the stru
ture of the TBRI-matri
es is dis
ussedin details. It was explained how these matri
es are 
onstru
ted from single-parti
le states and what are properties ofmatrix elements in many-body representation, also, the 
omparison is made with full random matri
es. A parti
ularpoint is that in spite of 
omplete randomness and independen
e of two-body matrix elements, o�-diagonal matrixelements of many-parti
le Hamiltonian matri
es have underlying 
orrelations whi
h are due to a two-body nature ofintera
tion.In Se
tion 2.2 generi
 properties of density of states and level spa
ing distribution are brie
y dis
ussed, althoughthey are not the main interest of the study. Se
tion 2.3 deals with the stru
ture of exa
t eigenstates in dependen
eon the intera
tion strength and ex
itation energy. The notion of the average shape of the eigenstates (F�fun
tion)is introdu
ed and dis
ussed in details sin
e the stru
ture of 
haoti
 eigenstates plays a basi
 role in the approa
h.In next Se
tion 2.4 the stru
ture of the strength fun
tion is 
onsidered and 
ompared with that of exa
t eigenstates.Main attention is paid to the 
onditions under whi
h this form is the Lorentzian, and how this form 
hanges withan in
rease of intera
tion strength. In Se
tion 2.5 very re
ent analyti
al results are dis
ussed, whi
h are obtainedfor the shape of the strength fun
tion in the TBRI-model for any strength of intera
tion. Se
tion 2.6 is devotedto non-statisti
al properties of this model. Spe
i�
ally, it is shown that some quantities 
an not be des
ribed in astatisti
al way, in spite of 
ompletely random 
hara
ter of the two-body intera
tion.Next Se
tion 3.1 starts with the dis
ussion of the basi
 relation between the stru
ture of exa
t eigenstates and thedistribution of o

upation numbers (DON). It is shown that the average shape of eigenstates plays a 
ru
ial role forthis distribution and pra
ti
ally determines mean values of single-parti
le operators. In next Se
tion 3.2 the relevan
eof the DON for isolated systems, to the standard 
anoni
al distribution is dis
ussed. It is shown how the 
anoni
aldistribution emerges in isolated systems with an in
rease of the number of intera
ting parti
les. In next Se
tion3.3 the problem of the Fermi-Dira
 distribution is 
onsidered for the TBRI-model of intera
ting Fermi-parti
les, inparti
ular, 
onditions under whi
h this distribution o

urs in isolated systems are analyzed. An important problem ofthe statisti
al des
ription of the o

upation number distribution is 
onsidered in Se
tion 3.4. An analyti
al approa
hhas been developed in order to obtain the DON in the 
ase of statisti
al equilibrium whi
h results from the 
haoti
stru
ture of eigenstates. This approa
h is valid even for small number of parti
les, in the 
ase when the DON di�ersfrom the Fermi-Dira
 distribution. In next Se
tion 3.5 another approa
h is suggested for the des
ription of the DON,4



in the 
ase when its form is of the Fermi-Dira
 type. It was shown how the DON 
an be obtained by a properrenormalization of the total energy of a system, originated from the intera
tion between parti
les. General dis
ussionof the meaning of temperature in isolated systems of �nite number of parti
les is the 
ontent of Se
tion 3.6. The mainpoint is that for small number of parti
les di�erent de�nitions of temperature give di�erent results. Therefore, is it ofinterest to 
ompare these de�nitions and to understand their meanings, if any. Finally, in Se
tion 3.7 main results aresummarized for the transition to 
haos and equilibrium in the TBRI-model in dependen
e on the intera
tion strength.In last Se
tion 4 it is brie
y shown how the developed approa
h 
an be applied to dynami
al systems.II. TWO-BODY RANDOM INTERACTION MODELA. Des
ription of the model1. Many-body HamiltonianThe model we dis
uss here deals with Hamiltonians whi
h 
an be separated in two parts,H = H0 + V (1)where H0 des
ribes the \unperturbed " part and V stands for the intera
tion between parti
les or between di�erentdegrees of freedom. In order to study statisti
al properties of su
h models we assume in the following that theintera
tion is 
ompletely random. In 
ontrast with standard approa
h of the RMT where matrix elements of V aretaken as random variables, we would like to keep an important physi
al property of real systems and to take intoa

ount that the intera
tion is of the two-body nature. Therefore, we start with the single-parti
le Hamiltonian whi
hrefers n non-intera
ting parti
les o

upying m single-parti
les levels, and assume that the matrix elements of thetwo-body intera
tion Vs1s2s3s4 are independent random variables. Here, the indi
es s1; s2; s3; s4 indi
ate initial (s1; s3)and �nal (s2; s4) single-parti
le states 
oupled by the intera
tion.In what follows we 
onsider Fermi-parti
les, however, the approa
h 
an be easily extended to Bose-parti
les [17,18℄.Therefore, in the Slater determinant basis the unperturbed part has simple formH0 =X �s aysas (2)and the perturbation 
an be represented asV = 12XVs1s2s3s4 ays1ays2as3as4 : (3)Here �s is the energy of a parti
le, 
orresponding to the single-parti
le state jsi and aysj , asjare 
reation-annihilationoperators. With these notations, exa
t eigenstates jii of the total Hamiltonian H (
ompound states) 
an be expressedin terms of eigenstates k of the unperturbed part H0 (basis states) as followsjii =Xk C(i)k jki ; jki = ays1 : : : aysn j0i (4)where C(i)k is the k� th 
omponent of the 
ompound state jii in the unperturbed basis. These 
omponents determinethe important quantity whi
h will be dis
ussed in great details below, the o

upation numbers ns ,ns = hij n̂s jii =Xk ���C(i)k ���2 hkj n̂s jki (5)with n̂s = aysas as the o

upation number operator. For Fermi-parti
les the o

upation number n(k)s = hkj n̂s jki isequal to 1 or 0 depending on whether any of the parti
les in the basis state jki o

upies or not the single-parti
le statejsi .As one 
an see, our model is des
ribed in terms of many-parti
les basis states jki and exa
t (
ompound) states jiiwhi
h are 
onstru
ted from the single-parti
le states jsi and two-body matrix elements Vs1s2s3s4 . In what follows weassume that the basis states are reordered in an in
reasing way for the total energy Ek =Ps �sn(k)s with an in
reaseof the index k = 1; : : : ; N . This way of the ordering of the unperturbed basis is 
ru
ial for the analyti
al des
riptionof 
haoti
 
ompound states whi
h are formed by the intera
tion between many basis states, see below. The size N of5



the basis for the many-parti
les Hamiltonian H 
an be found from the 
ombinatori
s: if any single-parti
le state 
anbe o

upied by one parti
le only, one 
an getN = m!n!(m� n)! � exp�n ln n + (m� n) ln mm� n� (6)where m is the number of single-parti
le states (orbitals). The latter estimate in (6) shows that total number ofmany-parti
le states in
reases very fast (exponentially) with an in
rease of the number of parti
les and orbitals. Forexample, for m = 11 and n = 4 the size of the H�matrix is N = 330 . The model with these parameters has beenstudied in great details in [12{15℄ and 
ompared with dire
t 
omputations of the Ce atom [19{21℄. For this atom thereare n = 4 valen
e ele
trons, and the 
ore 
an be e�e
tively des
ribed by the Hartree-Fo
k method. This method hasbeen used [19{21℄ in order to 
al
ulate the basis set of single-parti
le relativisti
 states with energies �s as well as thematrix elements Vs1s2s3s4 of intera
tion between valen
e ele
trons. The Ce atom is known to have good statisti
alproperties, and this was the reason in [12{15℄ to 
ompare dire
t 
al
ulations with the simplest model (1,2,3) we aregoing to dis
uss. In spite of the fa
t that this model does not take into a

ount the momentum (it depends only on theenergy and for this reason 
an be treated as \zero-dimensional ", it turns out to be instru
tive for the 
omparison ofthe real (dynami
al) Ce atom with the two-body random intera
tion model (TBRI-model) des
ribed above (for detailssee [12{15℄). In what follows, for the single-parti
le energies �s we take a non-degenerate spe
trum with 
onstantmean level spa
ing d0 =< �s+1 � �s > whi
h, without the loss of generality 
an be taken d0 = 1 . The unperturbedsingle-parti
le spe
trum has been 
hosen at random, or a

ording to the expression �s = d0(1 + 1=s) (the resultsare statisti
ally the same). As one 
an see, the model is de�ned by four parameters, m; n; d0 and V 20 = 
V 2s1s2s3s4�whi
h is the varian
e of two-body random matrix elements (we assume that the distribution of these elements is theGaussian with the zero mean).The Hamiltonian (1) with (2) and (3) is of general form, it appears in many physi
al appli
ations su
h as whendes
ribing 
omplex atoms, nu
lei, atomi
 
lusters et
. In fa
t, the form of H dis
ussed above is known as the mean�eld approximation for 
omplex quantum systems of intera
ting parti
les. In this des
ription, the unperturbed partH0 represents the zero-order mean �eld for the ex
ited states with the ground state E1, and the residual two-bodyintera
tion is given by V . Therefore, the single-parti
le levels �s in su
h appli
ations are, in fa
t, renormalizedquasi-parti
le energies (see details, for example, in [22℄). The 
onsidered here model does not take into a

ount su
hphysi
al e�e
ts as momentum dependen
e, pairing e�e
ts and others, however, it 
ontains the main e�e
ts of quantum
haos and is very e�e
tive for the understanding generi
 features of 
omplex systems. Moreover, as was pointed out,the approa
h we dis
uss below, 
an be extended for dynami
al quantum systems whi
h exhibits 
omplex behavior.From the view point of dynami
al systems when the 
omplexity of the behavior appears as a result of dynami
al
haos (both for the systems with or without the 
lassi
al limit), the separation of the total Hamiltonian in two parts iswell de�ned physi
al pro
edure. Spe
i�
ally, the approa
h is expe
ted to be valid if the se
ond part V is as \random" as possible. In other words, one should �nd su
h separation that the perturbation has no strong regular part, thelatter should be embedded into the \unperturbed " Hamiltonian H0 . In this way, the 
ompound states may betreated, for suÆ
iently strong perturbation, as 
haoti
 superposition of simple basis states. As is well known, su
ha situation is typi
al for many-ele
tron atoms and heavy nu
lei. Indeed, the number of basis states (number Np
 ofprin
ipal 
omponents ) is known to be about 104� 106 for ex
ited nu
lei, and � 100 in ex
ited rare-earth or a
tinideatoms.By assuming the 
omplete randomness of two-body elements in our models, we avoid the in
uen
e of any regulare�e
ts. Therefore, our goal is to explore statisti
al properties of the model in its strongest \
haoti
 " limit. Oneshould stress that the answer is far from being trivial sin
e the many-body Hamiltonian H turns out to be quitedi�erent from standard random matrix ensembles of the RMT and, as will be shown, some important quantities 
annot be des
ribed statisti
ally.It should be noted that the TBRI-model we dis
uss here, for the �rst time was analyzed long ago (see [10,11℄,also, the review [3℄ and referen
es therein). The original interest was related to the fa
t that for standard randommatri
es the density of states has the famous semi
ir
le form, in 
ontrast with physi
al systems for whi
h the RMTwas addressed (
omplex nu
lei). Moreover, the density of states for many-body systems in
reases very fast, andhas nothing to do with the semi
ir
le even on a lo
al s
ale. Therefore, the natural question is to understand whatis missed in the RMT. For this reason, another ensemble of matri
es has been suggested whi
h takes into a

ountk�body intera
tion between parti
les. The theoreti
al study has been shown that, indeed, fully random matri
es ofthe kind 
onsidered in the standard RMT, formally 
orrespond to the 
ase k !1 . On the other hand, with de
reaseof k , the density of states tends to the Gaussian form. The latter form is 
loser to reality and on a lo
al s
ale, thedensity may be treated as the realisti
 one. Another question whi
h has been under 
lose investigation, is the roleof k-body intera
tion on the spe
trum statisti
s, see dis
ussion below. For some reason, these studies have not beenextended until re
ently, when the role of two-body intera
tion in di�erent appli
ations was questioned in the 
ontext6



of quantum 
haos. Unlike the previous studies, below we pay the main attention to 
haoti
 properties of eigenstates,and to the problem of how these properties 
an be linked to the properties of single-parti
le operators, su
h as theo

upation number distribution. 2. Stru
ture of the Hamiltonian matrixLet us start with the stru
ture of the Hamiltonian H in the 
hosen basis. For this, one should 
onstru
t matrixelements Hij = hijH jji whi
h 
orrespond to the 
oupling between basis states jii and jji due to the intera
tionV . One 
an immediately see that the number N2 = m2(m � 1)2=2 of independent matrix elements Vs1s2s3s4 of thetwo-body intera
tion is mu
h less than the total number N(N + 1)=2 of the (symmetri
) matrix elements Hij . It isvery important that due to a two-body 
hara
ter of the intera
tion, the matrix elements Hij are non-zero only whenbasis states jii and jji di�er by no more than two o

upied single-parti
le states. In order to 
ount the total numberK of non-zero matrix elements Hij for the �xed i, we separately 
ount the numbers K0 ; K1 ; K2 of non-zero matrixelements whi
h 
orrespond to the transition between the basis states whi
h di�er by the positions of none, one andtwo parti
les, respe
tively,K0 = 1; K1 = n(m� n); K2 = 14n(n� 1)(m� n)(m� n� 1): (7)As a result, the total number K in ea
h line of the matrix isK = K0 +K1 +K2 = 1 + n(m� n) + 14n(n� 1)(m� n)(m� n� 1) � 14n2m2 (8)where the last estimate is given for large number of parti
les and orbitals, 1 � n � m . Comparing K with Nde�ned by Eq.(6) , one 
an see that the matrix H is sparse (only for n = 2 there is no forbidden transitions and thematrix is full).

FIG. 1. Sparsity of the Hamiltonian matrix Hn1;n2 for n = 4 parti
les, m = 11 orbitals. Bla
k points are non-zero matrixelements.The presen
e of many zeros in the matrix means that, in a sense, there are strong 
orrelations between matrixelements sin
e the position of zeros are �xed for any random 
hoi
e of the two-body random matrix elements. Itshould by pointed out that the sparsity in
reases with an in
rease of the number of parti
les, therefore, the moreparti
les (and orbitals), the less relative number of non-zero elements. This fa
t is important for the des
ription ofsu
h systems by the random matrix approa
h. One should remind that in the standard RMT, the sparsity is nottaken into a

ount at all.The sparsity of the matrix for m = 11 and n = 4 is shown in Fig.1 where bla
k points 
orrespond to non-zeroelements. First, one 
an see that the density of zero elements in
reases when moving away from the prin
ipal diagonal.7



Se
ond, the positions of non-zero matrix elements are 
orrelated, there are some 
urves along whi
h the density ishigh, this re
e
ts the two-body nature of intera
tion. In 
ontrast with full random matri
es of the standard RMT,the in
uen
e of the o�-diagonal elements depends on the distan
e from the prin
ipal diagonal. To illustrate thispe
uliarity, we averaged the modulo of the o�-diagonal matrix elements over blo
ks of the �xed size 10� 10 in su
ha way that instead of the matrix of the size N �N we have the redu
ed size N=10 � N=10 . The result is shown inFig.2 where only o�-diagonal terms are presented. As one 
an see, the amplitude of these e�e
tive matrix elementsde
reases when moving away from the diagonal. This means that the e�e
tive intensity of the o�-diagonal termsfar from the diagonal is less than of those 
lose to the diagonal. In some sense, one 
an treat the stru
ture of theHamiltonian as the band-like, although it is 
lear that the amplitude of the averaged matrix elements de
ays quiteslowly.

FIG. 2. Shape of the Hamiltonian matrix (without leading diagonal Hi;i). The matrix for n = 4; m = 11; V0 = 0:12; d0 = 1:0has been divided into blo
ks of size 10 � 10 and the sum jHn;mj =Pi;j jHi;j j has been 
omputed inside ea
h blo
k (n;m) .This type of the average allows to see e�e
tive intensity of the o�-diagonal matrix elements.3. Correlations in o�-diagonal matrix elementsNow, let us analyze non-zero o�-diagonal elements of the matrix Hij . A

ording to the de�nition (3), any of theseelements is just a sum of one or more two-body matrix elements. When the basis states jii and jji di�er by oneo

upied orbital, jji = ays2as1 jii , the matrix element Hij is the sum of n� 1 two-body matrix elements,Hij = n�1X� Vs1� s2� = n�2X�6=� Vs1� s2� + Vs1� s2� (9)Here the last equality is given in order to show that among other matrix elements Hi0j0 there are su
h elements whi
hdi�er from Hij by the last term only and the sum of n� 2 is exa
tly the same [13℄,8



Hi0j0 = n�1X� Vs1� s2� = n�2X�6=� Vs1� s2� + Vs1 � s2� (10)with � 6= � . This happens for those basis states whose many-parti
le energies di�er by the energy di�eren
e
orresponding to the move one parti
le from the orbital � to the orbital � ,Ei0 �Ei = Ej0 �Ej = �� � �� (11)One 
an see that these matrix elements, stri
tly speaking, 
an not be treated as 
ompletely independent variables.Therefore, if one averages over the ensemble of matri
es Hij whi
h 
onstru
ted from di�erent sets of two-body randomelements, the 
orrelations for su
h elements remain, hHijHi0j0 i 6= 0 .The more striking result arises when 
onsidering matrix elements Hij whi
h 
orrespond to the 
oupling betweenthose basis states jii and jji whi
h di�er by two o

upied orbitals, jji = ays2as1 jii . These matrix elements areequal to the 
orresponding single two-body matrix elements, in other words, there is only one term in the sum inEq. (3), Hij = Vs1�1 s2�2 . These matrix elements 
orrespond to the move of two parti
les from the orbitals s1 ; s2to other orbitals �1 ; �2 . At the same time, the rest of parti
les ( n � 2 parti
les) 
an o

upy di�erent m � 4orbitals. Therefore, the same matrix element stands for other basis states ji0i and jj0i with the same move of twoparti
les, thus, Hi0j0 = Hij = Vs1�1 s2�2 . As a result, among matrix elements of the Hamiltonian matrix Hij thereare equal matrix elements, although they are 
hosen randomly from the ensemble of two-body random matri
es. Thisnon-trivial fa
t indi
ates that, in spite of 
ompletely random 
hara
ter of the two-body intera
tion, the (non-zero)matrix elements of the many-body Hamiltonian are not 
ompletely independent variables!
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FIG. 3. Distribution of normalized o�-diagonal matrix elements of the matrix Hi;j for the parameters of Figs.1-2. Ea
hof matrix element Hi;j has been normalized to its varian
e 
omputed from the average over Ng = 16 matri
es with di�erentrealizations of the (random) two-body matrix elements. The smooth 
urve is the best �t to the Gauss whi
h is expe
ted forun
orrelated matrix elements.The role of the above underlying 
orrelations whi
h are due to a two-body 
hara
ter of the intera
tion, is aninteresting and important problem (see [13℄), we will dis
uss some results in Se
tion 2.6. Here, we would like to showthat these 
orrelations 
an be easily dete
ted by the study of the distribution of matrix elements Hij . For this, letus take the ensemble of the Hamiltonians H with di�erent two-body random matrix elements Vs1s2 s3s4 keeping allother parameters. Then, for any �xed values i and j , we 
an �nd numeri
ally the distribution of non-zero matrixelements Hij . Finally, we normalize ea
h of these distributions to their varian
es and make the summation. Theresulting normalized distribution is shown in Fig.3. The envelope of this distribution looks like the Gaussian, however,the deviations are non-statisti
al ones whi
h 
an be easily seen by the �2-test (for some bins of the histogram, thedi�eren
e is more than 100 standard deviations). 9



B. Density of states and spe
trum statisti
sAs was pointed out, the density of states �(E) for the two-body random model was found to have the gaussianform [10,11℄. Rigorous proof is given for the limit 
ase of a very large number of parti
les and orbitals. However,even for relatively small values of m and n the distribution is very 
lose to the Gaussian, see Fig.4. It is knownthat the density of realisti
 physi
al systems su
h as 
omplex atoms and heavy nu
lei 
an be approximated as�(E) � exp(ApE �E0) where E0 is the ground energy. Therefore, the simplest model of the two-body intera
tiondoes not give exa
t 
orresponden
e to a real density, however, it reprodu
es very fast in
rease of the density withthe energy. One should note that for full random matri
es of the standard RMT, the density has the semi
ir
le formwhi
h is very far from the reality. It is 
lear that in order to 
ompare statisti
al properties of our Hamiltonian Hijwith those of 
omplex quantum systems, one should use the left part of the energy spe
trum sin
e the de
rease of thedensity in the right part is due to arti�
ial 
ut-o� of the single-parti
le spe
trum (�nite values of m ).
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EFIG. 4. Density of states of the TBRI-model with the same parameters as in Figs.1-3. The average over Ng = 20 is taken.The smooth 
urve is the best �t to the Gaussian, with � = 5:72 and E = 25:1 .The interesting question is about the type of 
u
tuations in the energy spe
trum of the TBRI-model in 
omparisonwith those predi
ted by the RMT. A parti
ular interest is the distribution of normalized spa
ings S between nearestenergy levels. For standard random matri
es the RMT reveals spe
i�
 kind of the distribution known as the Wigner-Dyson distribution. In parti
ular, for symmetri
 real random matri
es (the so-
alled, Gaussian Orthogonal Ensembleof random matri
es), the level spa
ing distribution P (S) with a high a

ura
y 
an be des
ribed by the following form,P (S) = 12� S exp���S24 � (12)where hSi = 1 . In [10,11℄ it was shown that for the limit 
ase of a very strong intera
tion, when one 
an negle
t thein
uen
e of the mean �eld (or, the same, without the leading diagonal in the Hamiltonian Hij ), the form of P (s)turns out to be quite 
lose to the expression (12). On the other hand, when studying the distribution of spa
ingsbetween the levels Ei and Ei+k with k > 1 , the di�eren
e between the result of the RMT and the TBRI-ensemble isnoti
eable and in
reases with k . This means that the level spa
ing distribution P (s) is quite insensitive quantity ofspe
tral 
orrelations and does not \feel " the di�eren
e of TBRI-matri
es from the full random matri
es.In physi
al appli
ations, the intera
tion V is typi
ally of the same order as the \unperturbed " Hamiltonian H0sin
e in the mean �eld approximation the term H0 absorbs regular part of the intera
tion and V is the (
haoti
)part of the intera
tion whi
h 
an not be in
luded in H0 . However, there are many 
ases when the intera
tion isweak 
ompared to H0 , therefore, the important question is how spe
tral 
u
tuations, in parti
ular, the level spa
ingdistribution, depend on the intera
tion and on total energy Ei . The origin of the Wigner-Dyson distribution (12)is related to the onset of 
haos in the exa
t eigenstates (see, for example, [7℄). In standard random matri
es the10



WD-distribution o

urs for any energy sin
e all eigenstates are 
ompletely random (their 
omponents are distributeda

ording to the gaussian distribution for large size of the matri
es).Experimental data for 
omplex atoms [23℄, [24℄ and heavy nu
lei [25℄ (see also referen
es in [6℄) agree with theWigner-Dyson statisti
s. The WD-distribution has been also observed in numeri
al 
al
ulations for the Ce atom[19{21℄ and the nu
lear shell-model [26{28℄.
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FIG. 5. Level spa
ing distribution for the parameters of Figs.1-3 with Ng = 10 . All but 10 levels from both edges of theenergy spe
trum are taken into a

ount, with proper res
aling to lo
al mean level spa
ings. Solid 
urve it the Wigner-Dysondistribution and the dotted 
urve is the Poisson, the latter o

urs for un
orrelated energy sequen
es.In the TBRI-model, the randomness of the 
omponents of eigenstates is di�erent for di�erent eigenstates. Thisfa
t in
uen
es the spe
trum statisti
s if one average over a large part on energy spe
trum. In Fig.5 the level spa
ingdistribution for the TBRI-model is shown for the parameters whi
h may be 
ompared with the Ce atom thoroughlystudied in [19{21℄, n = 4; m = 11; d = 0:5 ; V0 = 0:12 . The average over Ng = 10 di�erent matri
es Hij hasbeen done in order to have representative statisti
s. All but 10 levels from the spe
trum edges have been taken intoa

ount. By sear
hing the stru
ture of eigenstates, one 
an see that all eigenstates seem to be quite random (seeexamples below). However, one 
an dete
t 
lear non-statisti
al (regular) deviation from the WD-distribution whi
hshould be treated as quite strong, having in mind insensitive 
hara
ter of P (s) . This result may be regarded as anindi
ation of not strong enough intera
tion between parti
les. Detailed study of the onset of the WD-distribution inthe TBRI model has been re
ently performed in Ref. [29℄.C. Stru
ture of exa
t eigenstatesOur main interest in this Se
tion is in the stru
ture of exa
t eigenstates. The 
hoi
e of the unperturbed basis,reordered in in
reasing energy, allows us to understand what happens with an in
rease of the intera
tion. In thestandard perturbation theory the natural parameter whi
h 
ontrols the intensity of the perturbation is the ratio � ofthe intera
tion to the mean level spa
ing D between the unperturbed energy levels. Sin
e the value of D is de�nedby the total density of states, D = ��1 (E) , one 
an expe
t that our 
ontrol parameter is � = V0=D . However, in[30℄ it was shown that due to a two-body 
hara
ter of intera
tion, the 
orre
t parameter is di�erent. Indeed, in the�rst order of the perturbation theory, the intera
tion 
ouples not all unperturbed states but those basis states whi
h
orrespond to the shift of not more than two parti
les. This means that the density of states whi
h are 
oupled bythe two-body intera
tion is mu
h less than the total density � (E) . Therefore, the 
orre
t mean level spa
ing df thathas to be 
ompared with the intera
tion V0 , is mu
h larger than D .If the intera
tion is very weak, V0 � df , the standard perturbation theory 
an be applied. In this 
ase any of theeigenstates in the unperturbed basis has the form of the delta-fun
tion (originated from the unperturbed state jn0i)plus small admixture of other 
omponents with amplitudes de
reasing as jCnj � 1= jn� n0j , therefore, the numberof prin
ipal 
omponents is small, Np
 � 1 . In this 
ase one 
an speak about perturbative lo
alization of eigenstates11



in the unperturbed basis. This situation is quite typi
al for eigenstates 
orresponding to low energies, in the energyregion where the density of states is small.With an in
rease of perturbation (or when passing to higher eigenstates for the �xed V0 ), the number Np
 ofprin
ipal 
omponents with essentially large amplitudes Cn in
reases and 
an be very large, Np
 � 1 , even if V0 is lessthan df . Su
h a situation o

urs when V0 � 1�2pDdf , see details in [15℄. In su
h a 
ase the stru
ture of eigenstatesis \
haoti
 ", however, there are many \holes " inside su
h eigenstates in a given basis. Therefore, in spite of largenumber of 
omponents, these sparse eigenstates are non-ergodi
, whi
h leads to non-gaussian statisti
s. Namely, the
u
tuations of the 
omponents Cn 
an be extremely large and statisti
al des
ription is not valid. One should stressthat in this 
ase the number of prin
ipal 
omponents 
an not be estimated as Np
 � �=D , as is typi
ally assumed inthe literature (here � is an e�e
tive \size " of the eigenstates in unperturbed energy representation, see below).When the intera
tion is relatively strong, V0 � df , spe
i�
 transition o

urs from non-ergodi
 to ergodi
 eigenstates.This transition has been dis
overed in [30℄ by 
onsidering the 
ow of the energy in the Fo
k-spa
e of ex
ited states.For very large number of parti
les this transition is sharp and may be 
ompared with the Anderson transition insolid state models (see for example details in [30,31℄). Therefore, the 
ondition V0 > df 
an be 
onsidered as thetransition to 
haos inside 
ompound eigenstates, thus, allowing to des
ribe the model in a statisti
al way, see below.An example of su
h 
haoti
 eigenstates is given in Fig.6 for the parameters related to the Ce atom. One 
an see thatfor large ex
itation energy (n is the number of exa
t eigenstates reordered in in
reasing energy E(n) ), the eigenstateslook more extended (delo
alized) in the unperturbed basis. It is interesting to note that they look very similar to theeigenstates of the Ce atom, obtained in the dire
t quantum 
omputation based on the Hartree-Fo
k method [19{21℄.For the �rst time, 
haoti
 stru
ture of eigenstates of the Ce atom has been revealed in [32℄.
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FIG. 6. Examples of the exa
t eigenstates of a matrix Hij for the same parameters as in the previous �gures. ComponentsCj of 8 eigenstates for exa
t eigenstates in the low part of the spe
trum are shown.Let us now dis
uss how to quantitatively 
hara
terize 
haoti
 eigenstates. First, we introdu
e the matrixw(n)j � ���C(n)j ���2 = ���Cj(E(n))���2 (13)
onstru
ted from the exa
t eigenstates jni 
orresponding to the energy E(n). In what follows, we use the notationswhi
h refer low indi
es to the basis states, and upper indi
es to the exa
t (
ompound) eigenstates. Thus, the stru
tureof eigenstates is given by the dependen
e w(n)j on j for �xed values of n . On the other hand, if we �x the index jand explore the dependen
e w(n)j on n , one 
an understand how the unperturbed state jji is 
oupled to other basisstates due to the intera
tion. The latter quantity is very important sin
e it gives the information about the spreadof the energy, initially 
on
entrated in a spe
i�
 basis state jji ; when swit
hing on the intera
tion. The envelope of12



this fun
tion w(n)j in the energy representation is known as strength fun
tion or lo
al spe
tral density of states (LDOS)and will be dis
ussed in details in next Se
tion.From Fig.6 one 
an 
on
lude that when the number of prin
ipal 
omponents is large, Np
 � 1, su
h eigenstatesmay be treated as random superposition of 
omponents C(n)j , although they do not o

upy the whole unperturbedbasis. The gaussian 
hara
ter of the 
u
tuations of C(n)j depending on the indi
es j or n , has been revealed in [19{21℄for the Ce atom, thus allowing to treat the exa
t eigenstates of a dynami
al systems, as 
haoti
 eigenstates.The size of the basis whi
h they o

upy 
an be asso
iated with the \size " of eigenstates, or, with the lo
alizationlength. As is known, the notion of the lo
alization length is very important in solid state appli
ations, when studyingthe eigenstates of disordered models in in�nite basis in the position representation. In su
h appli
ations the lo
alizationlength l1 is de�ned via exponential de
rease of the square of the amplitude of eigenstates . For the �nite basis, thede�nition of the lo
alization length 
an be generalized in a way des
ribed in [7℄. Following to [7,8℄ we de�ne here twolo
alization lengths, namely, the \entropy lo
alization length" lh, and the lo
alization length lipr asso
iated with theso-
alled parti
ipation ratio. The �rst one is de�ned by the expressionlh = N exp(hHi �H0); (14)where hHi is the mean \ entropy" of eigenstates,hHi = � 1M MXn=1 NXj=1w(n)j ln (w(n)j ) (15)and H0 is the normalization 
onstant whi
h is equal approximately to 2:08 in the 
ase of pure gaussian 
u
tuationsof Cj (see details e.g. in [7℄). Here M is the number of eigenstates whi
h are taken for the average. This 
an be thenumber of eigenstates of one matrix Hij taken from a small energy window, or the number of eigenstates for the �xedn , 
omputed from di�erent matri
es Hij with di�erent realization of disorder in two-body matrix elements.The se
ond de�nition is 
ommonly used in solid state appli
ations (see e.g. [8℄). Assuming the gaussian 
hara
terof 
u
tuations of the 
omponents of eigenstates, the lo
alization length lipr is de�ned bylipr = 3P ; P = 1M MXn=1 NXj=1 �w(n)j �2 (16)In the above expressions (14, 16) the fa
tors 2:08 and 3 are, in fa
t, normalizing 
oeÆ
ients whi
h provide, in thelimit 
ase of 
ompletely extended and gaussian eigenstates in the �nite basis of the size N , the \maximal" value ofthe lo
alization length lh = lipr = N . In other extreme 
ase of a strong (exponential) lo
alization in the unperturbedbasis, the above two lo
alization lengths are proportional to that found from the tails of eigenstates (see [7℄). Thedependen
e of the lo
alization lengths lh and lipr on the basis number and energy of exa
t eigenstates is given inFig.7a-b. The average over Ng = 50 matri
es Hij with di�erent realizations of two-body matrix elements has beentaken, in order to smooth strong 
u
tuations in the value of lo
alization lengths of individual eigenstates. The abovede�nitions of lo
alization length 
an be taken for the estimate of a number of prin
ipal 
omponents Np
 , and 
an beasso
iated with the degree of \
haoti
ity " of 
ompound eigenstates. The data of Fig.7 show quite good 
orresponden
ewith dire
t 
omputations [19,20℄ performed for the Ce atom, for whi
h the lo
alization length lh was found to beabout lh � 110� 130. Comparing Fig.7b with Fig.4 of the density of states � (E) , one 
an see the similarity. Thisfa
t 
an be understood from the simplest estimate of Np
 as a total number of (basis) states de�ned by the \width"� , the latter 
an be approximated as the mean-square-root of the distribution w(n)j for the �xed n ,Np
 � �D = �� (E) (17)One should stress that this expression is valid for ergodi
 eigenstates ( V0 � df ) and shows the proportionality ofNp
 to the density. As for the width � , it is approximately independent of the ex
itation energy, see below.
13



FIG. 7. (a) Lo
alization lengths lh and lipr are given in dependen
e on the number n of exa
t eigenstates jni , see (14) and(16). The parameters are taken the same as in Figs.1-6, with Ng = 50 . (b) the same as in (a), but in the energy representation.Eq.(15) re
e
ts general relation between the number of prin
ipal 
omponents Np
 and the entropy of eigenstates,SEF = ln Np
 (18)where SEF stands for any reasonable de�nition of the entropy. In appli
ation to shell models of 
omplex nu
lei thisrelation has been studied in great details in [26,28℄. Combining Eq.(18) with Eq.(17), one 
an getSEF � ln � (E) + ln �(E) (19)In 
ontrast to the density of states, the width � is a weakly dependent fun
tion of the energy. Therefore, theentropy SEF found from exa
t eigenstates pra
ti
ally 
oin
ides with the thermodynami
al entropy, the fa
t whi
hwas mentioned for the �rst time in [26,28℄. D. Strength fun
tionIn this Se
tion we dis
uss the properties of the strength fun
tion whi
h is de�ned asW (E(m); j) =Xn jC(n)j j2Æ(E �E(n)) (20)Here C(n)j are the 
omponents of eigenstates jni ("
ompound" states) of the total Hamiltonian H given in theunperturbed basis jji , and E(n) is the energy asso
iated with the state jni. The sum is taken over a number ofeigenstates jni 
hosen from a small energy window 
entered at the energy E (m) . One 
an see that this fun
tionW (E; j) is originated from the same matrix w(n)j whi
h has been introdu
ed in previous Se
tion when dis
ussing thestru
ture of exa
t eigenstates. Indeed, an exa
t eigenstate is 
hara
terized by the dependen
e w(n)j on j for the �xedvalue n (asso
iated with the energy E(n) ). On the other hand, the strength fun
tion is 
hara
terized by the same14



fun
tion w(n)j when index j is �xed and we are interested in the dependen
e on the energy E(m) due to the relationbetween E(n) and n therefore, W (E(m); j) ' F (n)j �(E); F (n)j � w(n)j : (21)Here we have introdu
ed the F�fun
tion F (n)j whi
h gives the envelope of w(n)j in dependen
e on the indi
es j and n(the bar stands for the average inside small windows 
entered at j and n). In fa
t, the strength fun
tion is the (smooth)representation of a (simple) basis state jji in terms of exa
t eigenstates. This fun
tion is very important sin
e it 
anbe measured experimentally. It 
ontains an information about the internal intera
tion between unperturbed states.Namely, it shows how the unperturbed state jji is 
oupled to the exa
t states jni due to the intera
tion. An e�e
tivewidth of this fun
tion (spreading width ) de�nes the energy range asso
iated with the \life time" of an unperturbedstate jni if initially one ex
ites spe
i�
 basis state.In solid state models the role of the unperturbed energy in Eq.(20) plays the position j of an ele
tron and thefun
tion W (E(m); j) ) W (E; j) has the meaning of the ele
tron density of states for the �xed position j . Forthis reason this fun
tion is known in solid state physi
s as the lo
al density of states (LDOS). One 
an see that if(apart from 
u
tuations) w(n)j is independent of the position (or, in our appli
ation, the energy of 
ompound state),it redu
es to the total density of states, W (E(m); j)) � (E) . Also, if the total density of states is 
onstant, � = ��1, the dependen
e of the LDOS on j is of the form W (E; n) =W (E � �j) . This means that the form of the LDOS isthe same for any j . In our 
ase of strong dependen
e of the density of states on the energy, the form of the LDOS isquite 
ompli
ated, see next Se
tion. Normalized to the mean energy level spa
ing, the strength fun
tion W (E(m); j)determines an e�e
tive number Np
 of prin
ipal 
omponents of 
ompound states jni whi
h are present in the basisstate jji.Similar to the analysis of the stru
ture of the eigenstates in dependen
e on the intera
tion, one 
an understandthat for a very weak intera
tion V0 � df the LDOS is a delta-like fun
tion with a very small admixture of other
omponents whi
h 
an be found by the standard perturbation theory. With an in
rease of the intera
tion, the numberof prin
ipal 
omponents in
reases and 
an be very large. However, if the intera
tion is not strong enough [15℄ ,1� V0df � 1�2sDdf ; (22)the LDOS is sparsed, with extremely large 
u
tuations of 
omponents, see details in Ref. [31℄. In order to have ergodi
LDOS, one needs to have the perturbation large enough, V0 � df (for a large number of parti
les this transition issharp and, in fa
t, one needs the weaker 
ondition, V0 � df , see details in [15℄).
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FIG. 8. Few examples of the LDOS for the TBRI-model for di�erent basis states j = N=8; N=4; 3N=4; N=2 . The averageis done over a number of eigenstates with 
lose energies, for n = 4 parti
les, m = 11 orbitals, V0 = 0:12; d0 = 0:5 and withadditional average over Ng = 50 matri
es Hij . Smooth 
urves are the best �t to the Gaussian at the 
enter of the energyspe
trum, j = N=2 .
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For V0 � df the LDOS turns out to be ergodi
 and thransition to 
haos o

urs [30,33,31,34,29,35{37℄, therefore,statisti
al des
ription of the model is valid. Few examples of the LDOS for the TBRI-model are given in Fig.8 for theparameters of the Ce atom. One 
an see strong dependen
e of the shape of the LDOS on the position of basis statejji in the energy spe
trum.Before we start with the dis
ussion of analyti
al results, it is important to point out the 
orresponden
e betweenthe shape of the LDOS, and that of exa
t eigenstates whi
h have been dis
ussed in previous Se
tion. Spe
i�
ally,from the analysis of the stru
ture of the eigenstate matrix w(n)j one 
an expe
t the similarity between the LDOSand shape of the eigenstates. For the �rst time su
h a similarity has been observed when studying band randommatrix ensembles [38,39℄. Moreover, the detailed study of some dynami
al models [17,40℄ have revealed that evenwhen the shapes of the LDOS and EFs seem to be 
ompletely di�erent, after a proper res
aling whi
h involves bothunperturbed and perturbed energy spe
trum, both shapes are very similar. In order to 
ompare 
hara
teristi
s of theLDOS and EFs, in Fig.9 the dependen
e of the entropy lo
alization length on the energy is shown for both the LDOSand EFs. Apart from strong 
u
tuations (whi
h are due to a 
haoti
 nature of the 
omponents C(n)j ), in general, thedependen
ies lH (E) look very similar.The problem of the 
orresponden
e between shapes of the LDOS and EFs is still open, however, from the studiesmade up to now (see also [17,40℄), one 
an 
on
lude that if the width of the perturbed spe
trum is of the same orderas the unperturbed one (or, the same, the perturbation is not very larger), one 
an expe
t that both shapes are very
lose to ea
h other. The importan
e of this problem of similarity for the shapes of the LDOS and EFs will be 
learin next Se
tion when we dis
uss the relation between the shape of the EF and generi
 properties of the o

upationnumber distribution.
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FIG. 9. Comparison of the lo
alization length lh for the LDOS (points) and eigenstates (line). The data are given for oneHamiltonian matrix with the same parameters as in Figs.1-7, for the same numbers j = n .For the �rst time the form of the LDOS in random matrix theory has been dis
ussed in Ref. [9℄ where band randommatrix ensemble has been 
onsidered. The matri
es were assumed to 
onsist of the diagonal part H0 in the form ofreordered numbers Hjj = j D (thus, the unperturbed level density is 
onstant, �0 = D�1 ), and the perturbation V0with the random independent o�-diagonal matrix elements for ji� jj � b. Outside the band of size b � 1 matrixelements are zeros. The distribution of the o�-diagonal matrix elements is 
hara
terized by the zero mean, hHiji = 0and the varian
e V 20 = 
H2ij� : For this model, the relevant parameter was found to beq = �20V 20b : (23)Wigner analyti
ally proved [9℄ that for relatively strong perturbation, V0 � D in the limit q � 1 (when the in
uen
eof the main diagonal Hjj is strong) the form of the LDOS is the Lorentzian,WBW ( ~E) = 12� �BW~E2 + �2BW4 ; ~E = E �Dn (24)whi
h is nowadays known as the Breit-Wigner (BW) form. Here �BW is the spreading width whi
h is half-width ofthe distribution (24), 16



�BW = 2��0V 20 (25)and the energy ~E = E � Dn refers to the 
enter of the distribution. In other limit q � 1 the in
uen
e of theunperturbed part H0 
an be negle
ted and the shape of the LDOS tends to the shape of the total density of statesof band random matri
es without the leading diagonal Hjj , whi
h is the semi
ir
le.Re
ently, the shape of the LDOS has been studied rigorously for a more general distribution of the o�-diagonalelements vnm in the Wigner band random matrix model (WBRM). Namely, the varian
e of random matrix elementsis taken to depend on the distan
e r = jn�mj from the prin
ipal diagonal a

ording to an envelope fun
tion f(r)whi
h, for r ! 1, de
reases suÆ
iently fast (see details in [41℄). In this 
ase the e�e
tive band size b is de�ned bythe se
ond moment of the fun
tion f(r) . Another important generalization of Ref. [41℄ is related to the sparsityinside the band, whi
h 
an be de�ned as a relative number of zero elements in ea
h line of the matrix. As was shownabove, su
h a sparsity, whi
h is due to the two-body nature of the intera
tion between the parti
les, is important forstatisti
al properties of 
ompound states.The BW-form of the LDOS also o

urs in a more general model des
ribing the intera
tion of an unperturbed statewith a large set of 
omplex states, see details in the book [42℄. It also appears for dynami
al systems with 
omplexbehavior, su
h as the Ce atom [19{21℄, the sd shell model [26{28℄, as well as in random models in appli
ation to solidstate physi
s [43,44℄.For a long time it was believed that the LDOS for 
omplex physi
al systems has the universal energy dependen
edes
ribed by the BW-distribution (24). However, when studying the stru
ture of the LDOS and EFs of the Ce atom,it was observed some deviation from the BW-shape for large distan
e from the 
enter. By applying the WBRM, in[19℄ it was analyti
ally shown that the shape of the LDOS is highly non-universal for energies larger than the e�e
tivesize of the band in the energy representation, jEj � D b (in what follows by E we mean the distan
e from the 
enterE
 of the distribution, ~E ) E ), see also numeri
al data in [41℄. Namely, outside this range, the tails of the LDOSare highly non-trivial, de
aying very fast (even faster than the exponent) when jEj ! 1 . Therefore, the range ofparameters for whi
h the form of LDOS has the BW-form in the WBRM-model, is given by the 
ondition [41℄ whi
h
an be written as ��10 � �BW � b��10 (26)Here, the left-hand-side of the inequality is related to non-perturbative 
hara
ter of the 
oupling sin
e the perturbationshould 
ouple many unperturbed states.The 
ondition (26) turns out to be of generi
 and 
an be applied to real physi
al systems. Moreover, it 
an be usedto �nd the e�e
tive band-width beff of intera
tion when other de�nitions of b are obs
ure. In the TBRI-model withmany intera
ting parti
les the band-width is very large (pra
ti
ally it is in�nite), and does not play any role in manysolid state appli
ations. On the 
ontrary, in appli
ation to 
omplex atoms and nu
lei, the number of parti
les abovethe Fermi level is relatively small (four parti
les in the Ce atom and 12 parti
les in the sd shell models), and thise�e
t 
an be important. It should be pointed out that the BW-dependen
e has in�nite se
ond moment. At the sametime, in any physi
al appli
ation the se
ond moment is always �nite and is de�ned by the sum of the square of theo�-diagonal elements. This fa
t results in non-Lorentzian tails of the LDOS.The important question is about the shape of the LDOS for a strong intera
tion, when the 
ondition (26) violates,�BW � b��10 . Sin
e in the mean �eld approximation the \regular " part of the intera
tion is in
luded in the mean�eld, very often the intera
tion V is 
ompared with the unperturbed part H0 . Therefore, this situation when theshape of the LDOS is very di�erent from the BW-form, is quite physi
al. In order to understand what happens inthis 
ase, it is useful to study how the transition from the BW-form to the semi
ir
le o

urs in the WBRM-model.As was pointed out, the semi
ir
le form itself is unphysi
al and appears when negle
ting the unperturbed part H0 .However, the form of the LDOS in the transition region seems to be of quite generi
.Numeri
al data in Refs. [41℄, [45℄ for the WBRM-model have shown that for the 
ase when �BW � b��10 the formof the LDOS 
an be approximately des
ribed by the Gaussian. The same fa
t has been observed and dis
ussed inRefs. [26,28℄ when studying eigenstates and LDOS for shell model of nu
lei. Sin
e in the latter appli
ation the bandsize of the intera
tion is not well de�ned, it is better to introdu
e one more parameter, in addition to the half-width�BW . As was shown in Ref. [45℄, in general, the form of the LDOS 
an be e�e
tively des
ribed by two independentparameters, �BW and �E where the latter is de�ned via the varian
e of the LDOS,(�E)2 = 4�2W = 4 Z (E �E
)2WBW (E) dE (27)In the symmetri
 
ase (in the TBRI-model, at the 
enter of the spe
trum), E
 
oin
ides with the unperturbed energy,E = Ej . 17



Then, if the parameter �BW is mu
h less than �E , the shape W (E) of the LDOS is the BW-dependen
e (24) and�BW has the meaning of the half-width of the distribution W (E) = WBW (E) . On the other hand, if �BW � �E ,the form of the LDOS is approximately the Gaussian,W (E) = 1�Wp2� exp � (E �E
)22 (�W )2 ! (28)Detailed numeri
al study [45℄ of the form of the LDOS in the region �BW � �E have shown that the LDOS 
oin
ideswith the Gaussian with a very high a

ura
y. It is important to stress that in this 
ase, the parameter �BW hasnothing to do with the half-width �hw of the LDOS, the latter is proportional to the mean-square-root �W of theGaussian, �hw � C0 �W (see also dis
ussion in [26,28℄). Note that the Gaussian form typi
ally o

urs in \statisti
alspe
tros
opy" [10,46,47℄ when negle
ting the mean �eld term H0 in Eq.(1). One should note that sometimes thefa
t that the LDOS 
an deviate from the BW-form due to the in
uen
e of the �niteness of �E , is missing in theliterature.It is important that the 
enter and varian
e of the LDOS 
an be expli
itly expressed via diagonal and o�-diagonalmatrix elements respe
tively [15℄. Indeed, the 
enter is de�ned byE
 = �E(n)�j =Xn E(n)F (n)j �Xn E(n)w(n)j =Xn;m hjj ni hnjH jmi hmj ji = Hjj = Ej (29)where the relation hijH jji = Æij hijH jji is used for exa
t eigenstates. Correspondingly, the varian
e 
an be obtainedfrom the matrix elements of H2 ,��2W �j =Xn �E(n) �Ej�2 F (n)j �Xn �E(n) �Ej�2 w(n)j =Xp6=jH2jp (30)For the TBRI-model the sum of the o�-diagonal elements for any �xed value of p 
an be evaluated exa
tly [13℄,(�E)2j4 =Xp6=jH2jp = V 20 (n� 1)K1 + V 20 K2 = 14V 20 n (n� 1) (m� n) (3 +m� n) (31)where the expressions (7) have been used for K1 and K2 , and V 20 is the varian
e of the o�-diagonal matrix elements.One 
an see that with an in
rease of the intera
tion, the half-width of the LDOS 
hanges from the quadrati
 dependen
e�hw � V 20 to the linear one, �hw � V0 . It is interesting to note that the varian
e of the LDOS for Fermi-parti
lesdoes not depend on the index j whi
h stands for a spe
i�
 basis state, therefore, (�E)2j ) (�E)2E. Analyti
al solution for the LDOSVery re
ently, the form of the LDOS for the TBRI-model has been analyti
ally found in [16℄ for any strength ofperturbation. In this Se
tion we dis
uss the approa
h of [16℄ and the obtained results. We would like to stress thatour aim is to �nd the LDOS in terms of matrix elements of the total Hamiltonian Hij , without its diagonalization.To start with, let us rewrite the general expression for the LDOS in the formWk (E) = F (Ek ; E) �(E) (32)where E is the total energy of the system (energy of an exa
t eigenstate). As was pointed out, the F�fun
tion givesthe shapes of both exa
t eigenstates and strength fun
tions depending on what is �xed, the total energy E � E(i)or the unperturbed one, Ek. The method used in [16℄ is an extension of the approa
h developed in [42,48℄, whi
htakes into a

ount spe
i�
 stru
ture of the Hamiltonian TBRI-matrix. Spe
i�
ally, �rst, we �x some basis 
omponentjki and diagonalize the Hamiltonian matrix without this 
omponent. Then the problem is redu
ed to the intera
tionof this 
omponent with exa
t eigenstates jii whi
h are statisti
ally des
ribed by the matrix 
omponents Vki. In thespirit of the approa
h of Ref. [42℄ let us introdu
e a small energy window � whi
h will be used for an average over thetotal energy inside this interval. As a result, the set of equations for the LDOS 
an be written in the following form,18



Wk(E) = 12� �k(E)(Ek + Æk �E)2 + 14 �2k(E) (33)where �k(E) ' 2�jVkij2�(E) (34)is some fun
tion whi
h 
an be asso
iated with the half-width of the distribution Wk(E) , for the 
ase when the energydependen
e is weak, �k(E) ' 
onst . The energy shift Æk for the basis state jki ,Æk =Xi jVkij2 (E �E(i))(E �E(i))2 + �24 (35)is due to the asymmetry of the perturbation, if the energy Ek is not at the 
enter of the spe
trum. This shift is just themodi�ed se
ond order 
orre
tion to the unperturbed energy level. For the 
al
ulation of the shape of the eigenve
torji > one should substitute the exa
t energy E = E(i) = Ei + Æi. Then, if the intera
tion is not very strong, in theevaluation of the above equations the di�eren
e Æi � Æk 
an be negle
ted.One should stress that the summation in the above equations is performed over exa
t states. Sin
e the exa
teigenstates are unknown, one should express everything in terms of the basis states only. To do this, we express exa
teigenstates ji > through the basis 
omponents,jVkij2 =Xp ���C(i)p ���2 jHkpj2 +Xp6=qC(i)�q C(i)p HkpHqk (36)In previous Se
tions it was argued that for large number of prin
ipal 
omponents, Np
 � 1 and suÆ
iently strongintera
tion V0 � df , the 
omponents C(i)p;q 
an be treated as random variables, therefore, the se
ond term in (36)vanishes after averaging. Substitution of Eq. (36) into Eqs.(34, 35) gives�k(E) = 2�Xp6=k jHkpj2Wp(E) =Xp6=k jHkpj2 �p(E)(Ep + Æp �E)2 + �2p(E)4 (37)Æk =Xp6=k jHkpj2 Z dE(i)Wp(E(i))E �E(i) 'Xp6=k jHkpj2 (E �Ep � Æp)(E �Ep � Æp)2 + �2p(E)4 (38)where the integral is taken as the prin
ipal value. Last equality is valid in the approximation of slow variation of�p(E) and Æp. The equations for �k(E) and Æk allow to 
al
ulate the strength fun
tion (33) from the unperturbedenergy spe
trum and matrix elements of the total Hamiltonian H .Now we have the set of equations (33,37,38) whi
h, in prin
ipal, give the solution for the LDOS Wk(E) and 
anbe solved numeri
ally. However, for relatively large number of parti
les (pra
ti
ally, for n � 4), one 
an �nd anapproximate analyti
al solution of the problem [16℄. By analyzing these equations, in [16℄ it was proved that the
ondition of the self-
onsistent solution for the LDOS (or the same, when the shape of the LDOS exists as a smoothfun
tion of the energy), is just the 
ondition for the onset of 
haos in the TBRI-model, V0 � df , dis
ussed in previousSe
tions.More spe
i�
ally, for a very strong intera
tion, � >> df the number Nf of e�e
tively large terms in the sums islarge, Nf � �=df , 
u
tuations of � are small, Æ� � �=pNf and Eq. (37) 
an be written in the form,�k(E) ' 2�jHkpj2�f ( ~E) (39)Here ~E = E�Æ and the energy shift Æ �< Æp > 
an be negle
ted in the 
ase of � << � with � standing for an e�e
tiveband-width � of the Hamiltonian matrix Hpq (see Eq.(41)). In order to perform the summation over p, it was assumedthat �(E) and �f (E) 
hange slowly within the energy interval of the size �. As a result, in order to have large numberof �nal states Nf � 2�H2kp=d2f and statisti
al equilibrium (small 
u
tuations of �), one needs Hkp >> df . In this 
ase
haoti
 
omponents of exa
t eigenfun
tions in the unperturbed many-parti
le basis ergodi
ally �ll the whole energyshell of the width �, with Gaussian 
u
tuations of the 
oeÆ
ients C(i)k and the varian
e given by the F�fun
tion (21)(see also [42,19,21℄). 19



With a de
rease of the ratio Hkp=df , the 
u
tuations of � in
rease and for Hkp < df the smooth self-
onsistentsolution of Eqs.(37) does not exist. Indeed, in this 
ase the term �p in the denominator of Eq.(37,38) 
an be negle
tedand the sum in (37) is dominated by one term with the minimal energy E � Ep � df . Therefore, for a typi
albasis state jk > formally one gets �k � �p(Hkp=df )2 << �p. This 
ontradi
ts to the assumption of the equilibriuma

ording to whi
h all 
omponents are of the same order, �k � �p.One should stress again that the absen
e of a smooth solution for the shape of the eigenstates and the strengthfun
tion does not mean that the number of prin
ipal 
omponents Np
 in exa
t eigenstates is small. It 
an be large,however, the distribution of the 
omponents is not ergodi
, there are many \holes" inside exa
t eigenstates whi
ho

upy the energy shell of the width 2�jHkpj2�f (E) (see [30,15℄). In su
h a situation, the 
u
tuations of C(;i)k arevery large and non-Gaussian.It is important to note that the ensemble average (over many matri
es Hkp ) in this problem is not equivalent tothe energy average (inside spe
i�
 Hamiltonian matrix). Indeed, the average over the single-parti
le spe
trum leadsto the variation of energy denominators in (37) and 
an �ll the \holes " in the F�fun
tion.From general equations for the shape of the LDOS one 
an make an unexpe
ted 
on
lusion that the spreading width�(E) 
an be a strong fun
tion of ex
itation energy E due to the variation of the density �f (E) = d�1f of �nal statesin Eq. (39). In Ref. [16℄ it was shown that for the ex
ited states, well above the ground state, the energy dependen
eof �f (E) and �(E) 
an be quite 
lose to the Gaussian. This result is based on the estimate of the two-body density�f (E) , �f (E) = �(1)f (E) + �(2)f (E) (40)where the density �f is determined by the energy di�eren
e !(2)pk between the states jp > and jk > whi
h di�er bythe position of two parti
les, and by !(1)pk between those states whi
h di�er by the position of one parti
le. Detailedanalysis [16℄ have shown that both �(1)f (E) and �(2)f (E) for large number of parti
les are des
ribed by the Gaussian,�(1;2)f ( ~E) ' K1;2�1;2p2� exp0B��� ~E �Ek � !(1;2)�22�21;2 1CA (41)Normalization parameter K1;2 stands for the number of one or two-parti
le transitions, see Eq.(7). Here the averagefrequen
y of one and two-parti
le transitions reads as!(1) � m=(m� n)(��Ek=n) (42)and !(2) = 2(�p � �k) � 2m=(m� n)(��Ek=n) (43)where �k = Ek=n is the mean single-parti
le energy in the basis state jk > 
ontaining n parti
les, � is the single-parti
leenergy averaged over all m orbitals, and the mean energy of the empty orbitals �p 
an be found from the relationm� = �kn+ �p(m� n).The varian
e of �(1;2)f (E) for one and two-parti
le transitions is�21 = �2p + �2k + 2(n� 1)V 2 � �2� + 2(n� 1)V 2 (44)and �22 = 2�2p + 2�2k + (4n� 6)V 20 � 2�2� + (4n� 6)V 20 (45)where �2� is the varian
e of single-parti
le spe
trum, and V 20 is the varian
e of non-diagonal matrix elements of theresidual intera
tion. Note that in the 
ase of n << m for low-lying states the varian
e of the o

upied orbital energies�2k is small and the varian
e of empty orbital energies is �2p � �2� .Thus, the width �(E) is given by the following expression,�(E) = 2� h(n� 1)V 2�(1)f (E) + V 2�(2)f (E)i (46)20



The fa
tor n� 1 appears sin
e for single-parti
le transitions the summation in Hkp =P� V��!
� is performed overo

upied orbitals. When the ratio K2=((n � 1)K1) = (m � n � 1)=4 is larger than 1, the two-parti
le transitionsdominate and one 
an negle
t the di�eren
es in ! and � for two-parti
le and one-parti
le transitions. In this 
ase thespreading width is des
ribed by the simple Gaussian form,�k(E) ' 2�(�E)2k 1�kp2�exp(� ( ~E �Ek � !k)22�2k ) (47)where ~E = E � Æ. Here (�E)2k is the varian
e de�ned by Eq.(31) and !k and �k are 
lose to that for the two-parti
letransitions. The maximum of �f (E) and �(E) is shifted by the value j!kj towards the 
enter of the spe
trum,
ompared to the maximum of the Breit-Wigner fun
tion. This leads to some distortion of the strength fun
tionEq.(33) and the shape of the eigenstates, whi
h is espe
ially large at the bottom of the spe
trum.

FIG. 10. Shape of the LDOS (33) in the basis representation. Broken line is the result of numeri
al diagonalization of theTBRI-matrix. To redu
e 
u
tuations, the average over 50 di�erent matri
es Hik and over a number of nearby 
omponents hasbeen made. The 
omputation has been done for n = 6 parti
les, m = 13 orbitals, therefore, the total size of the matrix isN = 1716: The intera
tion strength is V 20 � 0:1 and d0 = 1:0 . Dashed and smooth full 
urves obtained by 
omputation ofEq.(33) with �k(E) given by Eqs.(37,38) and by Eq.(47) 
orrespondingly.
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FIG. 11. Dependen
e �k(E) is shown for the parameters of Fig.10. Full 
urve is the expression (47), the dashed 
urve is the
omputation from Eqs.(37, 38).The above 
onsideration shows that if the intera
tion is small, �� �k , the strength fun
tion has the Breit-Wignershape with a broad gaussian envelope des
ribed by the dependen
e �k(E) in the numerator of Eq. (33). In fa
t, su
ha dependen
e results in the 
orre
t (�nite) varian
e of the strength fun
tion. When the intera
tion V in
reases oneneeds to take into a

ount one more 
ontribution in Eq.(37) (it was negle
ted in Eq.(39)). It in
reases the width ofWp(E) and leads to the estimate �2k ' �22 + �2p. With further in
rease of intera
tion, where the shape of Wp(E) is
lose to the Gaussian, one gets �2k ' �22 + (�E)2k .Dire
t numeri
al study of the model (1) with n = 6 Fermi-parti
les and m = 13 orbitals [16℄ 
on�rmed that theabove analyti
al expressions give quite good des
ription of the shape of the strength fun
tion Wk(E) as well as theenergy dependen
e �k(E) , see Fig.10 and Fig.11. The size of the Hamiltonian matrix is N = Cnm = 1716 and theunperturbed state i0 = 440was taken.For the 
ase of quite strong intera
tion, when � � �, the gaussian variation of �(E) in the numerator of Eq.(33)be
omes as important as the variation of the Breit-Wigner energy denominator (E �Ek)2 + (�=2)2. In this 
ase thetransition from the Breit-Wigner type to Gaussian shape of the LDOS (strength fun
tion) takes pla
e. However, stillone 
an use Eqs.(37, 38) and (33) in order to 
al
ulate numeri
ally �(E); Pk(E) and F (E;Ek), taking � from Eq.(47)with �2k ' �22 + (�E)2k as the zero approximation in the right-hand side of Eqs.(37, 38).F. Non-statisti
al properties of the TBRI-modelIn previous Se
tions we have 
onsidered statisti
al properties of the TBRI-model based on 
haoti
 stru
ture of theeigenstates and LDOS. However, one should be very 
areful with this approa
h sin
e due to underlying 
orrelationsin matrix elements of H (see Se
tion 2.1.3), the approa
h is not always valid, even if all two-body random matrixelements are 
ompletely random and independent variables. This fa
t is due to a two-body nature of intera
tion andshould be taken into a

ount in some 
ases. Below we show an example when statisti
al des
ription is in
orre
t (seedetails in [13℄).Let us 
onsider a single-parti
le operatorM̂ =X�;� ay� a�M�� =X� ;� ��� M�� (48)where ay� and a� are the 
reation and annihilation operators and we have introdu
ed the density matrix operator��� = ay�a� whi
h transfers a parti
le from the orbital � to the orbital �. The matrix element of M̂ between 
ompoundstates 
an be expressed through the proje
tion of the density matrix into the basis states,hn1j M̂ jn2i =X�� M�� hn1j ��� jn2i =X�� M�� �(n1;n2)�� (49)where �(n1;n2)�� �Xij C(n1)i hij ��� jjiC(n2)j (50)is determined by the exa
t eigenstates only. In what follows, we are interested in statisti
al properties of this many-body operator �̂(�; �) for the �xed orbitals � and � whi
h, on the other hand, determines statisti
al properties ofthe single-parti
le operator M̂ , see Eq.(48).One 
an see that this operator has zero mean,�(�; �) = hn1j ��� jn2i = 0 (51)if 
ompound eigenstates are truly random.In general 
ase, the varian
e of �̂(�; �) whi
h is of our main interest, has the form,�2(�; �) = hn1j ��� jn2i hn2j ��� jn1i =22



Xi;j; k;lC(n1)i C(n1)j C(n2)k C(n2)l hij ��� jki hlj ��� jji = S(n1;n2)d + S(n1;n2)
 (52)Here we separated the diagonal, S(n1n2)d =Xik ���C(n1)i ���2 ���C(n2)k ���2 jhij ��� jkij2 ; (53)and non-diagonal, S(n1;n2)
 = Xi6=j; k 6=lC(n1)i C(n1)j C(n2)k C(n2)l hij ��� jki hlj ��� jji : (54)
ontributions to the sum (52) and assumed that eigenstates are real ve
tors (note that our matrix Hij is symmetri
).Typi
al shape of the density matrix is shown in Fig.12. This shape 
an be 
ompared with the statisti
al approa
hdeveloped in Ref. [46,47℄ for a very large intera
tion, in the 
ase when the role of the unperturbed part H0 is negle
ted(therefore, the in
uen
e of the leading diagonal Hjj is small).
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FIG. 12. Form of the density matrix (50) for the TBRI-model with the parameters of Fig.1-5. The quantity�n;m = ���(n1n2)�� �2�1=2 is 
omputed with the average inside the blo
ks of size 10� 10 (in the same way as in Fig.2).As we have dis
ussed in previous Se
tions, for suÆ
iently large intera
tion 
ompound eigenstates jni of the TBRI-model may be 
onsidered as pseudo-random fun
tions due to a very large number of 
omponents C(n)i . Therefore,it is natural to expe
t that the non-diagonal part S(n1;n2)
 is zero and the varian
e is essentially determined by thediagonal term S(n1;n2)d whi
h 
an be des
ribed statisti
ally (for this statisti
al approa
h see Refs. [49,19,50℄). Thisassumption has been used in the previous 
al
ulations of matrix elements between 
ompound states in [49,19,50,51℄.However, re
ently it was shown [13℄ that in many-body system these two terms are of the same order, S
 � Sd,even for 
ompletely random two-body intera
tion. In order to show this very unexpe
ted e�e
t, in Ref. [13℄ dire
t
omputations of the terms S
 and Sd have been performed for the TBRI-model, see Figs.13-14. One 
an see thatthe data reveal a systemati
 di�eren
e between the diagonal approximation and exa
t expression (52). In parti
ular,Fig.14 shows that non-diagonal term S
 is of the same order as Sd whi
h 
learly indi
ates the presen
e of 
orrelations.Below, we show how these 
orrelations emerge in the non-diagonal term S
 (for more details see Ref. [13℄). First,note that for a given i the sum over k in Eq. (53) for Sd 
ontains only one term, for whi
h jki = ay�a�jii � ji0i,determined by transferring one parti
le from the orbital � to the orbital � in the state jii (hereafter we use thenotation i0 to mark su
h states). A

ordingly, the index i runs over those states in whi
h � is o

upied and � isva
ant. For su
h i and i0 the matrix element hij ��� ji0i = 1, otherwise, it is zero. Therefore, in fa
t, the sum in (53)is a single sum, with a number of items less than N , 23



S(n1n2)d =Xi 0 ���C(n1)i ���2 ���C(n2)i0 ���2 (55)where the sum Pi0 runs over the spe
i�ed i. Analogously, Eq. (54) 
an be written as the double sum over i and jspe
i�ed as above, S(n1n2)
 =Xi6=j 00C(n1)i C(n1)j C(n2)i0 C(n2)j0 ; (56)where j0 is a fun
tion of j, jj0i = ay�a�jji. Note that the energies of the basis states and their primed partners are
onne
ted as Ei0 �Ei = �� � �� = Ej0 �Ej .

FIG. 13. Mean square matrix element (52) 
al
ulated in the TBRI-model for n = 7 parti
les and m = 14 orbitals, � = 7,� = 8, as a fun
tion of the eigenstate n2 for n1 = 575 (total size of the matrix is N = 3432). Dots 
orrespond to the sumSd + S
 while the solid line represents the diagonal 
ontribution Sd only [see (53)℄.

FIG. 14. Ratio R = S
=Sd of the 
orrelation 
ontribution to the diagonal 
ontribution for the same parameters as in Fig.13.24



One 
an expe
t that maximal values of the sum (55) and (56) 
orrespond to the terms for whi
h C�
omponentsare prin
ipal 
omponents of the eigenstates. This means that mean square of the matrix element jhn1j ��� jn2ij2is maximal when the operator ��� 
ouples the prin
ipal 
omponents of the state jn1i with those of jn2i, i.e. forE(n1) � E(n2) � !�� � �� � �� . Far from the maximum (��E(n1) �E(n2) � !���� > �) a prin
ipal 
omponent of onestate, say, n1, is 
oupled to a small 
omponent k of the other state n2 (��Ek �E(n2)�� > �). The latter 
ase is simplerto 
onsider analyti
ally, sin
e the admixture of a small 
omponent in the eigenstate 
an be found via the standardperturbation theory. This approa
h reveals the origin of the 
orrelations in the sum S
, Eq. (56). For example, ifC(n1)j is a small 
omponent of the eigenstate n1, then it 
an be expressed as a perturbation theory admixture to theprin
iple 
omponents. If the 
omponent C(n1)i is one of the latter, then there is a term in the sum (56), whi
h isproportional to the prin
ipal 
omponent squared, ���C(n1)i ���2.Based on this 
onsideration, in Ref. [13℄ was found that far from the maximum, ��E(n2) �E(n1) � !���� > �, thenon-diagonal terms readS(n1n2)
 � � 2�E(n2) �E(n1) � !���2 gXi;j0 00 ���C(1)i ���2 ���C(2)j0 ���2Hi0j0Hij (57)A similar 
al
ulation of the diagonal sum S(n1n2)d , Eq. (53), yieldsS(n1n2)d � 1�E(n2) �E(n1) � !���2�8<:gXi 0gXj0 ���C(n1)i ���2 ���C(n2)j0 ���2H2i0j0 +gXi gXj0 0 ���C(n1)i ���2 ���C(n2)j0 ���2H2ij9=; (58)Let us estimate the relative magnitudes of Sd and S
. First, we 
onsider the 
ase when jii and jji di�er by twoorbitals, jji = ay�2a�1ay�2a�1 jii; in this 
ase Hij = V�1�1�2�2 . Sin
e the basis states ji0i and jj0i must di�er by the sametwo orbitals, we have Hi0j0 = V�1�1�2�2 = Hij (note that �1; �1; �2; �2 6= �; �, sin
e both states jii and jji 
ontain �and do not 
ontain �, whereas ji0i and jj0i 
ontain � and do not 
ontain �). Therefore, the averages over the non-zeromatrix elements between su
h pairs of states give HijHi0j0 = H2ij = H2i0j0 = V 20 .Now, let us 
onsider the 
ase when jii and jji di�er by one orbital jji = ay�2a�1 jii only. In this 
ase the Hamiltonianmatrix elements are sums of the n�1 two-body matrix elements, see Eqs.(9) and (10). As was shown in Se
tion 2.1.3,the sums of n� 2 terms in Hij and Hi0j0 
oin
ide and the di�eren
e is due to the one term only (orbital � is repla
edby the orbital �). Thus, HijHi0j0 = (n� 2)V 2 ; (Hij)2 = (Hi0j0 )2 = (n� 1)V 2 (59)where we took into a

ount that V����V�1�1�1�1 = V 2Æ��1Æ��1Æ��1Æ��1 .The 
ontributions of one-parti
le and two-parti
le transitions in Eqs. (57) and (58) representing S
 and Sd respe
-tively, are determined by the numbers of su
h transitions allowed by the 
orresponding sums. For the single-primesums in Eq. (58) these numbers are proportional to K1 and K2, Eq. (7). In the double-prime sum in Eq. (57)these numbers are proportional to ~K1 and ~K2, the numbers of the two-body and one-body transitions i ! j, inthe situation when one parti
le and the two orbitals (� and �) do not parti
ipate in the transitions. These num-bers 
an be obtained from Eq. (7) if we repla
e n by n � 1, and m by m � 2, so that ~K1 = (n � 1)(m � n � 1),~K2 = (n�1)(n�2)(m�n�1)(m�n�2)=4. Finally one 
an obtain that for jE(n2)�E(n1)�!��j > � the 
ontributionof the 
orrelation term to the varian
e of the matrix elements of ��� 
an be estimated in the ratio asR � S
Sd = � (n� 2) ~K1 + ~K2(n� 1)K1 +K2 = � (n� 2)(m� n� 1)(m� n+ 2)n(m� n)(m� n+ 3) : (60)This equation shows that for n = 2 we have S
 = 0, whi
h is easy to 
he
k dire
tly, sin
e in this 
ase Hi0j0Hij = 0 .For n > 2 the 
orrelation 
ontribution S
 is negative in the tails of the LDOS. This means that it indeed suppressesthe transition amplitudes o�-resonan
e (see Figs.13-14). For n;m� n� 1 the ratio R approa
hes its limit value �1.It is easy to obtain from Eq. (60) that for m� n� 1 25



Sd + S
Sd = 1 +R ' 2mn(m� n) : (61)Thus, surprisingly, the role of the 
orrelation 
ontribution in
reases with the number of parti
les. This result issupported by numeri
al data reported in Ref. [13℄. In Fig.14 one 
an see that the suppression of the matrix elements�2(�; �) due to the 
orrelation term at the tails, is quite strong, numeri
al ratio is R � �0:7 vs. R = �0:55obtained from Eq.(60); this should be 
ompared with the 
ase n = 4;m = 11; N = 330 for whi
h numeri
al value isR � �0:45; see details in [13℄. The 
orrelation 
ontribution should be even more important in 
ompound nu
lei, whereN � 105 . This 
ase 
an be modeled by the parameters n = 10, m = 20; then we have R = �0:66, or, equivalently,(Sd + S
)=Sd = 0:34, whi
h means that the 
orrelations suppress the squared element �2 between 
ompound statesby a fa
tor of 3 (far from its maximum).It is worth emphasizing that the existen
e of 
orrelations due to the perturbation theory admixtures of small
omponents to the 
haoti
 eigenstates, whi
h leads to a non-zero value of S
 (56), is indeed non-trivial. For example,if one examines the sum of Eq. (56) as a fun
tion of i and j, it would be hard to guess that the sum itself is essentiallynon-zero, sin
e positive and negative values of �ij � C(n1)i C(n1)j C(n2)i0 C(n2)j0 seem to be equally frequent, and haveroughly the same magnitude, see Fig.15. However, in spite of apparent random 
hara
ter of the terms �ij , its meanvalue turns out to be non-zero and is of the same order as the diagonal term Sd . Sin
ePn1 S(n1n2)
 =Pn2 S(n1n2)
 = 0(see below), the suppression of �2(�; �) at the tails should be a

ompanied by 
orrelational enhan
ement of the matrixelements near the maximum (for ��E(2) �E(1) � !���� < �).Thus, we 
ome to the important 
on
lusion: even for a random two-body intera
tion, the 
orrelations produ
esome sort of a \
orrelation resonan
e" in the distribution of the squared matrix elements �2(�; �). One should notethat this in
rease of the 
orrelation e�e
ts in the matrix elements of a perturbation 
an be explained by the in
reased
orrelations between the Hamiltonian matrix elements when the number of parti
les and orbitals in
reases (N=n / en).In a similar way one 
an estimate the size of the 
orrelation 
ontribution S
 near the maximum of theM2 distribution(at ��E(n2) �E(n1) � !���� < �) [13℄.Sd + S
Sd = 1 +Rm = 2� (1 +Rt) ' 2 �1� mn(m� n)� : (62)Comparing the values of the ratio S
=Sd at the maximum and at the tail in Fig.13 (n = 7; m = 14) , one 
an see thatindeed, Rm � �Rt. For larger n and m the 
orrelation enhan
ement fa
tor asymptoti
ally rea
hes its maximal valueof 2. This numeri
al example shows the enhan
ement of �2(�; �) with respe
t to Sd at the maximum even greaterin size than that predi
ted by Eq. (62). This is not too surprising sin
e in Eqs. (24){(62) we estimated the averagevalue of Rm over an interval �E ' � around the maximum rather than the peak value at the maximum.
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FIG. 15. The distribution of the terms �ij = C(n1)i C(n1)j C(n2)i0 C(n2)j0 of the sum (56) for n1 = 55, n2 = 66, obtained in theTBRI-model for the same set of parameters as in Figs.1-5, averaged over Ng = 100 realizations of the intera
tion. Indi
es iand j in the �gure run over those 84 
omponents in whi
h � is o

upied and � is va
ant. (a) on the top: positive values, (b)on the bottom: negative values (absolute values).III. THERMALIZATION AND ONSET OF CHAOSA. Distribution of o

upation numbersLet us now 
ome ba
k to the distribution of o

upation numbers de�ned by Eq.(5). It gives the probability thatone of n parti
les o

upies an orbital s spe
i�ed by the one-parti
le state jsi , for the �xed exa
t (
ompound) state jii. A

ording to this expression, this probability 
an be found by proje
ting the state jii onto the basis of unperturbedstates, for whi
h the relation between the positions of all parti
les in the single-parti
le basis and spe
i�
 many-parti
lebasis state is known by the 
onstru
tion of the latter. One 
an see that the probability ns = ns(E(i)) is the sum ofprobabilities over number of basis states whi
h 
onstru
t the exa
t state. For Fermi-parti
les, only one parti
le 
ano

upy an orbital, this is why the o

upation number n(k)s = 0 or 1 .It is 
lear that for 
haoti
 eigenstates the ns�distribution is a 
u
tuating fun
tion of the total energy E = E(i) ofa system, due to 
u
tuations of the 
omponents C(i)k of eigenstates. In order to obtain a smooth dependen
e, oneshould make an average over a small energy window 
entered at E(i) , whi
h is in the spirit of 
onventional statisti
alme
hani
s for systems in the 
onta
t with the thermostat. In fa
t, su
h an average is a kind of mi
ro
anoni
alaveraging sin
e it is done for the �xed total energy E of a system. Therefore, in what follows, by the ns�distributionwe assume the averaged distribution,ns(E) =Xk ���C(i)k ���2 hkj n̂s jki =Xk F (Ek ; E(i)) hkj n̂s jki (63)where the F�fun
tion dis
ussed in previous Se
tion is used.We are going to show that the ns� distribution plays essential role in the statisti
al approa
h to �nite systems ofintera
tion parti
les. Our interest to this quantity is of two-fold. First, the knowledge of the distribution of o

upationnumbers gives the possibility to 
al
ulate mean value of any single parti
le operator hMi = Ps nsMss . Here Mssare diagonal matrix elements of a single-parti
le operator M̂ , whi
h very often 
an be found easily sin
e they refer27



single-parti
le physi
s. For quantum systems with 
omplex behavior, the non-trivial part is the F�fun
tion whi
habsorbs the result of the two-body intera
tion between many basis states. The important point is that in order to�nd the distribution of o

upation numbers, there is no need to know exa
tly eigenstates of the system. Instead, theshape of eigenstates in the energy representation is needed, whi
h is de�ned by the F�fun
tion. Thus, if we knowthis fun
tion and properties of the unperturbed system, one 
an relate statisti
al properties of 
haoti
 systems tosingle-parti
le quantities.Moreover, the varian
e of the distribution of non-diagonal elements ofM , des
ribing transition amplitudes between\
haoti
" 
ompound states due to a weak external perturbation, 
an be also expressed through to the o

upationnumbers ns . This varian
e is important from experimental point of view, for example, for the estimate of anenhan
ement of a weak intera
tion (whi
h refers, for example, the parity violation in atoms and nu
lei) , see detailsin [51,19,13,21℄.Se
ond, the form of the distribution of o

upation numbers is interesting itself. One of important questions whi
harises in this respe
t, is whether the standard Fermi-Dira
 and Bose-Einstein distributions o

ur for isolated systemsof �nite number of parti
le. If they o

ur, then, under what 
onditions and how they 
an be des
ribed? One 
ansuggest that the role of the intera
tion between parti
les is 
ru
ial sin
e this is the only reason to result in a 
omplexbehavior (
haos) of a system, and the latter is the me
hanism for the statisti
al equilibrium. Another non-trivialquestion relates to the meaning of temperature for isolated systems. The study of the ns�distribution gives a newinsight on these and other problems.For the analyti
al treatment it is 
onvenient to represent the ns�distribution in the following form,ns(E) = Pk n(k)s ~F (Ek �E )Pk ~F (Ek �E) (64)Here the fun
tion ~F (Ek � E) is the part of the F�fun
tion, whi
h non-trivially depends on the di�eren
e Ek � Ebetween the unperturbed energy Ek only. Namely, we omitted the normalization term f (E) sin
e the summation inEq.(64) runs over the unperturbed energy, F (Ek; E) = f (E) ~F (Ek �E ) . Thus, the denominator appears due to thenormalization. This form (64) allows one to introdu
e a kind of the partition fun
tion,Z(E) =Xk ~F (Ek �E) (65)whi
h is entirely determined by the shape of 
haoti
 eigenfun
tions.The above expression (64) gives a possibility of the statisti
al des
ription of 
omplex systems. Indeed, as wasmentioned above, the shape of the F� fun
tion has universal features and 
an be often des
ribed analyti
ally.Therefore, in pra
ti
e there is no need to diagonalize huge Hamiltonian matrix of a many-body system in orderto �nd statisti
al averages. We would like again to stress that the summation in (64) is 
arried out over unperturbedenergies Ek de�ned by the mean �eld, rather than over the energies of exa
t eigenstates in the standard 
anoni
aldistribution. As a result, the distribution of o

upation numbers 
an be derived analyti
ally (see below) even for fewintera
ting parti
les, in a situation when the standard Fermi-Dira
 distribution does not o

ur.B. Mi
ro
anoni
al vs. 
anoni
al distributionLet us now 
ompare the ns�distribution (64) with o

upation numbers given by the standard 
anoni
al distribution[15℄, ns(T ) = Pi n(i)s exp(�E(i)=T )Pi exp(�E(i)=T ) (66)Here T is the temperature of a heat bath and the index i stands for exa
t eigenstates. The important di�eren
ebetween the ns� distribution (64) and the 
anoni
al distribution (66) is that in Eq. (64) the o

upation numbersare 
al
ulated for the �xed total energy E of a system unlike the �xed temperature T in Eq.(66). However, bothexpressions 
an be 
ompared with ea
h other using the relation between the energy E and the temperature T ,E = hEiT = Pi E(i) exp(�E(i)=T )Pi exp(�E(i)=T ) (67)28



One 
an show that the 
anoni
al distribution 
orresponds to the average of the \mi
ro
anoni
al" ns� distributionover some energy interval �T . To demonstrate this, let us substitute n(i)s and ���C(i)k ���2 from Eqs.(5,21) into Eq.(66)and repla
e the summation over i by the integration over �(E(i)) dE(i) where �(E(i)) is the density of exa
t energylevels, Xi n(i)s exp��E(i)=T� � Z n(i)s �(E(i)) exp��E(i)=T�dE(i) � (68)Xk n(k)s Z F (i)k (Ek ; E(i))�(E(i)) exp��E(i)=T�dE(i) =Xk n(k)s F (T;Ek)Here the fun
tion F (T;Ek) is the 
anoni
al average of F (i)k ,F (T;Ek) = Z F (i)k �T (E(i)) dE(i) (69)with another \
anoni
al (thermal) averaging" fun
tion,�T (E) = �(E) exp (�E=T ) (70)As a result, one 
an transform the 
anoni
al distribution (66) into the form similar to the ns� distribution (64),ns(T ) = Pk n(k)s F (T;Ek)Pk F (T;Ek) (71)This distribution 
an be used for the 
al
ulation of the o

upation numbers and other mean values in a quantumdot whi
h is in thermal equilibrium with an environment (with no parti
le ex
hange).In many-body systems with large number of parti
les the fun
tion �T (E) has a very narrow maximum sin
e thedensity of states �(E(i)) typi
ally grows very fast. The position Em of its maximum is de�ned by the expressiond ln �(E)dE = 1T (72)and the width is given by �T = ����d2 ln �(E)dE2 �����1=2 (73)Let us 
onsider the TBRI-model (1) for whi
h the density of states is known to be des
ribed by the Gaussian,�(E) = 1�p2� exp � (E �E
)22�2 ! (74)with E
 and �2 as the 
enter and the varian
e of the spe
trum. This allows easily to �nd the form of �T (E) whi
halso has the gaussian form, �T (E) = 1�p2� exp � (E �Em)22�2 ! (75)with Em = E
 � �2T (76)One 
an see that the width �T of the thermal averaging fun
tion is equal to the gaussian width of the spe
trum,�T = � . In Ref. [15℄ it was argued that for large number of parti
les both widths �T and �E are mu
h smallerthan the typi
al energy interval, �= jE �E
j � 1=pn . Therefore, for large number of parti
les the fun
tion �T 
anbe regarded as the delta-fun
tion at E = Em and the ns� distribution is 
lose to the 
anoni
al one, see Eq.(69).However, the 
anoni
al distribution (66) is not 
orre
t when des
ribing isolated systems with small number ofparti
les, instead, one should use the ns� distribution (64), see details below and in [12,15℄.29



C. Transition to the Fermi-Dira
 distributionIt is naturally to expe
t that for a very large number of parti
les the standard Fermi-Dira
 distribution arises fromthe ns� distribution (64). Below we reprodu
e the derivation given in Ref. [15℄. By splitting the sum in two parts,whi
h 
orresponds to the separate summation over ns = 0 and ns = 1 , one 
an represent the expression (64) in theform ns(E) = 0 + Zs(n� 1; E � ~�s)Zs(n� 1; E � ~�s) + Zs(n;E) = 11 + Zs(n;E)Zs(n�1;E�~�s) (77)where two \partial" partition fun
tions Zs(n;E) and Zs(n � 1; E � ~�s) are introdu
ed. For the �rst fun
tion thesummation is taken over all single-parti
le states of n parti
les with the orbital s ex
luded, Zs(n;E) =P0k ~F (Ek�E).Correspondingly, the sum in Zs(n� 1; E � ~�s) is taken over the states of n� 1 parti
les with the orbital s ex
luded.The latter sum results from the terms for whi
h the orbital s is �lled (ns = 1) , thus, one should add the energy~�s � Ek(n)�Ek(n� 1) of this orbital to the energy Ek(n� 1) of the basis state jki de�ned by n� 1 parti
les. Sin
ethe F� fun
tion mainly depends on the di�eren
e Ek + ~�s � E , the adding term ~�s to Ek(n � 1) is the same as itssubtra
tion from the total energy E . Note, that this term is de�ned by~�s = �s +Xp6=s uspn(k)p (78)where �s is the energy of a single-parti
le state and usp is the diagonal matrix element of the two-body residualintera
tion. By taking ~�s independent of k we assume that the averaging over the basis states near the energy E ispossible, in fa
t, this is equivalent to a lo
al (at a given energy) mean �eld approximation. One should stress thatthis approximation is important when 
omparing the simple TBRI-model (1) with realisti
 systems. For example,for the Ce atom there are orbitals from di�erent open sub-shells (e.g. 4f and 6s ) whi
h are quite 
lose in energies,however, they have very di�erent radius. As a result, the Coulomb intera
tion between the 
orresponding ele
trons isvery di�erent [52℄. In this 
ase the intera
tion terms in Eq.(78) strongly depend on the o

upation numbers of otherparti
les. As a result, the equilibrium distribution for o

upation numbers ns is very di�erent from the Fermi-Dira
distribution [52℄. However, the original ns� distribution (64) for o

upation numbers is valid and gives 
orre
t result[53℄. In other 
ases like random two-body intera
tion model [12,13,15℄ or nu
lear shell model [26,28℄, or the atom ofgold [54℄, su
h a lo
al mean �eld approximation is quite a

urate and results in the FD-distribution.For large number n � 1 of parti
les distributed over m � 1 orbitals, the dependen
e of Zs on n and ~�s is verystrong sin
e the number of terms N in the partition fun
tion Zs is exponentially large, N = m!(m�n)!n! . Therefore, tomake the dependen
e on arguments smooth, one should 
onsider ln Zs instead of Zs . In this 
ase one 
an obtainln Zs(n��n;E � ~�s) � ln Zs(n;E)� �s�n � �s~�s (79)�s = � ln Zs�n ; �s = � ln Zs�E ; �n = 1This leads to the distribution of the Fermi-Dira
 type,ns = 11 + exp(�s + �s~�s) (80)If the number of substantially o

upied orbitals in the de�nition of Zs is large, the parameters �s and �s are notsensitive as to whi
h parti
ular orbital s is ex
luded from the sum and one 
an assume �s = � � ��=T; �s = � � 1=Tas in the standard derivation of the Fermi-Dira
 distribution for systems in 
onta
t with thermostat. Therefore, the
hemi
al potential � and temperature T 
an be found from the 
onditions of �xed number of parti
les and �xedenergy, Xs ns = n; Xs �sns +Xs>p uspnsnp =Xs ns(�s + ~�s)=2 = E (81)Note, that the sums in (81 , 78) 
ontaining the residual intera
tion usp 
an be substantially redu
ed by a proper 
hoi
eof the mean �eld basis (for instan
e, the terms usp 
an have di�erent signs in su
h a basis). In pra
ti
e, the values �sand ~�s may be very 
lose. Sin
e in the above expressions (81) the nondiagonal matrix elements of the intera
tion are30



not taken into a

ount, one 
an expe
t that the distribution of o

upation numbers de�ned by these equations givesa 
orre
t result if the intera
tion is weak enough (ideal gas approximation). However, below it will be shown that,in fa
t, even for strong intera
tion the Fermi-Dira
 distribution 
an be also valid if the total energy E is res
aledin a proper way, by taking into a

ount the in
rease of the temperature due to statisti
al e�e
ts of the (random)intera
tion.One should also note that the above 
onsideration is similar to the standard derivation (see e.g. [42℄) of the Fermi-Dira
 distribution from the 
anoni
al distribution (66) for the 
ase of many non-intera
ting parti
les (ideal gas). It is
urious that the Fermi{Dira
 distribution is very 
lose to the 
anoni
al distribution (66) even for very small numberof parti
les, n � 2; provided the number of essentially o

upied orbitals is large (whi
h happens for T � � or �� � ).This fa
t results from the large number of \prin
ipal" terms in the partition fun
tion Zs , and allows one to repla
e�s by � in the term Zs(n; T )=Zs(n� 1; T ) � exp(�s + �T ) in the 
anoni
al distribution (66) (
ompare with (77)).One should stress, however, that the temperature T in the Fermi-Dira
 distribution is di�erent from that in the
anoni
al distribution. Indeed, using the expansion �s = �(�F ) +�0(�s� �F ) one 
an obtain the relation between theFermi-Dira
 (�FD) and 
anoni
al (�) inverse temperatures, �FD = � + �0�F . Con
erning the 
hemi
al potential, itsde�nition also 
hanges, ��=T = �(�F ) � �0�F . More spe
i�
ally, for the same total energy E of the system , the
anoni
al and Fermi-Dira
 distributions give the same distribution ns de�ned, however, by di�erent temperatures,see details in [12,13,15℄ and dis
ussion below.D. Analyti
al approa
h to the ns�distributionIn the previous se
tion it was shown how the standard Fermi-Dira
 distribution o

urs in the TBRI-model whennumber of parti
les is very large. However, the expression (5) for the distribution of o

upation numbers via the shapeof 
haoti
 eigenstates is of more general form and also valid even when the number of parti
les is relatively small.In this 
ase the ns�distribution 
an be of the form very di�erent from the FD-distribution. Below we show howto analyti
ally derive the ns�distribution and express it in terms of single-parti
le and unperturbed many-parti
lespe
trum, using general properties of the F�fun
tion [15℄.For simpli
ity, we 
onsider the 
ase of relatively strong intera
tion, when the shape of the LDOS and exa
t eigen-states 
an be des
ribed by the Gaussian. In order to 
al
ulate the o

upation numbers ns, we use the expression (77)
ontaining two partial partition fun
tions Zs(n;E) and Zs(n � 1; E � �s) whi
h 
orrespond to systems with n andn � 1 parti
les, with the orbital s is ex
luded from the set of single-parti
le states. The partition fun
tion 
an befound from the relation Z(E) =Xk ~F (Ek �E) � Z �0(Ek) ~F (Ek �E)dEk (82)As was dis
ussed above, the density of unperturbed states �0(Ek) in the TBRI-model it the Gaussian, s�0(Ek) = Np2��20 exp � (Ek �E
)22�20 ! (83)where E
 is the 
enter of the energy spe
trum and N is the total number of states. If the shape of eigenstates is alsodes
ribed by the Gaussian, ~F (Ek �E) = Np2�(�E)2 exp � (Ek �E)22(�E)2 ! (84)then the integration in (82) 
an be easily performed. The varian
e (�E)2 is de�ned by Eq.(31). It should bepointed out that, stri
tly speaking, in this expression the 
enter of the F�fun
tion is shifted by the value �(i)1 fromthe unperturbed energy, E = E(i) + �(i)1 , see details in [15℄. This shift is due to the level repulsion whi
h for
eseigenvalues E(i) in the lower part of the spe
trum to move down. The mean-�eld energies Ek = Hkk do not in
ludethe nondiagonal intera
tion whi
h results in the repulsion. Therefore, the \
enter " of the F�fun
tion is shifted bythe value �(i)1 = Hii �E(i) . This shift is estimated in Ref. [15℄ as follows,�(i)1 � �E
 �E(i)� (�E)22�20 (85)31



where �20 is the varian
e of the unperturbed spe
trum. One 
an see that sin
e the varian
e (�E)2 of the LDOS istypi
ally mu
h smaller than �20 , this shift in many 
ases 
an be negle
ted.Dire
t integration in Eq.(82) gets Z(E) = Np2��2 exp � (E �E
)22�2 ! (86)where �2 = �20 + (�E)2 , therefore, the varian
e of the partition fun
tion Z(E) 
oin
ides with the varian
e of theperturbed spe
trum. In order to 
al
ulate the o

upation numbers ns, one should use the expression (77). Therefore,one needs to �nd the partition fun
tions Zs(n;E) and Zs(n� 1; E � �s) 
orresponding to n and n� 1 parti
les, withthe orbital s ex
luded from single-parti
le spe
trum. To do this, one needs to 
al
ulate the number of states Ns andthe 
enter E
s for these trun
ated systems,Ns(n;m� 1) = (m� 1)!(m� 1� n)!n! ; Ns(n� 1;m� 1) = (m� 1)!(m� n)! (n� 1)!E
s(n) = ��s n ; E
s(n� 1) = (��s)(n� 1); ��s = Pp6=s �pm� 1 (87)The varian
e �0s of the energy distributions 
an be estimated as�20s(n) � �21s n ; �20s(n� 1) � (�21s) (n � 1)where �21s is the varian
e of single-parti
le spe
trum with the ex
luded orbital s . Here, for simpli
ity, we havenegle
ted the Pauli prin
iple whi
h is valid for m � n . Finally, the distribution of o

upation numbers takes theform ns(E) = 11 +RR = m� nn �s(n� 1)�s(n) exp"� (E �E
s(n))22�2s(n) + (E � �s �E
s(n� 1))22�2s(n� 1) # (88)where �2s = �2s0+(�E)2 . Numeri
al data for the TBRI-model are presented in Fig.16 from whi
h very good agreementwith (88) is seen.
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al des
ription of the o

upation numbers. The data are given for the TBRI-model for the parameters ofFigs.1-5 (n = 4; m = 11; V0 = 0:12; d0 = 1): The histogram is obtained a

ording to (5) by the averaging over eigenstates withenergies taken from a small energy window 
entered at E = 17:33 and over 20 Hamiltonian matri
es (1) with di�erent realizationof the two-body random intera
tion. Stars represent the analyti
al expression (88) with �0s found from the single-parti
le energyspe
trum. Diamonds 
orrespond to the Fermi-Dira
 distribution with renormalized energy, see Se
tion 3.5.32



It is instru
tive to 
ompare this result with the Fermi-Dira
 distribution whi
h is valid for large number of parti
les.In this 
ase R = exp((�s � �)=Tth) where Tth = �2=(E
 � E) is the thermodynami
 temperature whi
h is dis
ussedbelow, see (96). The 
hemi
al potential � 
an be found numeri
ally from the 
ondition of �xed total number ofparti
les n. E. E�e
tive Fermi-Dira
 distribution for �nite systemsIn previous Se
tion the distribution of o

upation numbers has been derived without any referen
e to the tempera-ture, from the F�fun
tion and properties of the unperturbed system. However, the ns�distribution in Fig.16 seemsto have a Fermi-Dira
 form. One should remind that the latter form in 
onventional statisti
al me
hani
s 
an bederived for ideal gas of very large non-intera
ting parti
les. In su
h a derivation, the presen
e of the thermostat isassumed, a
tually, in order to have statisti
al equilibrium in the system. Indeed, for an isolated systems with largen ! 1 , any extremely weak intera
tion with an environment results in strong statisti
al properties of a system.Using modern language, one 
an speak about the onset of 
haos due to this intera
tion. In fa
t, the weakness of the
oupling to the heat bath gives the possibility to treat the gas of parti
les as an ideal gas. It is well known, that inthis 
ase one 
an write the following equations,Xs ns = n; Xs �sns = E (89)where n and E are total number of parti
les and total energy, and ns is assumed to have Fermi-Dira
 form,ns = 11 + exp (�+ ��s) (90)When in an isolated system des
ribed by the TBRI-model, the number of parti
les is very large, the above equationsresult in the FD-distribution, see Se
tion 3.3. However, in su
h a 
ase the intera
tion V0 has to be very weak. Now,if we 
onsider the model with �nite and not large number of parti
les, for a weak intera
tion there is no 
haos inthe sense that exa
t eigenstates have small number of prin
ipal 
omponents Np
 � 1 . Therefore, this model doesnot allow for its statisti
al des
ription, in other words, there is no statisti
al equilibrium. For example, if for su
h a
ase we 
ompute the ns�distribution a

ording to the de�nition (5), there are very large 
u
tuations in o

upationnumbers when slightly 
hanging the total energy E(i) , see Fig.17.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ns

sFIG. 17. Absen
e of a statisti
al equilibrium for the distribution of the o

upation numbers. The histogram is obtained in thesame way as in Fig.16, for a very weak intera
tion V = 0:02 whi
h 
orrespond to the region of (II) of the \initial 
haotization",see Se
tion 3.7. The total energy is E(i) = 17:33. Stars 
orrespond to the theoreti
al expression (88) whi
h is not valid in thisregion due to absen
e of equilibrium. Cir
les are obtained by dire
t numeri
al 
omputation of ns with the F�fun
tion takenin a spe
i�
 form, and with the summation performed over real unperturbed spe
trum (instead of the integration with theGaussian approximation for �o used in Eq. (88)), see details in [15℄.33



In order to have 
haoti
 eigenstates, and, as a result, the possibility of statisti
al des
ription, one needs to in
reasethe intera
tion in order to ex
eed the threshold V0 � df (see also dis
ussion in Se
tion 3.7). The less number ofparti
les, the stronger intera
tion is needed sin
e the two-parti
le density �f = d�1f strongly depends on the numberof parti
les. On the other hand, if intera
tion is strong, the se
ond equation in Eq.(89) is not 
orre
t and 
an not beused for the derivation of the ns�distribution. To demonstrate this, in Ref. [15℄ the distribution of o

upation numbersns for the two-body random intera
tion model has been dire
tly 
omputed a

ording to Eq.(5) from exa
t eigenstatesof the Hamiltonian matrix (1), see also [12,15℄. These data for the \experimental" values of ns are shown in Fig.18by the histogram whi
h is obtained from the average over small energy window in order to smooth the 
u
tuations(with additional averaging over di�erent realizations of the two-body random matrix elements). To 
ompare with thestandard Fermi-Dira
 distribution, Eqs.(89) have been also numeri
ally solved in order to �nd the temperature and
hemi
al potential, the resulting ns�distribution is shown by 
ir
les. One should stress that the value of the energyE in (81) was taken the same as for the exa
t eigenstates from whi
h a
tual distribution of ns was 
omputed, namely,E � E(i) . The 
omparison of the a
tual distribution (histogram) with the \theoreti
al " one, reveals a big di�eren
efor a 
hosen (quite strong) perturbation V = 0:20 :To des
ribe 
orre
tly the ns-distribution in terms of the Fermi-Dira
 distribution, in Ref. [15℄ it was suggested torenormalize the total energy of the systems due to the intera
tion between parti
les, and instead of Eq.(89) to solvethe following equations, Xs ns = n; Xs �sns = E +�E (91)where �E is the shift of the total energy due to the intera
tion. In Ref. [15℄ it was argued that in the 
ase of randomintera
tion, this term absorbs statisti
al in
rease of the energy and gives the 
orre
t result for the ns�distribution.In fa
t, this assumption is based on a deep equivalen
e between the external 
haos originated by the heat bath in the
ase of open systems, and internal 
haos due to a random 
hara
ter of the intera
tion. Therefore, it was assumedthat random intera
tion and 
haos in 
losed systems plays the role of a heat bath.
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FIG. 18. Fermi-Dira
 distribution with and without additional shift of energy due to a (strong) intera
tion, V0 = 0:20 (otherparameters are the same as in Fig.16). Cir
les stand for the Fermi-Dira
 distribution obtained for the total energy E = 17:3
orresponding to the energy of eigenstates, see (81). Diamonds 
orrespond to the distribution obtained for the energy shifteda

ording to Eq. (93).In order to �nd analyti
ally the shift �E , one needs to 
onsider the stru
ture of exa
t eigenstates in the unperturbedbasis, in parti
ular, to �nd the shift between the energy of an exa
t eigenstates and the mean energy of the 
omponentsof the same eigenstate [15℄. Sin
e the density of states rapidly in
reases with the energy E , the number of higherbasis states admixed to an eigenstate due to the intera
tion is larger than the number of lower basis states. As aresult, the mean energy 34



hEkii =Xk EkF (i)k � Z EkF (i)k �0(Ek)dEk (92)of the 
omponents in an exa
t eigenstate jii is higher than the eigenvalue E(i) 
orresponding to this eigenstate (we
onsider here the eigenstates in the lower part of the spe
trum). There is another e�e
t whi
h de
reases the value ofhEkii , see (92), whi
h remains even if the density of states does not depend on the energy. This se
ond e�e
t is due torepulsion between energy levels, a

ording to whi
h the eigenvalues move down for this part of the spe
trum, therefore,the di�eren
e between hEkii and E(i) in
reases due to the intera
tion. The se
ond e�e
t also shifts the \
enter" ofthe F�fun
tion. One should stress that all e�e
ts leading to the above shift of the energy are automati
ally takeninto a

ount in the relation (92). Thus, one 
an analyti
ally 
al
ulate this shift �E = hEkii �E(i) from the equation(92). For this, one needs to know the unperturbed density of states and the form of F�fun
tion. The evaluation ofthe shift �E has been done in [15℄ by assuming some generi
 form for the F� fun
tion whi
h is valid in a wide rangeof the intera
tion strength V , �E = hEkii �E(i) = (�E)2�20 (E
 �E) (93)where E
 is the 
enter of the energy spe
trum.Thus, to �nd 
orre
t values for the o

upation numbers in the Fermi-Dira
 distribution, we should solve Eqs.(91)with �E de�ned by Eq.(93). The resulting ns�dependen
e is shown in Fig.18 by diamonds. As one 
an see, su
ha 
orre
tion gives quite good 
orresponden
e to the numeri
al data. Similar di�eren
e o

urs for larger number ofparti
le (and smaller intera
tion strength), see Fig.19 where due to serious numeri
al problems, the data for theo

upation number distribution are given without dire
t 
omparison with a
tual ns�distribution.
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FIG. 19. The same as in Fig.18 for large number of parti
les, n = 14; and orbitals, m = 28 , for V0 = 3 � 10�3 and d0 = 1. The histogram is not possible to obtain numeri
ally in the dire
t 
omputation, due to a very large size of the Hamiltonianmatrix, N = 330000 .To 
he
k the analyti
al predi
tion (93) for the shift �E , this shift has been dire
tly 
al
ulated by 
omparingthe energy E(i) of exa
t eigenstates with the energy hEkii . The latter has been numeri
ally found from the exa
trelation hEkii =Pk Ek ���C(i)k ���2 (
ompare with (92)). The 
omparison of these data (
ir
les in Fig.20) with Eq. (93)(straight full line) shows reasonable agreement, if to negle
t strong 
u
tuations around the global dependen
e. These
u
tuations are due to 
u
tuations in the 
omponents of spe
i�
 exa
t eigenstates jii (note, that the presented data
orrespond to individual eigenstates, without any additional averaging).35
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orre
ted Fermi-Dira
 distribution. The data are given for the TBRI-model withn = 4;m = 11; d0 = 1; V = 0:12 . The straight line is the analyti
al expression (93), the dotted line (squares) presents dire
t
omputation of the shift based on the diagonalization of the Hamiltonian (1) with the following 
omputation of the < Ek >i .On the horizontal axes the res
aled energy �(i) = (E(i) �Efermi)=(E
 �Efermi) is plotted.F. Temperature vs. 
haosIn previous Se
tion it was shown that if the ns�distribution for �nite number of parti
les in the TBRI-model hasthe from of the Fermi-Dira
 distribution, it 
an be found from the modi�ed Eq.(91). These equations also determinethe parameters � and T = ��1 whi
h may be asso
iated with the \
hemi
al potential " and \temperature " for anisolated system. One 
an see, that due to the shift �E of the total energy in Eq.(91), there is a 
orresponding shiftof the temperature �T . It is important to note that in systems with in�nite number of parti
les, all de�nitions oftemperature give the same result. In 
ontrast to this, for �nite number of parti
les di�erent de�nitions give di�erentresults.Let us, �rst, start with the standard de�nition of temperature,1Tth = dSthdE = d ln �dE (94)where Sth is the thermodynami
al entropy, Sth = ln �(E) + 
onst (95)and �(E) is the density of states.In fa
t, this de�nition of the thermodynami
al temperature stems from the estimate of the position of maximum ofthe 
anoni
al averaging fun
tion �T (E) , see (70), if we assume that the position of its maximum Em 
oin
ides withthe energy E of a system. One should stress that in the above de�nition �(E) is the total density of states, therefore,the intera
tion is essentially taken into a

ount.Another de�nition, whi
h is 
onsistent with the �rst law of thermodynami
s (energy 
onservation), is given by therelation hEiT = E , see Eq.(67). Here the averaging is performed over the 
anoni
al distribution (66). Sin
e thewidth �T of the 
anoni
al averaging fun
tion �T (E) is not zero, the two de�nitions of the temperature, (94) and (67)36



give, in prin
ipal, di�erent values. Indeed, in the 
ase of the Gaussian form of �(E) the value of Tth given by (94)takes the form (see also [26,28℄), Tth = �2E
 �E (96)where E
 and � are the 
enter and the width of the total density �(E):On the other hand, dire
t evaluation of the relation (67) leads to the following de�nition of the 
anoni
al temperature,T
an = �2E
 �E +� (97)Here, the shift � is approximately given by the expression� = �K "exp � (Emin �Em)22�2 !� exp � (Emax �Em)22�2 !# (98)where K = xmaxZxmin exp��x22 � dx � p2� ; x = E �Em� ; Em = E
 � �2T
an (99)One 
an see that the shift � itself depends on the temperature, it is proportional to the width �T =� of the fun
tion�T (E). In the above expressions, Emin and Emax are the low and upper edges of the energy spe
trum. Note thatthe relation � = 0 o

urs at the 
enter of the spe
trum, therefore, at the 
enter the temperature diverges and in theupper part of the spe
trum is negative. This fa
t is typi
al for systems with bounded spe
trum, for example, for spinsystems. In fa
t, the TBRI-model (1) with �nite number m of orbitals 
an be treated as a model for one open shell inatoms, nu
lei, 
lusters, et
. However, in realisti
 many-body systems there are always higher shells whi
h 
ontributeto the density of states for higher energy. Thus, the density of states �(E) is a monotoni
 fun
tion whi
h results inthe positive temperature. For su
h physi
al appli
ations, the model (1) with �nite number of orbitals is reasonablein the lower part of the energy spe
trum where the in
uen
e of higher shells 
an be negle
ted.
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FIG. 21. Di�erent temperatures versus the res
aled energy � = (E�Efermi)=(E
�Efermi) for the TBRI-model . Parametersare the same as in Fig.16. Triangles stand for the thermodynami
al temperature Tth de�ned by (96) and should be 
omparedto the 
anoni
al temperature T
an (
ir
les), see (97). The width � of the perturbed density of states is de�ned by the residualintera
tion V0 = 0:12 a

ording to (31) and the relation �2 = �20 + (�E)2 with �0 found numeri
ally from the unperturbedmany-parti
le energy spe
trum. 37



One 
an also see that the di�eren
e between the two equations of state T (E) de�ned by Eqs.(96) and (97), disappearsfor highly ex
ited eigenstates (for whi
h Em � Emin � �); or in large systems with n � 1 . Indeed, one 
an obtain,E
 � E � n�1 , where �1 is the width of single-parti
le spe
trum. On the other hand, a

ording to the 
entrallimit theorem, the varian
e of total energy spe
trum 
an be estimated as �20 = Pn �21 � n�21 , therefore, the ratio�=(E
 � E) � 1=pn tends to zero at n ! 1 . As was mentioned above, in su
h realisti
 �nite systems like atomsand nu
lei, the number of parti
les in an open shell is relatively small (n = 4 for the Ce atom [19℄ and n = 12 innu
lear shell model [26,28℄), therefore, the 
orre
tions to the thermodynami
al temperature (94) may be important,espe
ially, for low energies. The detailed dis
ussion of di�erent temperatures in nu
lear shell model is given in [26,28℄.The energy dependen
e of temperatures Tth and T
an , as well as the temperature Texp found dire
tly from thenumeri
al simulation, is shown in Fig.21. The data refer the TBRI-model with n = 4 intera
ting Fermi{parti
les andm = 11 orbitals. The 
omparison of the thermodynami
al temperature Tth de�ned by (96), with the \
anoni
al"temperature (97) reveals quite strong di�eren
e in all the range of the res
aled energy � = (E�Efermi)=(E
�Efermi).Now let us �nd the shift of the temperature �T whi
h is due to the intera
tion, see previous Se
tion. Sin
e it isdire
tly related to the shift of total energy, E � hEkii = E(i) +�E , one 
an get,T = T0 +�T = �20E
 �E(i) ��E � �20E
 �E(i) + (�E)2E
 � E(i) (100)Therefore, statisti
al e�e
ts of random intera
tion 
an be dire
tly related to the in
rease of temperature of a system,�T=T0 = (�E)2=�20 .One of the important questions deals with thermodynami
al des
ription of isolated systems of intera
ting parti
les.In any thermodynami
al approa
h one needs to de�ne, in a 
onsistent way, su
h quantities as entropy, temperatureand equation of state. This problem has been re
ently dis
ussed [26,28℄ in appli
ation to shell models of heavy nu
lei.In parti
ular, it was shown that for a realisti
 residual intera
tion di�erent de�nitions of temperatures give the sameresult. G. Transition to 
haos and statisti
al equilibriumLet us now summarize the dis
ussed above results for the TBRI-model in what 
on
erns transition to 
haos andthermalization. The latter term is not de�ned for isolated systems, our suggestion is to treat \thermalization " as theonset of statisti
al equilibrium. The latter allows to give a reasonable statisti
al des
ription and may be used to �ndthermodynami
al des
ription.Depending on the strength of (two-body) intera
tion between parti
les , one 
an �x di�erent situations in themodel. First region (I) refers strong (perturbative) lo
alization. This o

urs when the intera
tion is very weak,V0 � df and standard perturbation theory gives 
orre
t result. In this 
ase exa
t eigenstates have only few relativelylarge 
omponents (Np
 � 1) , in other words, the eigenstates are strongly lo
alized in the unperturbed basis. Thissituation is quite typi
al for lowest eigenstates (where the density of states is small) even if for higher energies theeigenstates 
an be 
onsidered as very \
haoti
" ones (Np
 � 1) .The se
ond region (II) is 
hara
terized by an initial 
haotization of exa
t eigenstates whi
h 
orresponds to arelatively large, Np
 � 1 number of prin
ipal 
omponents and V < df . The latter 
ondition is essential sin
e itresults in very strong (non-Gaussian) 
u
tuations of 
omponents C(i)k [55℄ for the �xed energy E(i) of 
ompound statejii : Su
h a type of 
u
tuations re
e
ts itself in a spe
i�
 
hara
ter of eigenstates, namely, they turn out to be sparsed.As a result, the number of prin
ipal 
omponents 
an not be estimates as Np
 � �=D , as is typi
ally assumed inthe literature. In this 
ase the energy width � of both the LDOS and eigenstates 
an be approximately des
ribe as� � 2�V 20 =df . In Fig.17 it is shown how the distribution of o

upation numbers ns looks like for the TBRI-model (1)with n = 4 parti
les and m = 11 orbitals and very weak perturbation V=d0 � 0:02 . One 
an see that the distributionof o

upation numbers has nothing to do with the Fermi-Dira
 distribution (full diamonds), it turns out to be eventhe non-monotoni
 fun
tion of the energy �s of orbitals (see also [12℄). Note that the averaging pro
edure used inFig.17 
an not wash out strong 
u
tuations in o

upation numbers ns .With further in
rease of the intera
tion, where Np
 � 1 and V > df , the region (III) of the statisti
al equilibriumemerges. In this region the 
u
tuations of eigenstate 
omponents C(i)k are of the Gaussian form [55℄ and one 
anintrodu
e the F�fun
tion (64) as the shape of exa
t eigenstates in the unperturbed energy basis. Correspondingly,the 
u
tuations of the o

upations numbers ns are small in a

ordan
e with the 
entral limit theorem, �ns=ns �N�1=2p
 � 1 for ns � 1 . One should stress that in this region the value of Np
 is given by the 
ommon estimate,Np
 � �=D . As a result, the ns�distribution 
hanges slightly when 
hanging the energy of a system. Su
h asituation 
an be naturally related to the onset of thermal equilibrium, though the form of the distribution ns 
an be38



quite di�erent from the Fermi-Dira
 distribution. In this 
ase, the F�distribution allows for a 
orre
t des
ription ofan a
tual distribution of o

upation numbers in isolated quantum systems of intera
ting parti
les. One 
an see thatthe equilibrium distribution for the o

upation numbers arises for mu
h weaker 
ondition 
ompared to that neededfor the Fermi-Dira
 distribution. Sin
e the energy interval df between dire
tly 
oupled basis states is small, it isenough to have a relatively weak residual intera
tion V > df in order to have the equilibrium distribution (note, thatthe value of df de
reases rapidly with the ex
itation energy).Next region (IV) is where the 
anoni
al distribution (66) o

urs; for this 
ase in addition to the equilibrium, oneneeds to have large number of parti
les, n� 1: If, also, the 
ondition �� nd0 is ful�lled, the standard Fermi-Dira
distribution is valid with a proper shift of the total energy due to the intera
tion, see Se
tion 3.5. Typi
ally, this regionis asso
iated with the onset of the 
anoni
al thermalization (see, for example, [26,28℄). In pra
ti
e, the 
ondition (IV)of the 
anoni
al thermalization is not easy to satisfy in realisti
 systems like atoms or nu
lei sin
e n in the aboveestimates is, in fa
t, the number of \a
tive" parti
les (number of parti
les in a valen
e shell) rather than the totalnumber of parti
les. Thus, the des
ription based on the F�distribution (64) whi
h does not require the 
anoni
althermalization 
ondition (IV), is more a

urate.The above statements are 
on�rmed by the dire
t numeri
al study of the two-body random intera
tion model [12,15℄with few parti
les when 
hanging the intera
tion strength V=d0: If, instead, we in
rease the number of parti
les keepingthe intera
tion small, V � d0 , the distribution (64) tends to the Fermi-Dira
 one as it is expe
ted for the ideal gas,see [15℄. IV. CONCLUDING REMARKSIn this paper we have dis
ussed a novel approa
h to isolated systems of �nite number of intera
ting parti
les.The goal of this approa
h is a dire
t relation between the average shape of exa
t eigenstates (F�fun
tion), andthe distribution ns of o

upation numbers of single-parti
le levels. From this relation one 
an see that there is noneed to know exa
tly the eigenstates, instead, if these eigenstates are 
haoti
 ( random superposition of a very largenumber of 
omponents of basis states), the F�fun
tion absorbs statisti
al e�e
ts of intera
tion between parti
les anddetermines the form of the ns�distribution. Therefore, the stru
ture of 
haoti
 eigenstates in dependen
e on themodel parameters, is the 
entral question in this approa
h.The results dis
ussed above relate to the TBRI-model for whi
h all two-body matrix elements are assumed to berandom and independent variables. This assumption was made in order to study limiting statisti
al properties ofthis model. In parti
ular, it was shown that even in this limit 
ase of 
ompletely random (two-body) intera
tion,the Hamiltonian matrix in many-parti
le representation 
an not be treated as the random matrix, therefore, theRMT is, stri
tly speaking, not valid. However, under some 
onditions exa
t eigenstates turn out to be quite randomand statisti
al approa
h is 
orre
t, however, one should take into a

ount the form of eigenstates in a given basis ofunperturbed part H0 .Another reason for the study of this TBRI-model, is that it is very 
onvenient for the demonstration of thedeveloped approa
h. In this 
ase there are no any e�e
ts of regular motion in the system, and many of analyti
alestimates 
an be obtained in a 
lear way. In parti
ular, it was shown how to 
al
ulate the ns� distribution from theshape of eigenstates, provided the unperturbed spe
trum of energy is known. One 
an stress that in this way one
an analyti
ally obtain the ns�distribution whi
h 
an have the form very di�erent from the standard Fermi-Dira
distribution. On the other hand, for suÆ
iently large intera
tion the ns�distribution is of the Fermi-Dira
 form,therefore, it is 
onvenient to introdu
e an e�e
tive \temperature " and \
hemi
al potential " whi
h give 
orre
tdes
ription of a
tual ns�distribution in terms of the Fermi-Dira
 distribution. To do this, one needs to �nd the shiftof the total energy whi
h formally 
omes into equations determining the FD-distribution. One should stress that thisshift is dire
tly related to the F�fun
tion and 
an be found analyti
ally.Now, we would like to point out that the approa
h dis
ussed in this paper for the TBRI-model is of generi
 and
an be applied both for random and dynami
al intera
tion. One of the most interesting problems is the appli
ationof the approa
h to dynami
al systems with the well-de�ned 
lassi
al limit. In this situation exa
t eigenstates in the
orresponding quantum model 
an be expe
ted to appear when two 
onditions are ful�lled. The �rst one is the strong
haos in the 
lassi
al 
ounterpart, and the se
ond is the semi-
lassi
al limit (whi
h is typi
ally equivalent to a highenergy of a system). Under these two 
onditions, eigenstates of quantum model have many 
omponents and these
omponents may be treated as pseudo-random, thus leading to a statisti
al equilibrium in the system and possibilityto apply the suggested approa
h.In Refs. [40,18,17℄ two quantum dynami
al systems have been studied and 
ompared to their 
lassi
al limits. Inboth 
ases the main results refer the region of parameters where the 
lassi
al motion is strongly 
haoti
. One of theimportant questions whi
h was under 
lose investigation is the quantum-
lassi
al 
orresponden
e for the F�fun
tion39



and the LDOS. As was pointed out in Ref. [39℄, there is a quite 
lear and easy way for �nding 
lassi
al F�fun
tionand 
lassi
al LDOS. It is instru
tive to explain this approa
h sin
e it is of generi
 and 
an be used in many physi
alappli
ations (see details in [40,18,17℄).Let us start with the 
lassi
al F�fun
tion. We assume that the total Hamiltonian 
an be represented in the form,H = H0 + V ; H0 = nXk=1H 0k ; H 0k = H 0(pk; xk) (101)HereH0 stands for the \unperturbed " Hamiltonian whi
h is the sum of partial HamiltoniansHk des
ribing the motionof di�erent (non-intera
ting) n parti
les. The intera
tion between parti
les is embedded in V whi
h is assumed toresult in 
haoti
 behavior of the (total) system. Note that the same 
onsideration is valid if instead of parti
les wemean di�erent degrees of freedom for one parti
le. Now let us �x the total energy E of the Hamiltonian H(t) and�nd (numeri
ally) the traje
tory pk(t) ; xk(t) by 
omputing Hamiltonian equations. Sin
e the total Hamiltonian is
haoti
, there is no problem with the 
hoi
e of initial 
onditions pk(0) ; xk(0) , any 
hoi
e gives the same result if one
omputes for suÆ
iently large time. When time is running, let us 
olle
t the values of unperturbed Hamiltonian H0(t)for �xed values t = T; 2T; 3T; ::: ; and 
onstru
t the distribution of energies E0(t) along the (
haoti
) traje
tory ofthe total Hamiltonian H . In su
h a way, one 
an get some distribution W (E0;E = 
onst) . Comparing with thequantum model, one 
an see that this fun
tion W (E0;E = 
onst) is the 
lassi
al analog of the F�fun
tion whi
his the average shape of eigenstates in energy representation. Indeed , any of exa
t eigenstates 
orresponds to a �xedtotal energy E = 
onst and it is represented in the unperturbed basis of H0 , in fa
t, F�fun
tion is the (average)proje
tion of exa
t eigenstate onto the set of unperturbed ones. Thus, one 
an expe
t that for 
haoti
 eigenstates ina deep semi
lassi
al region the two above quantities, 
lassi
al and quantum ones, 
orrespond to ea
h other.On the other hand, one 
an 
onsider the 
omplimentary situation. Let us �x the unperturbed energy E0 and 
omputea traje
tory p(0)k (t) ; x(0)k (t) whi
h belongs to the unperturbed Hamiltonian H0(t) : Similar to the previous 
ase, let usput this unperturbed traje
tory into the total Hamiltonian H(t) and 
olle
t the values of total energy E(t) along theunperturbed traje
tory for dis
rete values of time. In this way one 
an �nd the distribution ~W (E;E0 = 
onst) whi
hnow should be 
ompared with the LDOS in the 
orresponding quantum model. However, in this 
ase one should be
areful and make an average over many initial 
onditions pk(0) ; xk(0) with the same energy E0 , if the unperturbedHamiltonian is regular. In fa
t, the above two 
lassi
al distributions W (E0;E = 
onst) and ~W (E;E0 = 
onst)determine the ergodi
 measure of energy shells, the �rst one, when proje
ting the phase spa
e surfa
e of H onto H0, and in the se
ond one, the surfa
e of H0 onto H (see dis
ussion in [39℄).Numeri
al data for two di�erent dynami
al models have shown amazingly good 
orresponden
e between theF�fun
tion and the LDOS, and their 
lassi
al 
ounterparts, see details in Refs. [40,18,17℄. Re
ently, few othersystems have been studied both in 
lassi
al and quantum representations, and again, very good 
orresponden
e hasbeen numeri
ally found in the semi
lassi
al region. These data 
on�rm the theoreti
al predi
tions, and seems tobe very important in view of future developments of the semi
lassi
al theory of dynami
al 
haoti
 systems. It isimportant to point out that the above 
orresponden
e opens a new way for the semi-quantal des
ription of quantumsystem, when the form of the F�fun
tion is taken from a 
lassi
al model and used in order to �nd distribution ofo

upation numbers ns of single-parti
le levels in the 
orresponding quantum system [56℄.Another interesting problem whi
h has been studied in dynami
al systems, is the distribution of o

upation numbersand the possibility of its analyti
al des
ription in the same way as it was done for the TBRI-model (see details in[17℄). One of the most interesting results obtained numeri
ally, is that the 
anoni
al distribution o

urs in an isolated(dynami
al) system of only two intera
ting spin-parti
les, if one randomize the non-zero elements of the intera
tionV as 
lose as possible to the dynami
al 
onstrains of the model. This means that random intera
tion indeed plays arole of the heat bath and allows to use statisti
al and thermodynami
al des
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