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Preface

Throughout the course of history, engineering and mathematics have developed in
parallel. All branches of engineering depend on mathematics for their description and
there has been a steady flow of ideas and problems from engineering that has stimulated
and sometimes initiated branches of mathematics. Thus it is vital that engineering stu-
dents receive a thorough grounding in mathematics, with the treatment related to their
interests and problems. As with the previous editions, this has been the motivation for
the production of this fourth edition — a companion text to the fourth edition of Modern
Engineering Mathematics, this being designed to provide a first-level core studies
course in mathematics for undergraduate programmes in all engineering disciplines.
Building on the foundations laid in the companion text, this book gives an extensive
treatment of some of the more advanced areas of mathematics that have applications in
various fields of engineering, particularly as tools for computer-based system model-
ling, analysis and design. Feedback, from users of the previous editions, on subject
content has been highly positive indicating that it is sufficiently broad to provide the
necessary second-level, or optional, studies for most engineering programmes, where
in each case a selection of the material may be made. Whilst designed primarily for use
by engineering students, it is believed that the book is also suitable for use by students
of applied mathematics and the physical sciences.

Although the pace of the book is at a somewhat more advanced level than the com-
panion text, the philosophy of learning by doing is retained with continuing emphasis
on the development of students’ ability to use mathematics with understanding to solve
engineering problems. Recognizing the increasing importance of mathematical model-
ling in engineering practice, many of the worked examples and exercises incorporate
mathematical models that are designed both to provide relevance and to reinforce the
role of mathematics in various branches of engineering. In addition, each chapter con-
tains specific sections on engineering applications, and these form an ideal framework
for individual, or group, study assignments, thereby helping to reinforce the skills of
mathematical modelling, which are seen as essential if engineers are to tackle the
increasingly complex systems they are being called upon to analyse and design. The
importance of numerical methods in problem solving is also recognized, and its treat-
ment is integrated with the analytical work throughout the book.

Much of the feedback from users relates to the role and use of software packages,
particularly symbolic algebra packages. Without making it an essential requirement the
authors have attempted to highlight throughout the text situations where the user could
make effective use of software. This also applies to exercises and, indeed, a limited
number have been introduced for which the use of such a package is essential. Whilst
any appropriate piece of software can be used, the authors recommend the use of
MATLAB and/or MAPLE. In this new edition more copious reference to the use of these
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two packages is made throughout the text, with commands or codes introduced and
illustrated. When indicated, students are strongly recommended to use these packages
to check their solutions to exercises. This is not only to help develop proficiency in their
use, but also to enable students to appreciate the necessity of having a sound knowledge
of the underpinning mathematics if such packages are to be used effectively. Throughout
the book two icons are used:

e An open screen indicates that the use of a software package would be useful
(e.g. for checking solutions) but not essential.

e A closed screen indicates that the use of a software package is essential or
highly desirable.

As indicated earlier, feedback on content from users of previous editions has been
favourable, and consequently no new chapter has been introduced. However, in
response to feedback the order of presentation of chapters has been changed, with a
view to making it more logical and appealing to users. This re-ordering has necessitated
some redistribution of material both within and across some of the chapters. Another
new feature is the introduction of the use of colour. It is hoped that this will make the text
more accessible and student-friendly. Also, in response to feedback individual chapters
have been reviewed and updated accordingly. The most significant changes are:

e Chapter 1 Matrix Analysis: Inclusion of new sections on ‘Singular value decom-
position” and ‘Lyapunov stability analysis’.

e Chapter 5 Laplace transform: Following re-ordering of chapters a more unified
and extended treatment of transfer functions/transfer matrices for continuous-
time state-space models has been included.

e Chapter 6 Z-transforms: Inclusion of a new section on ‘Discretization of
continuous-time state-space models’.

e Chapter 8 Fourier transform: Inclusion of a new section on ‘Direct design of
digital filters and windows’.

e Chapter 9 Partial differential equations: The treatment of first order equations
has been extended and a new section on ‘Integral solution’ included.

e Chapter 10 Optimization: Inclusion of a new section on ‘Least squares’.

A comprehensive Solutions Manual is available free of charge to lecturers adopting this
textbook. It will also be available for download via the Web at: www.pearsoned.co.ck/james.
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258 FUNCTIONS OF A COMPLEX VARIABLE

Introduction

In the theory of alternating currents, the application of quantities such as the complex
impedance involves functions having complex numbers as independent variables. There
are many other areas in engineering where this is the case; for example, the motion of
fluids, the transfer of heat or the processing of signals. Some of these applications are
discussed later in this book.

Traditionally, complex variable techniques have been important, and extensively used,
in a wide variety of engineering situations. This has been especially the case in areas
such as electromagnetic and electrostatic field theory, fluid dynamics, aerodynamics
and elasticity. With the development of computer technology and the consequential
use of sophisticated algorithms for analysis and design in engineering there has, over
the last two decades or so, been less emphasis on the use of complex variable tech-
niques and a shift towards numerical techniques applied directly to the underlying full
partial differential equations model of the situation being investigated. However, even
when this is the case there is still considerable merit in having an analytical solution,
possibly for an idealized model, in order both to develop better understanding of
the behaviour of the solution and to give confidence in the numerical estimates for the
solution of enhanced models. Many sophisticated software packages now exist, many
of which are available as freeware, downloadable from various internet sites. The older
packages such as FLUENT and CFX are still available and still in use by engineering
companies to solve problems such as fluid flow and heat transfer in real situations. The
finite element package TELEMAC is modular in style and is useful for larger-scale
environmental problems; these types of software programs use a core plus optional
add-ons tailored for specific applications. The best use of all such software still requires
knowledge of mappings and use of complex variables. One should also mention the
computer entertainment industry which makes use of such mathematics to enable
accurate simulation of real life. The kind of mappings that used to be used extensively
in aerodynamics are now used in the computer games industry. In particular the ability
to analyse complicated flow patterns by mapping from a simple geometry to a complex
one and back again remains very important. Examples at the end of the chapter illus-
trate the techniques that have been introduced. Many engineering mathematics texts
have introduced programming segments that help the reader to use packages such as
MATLAB or MAPLE to carry out the technicalities. This has not been done in this
chapter since, in the latest version of MAPLE, the user simply opens the program
and uses the menu to click on the application required (in this chapter a derivative or
an integral), types in the problem and presses return to get the answer. Students are
encouraged to use such software to solve any of the problems; the understanding of
what the solutions mean is always more important than any tricks used to solve what
are idealized problems.

Throughout engineering, transforms in one form or another play a major role in anal-
ysis and design. An area of continuing importance is the use of Laplace, z, Fourier and
other transforms in areas such as control, communication and signal processing. Such
transforms are considered later in the book where it will be seen that complex variables
play a key role. This chapter is devoted to developing understanding of the standard
techniques of complex variables so as to enable the reader to apply them with confidence
in application areas.
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4.2

S

I Mapping I

Figure 4.1 Real
mapping y = f(x).

Figure 4.2 Complex
mapping w = f(z).

Complex functions and mappings

The concept of a function involves two sets X and Y and a rule that assigns to each
element x in the set X (written x € X') precisely one element y € Y. Whenever this
situation arises, we say that there is a function f that maps the set X to the set ¥, and
represent this symbolically by

y=/x) (xeX)

Schematically we illustrate a function as in Figure 4.1. While x can take any value in
the set X, the variable y = f(x) depends on the particular element chosen for x. We therefore
refer to x as the independent variable and y as the dependent variable. The set X is
called the domain of the function, and the set of all images y = f(x) (x € X) is called
the image set or range of /. Previously we were concerned with real functions, so that
x and y were real numbers. If the independent variable is a complex variable z = x + jy,
where x and y are real and j = |/(—1), then the function f(z) of z will in general also be
complex. For example, if f(z) = z* then, replacing z by x + jy and expanding, we have

f@=@+p)P=6"-y)+j2y=u+jv (say)

where u and v are real. Such a function f(z) is called a complex function, and we write

w=f(2)

where, in general, the dependent variable w = u + jv is also complex.

The reader will recall that a complex number z = x + jy can be represented on a plane
called the Argand diagram, as illustrated in Figure 4.2(a). However, we cannot plot
the values of x, y and f(z) on one set of axes, as we were able to do for real functions
v =f(x). We therefore represent the values of

w=flz)=u+jv

on a second plane as illustrated in Figure 4.2(b). The plane containing the independent
variable z is called the z plane and the plane containing the dependent variable w is
called the w plane. Thus the complex function w = f(z) may be regarded as a mapping
or transformation of points P within a region in the z plane (called the domain) to
corresponding image points P’ within a region in the w plane (called the range).

It is this facility for mapping that gives the theory of complex functions much of its
application in engineering. In most useful mappings the entire z plane is mapped onto
the entire w plane, except perhaps for isolated points. Throughout this chapter the
domain will be taken to be the entire z plane (that is, the set of all complex numbers,
denoted by C). This is analogous, for real functions, to the domain being the entire real

w=f@)

— VA
Mapping or
transformation

YA

(a) z plane

(b) w plane
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Example 4.1

Solution

Figure 4.3
The mapping of
Example 4.1.

line (that is, the set of all real numbers R). If this is not the case then the complex
function is termed ‘not well defined’. In contrast, as for real functions, the range of the
complex function may well be a proper subset of C.

Find the image in the w plane of the straight line y = 2x + 4 in the z plane, z = x + jy,
under the mapping

w=2z+06

Writing w = u + ju, where u and v are real, the mapping becomes
w=u+jv=2(x+jy)+6
or
u+jv=02x+6)+j2y
Equating real and imaginary parts then gives
u=2x+6, v=2y “.1)
which, on solving for x and y, leads to
x=3u-6), y=jv
Thus the image of the straight line
y=2x+4
in the z plane is represented by
lv=2xlu-6)+4
or
v=2u-4

which corresponds to a straight line in the w plane. The given line in the z plane and the
mapped image line in the w plane are illustrated in Figures 4.3(a) and (b) respectively.

Note from (1.1) that, in particular, the point P,(=2 + jO) in the z plane is mapped to
the point P{(2 + j0) in the w plane, and that the point P,(0 + j4) in the z plane is mapped
to the point P5(6 + j8) in the w plane. Thus, as the point P moves from P, to P, along

(a) z plane (b) w plane
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4.2.1
Figure 4.4
The degenerate
mapping w = .

the line y = 2x + 4 in the z plane, the mapped point P” moves from P/ to P; along the
line v = 2u — 4 in the w plane. It is usual to indicate this with the arrowheads as
illustrated in Figure 4.3.

Linear mappings

The mapping w = 2z + 6 in Example 4.1 is a particular example of a mapping cor-
responding to the general complex linear function

w=az+f3 “4.2)

where w and z are complex-valued variables, and o and 3 are complex constants. In this
section we shall investigate mappings of the z plane onto the w plane corresponding to
(4.2) for different choices of the constants & and f. In so doing we shall also introduce
some general properties of mappings.

Case (a) x=0
Letting & =0 (or =0+ j0) in (4.2) gives
w=p

which implies that w = 8, no matter what the value of z. This is quite obviously a
degenerate mapping, with the entire z plane being mapped onto the one point w =
in the w plane. If nothing else, this illustrates the point made earlier in this section,
that the image set may only be part of the entire w plane. In this particular case the
image set is a single point. Since the whole of the z plane maps onto w = 3, it follows
that, in particular, z = 8 maps to w = . The point B is thus a fixed point in this
mapping, which is a useful concept in helping us to understand a particular mapping.
A further question of interest when considering mappings is that of whether, given a
point in the w plane, we can tell from which point in the z plane it came under the
mapping. If it is possible to get back to a unique point in the z plane then it is said to
have an inverse mapping. Clearly, for an inverse mapping z = g(w) to exist, the point
in the w plane has to be in the image set of the original mapping w = f(z). Also, from
the definition of a mapping, each point w in the w plane image set must lead to a single
point z in the z plane under the inverse mapping z = g(w). (Note the similarity to the
requirements for the existence of an inverse function f~'(x) of a real function f(x).) For
the particular mapping w = 8 considered here the image set is the single point w = 3 in
the w plane, and it is clear from Figure 4.4 that there is no way of getting back to just
a single point in the z plane. Thus the mapping w = 8 has no inverse.

Mapping w = 8
—_—

?ﬁ

=)

z plane w plane
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Figure 4.5
The mapping
w=(1+)j)z.

Case (b) f=0,a#0
With such a choice for the constants o and 3, the mapping corresponding to (4.2) becomes
w=0oz

Under this mapping, the origin is the only fixed point, there being no other fixed points
that are finite. Also, in this case there exists an inverse mapping

1
z==w
o
that enables us to return from the w plane to the z plane to the very same point
from which we started under w = ¢z. To illustrate this mapping at work, let us choose
a=1+]j, so that

w=(1+j)z 4.3)

and consider what happens to a general point z, in the z plane under this mapping. In
general, there are two ways of doing this. We can proceed as in Example 4.1 and split
both z and w into real and imaginary parts, equate real and imaginary parts and hence
find the image curves in the w plane to specific curves (usually the lines Re(z) = con-
stant, Im(z) = constant) in the z plane. Alternatively, we can rearrange the expression
for w and deduce the properties of the mapping directly. The former course of action,
as we shall see in this chapter, is the one most frequently used. Here, however, we shall
take the latter approach and write o= 1 + j in polar form as

1+j= 2™
Then, if
z=rel’
in polar form it follows from (4.3) that
w=r el (4.4)

We can then readily deduce from (4.4) what the mapping does. The general point in the
z plane with modulus » and argument 6 is mapped onto an image point w, with modulus
r(2 and argument 6 + in in the w plane as illustrated in Figure 4.5.

It follows that in general the mapping

w=0oz

maps the origin in the z plane to the origin in the w plane (fixed point), but effects an expan-
sion by || and an anticlockwise rotation by arg o. Of course, arg & need not be positive,
and indeed it could even be zero (corresponding to ¢ being real). The mapping can be loosely
summed up in the phrase ‘magnification and rotation, but no translation’. Certain geometrical

y=1Im(2) v=1Im(w)

w=(l+]jz

o x =Re (2) O u=Re(w')

z plane w plane
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Figure 4.6
The mapping
w=_{+p.

properties are also preserved, the most important being that straight lines in the z plane
will be transformed to straight lines in the w plane. This is readily confirmed by noting
that the equation of any straight line in the z plane can always be written in the form

|lz—a|=|z-b]|

where a and b are complex constants (this being the equation of the perpendicular
bisector of the join of the two points representing @ and » on the Argand diagram).
Under the mapping w = az, the equation maps to

w
) o#0

—-a

‘ w
o

or
|w—aa|=|w-boa]|

in the w plane, which is clearly another straight line.
We now return to the general linear mapping (4.2) and rewrite it in the form

w-B=az
This can be looked upon as two successive mappings: first,
=0z

identical to w = oz considered earlier, but this time mapping points from the z plane to
points in the ¢ plane; secondly,

w=C+p @.5)
mapping points in the { plane to points in the w plane. Elimination of { regains equation
(4.2). The mapping (4.5) represents a translation in which the origin in the { plane is
mapped to the point w = 3 in the w plane, and the mapping of any other point in the
{ plane is obtained by adding f3 to the coordinates to obtain the equivalent point in the
w plane. Geometrically, the mapping (4.5) is as if the { plane is picked up and, without
rotation, the origin placed over the point 3. The original axes then represent the w plane
as illustrated in Figure 4.6. Obviously all curves, in particular straight lines, are pre-
served under this translation.

We are now in a position to interpret (4.2), the general linear mapping, geometrically
as a combination of mappings that can be regarded as fundamental, namely

e translation
e rotation, and
e magnification

that is,
0 6 e
z o e z+ p=oz + =w
rotation magnification ‘ ‘ translation ‘ Od ﬁ ﬁ
¢ vh LA
2 w={+f 2 1
—— - 1
1
°p | eP
1
Pfo--mmmm e »
= b
(@] 1< O u

Cplane, (=) + wplane, w = u + ju
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Example 4.2

Solution

It clearly follows that a straight line in the z plane is mapped onto a corresponding
straight line in the w plane under the linear mapping w = oz + . A second useful
property of the linear mapping is that circles are mapped onto circles. To confirm this,
consider the general circle

|z—z)|=7

in the z plane, having the complex number z, as its centre and the real number r as its
radius. Rearranging the mapping equation w = oz + B gives

_w_p
z=2-F (a20)

so that

Z—zozv—v—g—zozl(w—wo)
o o o

where w, = 0z, + . Hence
lz-zl=r

implies
[w—wo| =lelr

which is a circle, with centre w, given by the image of z, in the w plane and with radius
| |r given by the radius of the z plane circle magnified by |c|.
We conclude this section by considering examples of linear mappings.

Examine the mapping
w=({1+jz+1-]

as a succession of fundamental mappings: translation, rotation and magnification.

The linear mapping can be regarded as the following sequence of simple mappings:

jm/4 | jm/4 | jm/4 .
: Ty —— 2e” : 2"z +1—j=w
rotation magnification translation
anticlockwise by |2 0—1-jor
(0,0)—>(1,-1)

by ‘1-‘11

Figure 4.7 illustrates this process diagrammatically. The shading in Figure 4.7 helps to
identify how the z plane moves, turns and expands under this mapping. For example,
the line joining the points 0 + j2 and 1 + jO in the z plane has the cartesian equation

%y+x=1

Taking w = u + jv and z = x + jy, the mapping
w=({1l+j)z+1-]

becomes

u+jv=_1+)x+y)+1l-j=x—-y+DH+jx+y—-1)
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Figure 4.7
The mapping
w=({1+jz+1-j.

Example 4.3

z — elTdz ’—‘/2
r .

\j

YA 4 A
V2eimdz 41 —j
-— 2
~1+j el 3+j 1
N—F—= e : >
Q 1= u 20 =)o 1] ]2
_l-.-@ l-=
-2
-1-j3 3-j3
w plane

Equating real and imaginary parts then gives
u=x-y+1, v=x+y—1

which on solving for x and y gives
2x=u+v, 2y=v-u+2

Substituting for x and y into the equation ;y +x = 1 then gives the image of this line in
the w plane as the line

v+u=2

which crosses the real axis in the w plane at 2 and the imaginary axis at % . Both lines
are shown dashed, in the z and w planes respectively, in Figure 4.7.

The mapping w = oz + 8 (o, B constant complex numbers) maps the point z = 1 + j
to the point w = j, and the point z = 1 —j to the point w = —1.

(a) Determine o and S.

(b) Find the region in the w plane corresponding to the right half-plane Re(z) = 0
in the z plane.

(c) Find the region in the w plane corresponding to the interior of the unit circle
|z] < 1 in the z plane.

(d) Find the fixed point(s) of the mapping.

In (b)—(d) use the values of & and 8 determined in (a).
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Solution

(a)

(b)

The two values of z and w given as corresponding under the given linear mapping
provide two equations for o and 8 as follows: z = 1 + j mapping to w = j
implies
j=al+)+p
while z =1 — j mapping to w = —1 implies
~l=a(l-j)+B
Subtracting these two equations in o and 3 gives
jtl=o0(l+j)—a(l-j)
so that

L+]_ .
o= — == 1 —

B 2(1=17)

Substituting back for 3 then gives
B=i-(+jha=j-5(1-7)=j-1
so that
w=3(l=jz+j-1=01-jGz-1)

The best way to find specific image curves in the w plane is first to express
z (=x+]y) in terms of w (= + jv) and then, by equating real and imaginary parts,
to express x and y in terms of # and v. We have

w=(1-)Gz-1)

which, on dividing by 1 —j, gives

w_
I=]

-1, _
=5z-1

Taking w=u+ ju and z = x + jy and then rationalizing the left-hand side, we have
Futp)+) =36+ -1

Equating real and imaginary parts then gives

U—v=x-2, u+v=y 4.6)

The first of these can be used to find the image of x = 0. It is u — v = -2, which
is also a region bordered by the straight line # — v = —2 and shown in Figure 4.8.
Pick one point in the right half of the z plane, say z = 2, and the mapping gives
w = 0 as the image of this point. This allays any doubts about which side of
u — v =-2 corresponds to the right half of the z plane, x = 0. The two correspond-
ing regions are shown ‘hatched’ in Figure 4.8.

Note that the following is always true, although we shall not prove it here. If a

curve cuts the z plane in two then the corresponding curve in the w plane also cuts
the w plane in two, and, further, points in one of the two distinct sets of the z plane
partitioned by the curve correspond to points in just one of the similarly partitioned
sets in the w plane.
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Figure 4.8
The mappings of
Example 4.3.

w=(1-)Gz-1) vA Y
A S S

(©)

(d)

\
=Y

w plane

In cartesian form, with z = x + jy, the equation of the unit circle |z| =1 is
¥+y =1

Substituting for x and y from the mapping relationships (4.6) gives the image of
this circle as

w—v+2P%+w+vy=1

or

W+ +2u—-20+3 =0

which, on completing the squares, leads to
u+1)?+@-17=1

As expected, this is a circle, having in this particular case centre (—1, 1) and
radius (3. Ifx? +y? < 1 then (u + 1)’ + (v — 1)* < 1, so the region inside the
circle |z| = 1 in the z plane corresponds to the region inside its image circle in
the w plane. Corresponding regions are shown shaded in Figure 4.8.

The fixed point(s) of the mapping are obtained by putting w=z in w= oz + f3,
leading to

z=(z- (1))
that is,

z=1z—tiz—1+4]

so that
-1+j_ .
==
313l

is the only fixed point.

One final point is in order before we leave this example. In Figure 4.8 the images of

x =0 and ¥’ + y* = | can also be seen in the context of translation, rotation (the line in
Figure 4.8 rotates about z = 2j) and magnification (in fact, shrinkage, as can be seen by
the decrease in diameter of the circle compared with its image in the w plane).
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4.2.2 Exercises

Find in the cartesian form y = mx + ¢ (m and c¢ real
constants) the equations of the following straight
lines in the z plane, z = x + jy:

(@ lz=2+jl=]z-j+3|
b)) z+z*+4j(z-z%)=6

where * denotes the complex conjugate.

Find the point of intersection and the angle of
intersection of the straight lines

lz=1-jl=1z=3+]l
lz=1+jl=1z=3-]l

The function w = jz + 4 — 3j is a combination of
translation and rotation. Show this diagrammatically,
following the procedure used in Example 4.2. Find
the image of the line 6x +y =22 (z =x + jy) in the
w plane under this mapping.

Show that the mapping w = (1 — j)z, where
w=u+jvand z =x + jy, maps the region y > 1
in the z plane onto the region  + v > 2 in the
w plane. [llustrate the regions in a diagram.

Under the mapping w = jz + j, where w =u + ju
and z = x + jy, show that the half-plane x > 0
in the z plane maps onto the half-plane v > 1 in the
w plane.

For z = x + jy find the image region in the w plane
corresponding to the semi-infinite strip x > 0,

0 <y < 2 in the z plane under the mapping

w = jz + 1. [llustrate the regions in both planes.

Find the images of the following curves under
the mapping

w=((+3)z+j/3-1
(a) y=0 (b) x=0

(c) ¥+y*=1 d) *+y"+2p=1

where z = x + jy.

The mapping w = oz + 3 (a, B both constant
complex numbers) maps the pointz =1 + j to
the point w = j and the point z = —1 to the point
w=1+]j.

(a) Determine o and S.

(b) Find the region in the w plane
corresponding to the upper half-plane
Im(z) > 0 and illustrate diagrammatically.

(c) Find the region in the w plane corresponding to
the disc | z| < 2 and illustrate diagrammatically.

(d) Find the fixed point(s) of the mapping.

In (b)—(d) use the values of & and 8 determined
in (a).

4.2.3 Inversion

The inversion mapping is of the form

w =

N =

4.7)

and in this subsection we shall consider the image of circles and straight lines in the
z plane under such a mapping. Clearly, under this mapping the image in the w plane of

the general circle

lz—z)|=7

in the z plane, with centre at z, and radius r, is given by

4.8)

but it is not immediately obvious what shaped curve this represents in the w plane. To
investigate, we take w = u + ju and z, = x, + jy, in (4.8), giving
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=r

u—ju .
“""]"z—xo—Jyo

2
u +v

Squaring we have

2 2
(214 2_x0)+(2u 2+y0)=r2
u +v u +v

which on expanding leads to

2

2ux 2 2v
2u22_ 2 02+x§+ 2U22+ 2)’02 +yé=r2
uw +v) u+v (u +v) (u +0v)
or
2 2
u +v 20y, — 2ux, _ 5 ) )
2 2.2 2 2 =roXo=)o
(u"+0v7) u +v
so that
2 22 2 L2 _ _
W +v)r" —x5—yy) + 2ux, — 2vy, =1 4.9)

The expression is a quadratic in u and v, with the coefficients of #* and v* equal and no
term in uv. It therefore represents a circle, unless the coefficient of u* + 17 is itself zero,
which occurs when

xi+yi=r% or |z|=r
and we have
2uxy — vy, =1

which represents a straight line in the w plane.

Summarizing, the inversion mapping w = 1/z maps the circle |z — z,| = 7 in the z
plane onto another circle in the w plane unless |z,| = 7, in which case the circle is
mapped onto a straight line in the w plane that does not pass through the origin.

When |z,| # r, we can divide the equation of the circle (4.9) in the w plane by the
factor 7> — x§ — y§ to give

2xgu 2y 1

2 2 2 2 2 27 2 2 2
r=X =Yy I =Xo—=Yo T —Xo— D)o

2 2
u +v +

which can be written in the form
(= up)* + (v —vy)* = R

where (u,, v,) are the coordinates of the centre and R the radius of the w plane circle. It
is left as an exercise for the reader to show that

(uy, vy) =( all 4! ), R= e

2 2> 2 2 2 2
r=|z|" " =]z| ¥ =]z

Next we consider the general straight line

|z —a| =z —a,]
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in the z plane, where @, and a, are constant complex numbers with a, # a,. Under the
mapping (4.7), this becomes the curve in the w plane represented by the equation

- —a - —a, 4.10)
w w

‘ 1

Again, it is not easy to identify this curve, so we proceed as before and take
w=u+j, a=p+jq,  a=r+js

where p, g, r and s are real constants. Substituting in (4.10) and squaring both sides, we

have
2 2 2 2
2 2 2 2 2 2 2 2
u +v u +v u +v u +v

Expanding out each term, the squares of u/(u”* + v?) and v/(v* + v*) cancel, giving

which on rearrangement becomes
W+ (P +qg = =)+ 2u(r —p)+2v(g—5)=0 4.11)
Again this represents a circle through the origin in the w plane, unless
pP+q=r+s

which implies |a,| = | a,|, when it represents a straight line, also through the origin, in
the w plane. The algebraic form of the coordinates of the centre of the circle and its
radius can be deduced from (4.11).

We can therefore make the important conclusion that the inversion mapping
w = 1/z takes circles or straight lines in the z plane onto circles or straight lines in
the w plane. Further, since we have carried out the algebra, we can be more
specific. If the circle in the z plane passes through the origin (that is, | z)| = 7 in (4.9) )
then it is mapped onto a straight line that does not pass through the origin in the w
plane. If the straight line in the z plane passes through the origin (|a,| = |a,| in
(4.11)) then it is mapped onto a straight line through the origin in the w plane.
Figure 4.9 summarizes these conclusions.

To see why this is the case, we first note that the fixed points of the mapping, deter-
mined by putting w = z, are

1
z==-, or =1
z

so that z = *1.

We also note that z = 0 is mapped to infinity in the w plane and w = 0 is mapped to
infinity in the z plane and vice versa in both cases. Further, if we apply the mapping a
second time, we get the identity mapping. That is, if

wzl, and Czl
z w


www.semeng.ir

4.2 COMPLEX FUNCTIONS AND MAPPINGS 271

Figure 4.9
The inversion
mapping w = 1/z.

z plane Mapping w = zl w plane

v

>

ate

j@
=Y
A\
e}
=Y

=Y
@]
=Y

=Y
=Y

then

1
&= 1/z g
which is the identity mapping.

The inside of the unit circle in the z plane, |z| < 1, is mapped onto | I/w| < 1 or
[w| > 1, the outside of the unit circle in the w plane. By the same token, therefore,
the outside of the unit circle in the z plane |z| > 1 is mapped onto | l/w| > 1 or
|[w| < 1, the inside of the unit circle in the w plane. Points actually on |z| =1 in the
z plane are mapped to points on |w| =1 in the w plane, with £1 staying fixed, as
already shown. Figure 4.10 summarizes this property.

It is left as an exercise for the reader to show that the top half-boundary of |z]| =1 is
mapped onto the bottom half-boundary of |w| = 1.

For any point z, in the z plane the point 1/z, is called the inverse of z, with respect
to the circle |z| = 1; this is the reason for the name of the mapping. (Note the double
meaning of inverse; here it means the reciprocal function and not the ‘reverse’
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Figure 4.10 Mapping
of the unit circle under
w=1/z.

Example 4.4

Solution

mapping.) The more general definition of inverse is that for any point z, in the z plane
the point 7/z, is the inverse of z, with respect to the circle |z| = r, where r is a real
constant.

Determine the image path in the w plane corresponding to the circle |z — 3| = 2 in the
z plane under the mapping w = 1/z. Sketch the paths in both the z and w planes and
shade the region in the w plane corresponding to the region inside the circle in the
z plane.

The image in the w plane of the circle |z — 3| = 2 in the z plane under the mapping
w = 1/z is given by

11
w

which, on taking w = u + ju, gives

2 2
u +v

”;12_3‘:2

Squaring both sides, we then have
u 2 v\’
()
(uz +0 u+ v

2 2

u +v 6u

2 22 2 2+5=0
(u +v7) u +v

or

which reduces to
1-6u+5u’+1%)=0
or
O

Thus the image in the w plane is a circle with centre (£, 0) and radius . The cor-
responding circles in the z and w planes are shown in Figure 4.11.
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Figure 4.11

The mapping of

Example 4.4.

4.2.4

Taking z = x + jy, the mapping w = 1/z becomes

u+ju= ! 2%:—1%
x+jy x4y

which, on equating real and imaginary parts, gives

pr— x pr— _

u = s U——L
2 2 2 2
X +y X +y

We can now use these two relationships to determine the images of particular points
under the mapping. In particular, the centre (3, 0) of the circle in the z plane is mapped
onto the pointu = !, v =0 in the w plane, which is inside the mapped circle. Thus, under
the mapping, the region inside the circle in the z plane is mapped onto the region inside
the circle in the w plane.

Further, considering three sample points A(1 + j0), B(3 —j2) and C(5 + j0) on the
circle in the z plane, we find that the corresponding image points on the circle in the w
plane are A’(1, 0), B'(3, ) and C’'(%, 0). Thus, as the point z traverses the circle in the
z plane in an anticlockwise direction, the corresponding point w in the w plane will also
traverse the mapped circle in an anticlockwise direction as indicated in Figure 4.11.

Bilinear mappings
A bilinear mapping is a mapping of the form

w=4th 4.12)
cz+d

where a, b, ¢ and d are prescribed complex constants. It is called the bilinear mapping
in z and w since it can be written in the form Awz + Bw + Cz + D = 0, which is linear
in both z and w.

Clearly the bilinear mapping (4.12) is more complicated than the linear mapping
given by (4.2). In fact, the general linear mapping is a special case of the bilinear
mapping, since setting ¢ =0 and d =1 in (4.12) gives (4.2). In order to investigate the
bilinear mapping, we rewrite the right-hand side of (4.12) as follows:

a ad
“(cz+d)—-—+D>
W:az+b_c(cz ) c

cz+d cz+d



www.semeng.ir

274 FUNCTIONS OF A COMPLEX VARIABLE

so that

a , bc—ad
=2 4 — 4.13
W c " c(cz + d) ( )

This mapping clearly degenerates to w = a/c unless we demand that bc — ad # 0. We
therefore say that (4.12) represents a bilinear mapping provided the determinant

a

b
=ad — bc
c

is non-zero. This is sometimes referred to as the determinant of the mapping. When
the condition holds, the inverse mapping

_—dw+ b
,=_4w+ b
cw—a
obtained by rearranging (4.12), is also bilinear, since
-d b
=da—-chb#0

—a

Renaming the constants so that A = a/c, 4 = bc — ad, oo = ¢* and 8 = cd, (4.13)
becomes

w=A+ —H—
oaz+f

and we can break the mapping down into three steps as follows:

zi=az+f
_ 1
Z,= =
Z1

w=A+ Uz,

The first and third of these steps are linear mappings as considered in Section 4.2.1,
while the second is the inversion mapping considered in Section 4.2.3. The bilinear
mapping (4.12) can thus be generated from the following elementary mappings:

1
, oz —> oz+f—m>

rotation translation mversion oz + B
and

magnification

u ho

— —> A+ =
magnification gz + ﬁ translation oz + ﬁ
and
rotation

w

We saw in Section 4.2.1 that the general linear transformation w = oz + § does not
change the shape of the curve being mapped from the z plane onto the w plane. Also,
in Section 4.2.3 we saw that the inversion mapping w = 1/z maps circles or straight lines
in the z plane onto circles or straight lines in the w plane. It follows that the bilinear
mapping also exhibits this important property, in that it also will map circles or straight
lines in the z plane onto circles or straight lines in the w plane.
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Example 4.5

Solution

Investigate the mapping

=Z—l

z+1

by finding the images in the w plane of the lines Re(z) = constant and Im(z) = constant.
Find the fixed points of the mapping.

Since we are seeking specific image curves in the w plane, we first express z in terms
of w and then express x and y in terms of u and v, where z = x + jy and w=u + ju.
Rearranging

gives

=1—w
Taking z =x + jy and w = u + ju, we have
x+jy=l_+.u_+_!_v
l-—u—-jv

_ltutjvl-u+jv
l-u-jvl-u+jv

which reduces to

2 2
x+jy=1_u_v n 2v

(1-uw)l+v" “(1-u)+o

Equating real and imaginary parts then gives

1 —u' =0
x=—" (4.14a)
(1=u) +v
2v

—u) +v

It follows from (4.14a) that the lines Re(z) = x = ¢,, which are parallel to the imaginary
axis in the z plane, correspond to the curves

o= 1—u' =0
| = —
(1—u)2+1/2

where ¢, is a constant, in the w plane. Rearranging this leads to
ol =2u+1*+v¥)=1-1*-1*
or, assuming that 1 + ¢, #0,

2cu c—1
Wyt —— L=
l4+c¢ ¢ +1
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Figure 4.12
The mapping
w=(z-D/(z+1).

which, on completing squares, gives

2 2
(or5e) +7-()
1+c¢ 1+c¢

It is now clear that the corresponding curve in the w plane is a circle, centre (u =
¢,/(1 +¢,), v=0) and radius (1 +¢,)™".

In the algebraic manipulation we assumed that ¢, # —1, in order to divide by 1 + ¢,.
In the exceptional case ¢, = —1, we have u = 1, and the mapped curve is a straight line
in the w plane parallel to the imaginary axis.

Similarly, it follows from (4.14b) that the lines Im(z) = y = ¢,, which are parallel to
the imaginary axis in the z plane, correspond to the curves

2v
(1-u)’+0

Cy) =

where ¢, is a constant, in the w plane. Again, this usually represents a circle in the w
plane, but exceptionally will represent a straight line. Rearranging the equation we have
(1 -+ 02 =2

&

provided that ¢, # 0. Completing the square then leads to
2
(u—1)2+(v—l) = lz

C C

which represents a circle in the w plane, centre (« = 1, v = 1/¢,) and radius 1/c,.

In the exceptional case ¢, = 0, v = 0 and we see that the real axis y = 0 in the z plane
maps onto the real axis v = 0 in the w plane.

Putting a sequence of values to ¢, and then to c,, say —10 to +10 in steps of +1,
enables us to sketch the mappings shown in Figure 4.12. The fixed points of the map-
ping are given by

z—1
z =
z+ 1
v=Im(w)4
y=Im(z)

-l - e e -

LI U Y 3 S P

t v 1O

- e o - B S B E

z plane
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Example 4.6

Solution

that is,
Z=-1, or z=1%j

In general, all bilinear mappings will have two fixed points. However, although there
are mathematically interesting properties associated with particular mappings having
coincident fixed points, they do not impinge on engineering applications, so they only
deserve passing reference here.

Find the image in the w plane of the circle |z| = 2 in the z plane under the bilinear
mapping

we i
zZ+]

Sketch the curves in both the z and w planes and shade the region in the w plane cor-
responding to the region inside the circle in the z plane.

Rearranging the transformation, we have

LW ]

1 —w

so that the image in the w plane of the circle |z| = 2 in the z plane is determined by

‘le%i‘ -2 (4.15)

One possible way of proceeding now is to put w = u + jv and proceed as in Example 4.4,
but the algebra becomes a little messy. An alternative approach is to use the property
of complex numbers that | z,/z,| = |z, | /| z,|, so that (4.15) becomes

ljw+jl=2]1-w|
Taking w = u + ju then gives
[—v+j+ 1D =211 -u)—jvl
which on squaring both sides leads to
(1 +u) =41 —u)* +14
or
u2+vz—1—39u+1=0
Completing the square of the u term then gives
(u - 2)2 +7 = %

indicating that the image curve in the w plane is a circle centre (u = #, v = 0) and radius
4. The corresponding circles in the z and w planes are illustrated in Figure 4.13. To
identify corresponding regions, we consider the mapping of the point z =0 + jO
inside the circle in the z plane. Under the given mapping, this maps to the point
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Figure 4.13
The mapping
w=(z—-)/(z+])).

Example 4.7

Solution

w=2"d__14j0
0+

in the w plane. It then follows that the region inside the circle | z| = 2 in the z plane maps
onto the region outside the mapped circle in the w plane.

z—] v
YA W= T A
2 —
/\ - 1 1 1 1 1 1 1 | .

B = i L g L 9| ;
2 (6] 2 x O|L 2 2

-2

z plane w plane

An interesting property of (4.12) is that there is just one bilinear transformation that
maps three given distinct points z,, z, and z; in the z plane onto three specified distinct
points w,, w, and w; respectively in the w plane. It is left as an exercise for the reader
to show that the bilinear transformation is given by

(w = w)(w, —wy) — (z —z)(z — z3) (4.16)
W =wy)(w, = wy)  (z-2z3)(z, — 21)

The right-hand side of (4.16) is called the cross-ratio of z,, z,, z; and z. We shall illus-
trate with an example.

Find the bilinear transformation that maps the three points z = 0, —j and —1 onto the
three points w =j, 1, 0 respectively in the w plane.

Taking the transformation to be

W_az+b
cz+d

on using the given information on the three pairs of corresponding points we have

j= a(Q) +b _b (4.17a)
0 +d d

j—a+b (4.17b)
c(=j)+d

o= a=D +b 4.17¢)
c(-1)+d
From (4.17¢) a = b; then from (4.17a)

d=2=_jp=—ja
j
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10

11

12

13

and from (4.17b) ¢ = ja. Thus

_az+ta _lz+1_ _.z+1

jaz —ja

jz—-1

z—1

Alternatively, using (4.16) we can obtain

w=DPU=0_Ez=0Ej+1)

(w=0)(1-1))
or
we_iZ + 1
Jz -1
as before.

(z+1(=1-0)

4.2.5 Exercises

Show that if z = x + jy, the image of the half-plane
y > ¢ (c constant) under the mapping w = 1/z is the
interior of a circle, provided that ¢ > 0. What is
the image when ¢ = 0 and when ¢ < 0? Illustrate
with sketches in the w plane.

Determine the image in the w plane of the circle
3 N
zZ + 3 +J =3

under the inversion mapping w = 1/z.

Show that the mapping w = 1/z maps the circle
|z — a| = a, with a being a positive real constant,
onto a straight line in the w plane. Sketch the
corresponding curves in the z and w planes,
indicating the region onto which the interior

of the circle in the z plane is mapped.

Find a bilinear mapping that maps z =0 to w =,
z=—jtow=1andz=-1tow=0. Hence sketch
the mapping by finding the images in the w plane
of the lines Re(z) = constant and Im(z) = constant in
the z plane. Verify that z = %(j - 1)(-1=£/3)are
fixed points of the mapping.

The two complex variables w and z are related
through the inverse mapping

o L]
z
(a) Find the images of the points z=1, 1 —j and
0 in the w plane.
(b) Find the region of the w plane corresponding
to the interior of the unit circle |z| < 1 in the
z plane.

14

15

16

17

(c) Find the curves in the w plane corresponding
to the straight lines x =y and x + y = 1 in the
z plane.

(d) Find the fixed points of the mapping.

Given the complex mapping

_z+1
z—1

where w = u + jv and z = x + j y, determine the
image curve in the w plane corresponding to the
semicircular arc x* + 1> = 1 (x < 0) described from
the point (0, —1) to the point (0, 1).

(a) Map the region in the z plane (z = x + jy) that
lies between the lines x =y and y = 0, with x <0,
onto the w plane under the bilinear mapping

z+]

z—-3
(Hint: Consider the point w= 2 to help identify
corresponding regions.)

(b) Show that, under the same mapping as in (a),
the straight line 3x + y =4 in the z plane
corresponds to the unit circle |[w| =1 in the
w plane and that the point w = 1 does not
correspond to a finite value of z.

If w=(z—j)/(z +]), find and sketch the image in
the w plane corresponding to the circle |z| =2 in the
z plane.

Show that the bilinear mapping

6y z — Z
M ZTh

z -z
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where 6, is a real constant 0 < 6, < 2, z, a fixed
complex number and z§ its conjugate, maps the

upper half of the z plane (Im(z) > 0) onto the inside
of the unit circle in the w plane (|w| < 1). Find the
values of z, and 6, if w = 0 corresponds to z = j and

circular arcs or the straight line through z = 0 and
z =]j in the z plane are mapped onto circular arcs
or the straight line through w = 0 and w = j in the
w plane. Find the images of the regions |z — % | < %
and |z]| < |z —j| in the w plane.

w = —1 corresponds to z = co.

19  Find the most general bilinear mapping that maps
the unit circle |z| = 1 in the z plane onto the unit
circle |w| =1 in the w plane and the point z = z, in
the z plane to the origin w = 0 in the w plane.

18  Show that, under the mapping

_ 2jz

w p
z+]

4.2.6 The mapping w = z?2

There are a number of other mappings that are used by engineers. For example, in
dealing with Laplace and z transforms, the subjects of Chapters 5 and 6 respectively,
we are concerned with the polynomial mapping

w=ay+az+...+a,z"

where a,, a,, . .

P
o)

where P and Q are polynomials in z, and the exponential mapping

., a, are complex constants, the rational function

w=ae”

where e = 2.71828 . . ., the base of natural logarithms. As is clear from the bilinear
mapping in Section 4.2.4, even elementary mappings can be cumbersome to analyse.
Fortunately, we have two factors on our side. First, very detailed tracing of specific
curves and their images is not required, only images of points. Secondly, by using com-
plex differentiation, the subject of Section 4.3, various facets of these more complicated
mappings can be understood without lengthy algebra. As a prelude, in this subsection
we analyse the mapping w = z2, which is the simplest polynomial mapping.

Example 4.8 Investigate the mapping w = z* by plotting the images on the w plane of the lines

x = constant and y = constant in the z plane.

Solution  There is some difficulty in inverting this mapping to get z as a function of w, since
square roots lead to problems of uniqueness. However, there is no need to invert here,

for taking w = u + jv and z = x + jy, the mapping becomes
w=u+jv=(x+jy’ =" -1 +j2xy

which, on taking real and imaginary parts, gives

u=x>-y>
4.18)
v=2xy
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Figure 4.14
The mapping w = 2%,

If x = ¢, a real constant, then (4.18) becomes

u=o’-y? v=20y

which, on eliminating y, gives

= - L
40
or
40tu = 4ol — 1
so that

vV =40 — 40tu =400 — u)

This represents a parabola in the w plane, and, since the right-hand side must be
positive, o = u so the ‘nose’ of the parabola is at u = o on the positive real axis in

the w plane.

If y = B, a real constant, then (4.18) becomes

u=x'-f, v=2xf

which, on eliminating x, gives

u=4?—ﬁz
or
4 =0 — 4B

so that

Vv =4fu+ 4B =4Fwu+ B

This is also a parabola, but pointing in the opposite direction. The right-hand side, as
before, must be positive, so that u > —f* and the ‘nose’ of the parabola is on the
negative real axis. These curves are drawn in Figure 4.14.

o
=Y

Y

=Y
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20

21

22

We shall not dwell further on the finer points of the mapping w = z*. Instead, we note
that in general it is extremely difficult to plot images of curves in the z plane, even the
straight lines parallel to the axes, under polynomial mappings. We also note that we do

not often need to do so, and that we have done it only as an aid to understanding.

The exercises that follow should also help in understanding this topic. We shall then
return to examine polynomial, rational and exponential mappings in Section 4.3.4, after
introducing complex differentiation.

4.2.7 Exercises

Find the image region in the w plane corresponding
to the region inside the triangle in the z plane having
vertices at 0 +j0, 2 +j0 and 0 + j2 under the
mapping w = z2. lllustrate with sketches.

Find the images of the lines y = x and y = —x under
the mapping w = z% Also find the image of the
general line through the origin y = mx. By putting
m =tan 6, deduce that straight lines intersecting at
the origin in the z plane map onto lines intersecting
at the origin in the w plane, but that the angle
between these image lines is double that between
the original lines.

Consider the mapping w = z", where 7 is an integer
(a generalization of the mapping w = z?). Use the
polar representation of complex numbers to show
that

(a) Circles centred at the origin in the z plane are
mapped onto circles centred at the origin in the
w plane.

23

(b) Straight lines passing through the origin
intersecting with angle 6, in the z plane are
mapped onto straight lines passing through the
origin in the w plane but intersecting at an
angle n0,.

If the complex function

1+7°
z

w =

is represented by a mapping from the z plane onto
the w plane, find  in terms of x and y, and v in terms
of x and y, where z =x + jy, w = u + jv. Find the
image of the unit circle |z| = | in the w plane. Show
that the circle centred at the origin, of radius 7, in
the z plane (|z| = r) is mapped onto the curve

Pu Y v Y 2
(—2 )+(—2 ) =r (rzl
r+ 1 =1

in the w plane. What kind of curves are these? What
happens for very large r?

Complex differentiation

The derivative of a real function f(x) of a single real variable x at x = x,, is given by the
limit

X=X, X — X,

f’(xy) = lim [f(x)——f(xo)}

Here, of course, x, is a real number and so can be represented by a single point on the
real line. The point representing x can then approach the fixed x, either from the left or
from the right along this line. Let us now turn to complex variables and functions
depending on them. We know that a plane is required to represent complex numbers,
80 z,, is now a fixed point in the Argand diagram, somewhere in the plane. The definition
of the derivative of the function f(z) of the complex variable z at the point z, will thus be
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4.3.1

z-2z) z =z

Pz = lim {ﬂ_);f(_q

It may appear that if we merely exchange z for x, the rest of this section will follow
similar lines to the differentiation of functions of real variables. For real variables
taking the limit could only be done from the left or from the right, and the existence of
a unique limit was not difficult to establish. For complex variables, however, the point
that represents the fixed complex number z, can be approached along an infinite num-
ber of curves in the z plane. The existence of a unique limit is thus a very stringent
requirement. That most complex functions can be differentiated in the usual way is a
remarkable property of the complex variable. Since z = x + jy, and x and y can vary
independently, there are some connections with the calculus of functions of two real
variables, but we shall not pursue this connection here.

Rather than use the word ‘differentiable’ to describe complex functions for which a
derivative exists, if the function f(z) has a derivative f’(z) that exists at all points of a
region R of the z plane then f{(z) is called analytic in R. Other terms such as regular or
holomorphic are also used as alternatives to analytic. (Strictly, functions that have a
power series expansion — see Section 4.4.1 — are called analytic functions. Since dif-
ferentiable functions have a power series expansion they are referred to as analytic
functions. However, there are examples of analytic functions that are not differentiable.)

Cauchy-Riemann equations

The following result is an important property of the analytic function.

If z=x +jy and f(z) = u(x, y) + ju(x, y), and f(z) is analytic in some region R of the
z plane, then the two equations

g @
ox oy dy  ox “.19)

known as the Cauchy—Riemann equations, hold throughout R.

It is instructive to prove this result. Since f”(z) exists at any point z, in R,

Pz = lim {ﬂ_);f(_q

z-2z) z =z

where z can tend to z, along any path within R. Examination of (4.19) suggests that
we might choose paths parallel to the x direction and parallel to the y direction, since
these will lead to partial derivatives with respect to x and y. Thus, choosing z — z, = Ax,
a real path, we see that

Fe = lim | Azt AY) = flzg)
Ax—0 Ax

Since f(z) = u + jv, this means that

f(zo) = lim u(xy + Ax, yo) + ju(xe + Ax, yo) = u(xy, yo) = jv(xo, yo)
Ax—0 Ax
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or, on splitting into real and imaginary parts,

, . + AX, o) — , . + AX, o) = ,
f'(z)) = lim u(xo X, Vo) — u(Xo, Vo) +JU(xo X, Vo) = U(Xp, Vo)
Ax—0 Ax Ax
giving

’ au . (97)
== +]= 4.20
S(z0) {ﬁx J&x} ) ( )
X=X0,y=Yg
Starting again from the definition of f”(z,), but this time choosing z — z, = jAy for the
path parallel to the y axis, we obtain

1= tim AR _f(zﬂ

Once again, using f(z) = u + jv and splitting into real and imaginary parts, we see that

f(z) = lim u(xo, Yo + Ay) + ju(xo, Yo + Ay) = u(xy, o) = jv(Xo, Vo)
O jAy—0 iAy

- 1lim {L”(xmyo + Ay) — u(xo, Vo) " v(xp, Yo + Ay) — U(anJ’o)J

a0l Ay Ay
giving
Sz = 1ou, o 4.21)
AC ) -

Since f’(z,) must be the same no matter what path is followed, the two values obtained
in (4.20) and (4.21) must be equal. Hence

B 1w,
o ox jdy oy J&y dy

Equating real and imaginary parts then gives the required Cauchy—Riemann equations

du_d
ox dx Oy

at the point z = z,. However, z, is an arbitrarily chosen point in the region R; hence the

Cauchy—Riemann equations hold throughout R, and we have thus proved the required

result.

It is tempting to think that should we choose more paths along which to let z — z,
tend to zero, we could derive more relationships along the same lines as the Cauchy—
Riemann equations. It turns out, however, that we merely reproduce them or expressions
derivable from them, and it is possible to prove that satisfaction of the Cauchy—Riemann
equations (4.19) is a necessary condition for a function f{z) = u(x, y) + ju(x, ), z=x + Jy,
to be analytic in a specified region. At points where f”(z) exists it may be obtained from
either (4.20) or (4.21) as

dv

N
f(Z)_ax+Jax
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Example 4.9

Solution

or

dv  .du
Y
If z is given in the polar form z = re® then
@) =u(r, 0) + ju(r, 6)
and the corresponding polar forms of the Cauchy—Riemann equations are

u_ldv  _ low

f@=

o roo’ o rad “-22)
At points where f’(z) exists it may be obtained from either of
Sof du | .dv
() = a0 Z4 v
fl@)=e ( 5 8}’) (4.23a)
or
@-er(12_ i)
f@)=¢ (r ETRT. (4.23b)

Verify that the function f(z) = z* satisfies the Cauchy—Riemann equations, and deter-
mine the derivative f”(z).

Since z = x + jy, we have
fl)=z"=(x+jy)=("—)") +j2xy

so if f(z) = u(x, y) + ju(x, y) then
u=x*-y>, v=2xy

giving the partial derivatives as

du_o  du_

ox 2, dy 2
o v _
ox 2, dy o

It is readily seen that the Cauchy—Riemann equations

u_dv  u_
ox oy dy ox
are satisfied.
The derivative f’(z) is then given by

v Ou  Ov S
f(z)—ax+38x—2x+32y—22

as expected.
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Example 4.10

Solution

Verify that the exponential function f(z) = ¢*, where o is a constant, satisfies the
Cauchy—Riemann equations, and show that /'(z) = oz e®.

f(2) =u+jv=e%=e") =™ el =e* (cos ay + j sin ay)
so0, equating real and imaginary parts,
u=e* cos oy, v=e*sinoy

The partial derivatives are

o _ oe* cos oy, d_ ae™ sin oy
ox ox

Ju =—e™ sin oy, Ll =oe* cosay
ady dy

confirming that the Cauchy—Riemann equations are satisfied. The derivative f’(z) is
then given by

(2= Ju + jQ-l-} = e (cos oy +jsin ay) = ore™
ox “ox
so that
4 eo_ gew 4.24)
dz

As in the real variable case, we have (see Section 4.3.1)
e =cosz+jsinz (4.25)

so that cosz and sinz may be expressed as

e e
Co8z = ———
L (4.262)
—c
2j

sinz =

Using result (4.24) from Example 4.10, it is then readily shown that

diz (sinz) =cosz

diz(cos z) =—sinz

Similarly, we define the hyperbolic functions sinh z and cosh z by

. e —e” R
sinhz = 7 - —jsinjz

(4.26b)
e +e”

coshz = = cosjz
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from which, using (4.24), it is readily deduced that

4 (sinhz) = coshz
dz

4 (coshz) =sinhz
dz

We note from above that e’ has the following real and imaginary parts:
Re(e’) =e“cosy
Im(e’) =¢*siny

In real variables the exponential and circular functions are contrasted, one being mono-
tonic, the other oscillatory. In complex variables, however, the real and imaginary parts
of ¢ are (two-variable) combinations of exponential and circular functions, which
might seem surprising for an exponential function. Similarly, the circular functions of
a complex variable have unfamiliar properties. For example, it is easy to see that | cosz|
and |sinz| are unbounded for complex z by using the above relationships between
circular and hyperbolic functions of complex variables. Contrast this with |cosx| < 1
and |sinx| =< 1 for a real variable x.

In a similar way to the method adopted in Examples 4.9 and 4.10 it can be shown
that the derivatives of the majority of functions f(x) of a real variable x carry over to the
complex variable case f(z) at points where f(z) is analytic. Thus, for example,

d -
—z"=nz""

dz

for all z in the z plane, and

ilnz=l
z

dz

for all z in the z plane except for points on the non-positive real axis, where Inz is
non-analytic.

It can also be shown that the rules associated with derivatives of a function of a real
variable, such as the sum, product, quotient and chain rules, carry over to the complex
variable case. Thus,

L11t) + g1 = 442 4 22
z dz dz
41 112) 8201 = iy B2 + D)
z dz dz

d _dfdeg
3, /(8(@) = dg dz

d|f2) | _g@f2) - f(2)g'(z)
dz| g(2) (g7’
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4.3.2

Example 4.11

Solution

Conjugate and harmonic functions

A pair of functions u(x, y) and v(x, y) of the real variables x and y that satisfy the
Cauchy—Riemann equations (4.19) are said to be conjugate functions. (Note here
the different use of the word ‘conjugate’ to that used in complex number work, where
z*¥ = x — jy is the complex conjugate of z = x + jy.) Conjugate functions satisfy the
orthogonality property in that the curves in the (x, y) plane defined by u(x, y) = constant
and v(x, y) = constant are orthogonal curves. This follows since the gradient at any point
on the curve u(x, y) = constant is given by

dy| :_@/a_u
dx dy| ox

L —u

and the gradient at any point on the curve v(x, y) = constant is given by

dy| z_&_v/a_v
dx| dyl ox

It follows from the Cauchy—Riemann equations (4.19) that

dy| || -
del/

so the curves are orthogonal.
A function that satisfies the Laplace equation in two dimensions is said to be
harmonic; that is, u(x, y) is a harmonic function if

ox~  dy
It is readily shown (see Example 4.12) that if f(z) = u(x, y) + ju(x, ) is analytic, so that
the Cauchy—Riemann equations are satisfied, then both « and v are harmonic functions.
Therefore u and v are conjugate harmonic functions. Harmonic functions have applica-

tions in such areas as stress analysis in plates, inviscid two-dimensional fluid flow and
electrostatics.

=0

Given u(x, y) = x> — y* + 2x, find the conjugate function v(x, y) such that f(z) =
u(x, y) + ju(x, y) is an analytic function of z throughout the z plane.

We are given u(x, y) = x* — y* + 2x, and, since f(z) = u + jv is to be analytic, the Cauchy—
Riemann equations must hold. Thus, from (4.19),

v _
dy ox

Integrating this with respect to y gives

=2x+2

v=2xy+2y+ F(x)

where F(x) is an arbitrary function of x, since the integration was performed holding
x constant. Differentiating v partially with respect to x gives
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Example 4.12

Solution

but this equals —du/dy by the second of the Cauchy—Riemann equations (4.19). Hence

dy dx

But since u = x* — y* + 2x, du/dy = -2y, and comparison yields F(x) = constant. This
constant is set equal to zero, since no conditions have been given by which it can be
determined. Hence

u(x, y) + jux, ) =x* — y* + 2x + j(2xy + 2y)

To confirm that this is a function of z, note that f(z) is f(x + jy), and becomes just f(x)
if we set y = 0. Therefore we set y = 0 to obtain

Sfx +j0) = f(x) = u(x, 0) + julx, 0) = x>+ 2x
and it follows that
fle)=2*+2z

which can be easily checked by separation into real and imaginary parts.

Show that the real and imaginary parts u(x, y) and v(x, y) of a complex analytic function
f(z) are harmonic.

Since

@) = ulx, y) + julx, y)
is analytic, the Cauchy—Riemann equations
dv_ _du  Ju_dv
ox oy dx dy
are satisfied. Differentiating the first with respect to x gives

@_ Ju ou _ 8(814)

ox

x> Oxdy - dyox - dy
which is —d°v/d)?, by the second Cauchy—-Riemann equation. Hence

(92_02 = (92v2 , or 82—1}2 + 82_112 =0
ox dy ox~ dy

and v is a harmonic function.
Similarly,
du_ dv_ 0 () du
ady ox’

o’ _8y8x - _8x

so that
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o’ o
and u is also a harmonic function. We have assumed that both # and v have continuous
second-order partial derivatives, so that

Fu _ Ju  Fv _ v
oxdy dyox’  odxdy dyox

dv, dv_

24

25

26

27

28

4.3.3 Exercises

Determine whether the following functions are
analytic, and find the derivative where appropriate:
(b) sin4z

(d) cos2z

(a) z¢€

(c) zz*

Determine the constants a and b in order that
w=x>+ay — 2xy + j(bx* — 1* + 2xp)

be analytic. For these values of @ and b find the
derivative of w, and express both w and dw/dz as
functions of z =x + jy.

Find a function v(x, y) such that, given u =2x(1 —y),
f(z) = u+jv is analytic in z.

Show that @(x, y) =e*(x cos y — y sin y) is a harmonic
function, and find the conjugate harmonic function
w(x, y). Write ¢(x, y) + jy(x, ) as a function of
z=x+jy only.

Show that u(x, y) = sinx cosh y is harmonic. Find
the harmonic conjugate v(x, y) and express w = u + ju
as a function of z = x + jy.

29

30

31

32

Find the orthogonal trajectories of the following
families of curves:

(a) Xy —xy* =0 (constant )

(b) e*cosy+xy=a (constant r)

Find the real and imaginary parts of the functions
(a) ZZ e22
(b) sin2z

Verify that they are analytic and find their
derivatives.

Give a definition of the inverse sine function
sin™' z for complex z. Find the real and imaginary
parts of sin™' z. (Hint: put z = sinw, split into

real and imaginary parts, and with w = u + jv
and z = x + jy solve for # and v in terms of x

and y.) Is sin™' z analytic? If so, what is its
derivative?

Establish that if z = x + jy,
|sinhy| < |sinz| < coshy.

4.3.4 Mappings revisited

In Section 4.2 we examined mappings from the z plane to the w plane, where in the
main the relationship between w and z, w = f(z) was linear or bilinear. There is an
important property of mappings, hinted at in Example 4.8 when considering the map-
ping w =z, A mapping w = f{(z) that preserves angles is called conformal. Under such
a mapping, the angle between two intersecting curves in the z plane is the same as the
angle between the corresponding intersecting curves in the w plane. The sense of the
angle is also preserved. That is, if 6 is the angle between curves 1 and 2 taken in the anti-
clockwise sense in the z plane then 6 is also the angle between the image of curve 1
and the image of curve 2 in the w plane, and it too is taken in the anticlockwise sense.
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Figure 4.15
Conformal mappings.

Example 4.13

Solution

w=f(z)
———
Y4 (conformal) YA

curve 2 flcurve 2)

P [4
curve | fleurve 1)

zy f(ZO)
0 X ) f
z plane w plane

Figure 4.15 should make the idea of a conformal mapping clearer. If f(z) is analytic
then w = f(z) defines a conformal mapping except at points where the derivative f’(z)
is zero.

Clearly the linear mappings

w=az+f (a#0)

are conformal everywhere, since dw/dz = o and is not zero for any point in the z plane.
Bilinear mappings given by (4.12) are not so straightforward to check. However, as we
saw in Section 4.2.4, (4.12) can be rearranged as

=1 = #0

w +az+ﬁ (06, 1 #0)
Thus

dw __ pa

dz  (az+ By

which again is never zero for any point in the z plane. In fact, the only mapping we have
considered so far that has a point at which it is not conformal everywhere is w = z*
(cf. Example 4.8), which is not conformal at z = 0.

Determine the points at which the mapping w =z + 1/z is not conformal and demon-
strate this by considering the image in the w plane of the real axis in the z plane.

Taking z = x + jy and w = u + ju, we have

x—jy
X+

w=u+jv=x+jy+

which, on equating real and imaginary parts, gives

u=x+
2 2
X +y

v=y- zy 2
X +y
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Figure 4.16 Image
ofz=1+¢€of
Example 4.13.

The real axis, y = 0, in the z plane corresponds to v = 0, the real axis in the w plane.
Note, however, that the fixed point of the mapping is given by

z=z+ !
z
or z = eo. From the Cauchy—Riemann equations it is readily shown that w is analytic
everywhere except at z = 0. Also, dw/dz = 0 when
1-1 -0, thatis z=4#1

2
z

which are both on the real axis. Thus the mapping fails to be conformal at z = 0 and
z==1. The image of z =1 is w = 2, and the image of z = —1 is w = —2. Consideration
of the image of the real axis is therefore perfectly adequate, since this is a curve passing
through each point where w = z + 1/z fails to be conformal. It would be satisfying if we
could analyse this mapping in the same manner as we did with w = z? in Example 4.8.
Unfortunately, we cannot do this, because the algebra gets unwieldy (and, indeed, our
knowledge of algebraic curves is also too scanty). Instead, let us look at the image of
the point z = 1 + &, where € is a small real number. € > 0 corresponds to the point Q
just to the right of z = 1 on the real axis in the z plane, and the point P just to the
left of z = 1 corresponds to € < 0 (Figure 4.16).

y UT

Tpéea‘(-aa_Q‘ <2>R
0 I x o| 2 u
z plane w plane

If z=1 + e then

w:1+g+—L
1+¢

=l+e+(1+e)'
=l+e+l-¢e+&€-€+...
=2+¢

if | €] is much smaller than 1 (we shall discuss the validity of the power series expansion
in Section 4.4). Whether € is positive or negative, the point w =2 + € is to the right of
w = 2 in the w plane as indicated by the point R in Figure 4.16. Therefore, as € — 0, a
curve (the real axis) that passes through z = 1 in the z plane making an angle 6 =«
corresponds to a curve (again the real axis) that approaches w = 2 in the w plane along
the real axis from the right making an angle 6 = 0. Non-conformality has thus been
confirmed. The treatment of z = —1 follows in an identical fashion, so the details
are omitted. Note that when y =0 (v =0), u = x + 1/x so, as the real axis in the z plane
is traversed from x = —eo to x = 0, the real axis in the w plane is traversed from
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-2 Ol +2 u
w plane

Figure 4.17 Image
in w plane of the real
axis in the z plane for
Example 4.13.

Example 4.14

Solution

u = —oo to =2 and back to u = —o again (when x = —1, u reaches —2). As the real
axis in the z plane is traversed from x = 0 through x = 1 to x = +oo, so the real axis in
the w plane is traversed from u = +oo to u =42 (x = 1) back to u = o again. Hence the
points on the real axis in the w plane in the range —2 < u# < 2 do not correspond to real
values of z. Solving u = x + 1/x for x gives

x=1uk (7 - 4)]

which makes this point obvious. Figure 4.17 shows the image in the w plane of the real
axis in the z plane. This mapping is very rich in interesting properties, but we shall not
pursue it further here. Aeronautical engineers may well meet it again if they study the
flow around an aerofoil in two dimensions, for this mapping takes circles centred at the
origin in the z plane onto meniscus (lens-shaped) regions in the w plane, and only a
slight alteration is required before these images become aerofoil-shaped.

Examine the mapping
w=¢

by (a) finding the images in the w plane of the lines x = constant and y = constant in
the z plane, and (b) finding the image in the w plane of the left half-plane (x < 0) in the
z plane.

Taking z = x + jy and w = u + ju, for w = ¢’ we have
u==e"cosy
v=e'siny

Squaring and adding these two equations, we obtain
W+t =e”

On the other hand, dividing the two equations gives
Y = tan y
u

We can now tackle the questions.

(a)  Since u* + v = ™, putting x = constant shows that the lines parallel to the imagin-
ary axis in the z plane correspond to circles centred at the origin in the w plane.
The equation

v
- =tany
u

shows that the lines parallel to the real axis in the z plane correspond to straight
lines through the origin in the w plane (v = utan  if y = @, a constant).
Figure 4.18 shows the general picture.
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Figure 4.18 Mapping
of lines under w = ¢°.

y=Im@@) A
R EA TR R R
---------r------

6]

w plane

z plane

Since u* + v* = €%, if x = 0 then u* + ¥ = 1, so the imaginary axis in the z plane
corresponds to the unit circle in the w plane. If x < 0 then e < 1, and as x — —oo,
e* — 0, so the left half of the z plane corresponds to the interior of the unit circle

(b)

in the w plane, as illustrated in Figure 4.19.

Figure 4.19 Mapping v B vA
=e
of halzf-plane under = Cav=1
w=e. /‘ '\
0 x -1 Q‘/l u
z plane w plane
4.3.5 Exercises
33  Determine the points at which the following 36  Consider the mapping w = sinz. Determine the
mappings are not conformal: points at which the mapping is not conformal.
By finding the images in the w plane of the
_ 2 93 _ 2
@ w=z-1 (b) w=22-21+722+6 lines x = constant and y = constant in the z plane
P 1 (z=x+]y), draw the mapping along similar lines to
(©) w=38z 252 Figures 4.14 and 4.18.
34 Follgw Example 4.13 ff)r the mapping w=z- 1/?. 37  Show that the transformation
Again determine the points at which the mapping is
not conformal, but this time demonstrate this by -
looking at the image of the imaginary axis. z={+ Z
35  Find the region of the w plane corresponding to where z = x + jy and { = R e’ maps a circle, with

the following regions of the z plane under the
exponential mapping w = e”:
(@ 0sx<o b o=sx<l1,0=<y<1

() jn<y<m0<x<eo

centre at the origin and radius g, in the { plane, onto
a straight line segment in the z plane. What is the
length of the line? What happens if the circle in the
{ plane is centred at the origin but is of radius b,
where b # a?
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44.1

Complex series

In Modern Engineering Mathematics we saw that there were distinct advantages in being
able to express a function f{(x), such as the exponential, trigonometric and logarithmic
functions, of a real variable x in terms of its power series expansion

flx) = 2 ax" =ay,+ax+ax’+...+ax +... 4.27)
n=0

Power series are also very important in dealing with complex functions. In fact, any real
function f(x) which has a power series of the form in (4.27) has a corresponding com-
plex function f(z) having the same power series expansion, that is

flz)= Z a,z" =a,+az+azt+.. . +az +... (4.28)
n=0

This property enables us to extend real functions to the complex case, so that methods
based on power series expansions have a key role to play in formulating the theory of
complex functions. In this section we shall consider some of the properties of the power
series expansion of a complex function by drawing, wherever possible, an analogy with
the power series expansion of the corresponding real function.

Power series

A series having the form

2 a,z—z))'=ay+az—z)+az—z)l+...+a(z—z) +... 4.29)
n=0

in which the coefficients a, are real or complex and z, is a fixed point in the complex
z plane is called a power series about z, or a power series centred on z,. Where z, = 0,
the series (4.29) reduces to the series (4.28), which is a power series centred at the
origin. In fact, on making the change of variable z’ = z — z,, (4.29) takes the form (4.28),
so there is no loss of generality in considering the latter below.

Tests for the convergence or divergence of complex power series are similar to those
used for power series of a real variable. However, in complex series it is essential that
the modulus |a,| be used. For example, the geometric series

= n
I
n=0
has a sum to N terms
N-1
_ Zzn _ 1 - ZN
= =
1 -z

n=0

%)

and converges, if |z] < 1, to the limit 1/(1 —z) as N — oo, If | z| = 1, the series diverges.
These results appear to be identical with the requirement that |x| < 1 to ensure con-
vergence of the real power series
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Figure 4.20
Region of
convergence
of X, z".

1 S
=) x
DY
n=0
However, in the complex case the geometrical interpretation is different in that the
condition |z| < 1 implies that z lies inside the circle centred at the origin and radius 1

in the z plane. Thus the series Y.,_,z" converges if z lies inside this circle and diverges
if z lies on or outside it. The situation is illustrated in Figure 4.20.

[} . \
. Series converges ; Series

T 3; o
! 0 , diverges x

The existence of such a circle leads to an important concept in that in general there
exists a circle centred at the origin and of radius R such that the series

i 4 on | converges if |z|] <R
z
pr ! divergesif  |z| > R
The radius R is called the radius of convergence of the power series; what happens
when |z| = R is normally investigated as a special case.

We have introduced the radius of convergence based on a circle centred at the
origin, while the concept obviously does not depend on the location of the centre of
the circle. If the series is centred on z, as in (4.29) then the convergence circle would
be centred on z,. Indeed it could even be centred at infinity, when the power series
becomes

— “n a, a, a,
Zanz =ao+ =+ S 2
oy z oz z

which we shall consider further in Section 4.4.5.

In order to determine the radius of convergence R for a given series, various tests for
convergence, such as those introduced in Modern Engineering Mathematics for real
series, may be applied. In particular, using d’ Alembert’s ratio test, it can be shown that
the radius of convergence R of the complex series Y.,_,a,z" is given by
an

R = lim

n—oo

(4.30)

[

provided that the limit exists. Then the series is convergent within the disc |z| < R.
In general, of course, the limit may not exist, and in such cases an alternative method
must be used.
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Example 4.15

Solution

Find the power series, in the form indicated, representing the function 1/(z — 3) in the
following three regions:

@ lz2<3%  Ya
n=0

b Iz-21<1; ¥ a-2y
n=0

© l2>3 Y

n=0

N:IQ
>

and sketch these regions on an Argand diagram.

We know that the binomial series expansion

(1+z)":1+nz+"—L—2”2|_l Py = Dm=2). (o rt D),

r!

is valid for |z| < 1. To solve the problem, we exploit this result by expanding the
function 1/(z — 3) in three different ways:

1

1 3 -1 2 n
- Tr =—1(l-12) == 1+:z+(G2)  +...+G2)"+...]

(a)
for [3z|] < 1, that is |z| < 3, giving the power series
1 _ 11,12
—_— = —z—5z—... (|z|I<3)

S
(b) e Rl s [(z-2)-1]

=[l+@Ez-2)+@E-2P+...1 (J]z=2|<1)
giving the power series

A G- —e-22—... (z-2]<1)
z-3

gL Uz 1, ,3.(3Y
© 2_3_1_3/2_2[1+Z+(2)+..}

giving the power series

3.9
==+5+=5+... (Iz|>3)

The three regions are sketched in Figure 4.21. Note that none of the regions includes
the point z = 3, which is termed a singularity of the function, a concept we shall discuss
in Section 4.5.1.
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Figure 4.21 Regions
of convergence for the
series in Example 4.15.

Example 4.16

Solution

VA

|z]|>3

z plane

In Example 4.15 the whole of the circle |z| = 3 was excluded from the three regions
where the power series converge. In fact, it is possible to include any selected point in
the z plane as a centre of the circle in which to define a power series that converges
to 1/(z — 3) everywhere inside the circle, with the exception of the point z = 3. For
example, the point z = 4j would lead to the expansion of

1 1 1
z—4j+4j -3 4j-3z-4]
4j -3

in a binomial series in powers of (z — 4j)/(4j — 3), which converges to 1/(z — 3) inside
the circle

2= 4j|=14i 3] = /(16 +9) =5

We should not expect the point z = 3 to be included in any of the circles, since the
function 1/(z — 3) is infinite there and hence not defined.

Prove that both the power series Y. a,z" and the corresponding series of derivatives
> o na,z"" have the same radius of convergence.

Let R be the radius of convergence of the power series 2., a,z". Since lim,_,_ (a,z{) =0
(otherwise the series has no chance of convergence), if | z,| < R for some complex number
z, then it is always possible to choose

la,| <lz[™

for n > N, with N a fixed integer. We now use d’Alembert’s ratio test, namely

. . la =

if lim|=22| <1 then E a,Z' converges
e a” n=0

. . A, = n .

if lim|—==|>1 then z a,z  diverges
e a" n=0
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38

The differentiated series Y., na,z"" satisfies

n—1

z |na,z""'| < Zn|a,,| |z|"" < 2 nlzl—n

n=1 n=1 = |zl
which, by the ratio test, converges if 0 < |z,| < R, since |z| < |z,| and |z,| can be as
close to R as we choose. If, however, |z| > R then lim,__(a,z") # 0 and thus
lim, .. (na,z"") # 0 too. Hence R is also the radius of convergence of the differentiated
series X na,z""

The result obtained in Example 4.16 is important, since if the complex function
=Y az"
n=0
converges in |z| < R then the derivative

S'@=Y naz"
n=1
also converges in |z| < R. We can go on differentiating f{(z) through its power series
and be sure that the differentiated function and the differentiated power series are equal
inside the circle of convergence.

4.4.2 Exercises

Find the power series representation for the 39  Find the power series representation of the function
function 1/(z — j) in the regions
fz) = =+
(@ |z]< 1 2+ 1
(b) |z1>1 in the disc | z| < 1. Use Example 4.16 to deduce the
() |lz—1-j]< 2 power series for
Deduce that the radius of convergence of the 1 1
power series representation of this function is @) (2 + 1)2 (®) ( + 1)3
|zy — j|, where z = z, is the centre of the circle of
convergence (z, # j). valid in this same disc.

4.4.3 Taylor series

In Modern Engineering Mathematics we introduced the Taylor series expansion

2 oo n
fx+a) =fla) + ﬁ F @) + )26_. fP@+...=3 ;‘—I 1 a) (4.31)
n=0
of a function f(x) of a real variable x about x = a and valid within the interval of con-
vergence of the power series. For the engineer the ability to express a function in such
a power series expansion is seen to be particularly useful in the development of numer-
ical methods and the assessment of errors. The ability to express a complex function as
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y
+h
Z
2ep) | ©
o] ~__“ x
z plane

Figure 4.22 Region
of convergence of the
Taylor series.

Example 4.17

Solution

a Taylor series is also important to engineers in many fields of applications, such as
control and communications theory. The form of the Taylor series in the complex case
is identical with that of (4.31).

If f(z) is a complex function analytic inside and on a simple closed curve C (usually
a circle) in the z plane then it follows from Example 4.16 that the higher derivatives of
f(z) also exist inside C. If z; and z, + /& are two fixed points inside C then

St y=fie) + e+ oG + o+ B+

where £©(z,) is the kth derivative of f(z) evaluated at z = z,. Normally, z = z, + % is
introduced so that & = z — z,, and the series expansion then becomes

16)=fle) + =2 e+ EZL oz .

#E= o =y B2 po (432)

n=0

The power series expansion (4.32) is called the Taylor series expansion of the com-
plex function f(z) about z,. The region of convergence of this series is |z — z,| < R,
a disc centred on z = z, and of radius R, the radius of convergence. Figure 4.22
illustrates the region of convergence. When z, =0, as in real variables, the series expan-
sion about the origin is often called a Maclaurin series expansion.

Since the proof of the Taylor series expansion does not add to our understanding
of how to apply the result to the solution of engineering problems, we omit it at this
stage.

Determine the Taylor series expansion of the function

_ 1

&= T

about the point z = j:

(a) directly up to the term (z — j)*,
(b) using the binomial expansion.

Determine the radius of convergence.

(a) The disadvantage with functions other than the most straightforward is that
obtaining their derivatives is prohibitively complicated in terms of algebra.
It is easier in this particular case to resolve the given function into partial
fractions as

_ 1 11 1
f(z)_z(z—Zj)_Zj(z—2j z)
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The right-hand side is now far easier to differentiate repeatedly. Proceeding to
determine /¥(j), we have

ﬂz)z%( 1 __l), sothat f(j)=1
j\z—-2] =z
SO = 3 |+ 5 sothat () =0

2| (z-2j)

12 2 '
Pe)==|——=-=|, sothat fP(j)=-2
AR e /7

1[__ 6 6 '
)= =|-———=+ 7|, sothat f9(j)=0
0= 5"y }

1] 24 24 ~
W)= = | ——=-=|., sothat f9(j)=24
10=5 | o }

leading from (4.32) to the Taylor series expansion

_r _
z(z — 2j)
=l-(@E-j)+CE-)"+...

2 .2 24 4
l—i—!(Z—J) +Z-T(Z_J) + ...

(b)  To use the binomial expansion, we first express z(z — 2j) as (z—j + )z —j —J),
which, being the difference of two squares ((z — j)* — j*), leads to

foy=——-— 1 —ps-p
z(z=2j)) (z—-j) +1

Use of the binomial expansion then gives
f@O=1-GE=j)+E=j)'-C=j)'+...
valid for |z —j| < 1, so the radius of convergence is 1.

The points where f{(z) is infinite (its singularities) are precisely at distance 1 away
from z = j, so this value for the radius of convergence comes as no surprise.

Example 4.18 Suggest a function to represent the power series

n

T S

2 3
z
! n!

l+z+%+
213

and determine its radius of convergence.

Solution Set

2 3 oo n
= Z 4z = z_
f@)=1+z+ 2!+3!+... En!

n=0


www.semeng.ir

302 FUNCTIONS OF A COMPLEX VARIABLE

Assuming we can differentiate the series for f(z) term by term, we obtain

Se= 3 2 =S

n=1

Hence f(z) is its own derivative. Since € is its own derivative in real variables, and is
the only such function, it seems sensible to propose that

=Y % - (4.33)
n=0

the complex exponential function. Indeed the complex exponential ¢’ is defined by
the power series (4.33). According to d’Alembert’s ratio test the series X, a, is
convergent if |a,,,/a,| > L <1 as n — oo, where L is a real constant. If a, = z"/n! then
|a,./a,| =|z|/(n + 1) which is less than unity for sufficiently large n, no matter how
big |z| is. Hence X,_,z"/n! is convergent for all z and so has an infinite radius of con-
vergence. Note that this is confirmed from (4.30). Such functions are called entire.

In the same way as we define the exponential function ¢’ by the power series expan-
sion (4.31), we can define the circular functions sinz and cosz by the power series
expansions

Z3 ZS Z7 2n+1
sinz=z-%=+&L L 4 4 (-1)—Z2——+
3t st 71 2n + 1)!
2 4 6 2n
cosz=1-=+Z-Z 4 4 (-1)Z—+...
274 6l 2!

both of which are valid for all z. Using these power series definitions, we can readily

prove the result (4.25), namely

e¥=cosz+jsinz

4.4.4 Exercises

40  Find the first four non-zero terms of the Taylor
series expansions of the following functions about
the points indicated, and determine the radius of
convergence in each case:

_ L ooy
SG=h ) s =2

1

@

© L =1+j)
zZ

41  Find the Maclaurin series expansion of the function

S S
l+z+7

Nz) =

up to and including the term in z°.

Without explicitly finding each Taylor series
expansion, find the radius of convergence of
the function

1
fz) = <
z —1
about the three points z=0,z=1+jand z=2 + 2j.
Why is there no Taylor series expansion of this
function about z = j?

Determine a Maclaurin series expansion
of f(z) = tanz. What is its radius of
convergence?
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4.4.5 Laurent series

Figure 4.23
The Riemann sphere.

Figure 4.24 Region of
validity of the Laurent
series.

Let us now examine more closely the solution of Example 4.15(c), where the power
series obtained was
+3024
2 3
z z

N —

L

z-3
valid for |z| > 3. In the context of the definition, this is a power series about ‘z = eo’,
the ‘point at infinity’. Some readers, quite justifiably, may not be convinced that there
is a single unique point at infinity. Figure 4.23 shows what is termed the Riemann
sphere. A sphere lies on the complex z plane, with the contact point at the origin O. Let
O’ be the top of the sphere, at the diametrically opposite point to O. Now, for any
arbitrarily chosen point P in the z plane, by joining O” and P we determine a unique
point P” where the line O’P intersects the sphere. There is thus exactly one point P” on
the sphere corresponding to each P in the z plane. The point O’ itself is the only point
on the sphere that does not have a corresponding point on the (finite) z plane; we there-
fore say it corresponds to the point at infinity on the z plane.

=Y

z plane

Returning to consider power series, we know that, inside the radius of convergence,
a given function and its Taylor series expansion are identically equal. Points at which
a function fails to be analytic are called singularities, which we shall discuss in
Section 4.5.1. No Taylor series expansion is possible about a singularity. Indeed, a
Taylor series expansion about a point z, at which a function is analytic is only valid
within a circle, centre z,, up to the nearest singularity. Thus all singularities must be
excluded in any Taylor series consideration. The Laurent series representation includes
(or at least takes note of) the behaviour of the function in the vicinity of a singularity.

If f(z) is a complex function analytic on concentric circles C, and C, of radii », and
r, (with r, < r}), centred at z,, and also analytic throughout the region between the
circles (that is, an annular region), then for each point z within the annulus (Figure 4.24)
f(z) may be represented by the Laurent series

)

YA

z plane
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Example 4.19

Solution

@)=Y clz-z)"

n=—oo

L (@.34)

(z-2) (z-2z0)"" Z=2

+e(z—zp)+...+clz—z) +...

where in general the coefficients ¢, are complex. The annular shape of the region is
necessary in order to exclude the point z = z,, which may be a singularity of f(z), from
consideration. If f(z) is analytic at z =z, then ¢, = 0 for n = -1, -2, . . ., —oo, and the
Laurent series reduces to the Taylor series.

The Laurent series (4.34) for f(z) may be written as

- -
f2) =Y elz=z) + Y e,z -z
n=—oco n=0
and the first sum on the right-hand side, the ‘non-Taylor’ part, is called the principal
part of the Laurent series.

Of course, we can seldom actually sum a series to infinity. There is therefore often more
than theoretical interest in the so-called ‘remainder terms’, these being the difference
between the first n terms of a power series and the exact value of the function. For
both Taylor and Laurent series these remainder terms are expressed, as in the case of
real variables, in terms of the (n + 1)th derivative of the function itself. For Laurent series
in complex variables these derivatives can be expressed in terms of contour integrals
(Section 4.6), which may be amenable to simple computation. Many of the details are
outside the scope of this book, but there is some introductory material in Section 4.6.

For f(z) = 1/z*(z + 1) find the Laurent series expansion about (a) z = 0 and (b) z = —1.
Determine the region of validity in each case.

As with Example 4.15, problems such as this are tackled by making use of the binomial
series expansion

(1+2)" = 1+nz+’1%7—l-)zz+...+n(n_1)(n_2)l"'(n_r+1)z’+...
H r:

provided that |z| < 1.

(a) In this case z, = 0, so we need a series in powers of z. Thus

Ll
z(1+z2) =z
—laozezo2ar— ) 0<izi<))
z

Thus the required Laurent series expansion is

2;=lz—l+l—z+zz...
z(z+1) z= =z


www.semeng.ir

4.4 COMPLEX SERIES 305

Example 4.20

Solution

(b)

valid for 0 < |z| < 1. The value z = 0 must be excluded because of the first two
terms of the series. The region 0 < |z| < 1 is an example of a punctured disc, a
common occurrence in this branch of mathematics.

In this case z, = —1, so we need a series in powers of (z + 1). Thus

1L -
zZ(z+1) (z+1)
__1 _ -2
_(z+1)[1 (z+ 1]
_ 1 >
_(Z+1)[1+2(z+1)+3(z+1)+...]
1

= 243+ D) +4z+ 1) +. ..
z+1
valid for 0 < |z + 1] < 1. Note that in a meniscus-shaped region (that is, the
region of overlap between the two circular regions |z] < 1 and |z + 1| < 1) both
Laurent series are simultaneously valid. This is quite typical, and not a cause for
concern.

Determine the Laurent series expansions of

_ 1
f&) = e

valid for
(a) 1<|z|<3
(®) |z]>3
() 0<|z+1]<2
(d Izl <1
(a)  Resolving into partial functions,

o= i(zh)-4(5)

Since |z| > 1 and |z| < 3, we express this as

f@)= .%z(l+1l/z)_é(l-:%z)

1 1™ -
=—(1+;) ~l1+in™

2z
zziz(l—Zl+zlz—z—13+...)—é(l—§z+ézz L2+ 0)
1 1 1 1 2 3
= ———+——é+f—gz—§z+éz
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o f@=3=)-1(5)

Since |z| > 3, we express this as

fie)= 51'2(1 +11/z) B Ziz(l +13/z)

:-1—(1—1+-1-2—-1-3+ )—-—1—(1—§+-9-2—‘-2-Z+ )
2z z z z 2z z z z

1 4 13 40
=S TSt aT oSt

z z oz z

(c) We can proceed as in Example 4.18. Alternatively, we can take z + 1 = u; then
0<|u|<2and

_ 1 1
f00_14u+2) 2u(l +Lu)
:ﬁa—y+@%¢f+“q
giving
N S 1 2
f(z)—2(2+1) i@+ D —gz+1)"+. ..
@) fz) = == '

20z+1) 2(z+3)
Since |z| < 1, we express this as

1 1
2(1+z2) 6(1+12)

=l1+2)" =1 +1z)"

fe)=

1 _ 2_3 _1 _1 lZ_LS
=;(l-z+z -z +.. ) —c(l=3z+52° =52 +...)

_1_4 13,2 _ 403
=372 52 T2t

Example 4.21  Determine the Laurent series expansion of the function f(z) = zZ°e'* about
(a z=0

(b) z = a, a finite, non-zero complex number

(© z=e

Solution (a) From (4.33),

2

eZ:l+z+%+... (0 < |z| < )
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Substituting 1/z for z, we obtain

el/Z=1+l+—12+"' (0 <|z| = o0
z 21z
so that
Z3e”Z=z3+zz+-Z—+l+—l—+L+--~ (0 <fz] <)

21 31 41z 517

This series has infinitely many terms in its principal part, but stops at z* (it is
written back to front). Series with never-ending principal parts are a problem, and
fortunately are uncommon in engineering. Note also that the series is valid in an
infinite punctured disc.

(b)  The value of f(a) must be a®e"“, which is not infinite since a # 0. Therefore f(z)
has a Taylor series expansion
2
fo=f@+c-af @+ S @

about z = a. We have

f(”(z) — di (23 el/z) =3z%elF_ el
z

d . 1
(2) _ 2 Mz 1/zy 1z _ 1/z N V-4
f (z)—dz(3ze ze#)=06ze 4e +Zze

giving the series as

Z3 el/z — a3 el/a + (Z _ a)(3a2 el/a —a el/a)

+ l(z— a)2(6a e _gety L e”“) +...
21 E

which is valid in the region |z — a| < R, where R is the distance between the
origin, where f{(z) is not defined, and the point a; hence R = |a|. Thus the region
of validity for this Taylor series is the disc |z — a| < |a].

(c) To expand about z = oo, let w = 1/z, so that
_ 1w
fz) = =e
w
Expanding about w = 0 then gives
1y _ 1 woow
fl=]==1+w+—+—+...
w/ o w 21 31

1yttt ow, (0 <[w| <)

woowh 20w 314l

Note that this time there are only three terms in the principal part of /(z)(=f(1/w)).
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4.4.6 Exercises

44 Determine the Laurent series expansion of (a) z=0 (b)z=-o
flz) = 1 : (¢) z=a, a finite non-zero complex number
z(z-1) (For (c), do not calculate the coefficients explicitly.)
about (a) z=0 and (b) z = 1, and specify the region
of validity for each. 46  Expand
45  Determine the Laurent series expansion of the flo)= —
function (z-1)(2-2)

1 in a Laurent series expansion valid for
f(z) =z*sin =
z (@) |z] <1 b) 1<|z1<2 ©) |z]|>2

about the points @ |z-1]>1 () 0<|z-2|<1

m Singularities, zeros and residues

4.5.1 Singularities and zeros

As indicated in Section 4.4.5 a singularity of a complex function f{(z) is a point of
the z plane where f(z) ceases to be analytic. Normally, this means f(z) is infinite at such
a point, but it can also mean that there is a choice of values, and it is not possible to
pick a particular one. In this chapter we shall be mainly concerned with singularities
at which f(z) has an infinite value. A zero of f(z) is a point in the z plane at which
/&) =0.

Singularities can be classified in terms of the Laurent series expansion of f(z) about
the point in question. If f(z) has a Taylor series expansion, that is a Laurent series
expansion with zero principal part, about the point z = z,, then z, is a regular point of
f(2). If f(z) has a Laurent series expansion with only a finite number of terms in its
principal part, for example

a._ a_
n_ o4+ !

(z=zp)" (z-20)

flz)= +ayta(z—zy)+...+a,z—z)"+...
then f{(z) has a singularity at z = z, called a pole. If there are m terms in the principal
part, as in this example, then the pole is said to be of order m. Another way of defining
this is to say that z, is a pole of order m if
lim (z - z)"f(2z) = a_, 4.35)
Z—)ZO
where a_,, is finite and non-zero. If the principal part of the Laurent series for f(z) at
z =z, has infinitely many terms, which means that the above limit does not exist for any
m, then z = z; is called an essential singularity of f(z). (Note that in Example 4.20 the
expansions given as representations of the function f(z) = 1/[(z + 1)(z + 3)] in parts (a)
and (b) are not valid at z = 0. Hence, despite appearances, they do not represent a
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Example 4.22

Solution

function which possesses an essential singularity at z = 0. In this case f(z) is regular at
z=0 with a value }.)

If f(z) appears to be singular at z = z,, but it turns out to be possible to define a Taylor

series expansion there, then z = z, is called a removable singularity. The following
examples illustrate these cases.

(a)
(b)
(©)
(d)

(e)

f(z) = z" has a pole of order one, called a simple pole, at z = 0.
f(z) = (z— 1) has a pole of order three at z = 1.

f(z) = "¢ has an essential singularity at z = j.

The function

-1
2 = e E
(z+2)(z-3)
has a zero at z = 1, a simple pole at z = —2 and a pole of order two at z = 3.

The function
_sinz
flz) = -

is not defined at z = 0, and appears to be singular there. However, defining

s - {(sin )z (z#0)
1 (z=0)

gives a function having a Taylor series expansion

22 Z4
sincz=1—-=+=— ...
K1

that is regular at z = 0. Therefore the (apparent) singularity at z = 0 has been
removed, and thus f(z) = (sinz)/z has a removable singularity at z = 0.

Functions whose only singularities are poles are called meromorphic and, by and
large, in engineering applications of complex variables most functions are meromorphic.
To help familiarize the reader with these definitions, the following example should
prove instructive.

Find the singularities and zeros of the following complex functions:

1 z—1
R S— by ———
® =2 +j)+]j ()z“—z2(1+j)+j
sin(z—1) 1
C) 4 2 . . (d) 4 2 . .43
z =z (1+]))+] [z -z7(1+))+]]
(a) For
f@) = —

=21 +))+]
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(©)

the numerator is never zero, and the denominator is only infinite when z is
infinite. Thus f(z) has no zeros in the finite z plane. The denominator is zero
when

221 +j)+j=0
which factorizes to give

@-1DE-j)=0
leading to

Z=1orj
so that the singularities are at

z=+1, -1, (1 + )2, (-1 =))/J2 (4.36)
all of which are simple poles since none of the roots are repeated.
The function

-1
f@ = ————
z =z (l+))+]
is similar to f(z) in (a), except that it has the additional term z — 1 in the numer-
ator. Therefore, at first glance, it seems that the singularities are as in (4.36).
However, a closer look indicates that f(z) can be rewritten as
z—1

z=D(z+ Dlz+ 31+ D1 z= (1 +])]

and the factor z — 1 cancels, rendering z = 1 a removable singularity, and reducing

f(@) to
fz) =

f(Z)=(

1
(z+ Dlz+ 51+ [z = 5(1+))]

which has no (finite) zeros and z =—1, (1 +j) and i (-1 —j) as simple poles.

In the case of

f(2) = sin(z—1)

=21 +j)+]j

the function may be rewritten as

_sin(z—-1) 1
/e z=1  (+Dlz+ 31 +D]z= 31 +))]
Now
S—i—Ilg—Z——_l——l—z -1 as z—o1
7 —

so once again z = 1 is a removable singularity. Also, as in (b), z=~1, (1(1 +})
and |} (=1 — j) are simple poles and the only singularities. However,

sinz—1)=0
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has the general solutionz=1+ Ng (N=0,+1,4+2 ...). Thus, apart from N =0,
all of these are zeros of f(z).

(d)  For

1
[ =21+ +iT

fe)=

factorizing as in (b), we have

1
(z=1D'C+D'z+ 2A+)T 2= L1 +)T

f@) =

so =1, +1, (1 +j) and i (=1 —j) are still singularities, but this time they are

triply repeated. Hence they are all poles of order three. There are no zeros.

4.5.2 Exercises

47  Determine the location of, and classify, the 48  Expand each of the following functions in a Laurent
singularities and zeros of the following functions. series about z = 0, and give the type of singularity
Specify also any zeros that may exist. (if any) in each case:

1-
W o) @ (@) ==
z (z+))(z=)) z -1 .
. eZ
(d) cothz (e) —-S-l-n—-—-—zz (f) &1 (b) =
Z+7 z
© 2= 1 .y (c) z'coshz™
241 (z+2)’(z-3) (d) tan™'(Z + 2z +2)

: ow that if f(z) is the ratio of two polynomials
(i) 1 49  Show that if is the ratio of \ ial
(=42 +5) then it cannot have an essential singularity.

4.5.3 Residues

If a complex function f{(z) has a pole at the point z = z, then the coefficient a_, of the
term 1/(z — z,) in the Laurent series expansion of f(z) about z = z,, is called the residue
of f(z) at the point z = z,. The importance of residues will become apparent when
we discuss integration in Section 4.6. Here we shall concentrate on efficient ways
of calculating them, usually without finding the Laurent series expansion explicitly.
However, experience and judgement are sometimes the only help in finding the easiest
way of calculating residues. First let us consider the case when f(z) has a simple pole
at z = z,. This implies, from the definition of a simple pole, that

a_

Lvag+aiz—z)+...
Z—2Zy

f2) =
in an appropriate annulus S < |z — z,| < R. Multiplying by z — z, gives

(z—z)f@=a,+ayz—2z)+...
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which is a Taylor series expansion of (z — z,) f(z). If we let z approach z,, we then obtain
the result

residve At _ jim [(; - 2 f(z)] = a., (4.37)
simple pole z, z-z

Hence evaluating this limit gives a way of calculating the residue at a simple pole.

Example 4.23  Determine the residues of

2z

B
(zZ+1)(2z-1)

at each of its poles in the finite z plane.

Solution  Factorizing the denominator, we have

2z
(z-)(+)(2z-1)
so that f(z) has simple poles at z = j, —j and ;. Using (4.37) then gives

f(2) =

residue — lim (z=j) 2z
atz=j 23] (z=)E+)(2z-1)
_ 2j __1+2j
2j(2j-1) 5
remdue. — lim (z4]) . 22.
atz=—] o (z=)E+))R2z-1)
_ -2j __1-2j
=2j(=2j-1) 5
residue lim (z= 1) z
1 - . .
atz=5; .l BECESNERSNERT)

[STES

O

Note in this last case the importance of expressing 2z — 1 as 2(z — 3).
Example 4.24 Determine the residues of the function 1/(1 + z*) at each of its poles in the finite z plane.

Solution  The function 1/(1 + z*) has poles where
1+2*=0
that is, at the points where

Z4 — _1 — enj+21m]
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with n an integer. Recalling how to determine the roots of a complex number, these
points are

z = eﬂ:j/4+r:jn/2 (I’l — 0’ 1’ 2’ 3)

that is

Tnj/4

z=¢€ € €

4 QI ST o
b b 9

or
2= (LHPA2 CLH A2, (1= PR, (1= A2

To find the residue at the point z,, we use (4.37), giving

residue _ lim (z -2z, )

at Zy =z \ ] + 24

where z, is one of the above roots of z* = —1. It pays to use L Hdpital’s rule before
substituting for a particular z,. This is justified since (z — zy)/(1 + z,) is of the indeter-
minate form 0/0 at each of the four simple poles. Differentiating numerator and
denominator gives

lim (Z‘Zj) = lim (l})
z—oz) 1+Z zo2z) 4Z

since 4z° is not zero at any of the poles; 1/4z; is thus the value of each residue at z = z,.
Substituting for the four values (1 £ j)/|/2 gives the following:

residue L . |
R S
atz=(1+j)/2 45’1 +j) o
residue I ' |
R i Ry
atz=(1=-DN2 41’1 -j) e
residue L . |
atz=(-1+j)/|2 4 (-1+)) Lo
residue 1 = (1+])/4)2

atz=(1=)A2 " 41y

Finding each Laurent series for the four poles explicitly would involve far more
difficult manipulation. However, the enthusiastic reader may like to check at least one
of the above residues.

Next suppose that we have a pole of order two at z = z,. The function f{z) then has
a Laurent series expansion of the form

a_z a_l

@) =

+
2
z—2) z-2z,

+ag+a(z—z)+...
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Again, we are only interested in isolating the residue a_,. This time we cannot use
(4.37). Instead, we multiply f(z) by (z — z,)* to obtain

(z—- 20)2f(z) =a,+a ,(z—-z)+alz—z)+...

and we differentiate to eliminate the unwanted a_,:

A1 @) =a, + 2a0z—z) + . ..
dz

Letting z tend to z, then gives
. d 2 _
lim | =(z-2z))f(2)| = a_,
z~>zo dZ
the required residue.

We now have the essence of finding residues, so let us recapitulate and generalize.
If f(z) has a pole of order m at z — z,, we first multiply f(z) by (z — z))". [f m = 2, we
then need to differentiate as many times as it takes (that is, m — 1 times) to make
a_, the leading term, without the multiplying factor z — z,. The general formula for
the residue at a pole of order m is thus

m—1
L lim {9—_[@ —zo)”’f(Z)]} 438)
(m— 1)l 25z | gz

where the factor (m — 1)! arises when the term a_,(z — z,)"" is differentiated m — 1
times. This formula looks as difficult to apply as finding the Laurent series expansion
directly. This indeed is often so; and hence experience and judgement are required.
A few examples will help to decide on which way to calculate residues. A word
of warning is in order here: a common source of error is confusion between the
derivative in the formula for the residue, and the employment of L’Hopital’s rule to
find the resulting limit.

Example 4.25  Determine the residues of

_ -2z
2 (z+ 1) (22 +4)

at each of its poles in the finite z plane.

Solution  Factorizing the denominator gives

flz) = 222—22
(z+1)(z=-2))(z+2))

so that f(z) has simple poles at z = 2j and z = —2j and a pole of order two at z = —1.
Using (4.37),


www.semeng.ir

4.5 SINGULARITIES, ZEROS AND RESIDUES 315

Example 4.26

Solution

residue . . -2z
. = lim(z-2j) >
atz=2j 52 (z+ D (z=2j)(z+2j)
—4 —4j .
= .._.____2..1.._ = L(7+))
(2j+1)°(4))
. 2
residue = lim (Z592)) 2z -2z
atz=-2] =52 (z+ 1)’ (z=2))(z+2))
_ -4 +4j _ .
=3(7-)

(=2)+ DX(-4j)

Using (4.38) with m = 2 we know that

residue =l| im 4 (z+1)° 22222
atz=-1 1! =52 dz (z+1)’(Z*+4)

_im EEH222)=(F229)22) L )IEH=B)D) - s
P (22 +4) 25

Determine the residues of the following functions at the points indicated:

(a)

()

(b)

z . 3 4
‘= em) O[] =0 ©—F= =D
(1+2%) z (z+1)
Since
e _ e
@+1)" +)E-))
and ¢ is regular at z =, it follows that z =j is a pole of order two. Thus, from (4.38),
. . d .2 e’
residue = lim —| (z =) ————;
) dz (z+])" (z=])
=1im{i ¢ }=Hm(z+j>2e2—2<4z+j)ez
=0 4z | (z+))? = (z+])
\2.] Nl )
= QJ.M_%‘EJ.E = _i(l +j)ej
(2))
Since e! = cos1 + jsin1, we calculate the residue at z = j as 0.075 — j0.345.
The function [(sinz)/z*]* has a pole at z = 0, and, since (sinz/z) = 1 as z — 0,

(sin’z)/z> may also be defined as 1 at z = 0. Therefore, since

. .3
(sm 2)3 _sinz 1

2 3 3
V4 z z

the singularity at z = 0 must be a pole of order three. We could use (4.38) to obtain
the residue, which would involve determining the second derivative, but it is easier
in this case to derive the coefficient of 1/z from the Laurent series expansion
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sin z 2 4

_:1__+__
z 31 5l

giving

sinz _ 1 _ 1 . 13 _
2 6% 0%
z z

Taking the cube of this series, we have

sinz) _ (1 3 o1 a1z 11
(—2)=(——éz+$z—...)=——3——+...=———+...
z z

Hence the residue at z =0 is -5 .

(c) The function z*/(z + 1)* has a triple pole at z = —1, so, using (4.38),

d’ ¢ d
residue = lim {1 —|(z+1)’ —2—|} = lim |!=(z"
12 2 3 1 2
= dz (z+1) i dz

2 2
%x4><3z =6(-1)" =6

(STES

=1l

z—-1

Residues are sometimes difficult to calculate using (4.38), especially if circular func-
tions are involved and the pole is of order three or more. In such cases direct calculation
of the Laurent series expansion using the standard series for sin z and cos z together with
the binomial series, as in Example 4.26(b), is the best procedure.

4.5.4 Exercises

50  Determine the residues of the following rational 4 .
: | i . © 5— @=¢") = @=n
functions at each pole in the finite z plane: A+ sin z
2z+1 1 1 .
(@) = (b) — © —— =)
7 —z=-2 z(1-2) (zZ+1)
2 3 2
¢ __35_""?2__ (d) Z____f_ii:_l 52  The following functions have poles at the points
(z=-1)("+9) z +4z indicated. Determine the order of the pole and the
6 4,3 2 residue there.
(e) z_—i—_iz_+_z_5_+_1 () (Z + 1)
(z-1) zZ- () coiz (z=0)
z+1 h 3+4z z
2 3 2 2_9
(z=1)(z+3) '+ 3z + 2z (b) _z -z (z=-1)
(z+ D' +4)
51  Calculate the residues at the simple poles indicated © e’ (z = nm, n an integer)
of the following functions: sin’z e &
(@) 982 (z-) (b) sin z (= &%) (Hint: use lim_, (sinu)/u = 1 (u = z — nm), after
z A+l differentiating, to replace sin u by u under the limit.)
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m Contour integration

Figure 4.25
Partitioning of
the curve C.

4.6.1

Consider the definite integral

j flz)dz

21

of the function f(z) of a complex variable z, in which z, and z, are a pair of complex
numbers. This implies that we evaluate the integral as z takes values, in the z plane,
from the point z, to the point z,. Since these are two points in a plane, it follows that to
evaluate the definite integral we require that some path from z, to z, be defined. It is
therefore clear that a definite integral of a complex function f{(z) is in fact a line integral.

Line integrals were considered in Section 3.4.1. Briefly, for now, a line integral in
the (x, y) plane, of the real variables x and y, is an integral of the form

J [P(x,y) dx + O(x, y) dy] (4.39)

where C denotes the path of integration between two points A and B in the plane. In the
particular case when

P _ a0
dy  ox
the integrand P(x, y)dx + QO(x, y)dy is a total differential, and the line integral is
independent of the path C joining A and B.
In this section we introduce contour integration, which is the term used for evaluat-
ing line integrals in the complex plane.

(4.40)

Contour integrals

Let f(z) be a complex function that is continuous at all points of a simple curve C in the
z plane that is of finite length and joins two points @ and b. (We have not gone into great
detail regarding the question of continuity for complex variables. Suffice it to say that
the intuitive concepts described in Chapter 9 of Modern Engineering Mathematics for
real variables carry over to the case of complex variables.) Subdivide the curve into n
parts by the points z,, z,, . . . , z,_,, taking z, = a and z, = b (Figure 4.25). On each arc
joining z,_, to z, (k= 1, ..., n) choose a point Z,. Form the sum

YA

Zn z,=b

=Y

z plane
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Example 4.27

Figure 4.26
Path of integration
for Example 4.27.

Solution

S, =fC)z —2) + [ )z —z) +. . .+ fCE )z, — z,0)

Then, writing z, — z,_, = Az, S, becomes

Sn = 2 f(fk) Azk
k=1
If we let n increase in such a way that the largest of the chord lengths |Az,| approaches
zero then the sum S, approaches a limit that does not depend on the mode of subdivision
of the curve. We call this limit the contour integral of f(z) along the curve C:

f f(z)dz = lim if(ék) Az, 4.41)
c ‘Azk‘ﬁo Py
If we take z = x + jy and express f{(z) as
S@) = ulx, y) + julx, y)
then it can be shown from (4.41) that
J fz)dz = J [u(x, y) +ju(x, »)1(dx +jdy)
@ @
or
J f(2) dZ=J [u(x, y) dx — v(x, y) dy]
@ @
+ JJ [v(x, y) dx + u(x, y) dy] 4.42)
@

Both of the integrals on the right-hand side of (4.42) are real line integrals of the
form (4.39), and can therefore be evaluated using the methods developed for such
integrals.

Evaluate the contour integral [.z>dz along the path C from —1 + j to 5 + j3 and com-
posed of two straight line segments, the first from —1 + j to 5 + j and the second from
5+jto5+]j3.

YA
3+ [ms +i3)

7 4+
<

z plane

The path of integration C is shown in Figure 4.26. Since

Z=x+jy)=" -y +j2xy
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it follows from (4.42) that

C

I=J zzdz=f [(xz—yz)dx—nydy] +jj [2xydx+(x2—y2)dy]
c c .

Along AB, y =1 and dy = 0, so that

5 5
IAB:J (xz—l)dx+jj 2x dx
-1 -1
= [1 = )% + )% = 36 + 24
Along BD, x =5 and dx = 0, so that

3 3
IBD=J —10ydy+jJ (25-y")dy

1 1
=[-51 +j[25y - 1T}
=40 +j128

Thus

Jszz:IAB+IBD=(36+124>+<—40+j%)=—4+j%@
C

Example 4.28 Show that [ (z + 1) dz = 0, where C is the boundary of the square with vertices at z =0,
z=14+j0,z=1+4+jlandz=0+jl.

Solution  The path of integration C is shown in Figure 4.27.
Since z+ 1 = (x + 1) +jy, it follows from (4.42) that

y I=J (z+1)dz=J [(x+1)dx—ydy]+jj [ydx+(x+1)dy]
DO +)) B(1 +)) ‘ ‘ ‘
Along OA, y =0 and dy = 0, so that
1
O Al +j0) * [OA=J (x+1)dx:§
z plane 0
Figure 4.27 Path
of integration for Along AB, x =1 and dx = 0, so that
Example 4.28. 1 |
Iyg = J —ydy+jJ 2dy = —%+j2
0 0

Along BD, y =1 and dy = 0, so that

0 0
IBD=J (x+1)dx+jj dr=-%-j

1 1

Along DO, x =0 and dx = 0, so that
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4.6.2

Theorem 4.1

Proof

0 0
ID0=J —ydy+jJ dx = 5 -]

1 1

Thus

J (z+1D)dz=Iopa+ g+ Igp+10=0
C

Cauchy’s theorem

The most important result in the whole of complex variable theory is called Cauchy’s
theorem and it provides the foundation on which the theory of integration with respect
to a complex variable is based. The theorem may be stated as follows.

Cauchy’s theorem

If f(z) is an analytic function with derivative f’(z) that is continuous at all points
inside and on a simple closed curve C then

j£ f(z)dz =0

(Note the use of the symbol §. to denote integration around a closed curve, with the
convention being that the integral is evaluated travelling round C in the positive or
anticlockwise direction.)

To prove the theorem, we make use of Green’s theorem in a plane, which was intro-
duced in Section 3.4.5. At this stage a statement of the theorem is sufficient.

If C is a simple closed curve enclosing a region 4 in a plane, and P(x, y) and Q(x, y) are
continuous functions with continuous partial derivatives, then

% (Pdx + Qdy) = JJ(%% - %;) dx dy (4.43)

Returning to the contour integral and taking

f@ =ulx, y) +jux,y), z=x+]y
we have from (4.42)

§ flz)dz = % (udx-vdy) + ]fﬁ (vdx+udy) (4.44)

C

Since f{(z) is analytic, the Cauchy—Riemann equations

H_ v

ox 9y ox Oy

are satisfied on C and within the region R enclosed by C.
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Figure 4.28
Deformed contour for
an isolated singularity.

Since u(x, y) and v(x, y) satisfy the conditions imposed on P(x, y) and O(x, y) in
Green’s theorem, we can apply (4.43) to both integrals on the right-hand side of (4.44)
to give

—||(—dv _ ou [ Qu_ v —0+i
%Cf(z)dz—JJ( W 8y)dxdy+]JJ(3x ay)dxdy 0+j0

by the Cauchy—Riemann equations. Thus

% f(z)dz =0
C

as required.

end of theorem

In fact, the restriction in Cauchy’s theorem that /”(z) has to be continuous on C can
be removed and so make the theorem applicable to a wider class of functions. A revised
form of Theorem 4.1, with the restriction removed, is referred to as the fundamental
theorem of complex integration. Since the proof that /”(z) need not be continuous on
C was first proposed by Goursat, the fundamental theorem is also sometimes referred
to as the Cauchy—Goursat theorem. We shall not pursue the consequences of relaxa-
tion of this restriction any further in this book.

In practice, we frequently need to evaluate contour integrals involving functions such as

hE@ === fe) = —E—
z-2 (z=3)(z+2)

z

that have singularities associated with them. Since the function ceases to be analytic
at such points, how do we accommodate for a singularity if it is inside the contour of
integration? To resolve the problem the singularity is removed by deforming the contour.

First let us consider the case when the complex function f(z) has a single isolated
singularity at z = z, inside a closed curve C. To remove the singularity, we surround it
by a circle 7, of radius p, and then cut the region between the circle and the outer
contour C by a straight line AB. This leads to the deformed contour indicated by the
arrows in Figure 4.28. In the figure the line linking the circle ¥ to the contour C is
shown as a narrow channel in order to enable us to distinguish between the path A to
B and the path B to A. The region inside this deformed contour is shown shaded in the
figure (recall that the region inside a closed contour is the region on the left as we travel
round it). Since this contains no singularities, we can apply Cauchy’s theorem and write

YA
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Example 4.29

Solution

z plane

Figure 4.29 A circle
of radius p, centred
at the origin.

Since

flz)dz + % flz)dz=10

BA

.
O flz)dz + J flz)dz + %

Jc Y

-
J BA AB 14 14

this reduces to

j( flz)dz = % flz)dz (4.45)
c a

with the + indicating the change of sense from clockwise to anticlockwise around the
circle 7.

Evaluate the integral $.dz/z around

(a)
(b)

(@)

(b)

any contour containing the origin;

any contour not containing the origin.

f(z) = 1/z has a singularity (a simple pole) at z = 0. Hence, using (4.45), the
integral around any contour enclosing the origin is the same as the integral around
a circle 7y, centred at the origin and of radius p,. We thus need to evaluate

iﬁ ldz
-

As can be seen from Figure 4.29, on the circle y
z=p,e’? (0 < 6 < 2n)

SO
dz=jp,e!’do

leading to

1 2n io 2n
iﬁ—dz =J J—p(’—"“j;de:J 1d6 = 2mj
7 0o Po€ 0

Hence if C encloses the origin then

% d—Z:2nj
CZ

If C does not enclose the origin then, by Cauchy’s theorem,

CZ

since 1/z is analytic inside and on any curve that does not enclose the origin.
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Example 4.30

Solution

Example 4.31

Solution

Generalize the result of Example 4.29 by evaluating

% dz
CZn

where 7 is an integer, around any contour containing the origin.

If n < 0, we can apply Cauchy’s theorem straight away (or evaluate the integral directly)
to show the integral is zero. If n > 1, we proceed as in Example 4.29 and evaluate the
integral around a circle, centred at the origin. Taking z = p, ¢'’ as in Example 4.29, we have

2n o
{v & _ f 1 gg
cz' o Poe”

where p, is once more the radius of the circle. If n # 1,

dz " de 1 6(17")j9 o pl_" (1-m)2mj
== —L— =ijp," - = Lo T _ 1)y =0
o JJ I 1Py {(1—71)]} (e )

0 0 0

since ¢V = 1 for any integer N. Hence
i{; dZ_o mz1
c?'

In Examples 4.29 and 4.30 we have thus established the perhaps surprising result
that if C is a contour containing the origin then

dz _ [2mj (n=1)
cz 0 (n any other integer)

If C does not contain the origin, the integral is of course zero by Cauchy’s theorem.

Evaluate the integral

% dz
cZ=2-]
around any contour C containing the point z =2 +j.

The function

1
z=2-]

fz) =

has a singularity (simple pole) at z = 2 + j. Hence, using (4.45), the integral around any
contour C enclosing the point z = 2 + j is the same as the integral around a circle y
centred at z = 2 + j and of radius p. Thus we need to evaluate

i# dz
yz—2—j
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YA

\

Y

0 2
z plane

Figure 4.30 A circle
of radius p centred at
2+].

z plane

Figure 4.31
Deformed contour
for n singularities.

Example 4.32

Solution

As can be seen from Figure 4.30, on the circle y
z=Q2+))+pe? (0<=6<2m
dz=jpe’do

leading to

d 2n | io 2n
% z .=J Jpeje dg=f jdo = 2mj
VZ_Z_J 0o P¢ 0

Hence if C encloses the point z = 2 + j then

jE dz __om
cZ=2-]

Compare this with the answer to Example 4.29.

So far we have only considered functions having a single singularity inside the
closed contour C. The method can be extended to accommodate any finite number of
singularities. If the function f(z) has a finite number of singularities atz=z,, z,, . . . , z,

> “n>

inside a closed contour C, then we can deform the latter by introducing # circles ¥, 75,
., ¥, to surround each of the singularities as shown in Figure 4.31. It is then readily
shown that

jE flz)dz = % flz)dz + % flzydz+ ...+ % flz)dz (4.46)
C Y1 Y2 Yn

Evaluate the contour integral

f zdz
c z=1D(z+2))

where C is

(a) any contour enclosing both the points z = 1 and z = -2j;

(b) any contour enclosing z = —2j but excluding the point z = 1.

The function
_ z
SO= D
has singularities at both z = 1 and z = -2j.

(a)  Since the contour encloses both singularities, we need to evaluate the integrals
around circles ¥, and ¥, of radii p, and p, surrounding the points z =1 and z = 2]
respectively. Alternatively, we can resolve f(z) into partial fractions as

3(1-j2)  3(4+2j)
= +
-1 z+2j

()
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and consider
dz . dz . dz
=9 —=& __=-1(1-2 L+ l4+2 =1 +1
i(z—l)(Z—Zj) 5 ( J)ﬁz—l s ( J)£z+2j Lo

The integrand of /; has a single singularity at z = 1, and we simply need to
evaluate it around the circle y, of radius p, about z =1 to give

1, =2mj

Similarly, 7, has a single singularity at z = —2j, and we evaluate it around the circle
¥, to give

I, =2mj
Then
=1(1-j2)2mj + 1 (4 +j2)2mj = 2mj(% — ji&)
Thus if the contour C contains both the singularities then
(b)  If the contour C only contains the singularity z = —2j then

zdz c4
—Z0Z I =2mi(t 42
£ GonGrzp PTG

In Examples 4.29—4.32 we can note some similarity in the answers, with the common
occurrence of the term 2mj. It therefore appears that it may be possible to obtain some
general results to assist in the evaluation of contour integrals. Indeed, this is the case,
and such general results are contained in the Cauchy integral theorem.

Theorem 4.2 Cauchy integral theorem

Let f(z) be an analytic function within and on a simple closed contour C. If z; is any
point in C then

{u A2) 4, - o £(2,) (4.47)
cZ= %

If we differentiate repeatedly » times with respect to z under the integral sign then it
also follows that

4) [y P z—rﬁl 1z0) (4.48)
] .

(Z _ Zo)nﬂ

end of theorem

Note that (4.48) implies that if f/(z) exists at z = z, so does f"(z) for all , as predicted
earlier in the observations following Example 4.16.
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Example 4.33

Solution

Example 4.34

Solution

Evalute the contour integral

2z dz
o (z- D(z+2)(z+))

where C is a contour that includes the three points z =1, z=-2 and z = —j.

Since
2z

S& = GG
has singularities at the points z = 1, z=-2 and z = —j inside the contour, it follows from
(4.46) that

i% flz)dz = iF flz)ydz + { flz)dz + iF flz)dz 4.49)
C 41 13 73

where y,, 7, and y; are circles centred at the singularities z = 1, z = -2 and z = —j
respectively. In order to make use of the Cauchy integral theorem, (4.49) is written as

§ f(z)dz:% {22/[(Z+2)(2+j)]}dz_'_{> {22/[(2—1)(Z+j)]}dz
C "1 72

z—1 z+2

z+]

. % 22/[(z= D)+ D1}y,
73

=f£ jlz)dz+f£ Mdz%—% f3(—z_)dz
y 1 212

zZ— z zZ+
1 2 73 J

Since £,(z), f,(z) and f;(z) are analytic within and on the circles y,, ¥, and y; respectively,
it follows from (4.47) that

j£ f(z)dz = 2mj[ /(1) + /2(=2) + f3(=])]

:2nj[ 3,+ —4 - + — _2j. }
2(L+))  (=3)(=2+) (=-D(=3+2)

so that

2zdz -0
e E=D(Ez+2)(z+]))

Evaluate the contour integral

Z4
d
i -1y

where the contour C encloses the point z = 1.

Since f(z) = z*/(z — 1)’ has a pole of order three at z = 1, it follows that

j(f(z)dzz% z - dz
c y(z=1)
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53

54

55

56

where 7 is a circle centred at z = 1. Writing f,(z) = z*, then

iﬁ f(z)dzz{ —-I-I-E—)-—}dz
c y(z=1)

and, since f|(z) is analytic within and on the circle 7, it follows from (4.48) that

1 d
ﬁf(z) dz = 2mj 5 L?fl(z)L

so that

4
% =— dz = 127
cz-1)

= mj(122) oy

4.6.3 Exercises

Evaluate [.(z> + 3z) dz along the following contours
C in the complex z plane:

(a) the straight line joining 2 +jO to 0 + j2;

(b) the straight lines from 2 +j0 to 2 + j2 and then
to 0 +j2;

(c) the circle |z| =2 from 2 +j0 to 0 +j2 in an
anticlockwise direction.

Evaluate §.(5z* — z* + 2) dz around the following
closed contours C in the z plane:

(a) thecircle |z|=1;

(b) the square with vertices at 0 +j0, 1 + jO,
1 +jland 0 +jl1;

(c) the curve consisting of the parabolas y =x* from
0+jOto1+jland)?=x from 1 +jto 0+ jO.

Generalize the result of Example 4.30, and show that

% dz__ _ {jZn
c (Z_Zo)n 0

where C is a simple closed contour surrounding
the point z = z,.

(n=1)
(n#1)

Evaluate the contour integral

jg dz
z-4
c

where C is any simple closed curve and z =4 is

(a) outside C (b) inside C

57

58

58

Using the Cauchy integral theorem, evaluate the
contour integral

2zdz
. 2z-1)(z+2)
where C is
(a) the circle |z| =1
(b) the circle |z| =3

Using the Cauchy integral theorem, evaluate the
contour integral

5zdz
. (z+1)(z=-2)(z+4))
where C is

(a) the circle |z]| =3
(b) thecircle |z|=5

Using the Cauchy integral theorem, evaluate the
following contour integrals:

(a) {; _£3_“‘_Z_3dz
c(2z+1)

where C is the unit circle |z| = 1;

(b) j( dez
c(z=1D(z+2)

where C is the circle |z| = 3.
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4.6.4

The residue theorem

This theorem draws together the theories of differentiation and integration of a complex
function. It is concerned with the evaluation of the contour integral

1= % flz)dz
c

where the complex function f{(z) has a finite number » of isolated singularities at z,,
Z,, ..., z, inside the closed contour C. Defining the contour C as in Figure 4.31, we
have as in (4.46) that

1= j@ flz)dz = % flz)dz + jg flzydz+...+ f flz)dz (4.46)
C 141 72 Yn

If we assume that f(z) has a pole of order m at z = z, then it can be represented by the
Laurent series expansion

2 2 _ _ ,
- =! O+ aPz=z)+...+adz=z)"+...
i

fz) =

+...+—L +ay+4dl
(z=z)" z-z
1

valid in the annulus 7, < |z — z;| < R,. If the curve C lies entirely within this annulus
then, by Cauchy’s theorem, (4.46) becomes

I = % flz)dz = ff flz)dz
c 2

Substituting the Laurent series expansion of f(z), which we can certainly do since we
are within the annulus of convergence, we obtain

f flz)dz
Yi

a(f) a(i) 0 o
—_— =t a) +a(z-z) + ...
m —
Vi (z-2z) Z7Zi

+ agi)f (z=z)dz + ...

Using the result from Exercise 55, all of these integrals are zero, except the one
multiplying a"), the residue, which has the value 27tj. We have therefore shown that

§ f(z)dz =2mja") = 2mj X residue at z =z,
y.

i

This clearly generalizes, so that (4.46) becomes

I= i#; f(z)dz =2mj 2 (residue at z = z;)
c i=1

= 2mj X (sum of residues inside C)

Thus we have the following general result.
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Theorem 4.3

Example 4.35

Solution

Example 4.36

Solution

The residue theorem

If f(z) is an analytic function within and on a simple closed curve C, apart from
a finite number of poles, then

% f(z)dz =2mj X [sum of residues of f(z) at the poles inside C]
@

end of theorem

This is quite a remarkable result in that it enables us to evaluate the contour integral
$./(z) dz by simply evaluating one coefficient of the Laurent series expansion of f(z) at
each of its singularities inside C.

Evaluate the contour integral §,dz/[z(1 +z)] if Cis

(a) thecircle [z|=3;  (b) the circle |z| =2.

The singularities of 1/[z(1 +z)] are at z =0 and —1. Evaluating the residues using (4.37),
we have

residue
= z =
atz=0 50 z(1+2)

residue — lim (z+1) 1 _
atz=-1 -5 z(1+2z2)

(a) IfCis|z|= % then it contains the pole at z = 0, but nof the pole at z=—1. Hence,
by the residue theorem,

dz_ _ 2mj X (residue at z = 0) = 2m;j
c2(z+])

(b) If Cis|z| =2 then both poles are inside C. Hence, by the residue theorem,

{a dz_ _omi1-1)=0
C

z(z+ 1)

3 2
z =z +z—

Evaluate the contour integral {; I dz where C is

¢ 2 +4z

@lzl=1  ()]z]=3

The rational function

2 +z-1

2 +4z
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has poles at z = 0 and £2j. Evaluating the residues using (4.37) gives

residue . 2123 —Z+z-1 )
= lim =-

i

atz=0 =0 g+ 4)

residue. - lim (z — 2]')(23'—22 +z'— D_ +3

atz=2j =2 z(z = 2))(z + 2j) g4

residue i z+2))(Z = +z=1) 5 ;.
_ o= m ~ N T s 4

atz=-2] -2 z(z-2j)(z+ 2j)

(Note that these have been evaluated in Exercise 50(d).)

(a) IfCis|z|=1 then only the pole at z = 0 is inside the contour, so only the residue
there is taken into account in the residue theorem, and

3 2

zZ—z +z—-1 . .

§ — dz = 2n](—i) = —%TC]
c zZ +4z

(b) If Cis |z| = 3 then all the poles are inside the contour. Hence, by the residue

theorem,

- +z-1 S . . .
Zmf il somi(-d - 3+ 3 - 3 - 2) = —2n
c Z +4z

Example 4.37  Evaluate the contour integral

§ dz
c (2 +2z+2)

where C is the circle |z| = 3.

Solution  The poles of 1/z°(z* + 2z + 2) are as follows: a pole of order three at z = 0, and two
simple poles where z* + 2z + 2 = 0, that is at z=—1 £ j. All of these poles lie inside the
contour C.
From (4.38), the residue at z = 0 is given by

.1 & 1 . d | _—Q2z+2) . d —(z+1)
lim=-—|5———|=lim;— | > =lim—|—3 3
=0 2V 42 | 22+ 2242 =0 2dz | (z7+2z+2) —0dz | (z7+22+2)
~ lim (242242 + (z+ D2(Z+22+2)(22+2) _,

0 (Z*+2z+2)° !

From (4.37), the residue atz=—1 —j is

lim (z+14j) — 1 - lim T_J___
et zZ(z+1+))(z+1-)) =z (z+1-))

B 1 I 1
C(-1-j=2§)  (1+))2j (24202
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4.6.5

YA

(X

-R O R

z plane

Figure 4.32
The closed contour for
evaluating [~ f(x) dx.

using (1 +j)* =1+ 3j + 3j* +j° = -2 + 2j. Hence

residue _1 11-]
atz=-1-j *-1-j 42
Also, using (4.37),

residue = lim (z+1-j) 1

atz=—1+j oo 2+ 14+ 1))

which is precisely the complex conjugate of the residue at z=—1 — j. Hence we can take
a short cut with the algebra and state the residue as é(—l -J)-
The sum of the residues is

Pt +(=1-j) =0
so, by the residue theorem,

{u — 4z _onjoy=0
C

(2 +2z+2)

Evaluation of definite real integrals

The evaluation of definite integrals is often achieved by using the residue theorem
together with a suitable complex function f(z) and a suitable closed contour C. In this
section we shall briefly consider two of the most common types of real integrals that
can be evaluated in this way.

Type 1: Infinite real integrals of the form [~_ f(x) dx where f(x) is a
rational function of the real variable x

To evaluate such integrals we consider the contour integral

% f(z)dz

where C is the closed contour illustrated in Figure 4.32, consisting of the real axis from
—R to +R and the semicircle I', of radius R, in the upper half z plane. Since z = x on the
real axis,

% flz)dz = J flx)dx + J flz)dz

-R r

Then, provided that lim,_,.. [ f(z) dz = 0, taking R — oo gives

oo

% flz)dz = J f(x)dx
c e

On the semicircular path I, z= R ¢!’ (0 < 8 < ! &), giving

2
dz=iRe!do
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and

n/2
J flz)dz = J f(Re")jRe" d6
r 0

For this to tend to zero as R — oo, |f(Re/®)| must decrease at least as rapidly as R,
implying that the degree of the denominator of the rational function f{x) must be at least
two more than the degree of the numerator. Thus, provided that this condition is
satisfied, this approach may be used to calculate the infinite real integral [~ f(x)dx.
Note that if f(x) is an even function of x then the same approach can also be used to
evaluate [, f(x) dx, since if f(x) is even, it follows that

oo

J flx)dx = ZJ f(x)dx

Example 4.38  Using contour integration, show that
) dx 1
=1lrn
Jm (x2+4)2 16

Solution  Consider the contour integral

]=§ 2dz .
c (z7+4)

where C is the closed semicircular contour shown in Figure 4.32. The integrand
1/(z* + 4)* has poles of order two at z = +2j. However, the only singularity inside the
contour C is the double pole at z = 2j. From (4.38),

residue . 1d N 1
c=lim = —=(z-2j) ——————;

atz=2j :-2jlldz (z=2j) (z+2))
= lim —=2 =2 - —5]

=2 (z42)) (4))

s0, by the residue theorem,

dz Lo |
jg Gy O =
C

Since

R
| 2:J dr 2+J &
Je(z+4) (X +4) r(z+4)
letting R — oo, and noting that the second integral becomes zero, gives

1

[ dz :j dx — il
JoE+a? ) _oPra? "
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=Y

i

A
z plane

Figure 4.33 The
unit-circle contour
for evaluating

[TG(sin 6, cos 0) d6.

E
N

Example 4.39

Solution

Note that in this particular case we could have evaluated the integral without using
contour integration. Making the substitution x = 2tan 6, dx = 2sec’0 d@ gives

had /2 5 /2
j — J 2sec 646 _ éj cos’0d0 = L[Lsin20+6]"2, = Ln
(X" +4) —n2 (4sec’@) /2

Type 2: Real integrals of the form I = Jﬁ"G(sin 0, cos 0) dO where G is
a rational function of sin @ and cos 0

We take z = e'%, so that

sin 6= i,(z—l), cos9=%(z+l)
2j z z

dz=je?do, or do=9%

]z

and

On substituting back, the integral / becomes

1= i; flz)dz

where C is the unit circle |z| = 1 shown in Figure 4.33.

Using contour integration, evaluate
2n
7= dé
, 2+cos 0

Take z = /%, so that

cos@z%(z+l), dez‘—l-z

z jz

On substituting, the integral becomes

/- j( &2 % _d
Cjz[2+%(z+ 1/2)] J ) 2 +4z+1
where C is the unit circle | z| = | shown in Figure 4.33. The integrand has singularities at
Z4+4z+1=0

that is, at z = -2 + /3. The only singularity inside the contour C is the simple pole at
z=-2+ 3. From (4.37),

residue at z = -2 + 3

= lim |2(z+2-3) ! =21 1
=243 | ] (z+2-y3)=z+2+3)] J2y3 |3
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so0, by the residue theorem,

an! 2w
1=27U(f) ==
W33

Thus

2n
a0 _ 2mn
. 24cosO 3

4.6.6 Exercises

60  Evaluate the integral

zdz
sz+1

where C is

(a) the circle |z| = 3 (b) the circle |z]| =2
61  Evaluate the integral
fF 2+ 3jz=2 d
3 z
c 219z
where C is

(a) the circle |z] =1 (b) the circle |z| =4

62  Calculate the residues at all the poles of the function

fiz) = [zz+2![zz+4)
: Z+1)(Z+6)

Hence calculate the integral

jg Nz)dz
c

where C is

(a) thecircle |z]|=2 (b) the circle |z —j| =1
(c) thecircle |z| =4

63  Evaluate the integral

dz
. 22(1 +22)2

where C is

(a) the circle |z| = 3 (b) the circle |z| =2

64

Using the residue theorem, evaluate the following
contour integrals:

() % !3zz+2!dz
=1 +4)

(i) thecircle |z=2| =2

where C is
(ii) the circle |z| = 4

(b) gzz—2z!dz
e+ +4)

(i) thecircle |z| =3

where C is
(ii) thecircle [z +j| =2

©) § 3 dz
cz+1)y (z=-1)(z-2)

(i) thecircle |z| =1
where Cis 4 (i) thecircle |z+ 1| =1

(iii) the rectangle with vertices
at£j, 34j

) % (z=1)dz
e (F=-Hiz+ 1)

(i) thecircle |z| =1

_ ] (ii) thecircle [z+2| =2
where C is
(iii) the triangle with vertices

at =3+j,-2-j, 3+j0
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65 Using a suitable contour integral, evaluate the 2
. . x"dx
following real integrals: (f 7 >
_w(x +1)(x"+2x+2)
dx dx B d
(a) (b) h X
X +x+1 (P +1)’ © 3- 200s9+sm9 (h) 0x4+1
d
© j - i)
o T+ DET+4) Nts +4x+5)
2n 2n
d cos 360 46 4d6 __cosf
()JO 5—4cos @ © . 5+4sin6 o) 3+2c059

4.7 Engineering application: EUENS I SRS

In the circuit shown in Figure 4.34 we wish to find the variation in impedance Z and
admittance Y as the capacitance C of the capacitor varies from 0 to co. Here

E
e 1_1 1

===+joC, Y=-=
VA

Z R
Writing
.
Figure 4.34 1_1+joCR
AC circuit of Zz R
Section 4.7.

we clearly have

R

== 4.50
1+joCR “-30)

Equation (4.50) can be interpreted as a bilinear mapping with Z and C as the two vari-
ables. We examine what happens to the real axis in the C plane (C varies from 0 to oo
and, of course, is real) under the inverse of the mapping given by (4.50). Rearranging
(4.50), we have

_R-Z

(oRz 4.51)
Taking Z=x +jy
- Rox—jy  x+jy-R _(r+jy=R)+jx) 4.52)
JOR(x+jy)  ®R(y-jx) OR(x* +)7)
Equating imaginary parts, and remembering that C is real, gives
0=x+3"—Rx (4.53)

which represents a circle, with centre at (3R, 0) and of radius 3R. Thus the real axis in
the C plane is mapped onto the circle given by (4.53) in the Z plane. Of course, C is
positive. If C = 0, (4.53) indicates that Z = R. The circuit of Figure 4.34 confirms
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Figure 4.35 Mapping 7o __R
for the impedance Z. " 1 +jwCR
/—\
Cc=0 C>o C=w C=0_
C plane Z plane
Figure 4.36 Mapping A A
for the admittance Y. | €
Y= 3 +jwC
—a C increasing
C=0 C>oo C=0 o
0 - 0 L -
C plane Y plane

that the impedance is R in this case. If C — oo then Z — 0, so the positive real axis in
the plane is mapped onto either the upper or lower half of the circle. Equating real parts

in (4.52) gives
C=—=
o(x’ +y")

so C > 0 gives y < 0, implying that the lower half of the circle is the image in the
Z plane of the positive real axis in the C plane, as indicated in Figure 4.35. A diagram
such as Figure 4.35 gives an immediate visual impression of how the impedance
Z varies as C varies.

The admittance Y = 1/Z is given by

Y:l+ij
R

which represents a linear mapping as shown in Figure 4.36.

R X P T T T ITEN D M use of harmonic functions

In this section we discuss two engineering applications where use is made of the
properties of harmonic functions.

4.8.1 A heat transfer problem

We saw in Section 4.3.2 that every analytic function generates a pair of harmonic
functions. The problem of finding a function that is harmonic in a specified region
and satisfies prescribed boundary conditions is one of the oldest and most important
problems in science-based engineering. Sometimes the solution can be found by means
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Temperature 0 °C

Y
@

Temperature 100°C

Figure 4.37
Schematic diagram of
heat transfer problem.

r = 0.3R

Figure 4.38
The mapping
w=(z-3)/(3z-1).

of a conformal mapping defined by an analytic function. This, essentially, is a con-
sequence of the ‘function of a function’ rule of calculus, which implies that every
harmonic function of x and y transforms into a harmonic function of # and v under the

mapping
w=u+jv=fx+jy)=f(2)

where f(z) is analytic. Furthermore, the level curves of the harmonic function in the
z plane are mapped onto corresponding level curves in the w plane, so that a harmonic
function that has a constant value along part of the boundary of a region or has a zero
normal derivative along part of the boundary is mapped onto a harmonic function with
the same property in the w plane.

For heat transfer problems the level curves of the harmonic function correspond to
isotherms, and a zero normal derivative corresponds to thermal insulation. To illustrate
these ideas, consider the simple steady-state heat transfer problem shown schematic-
ally in Figure 4.37. There is a cylindrical pipe with an offset cylindrical cavity through
which steam passes at 100 °C. The outer temperature of the pipe is 0 °C. The radius of
the inner circle is % of that of the outer circle, so by choosing the outer radius as the
unit of length the problem can be stated as that of finding a harmonic function 7(x, y)
such that

82—T+‘72—7;:O

ox’  dy
in the region between the circles [z] =1 and |z —0.3]=0.3,and T=0on |z|=1 and

T'=100o0n|z-0.3]=0.3.
The mapping

z-3

3z-1

transforms the circle |z| = 1 onto the circle |[w| =1 and the circle |z — 0.3| = 0.3 onto
the circle |w| = 3 as shown in Figure 4.38. Thus the problem is transformed into the
axially symmetric problem in the w plane of finding a harmonic function 7(u, v) such
that 7(u, v) = 100 on |w| =1 and T(u, v) = 0 on |w| = 3. Harmonic functions with such
axial symmetry have the general form

T(u,v)=Aln(* +v*)+ B

where 4 and B are constants.
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4.8.2

Figure 4.39

(a) Schematic diagram
for an insulated-gate
field-effect transistor;
(b) an appropriate
coordinate system for
the application.

Here we require, in addition to the axial symmetry, that T(u, v) = 100 on u* + v* = 1
and T(u, v) =0 on 1> + v* = 9. Thus B =100 and 4 =—-1001n9, and the solution on the
w plane is

_ 100[1 = In(u’ +7)]

T(u, v) 9

We need the solution on the z plane, which means in general we have to obtain # and
v in terms of x and y. Here, however, it is a little easier, since u* + v* = |w|* and

z—3
3z-1

2 |z-317 _ _(x=3)"+)°
[3z=1" (Bx-1)"+9)°

lwp=

Thus

T(x, y) = lln_()(g) {1=In[(x=3)"+»"] = In[Gx = 1)’ + 9]}

Current in a field-effect transistor

The fields (E,, E,) in an insulated-gate field-effect transistor are harmonic conjugates
that satisfy a nonlinear boundary condition. For the transistor shown schematically in
Figure 4.39 we have

ox dy’ dy ox

with conditions

E.=0 on the electrodes

E, (Ey + ﬂ)) - L on the channel
h 2UEHE,
|4
E'"_>_7zg as x—> - (0<y<h)
E‘,%%/g as x> (0<y<h)

where V is a constant with dimensions of potential, % is the insulator thickness, / is the
current in the channel, which is to be found, , €, and €, have their usual meanings, and
the gate potential », and the drain potential V; are taken with respect to the source
potential.

YA
Gate electrode Seo h R..

< Lo 5 P A B Q..

Source electrode Channel Drain electrode

NII—
~
| —
™~

(a) (b)
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The key to the solution of this problem is the observation that the nonlinear boundary
condition

2EX(Ey+ 5) —
h HUENE,

contains the harmonic function (now of £, and E))

H(E., E) = 2E(E,+ 2

A harmonic conjugate of H is the function

V 2
G(E, E,) = (E,V+ —,f) _E

Since £, and E, are harmonic conjugates with respect to x and y, so are G and H. Thus
the problem may be restated as that of finding harmonic conjugates G and H such that

H=0 on the electrodes

H=- on the channel
HE(E,
_ 2
G—)(%) as x> (0<y<h)
_ 2
6 (MUY o w0y

Using the sequence of mappings shown in Figure 4.40, which may be composed into
the single formula

bz 2
pode—a
ae” -1
where a = e"*? and b = 7w/h, the problem is transformed into finding harmonic-conjugate

functions G and H (on the w plane) such that

H=0 on v=0 (u>0) 4.54)
H=—1" on v=0 @<0) (4.55)
HENE,
_ 2
G= (ZOTK’?) at w=e (4.56)
2
G= (W) at w=1 (4.57)
The conditions (4.54), (4.55) and (4.57) are sufficient to determine H and G completely
H = _Targ(w)
TUE)E,

G = Iln|w| +(Vo+ V= Vg)z
TULEYE, h
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Figure 4.40 YA
Sequence of mappings S n R
to simplify the
problem. z plane
P A B Q
} } =\’
L0 e
S h R
z—>z+3L
P A B Q
0 L
S Tt R
z — nzlh
p A B Q
0 nL/h
z—ef
R P A B Q
1 a?
z—z-1
R sp|A B Q
10 a? -1
z—zla®-1)
R sp (A B Q
T T
-1
z—> l/z
P S QB A
—a? - 1) of
v
z—>1-z
A B Ql R S i P h
T T 7
w plane 0 ‘ 1 a’

while the condition (4.56) determines the values of 7
EE,
I= ‘iLZ— QVy— 2V, + V)V,

This example shows the power of complex variable methods for solving difficult
problems arising in engineering mathematics. The following exercises give some
simpler examples for the reader to investigate.
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66

67

68

4.8.3 Exercises

Show that the transformation w=1/z, w = u + jv,
z=x+ ]y, transforms the circle x> + y* = 2ax in the
z plane into the straight line = 1/2a in the w plane.
Two long conducting wires of radius « are placed
adjacent and parallel to each other, so that their
cross-section appears as in Figure 4.41. The

wires are separated at O by an insulating gap of
negligible dimensions, and carry potentials 7V,
as indicated. Find an expression for the potential
at a general point (x, y) in the plane of the cross-
section and sketch the equipotentials.

Figure 4.41 Conducting wires of Exercise 66.

Find the images under the mapping

—ztl
-z
z=Xx+]y, of

(a) the points A(=1, 0), B(0, 1), C(%, £) and
D(%, 0) in the z plane,

(b) the straight line y =0,

(c) the circle x* +)* = 1.

Illustrate your answer with a diagram showing the
z and w planes and shade on the w plane the region
corresponding to x? + )% < 1.

A semicircular disc of unit radius, [(x, y):
x*+y* < 1,y = 0], has its straight boundary at
temperature 0 °C and its curved boundary at 100 °C.
Prove that the temperature at the point (x, ) is

T = 2-(-)-Qtanfl(-——-—-—-—-X------—zz 2)
b 1-x"-y

(a) Show that the function

G(x,y) =2x(1 - y)
satisfies the Laplace equation and construct
its harmonic conjugate H(x, y) that satisfies
H(0, 0) = 0. Hence obtain, in terms of z, where
z =X + ]y, the function F such that W = F(z)
where W= G +jH.

(b) Show that under the mapping w = Inz, the
harmonic function G(x, y) defined in (a) is
mapped into the function

69

70

G(u, v) = 2e"cosv — e*sin 2v
Verify that G(u, v) is harmonic.

(c) Generalize the result (b) to prove that under
the mapping w = f(z), where f’(z) exists, a
harmonic function of (x, y) is transformed
into a harmonic function of (u, v).

Show that if w= (z + 3)/(z - 3), w=u +ju,
z=x +jy, the circle * + v* = k? in the w plane
is the image of the circle
2
P+t io-0 k221
1 -k
in the z plane.
Two long cylindrical wires, each of radius
4 mm, are placed parallel to each other with their
axes 10 mm apart, so that their cross-section
appears as in Figure 4.42. The wires carry potentials
1V, as shown. Show that the potential V(x, y) at the
point (x, y) is given by

V= i {In[(x+3)*+)*]—In[(x - 3)*+)°]}
In4

EAAN
Figure 4.42 Cylindrical wires of Exercise 69.

Find the image under the mapping

_jd=2

T 14z
z=x+jy, w=u+jv, of

(a) the points A(1, 0), B(0, 1), C(0, —1) in the
z plane,

(b) the straight line y = 0,

(c) the circle x* +y* = 1.

A circular plate of unit radius, [(x, y): x* +)* < 1],
has one half (with y > 0) of its rim, x* + y* = 1, at

temperature 0 °C and the other half (with y < 0) at
temperature 100 °C. Using the above mapping, prove
that the steady-state temperature at the point (x, y) is

2 2
T = m(—)tanfl(————-‘v—l_x - )
T 2y
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71  The problem shown schematically in
Figure 4.43 arose during a steady-state heat
transfer investigation. 7' is the temperature.
By applying the successive mappings

Y=

VA
2 -1 o2,
f f f f >
G, FF ED C"' B A" H.L
4
T=0
Figure 4.43 Schematic representation of )
Exercise 71.
zZ = Z—+J£ , w=lInz -1 1 ¥
z-j4 : —t—
show that the temperature at the point (x, y) in the G, FE b CB A
shaded region in the figure is given by w=2E }
zZ— v
2 2
M,y = 2% h{"z 2 J & } z
n X+ (4 —J/) C’ D FEI|F G A B/,
72 The functions
Figure 4.44 Mappings of Exercise 72.
_ 1 _z+1
w=z+ -, w=
z z-1

perform the mappings shown in Figure 4.44. A long
bar of semicircular cross-section has the temperature YA
of the part of its curved surface corresponding to '
the arc PQ in Figure 4.45 kept at 100 °C while the '
rest of the surface is kept at 0 °C. Show that the
temperature T at the point (x, y) is given by i

T= l% [arg(Z* +z + 1) — arg(z* — z + 1]

R

Figure 4.45 Cross-section of bar of Exercise 72.

4.9 Review exercises (1-24)

1 Find the images of the following points under the 2 Under each of the mappings given in Review
mappings given: exercise 1, find the images in the w plane of the
t traight li
(@ z=1+j under w=(1+j)z+] WO Stralght ines
(b) z=1-j2 under w=j3z+j+1 @) y=2x
(c) z=1 under w=1(1-jz+1(1+}) (b) x+y=1
1
2

(d z=j2 under w=1(1-jz+1(1+]j) in the z plane, z = x + jy.
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The linear mapping w = oz + 3, where o and 3 are
complex constants, maps the point z = 2 — j in the
z plane to the point w = 1 in the w plane, and the
point z = 0 to the point w = 3 +j.

(a) Determine ¢ and .

(b) Find the region in the w plane corresponding to
the left half-plane Re(z) =< 0 in the z plane.

(c) Find the region in the w plane corresponding to
the circular region 5|z| < 1 in the z plane.

(d) Find the fixed point of the mapping.

Map the following straight lines from the

z plane, z = x + jy, to the w plane under the

inverse mapping w = j/z:

(a x=y+1

(b) y=3x

(c) the line joining A(1 + j) to B(2 +j3) in the
z plane

(d) y=4

In each case sketch the image curve.

Two complex variables w and z are related by the
mapping

+ 1
-1

N

N

Sketch this mapping by finding the images
in the w plane of the lines Re(z) = constant and
Im(z) = constant. Find the fixed points of the

mapping.
The mapping

1-2°

V4

w =

takes points from the z plane to the w plane. Find
the fixed points of the mapping, and show that the
circle of radius » with centre at the origin in the

z plane is transformed to the ellipse

2 2 2 2
(5) () =7
r—1 r+1
in the w plane, where w = u + ju. Investigate what
happens when » = 1.

Find the real and imaginary parts of the complex
function w = 2, and verify the Cauchy-Riemann
equations.

10

11

12

13

Find a function v(x, y) such that, given
u(x, y) = xsinx coshy — ycosxsinhy

f(z) = u+jv is an analytic function of z, f(0) = 0.

Find the bilinear transformation that maps the three
points z= 0, j and 3 (1 +j) in the z plane to the
three points w = oo, —j and 1 — j respectively in the
w plane. Check that the transformation will map

(a) the lower half of the z plane onto the upper
half of the w plane

(b) the interior of the circle with centre z = j%
and radius % in the z plane onto the half-plane
Im(w) < —1 in the w plane.

Show that the mapping
aZ
= + —
z=E a7

where z = x + jy and { = R e’ maps the circle
R = constant in the { plane onto an ellipse in the
z plane. Suggest a possible use for this mapping.

Find the power series representation of the
function

1
1+2°

in the disc |z| < 1. Deduce the power series for
1
(1+2°°

valid in the same disc.

Find the first four non-zero terms of the Taylor
series expansion of the following functions about
the point indicated, and determine the radius of
convergence of each:

1

1-z _ _
® 5 =0 ® 5~ =)
© == =)

Find the radius of convergence of each Taylor
series expansion of the following function about the
points indicated, without finding the series itself:

1
2(Z+ 1)

at the pointsz=1, -1, 1 +j, 1 +j% and 2 +j3.

fz)=
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14

15

16

17

18

19

20

Determine the Laurent series expansion of the
function

1
(z2 +1)z

f2) =

about the points (a) z= 0 and (b) z= 1, and
determine the region of validity of each.

Find the Laurent series expansion of the function
Bt 1
flz) =& sin| —
1-z

about (a) z=0, (b) z= 1 and (c) z = oo, indicating
the range of validity in each case. (Do not find terms
explicitly; indicate only the form of the principal

part.)

Find the real and imaginary parts of the functions
(a) esinhz (b) cos2z

oy 22 (d) tanz

Determine whether the following mappings are

conformal, and, if not, find the non-conformal points:

@) w:Zl2

(b) w=22+32+6(1-j)z+1

() w=64z+ L

z
Consider the mapping w = cos z. Determine the points
where the mapping is not conformal. By finding the
images in the w plane of the lines x = constant and
y = constant in the z plane (z = x + jy), draw the
mapping similarly to Figures 4.14 and 4.18.

Determine the location of and classify the
singularities of the following functions:

sinz b 1
(a) B (b) R

z+1

©) =5 (d) sechz

() sinhz  (f) sine) @) z°

Find the residues of the following functions at the
points indicated:

21

22

23

24

2z

@ o €=D O30 =i
V4
© 1= G=im @ —= =-9)
z-m (z+8)

Find the poles and zeros, and determine all the
residues, of the rational function
) = (Z - 1)(2 +3z+5)

z2(z +1)

Sz

Determine the residue of the rational function

2+ 62z —30z"
(z-1-j)

Evaluate the following contour integrals along
the circular paths indicated:

(a) zZL’
cZ +7z+6

% gz +l!gz +3)dZ
(z +9)(z +4)

f{’ {(i)Cisz=§
(c) where
Cz(l—z) (ii)) Cis |z]| =2

d
@ j( EET

where (i) Cis |z|=2
(ii) Cis |[z=1]=1

where Cis |z| =

where Cis |z]| =

3
(e) _zdz
c @+ 1) +z+1)

() % ——(———L——Z_lz dz , where
c2(z=2)(z-3)

,whereCislz—jlz%

(i) Cis |z| =1
(ii) Cis |z| =3

Using a suitable contour integral, evaluate the
following real integrals:
[ ¥ dx
(@) T
J o +1) (" +2x+2)

(= mo
dx 6 do
®) f © J STL cos 6
) &4 16 0
2n
d cos 260 d6
@ 5 —4cos 6
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5.1

Introduction

Laplace transform methods have a key role to play in the modern approach to the
analysis and design of engineering systems. The stimulus for developing these methods
was the pioneering work of the English electrical engineer Oliver Heaviside (1850—
1925) in developing a method for the systematic solution of ordinary differential
equations with constant coefficients. Heaviside was concerned with solving prac-
tical problems, and his method was based mainly on intuition, lacking mathematical
rigour: consequently it was frowned upon by theoreticians at the time. However,
Heaviside himself was not concerned with rigorous proofs, and was satisfied that his
method gave the correct results. Using his ideas, he was able to solve important
practical problems that could not be dealt with using classical methods. This led to
many new results in fields such as the propagation of currents and voltages along
transmission lines.

Because it worked in practice, Heaviside’s method was widely accepted by engineers.
As its power for problem-solving became more and more apparent, the method attracted
the attention of mathematicians, who set out to justify it. This provided the stimulus for
rapid developments in many branches of mathematics including improper integrals,
asymptotic series and transform theory. Research on the problem continued for many
years before it was eventually recognized that an integral transform developed by the
French mathematician Pierre Simon de Laplace (1749—1827) almost a century before
provided a theoretical foundation for Heaviside’s work. It was also recognized that the
use of this integral transform provided a more systematic alternative for investigating
differential equations than the method proposed by Heaviside. It is this alternative
approach that is the basis of the Laplace transform method.

We have already come across instances where a mathematical transformation has
been used to simplify the solution of a problem. For example, the logarithm is used to
simplify multiplication and division problems. To multiply or divide two numbers, we
transform them into their logarithms, add or subtract these, and then perform the
inverse transformation (that is, the antilogarithm) to obtain the product or quotient of
the original numbers. The purpose of using a transformation is to create a new domain
in which it is easier to handle the problem being investigated. Once results have been
obtained in the new domain, they can be inverse-transformed to give the desired results
in the original domain.

The Laplace transform is an example of a class called integral transforms, and it
takes a function f{(f) of one variable ¢ (which we shall refer to as time) into a function
F(s) of another variable s (the complex frequency). Another integral transform widely
used by engineers is the Fourier transform, which is dealt with in Chapter 8. The
attraction of the Laplace transform is that it transforms differential equations in the ¢
(time) domain into algebraic equations in the s (frequency) domain. Solving differ-
ential equations in the ¢+ domain therefore reduces to solving algebraic equations
in the s domain. Having done the latter for the desired unknowns, their values as
functions of time may be found by taking inverse transforms. Another advantage of
using the Laplace transform for solving differential equations is that initial conditions
play an essential role in the transformation process, so they are automatically


www.semeng.ir

5.1 INTRODUCTION 347

Figure 5.1 Schematic
representation of a
system.

u(t) x(1)
——  »{ SYSTEM |——»
Input or Output or
excitation response

incorporated into the solution. This constrasts with the classical approach con-
sidered in Chapter 10 of the companion text Modern Engineering Mathematics,
where the initial conditions are only introduced when the unknown constants of
integration are determined. The Laplace transform is therefore an ideal tool for solving
initial-value problems such as those occurring in the investigation of electrical circuits
and mechanical vibrations.

The Laplace transform finds particular application in the field of signals and linear
systems analysis. A distinguishing feature of a system is that when it is subjected to
an excitation (input), it produces a response (output). When the input u(¢) and output
x(#) are functions of a single variable #, representing time, it is normal to refer to them
as signals. Schematically, a system may be represented as in Figure 5.1. The problem
facing the engineer is that of determining the system output x(¢) when it is subjected to
an input u(¢) applied at some instant of time, which we can take to be # = 0. The relation-
ship between output and input is determined by the laws governing the behaviour of
the system. If the system is linear and time-invariant then the output is related to the
input by a linear differential equation with constant coefficients, and we have a standard
initial-value problem, which is amenable to solution using the Laplace transform.

While many of the problems considered in this chapter can be solved by the classical
approach, the Laplace transform leads to a more unified approach and provides the
engineer with greater insight into system behaviour. In practice, the input signal u(f)
may be a discontinuous or periodic function, or even a pulse, and in such cases the
use of the Laplace transform has distinct advantages over the classical approach. Also,
more often than not, an engineer is interested not only in system analysis but also in
system synthesis or design. Consequently, an engineer’s objective in studying a sys-
tem’s response to specific inputs is frequently to learn more about the system with a
view to improving or controlling it so that it satisfies certain specifications. It is in this
area that the use of the Laplace transform is attractive, since by considering the system
response to particular inputs, such as a sinusoid, it provides the engineer with powerful
graphical methods for system design that are relatively easy to apply and widely used
in practice.

In modelling the system by a differential equation, it has been assumed that both
the input and output signals can vary at any instant of time; that is, they are functions
of a continuous time variable (note that this does not mean that the signals themselves
have to be continuous functions of time). Such systems are called continuous-time
systems, and it is for investigating these that the Laplace transform is best suited.
With the introduction of computer control into system design, signals associated with
a system may only change at discrete instants of time. In such cases the system is said
to be a discrete-time system, and is modelled by a difference equation rather than a
differential equation. Such systems are dealt with using the z transform considered in
Chapter 6.
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The Laplace transform

5.2.1 Definition and notation

Figure 5.2
The Laplace transform
operator.

We define the Laplace transform of a function f(#) by the expression
L} = J e”f(1) dt .1)
0
where s is a complex variable and ™ is called the kernel of the transformation.
It is usual to represent the Laplace transform of a function by the corresponding

capital letter, so that we write

oo

A} =F(s) = f e”f(r)dt (5:2)

0

An alternative notation in common use is to denote £{ ()} by f(s) or simply f.
Before proceeding, there are a few observations relating to the definition (5.2) worthy
of comment.

(a) The symbol £ denotes the Laplace transform operator; when it operates on a
function f(¥), it transforms it into a function F(s) of the complex variable s. We
say the operator transforms the function f{(¢) in the # domain (usually called the
time domain) into the function F(s) in the s domain (usually called the complex
frequency domain, or simply the frequency domain). This relationship is
depicted graphically in Figure 5.2, and it is usual to refer to f(f) and F(s) as a
Laplace transform pair, written as { f(¢), F(s)}.

£
t domain s domain
(time domain) (frequency domain)

(b) Because the upper limit in the integral is infinite, the domain of integration is
infinite. Thus the integral is an example of an improper integral, as introduced
in Section 9.2 of Modern Engineering Mathematics; that is,

J e“f(t)dz:lTimJ e "f(r)dt
0 0

This immediately raises the question of whether or not the integral converges, an
issue we shall consider in Section 5.2.3.

(c) Because the lower limit in the integral is zero, it follows that when taking the
Laplace transform, the behaviour of f{f) for negative values of 7 is ignored or
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Figure 5.3

Graph of f(#) and
its causal equivalent
function.

suppressed. This means that F(s) contains information on the behaviour of f(#)
only for # = 0, so that the Laplace transform is not a suitable tool for investigating
problems in which values of /(#) for # < 0 are relevant. In most engineering applica-
tions this does not cause any problems, since we are then concerned with physical
systems for which the functions we are dealing with vary with time z. An attribute
of physical realizable systems is that they are non-anticipatory in the sense
that there is no output (or response) until an input (or excitation) is applied.
Because of this causal relationship between the input and output, we define a
function f(#) to be causal if f(f) = 0 (+ < 0). In general, however, unless the
domain is clearly specified, a function f{(¢) is normally intepreted as being defined
for all real values, both positive and negative, of 7. Making use of the Heaviside
unit step function H(¢) (see also Section 5.5.1), where

H(#) = {0 (t < 0)

I (t=0)
we have
0 (<0
HH(t) =
SO {f(t) (t=0)

Thus the effect of multiplying f(¢) by H(¢) is to convert it into a causal function.
Graphically, the relationship between f(¢) and f(¢)H(f) is as shown in Figure 5.3.

A SO A FOHQ)

\//—\—/ L~

(d)

~Y

:
!

It follows that the corresponding Laplace transform F(s) contains full
information on the behaviour of f(¢)H(f). Consequently, strictly speaking one
should refer to { f(¥)H(¢), F(s)} rather than { f(¢), F(s)} as being a Laplace trans-
form pair. However, it is common practice to drop the H(¢) and assume that we
are dealing with causal functions.

If the behaviour of f{¢) for ¢ < 0 is of interest then we need to use the alternative
two-sided or bilateral Laplace transform of the function f(7), defined by

Ll f(D} = J e (1) dt (5.3

The Laplace transform defined by (5.2), with lower limit zero, is sometimes
referred to as the one-sided or unilateral Laplace transform of the function £(¢).
In this chapter we shall concern ourselves only with the latter transform, and refer
to it simply as the Laplace transform of the function /(7). Note that when £{(7) is a
causal function,

Ll [} = L{ (D}
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5.2.2

Example 5.1

Solution

(e

Another issue concerning the lower limit of zero is the interpretation of /(0) when
f(¢) has a peculiarity at the origin. The question then arises as to whether or not
we should include the peculiarity and take the lower limit as 0~ or exclude it and
take the lower limit as 0" (as conventional 0~ and 0" denote values of ¢ just to the
left and right of the origin respectively). Provided we are consistent, we can take
either, both interpretations being adopted in practice. In order to accommodate
any peculiarities that may occur at # = 0, such as an impulse applied at 7 = 0, we
take 0~ as the lower limit and interpret (5.2) as

oo

()} =F(s) = J ) () dt (5-4)

0

We shall return to this issue when considering the impulse response in Section 5.5.8.

Transforms of simple functions

In this section we obtain the Laplace transformations of some simple functions.

Determine the Laplace transform of the function

J)=c

where ¢ is a constant.

Using the definition (5.2),

el T
Lc) = J e~cds = lim J e~cdt
0

T—oo

T
. C _-s . —s
=11m[—-ej =g(1—11me T)
T—>o0 S N T—e0

0

Taking s = 0 + jo, where ¢ and o are real,

lime™" = lim(e™ 7”7

T—oo T—eo

= lim ¢ 7 (cos T + j sin @T)
T—oo

A finite limit exists provided that = Re(s) > 0, when the limit is zero. Thus, provided
that Re(s) > 0, the Laplace transform is

HAce) = ;5 Re(s) > 0

so that
f(t) =c
¢ Re(s) >0 (5.5)
F(s) = =

constitute an example of a Laplace transform pair.
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Example 5.2

Solution

Example 5.3

Solution

Determine the Laplace transform of the ramp function

J)=t
From the definition (5.2),

el T
ff{t}zJ e‘”zdt:limJ e™'rdr
T
0 0

—oo

<" Te”" e’
=lim|_lgw_& | = =-lim —lim
T—oo sz SZ Te g T—oo S2

0
Following the same procedure as in Example 5.1, limits exist provided that
Re(s) > 0, when
Te—sT 3 1 e—sT
= lim =—
T—eo S2

=0

lim
Toe g

Thus, provided that Re(s) > 0,

oy =1

N

giving us the Laplace transform pair

f(y =1t
sy = L[ Re(®) >0 (5.6)
S2

Determine the Laplace transform of the one-sided exponential function

S =

The definition (5.2) gives

T—eo

o T
Frety = J e e dr = limJ e gy
0

. ) By 1 ( . —(.v—k)T)
lim ——[e I'= —— | 1-lime
1 [ 1 —

T>e 5 —k
Writing s = 0 + jow, where o and o are real, we have

“G-RT _ g5 —(0-)T . joT

lim e me e

T—eo T—oo
If k is real, then, provided that o = Re(s) > £, the limit exists, and is zero. If £ is
complex, say k = a + jb, then the limit will also exist, and be zero, provided that o > a

(that is, Re(s) > Re(k)). Under these conditions, we then have

et = —

1
s—k
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Example 5.4

Solution

giving us the Laplace transform pair

f(r) = ¢"
F(s) = 1 Re(s) > Re(k)
s—k

(5.7)

Determine the Laplace transforms of the sine and cosine functions
f(t) =sin at,

where a is a real constant.

g(t) = cos at

Since
e = cos at + j sin at
we may write
f(f) = sin at = Im &/
g(t) = cos at = Re e

Using this formulation, the required transforms may be obtained from the result
Prefy = Lk Re(s) > Re(k)
S —

of Example 5.3.
Taking k = ja in this result gives
Prey=—_ Re(s) >0
s—ja
or
Pl = s+ Ja

2 2°
s +a

Re(s) > 0

Thus, equating real and imaginary parts and assuming s is real,

Fisinat} =Im Lle} = —I—
s +a

Flcosatl = Re F{e) = Z—S-—z
s +a

These results also hold when s is complex, giving us the Laplace transform pairs

a

2 2°
s +a

Ffsinat} = Re(s) > 0 (5.8)

F{cosat} = zs S
s"+a

Re(s) > 0 (5.9)
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In MATLAB, using the Symbolic Toolbox, the Laplace transform of a function f{¢)
is obtained by entering the commands

syms s t
laplace(f(t))

with the purpose of the first command being that of setting up s and ¢ as symbolic
variables.

To search for a simpler form of the symbolic answer enter the command
simple (ans).Sometimes repeated use of this command may be necessary. To display
the answer in a format that resembles typeset mathematics, use is made of the pretty
command. Use of such commands will be illustrated later in some of the examples.

If the function f(7) includes a parameter then this must be declared as a symbolic
term at the outset. For example, the sequence of commands

syms s t a

laplace(sin(a*t))
gives, as required,

ans=a/(s™2+a"2)

as the Laplace transform of sin (af).

Use of MAPLE is almost identical to the MATLAB Symbolic Math Toolbox
except for minor semantic differences. However, when using MAPLE the integral
transform package must be invoked using inttrans and the variables 7 and s must
be specified explicitly. For instance the commands

with(inttrans) :
laplace(sin(a*t),t,s);

return the transform as

a

2 2
S 4F @

5.2.3 Existence of the Laplace transform

Clearly, from the definition (5.2), the Laplace transform of a function f{(#) exists if and
only if the improper integral in the definition converges for at least some values of s.
The examples of Section 5.2.2 suggest that this relates to the boundedness of the func-
tion, with the factor ™ in the transform integral acting like a convergence factor in
that the allowed values of Re(s) are those for which the integral converges. In order
to be able to state sufficient conditions on f{(¢) for the existence of £{ f(¢)}, we first
introduce the definition of a function of exponential order.

Definition 5.1

A function f(7) is said to be of exponential order as 1 — oo if there exists a real
number o and positive constants M and 7 such that

| (D] < Me”

forall t > T.
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Example 5.5

Example 5.6

Solution

What this definition tells us is that a function f{7) is of exponential order if it does not
grow faster than some exponential function of the form M e°’. Fortunately most functions
of practical significance satisfy this requirement, and are therefore of exponential order.
There are, however, functions that are not of exponential order, an example being e*’,
since this grows more rapidly than M e as t — oo whatever the values of M and o.

The function f{(#) = e is of exponential order, with o = 3.

Show that the function f(¢) = £ (¢ = 0) is of exponential order.

Since
e=1+at+ it + o’ +. ..

it follows that for any o > 0

6

.
o

t3 < em

so that #* is of exponential order, with & > 0.

It follows from Examples 5.5 and 5.6 that the choice of ¢ in Definition 5.1 is not
unique for a particular function. For this reason, we define the greatest lower bound o,
of the set of possible values of oto be the abscissa of convergence of /(7). Thus, in the
case of the function f(¢) = €¥, 0, = 3, while in the case of the function f(¢) = ¢*, 0, = 0.

Returning to the definition of the Laplace transform given by (5.2), it follows that
if f(t) is a continuous function and is also of exponential order with abscissa of

convergence O, so that
(D] <Me”, o> 0,

then, taking 7' = 0 in Definition 5.1,

J e'“f(t)dt‘ $J e~
0 0

Writing s = 6 + jo, where o and o are real, since || = 1, we have

|F(s)| = | /()] dr

|e—st| — Ie—atl |e—jwt| — Ie—otl — e—o‘t

so that

oo oo

e | A dt < MJ e e’ dr,

0
—(o—o )t
J e dt
0

|F(s)] < o, > o,

D

0

<
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Figure 5.4

Region of convergence
for Z{f(1)}; o, is

the abscissa of
convergence for f(?).

Theorem 5.1

524

This last integral is finite whenever o = Re(s) > o0,. Since o, can be chosen arbitrarily
such that o, > o, we conclude that F(s) exists for 6 > o,. Thus a continuous function
f(#) of exponential order, with abscissa of convergence o, has a Laplace transform

LD} = F(s), Re(s) > o

where the region of convergence is as shown in Figure 5.4.

.

(a) 6.>0 (b) a.<0

Im(s)

Im(s) A

A
O] o¢

In fact, the requirement that f(#) be continuous is not essential, and may be relaxed
to f(f) being piecewise-continuous, as defined in Section 8.8.1 of Modern Engineering
Mathematics; that is, f(f) must have only a finite number of finite discontinuities, being
elsewhere continuous and bounded.

We conclude this section by stating a theorem that ensures the existence of a Laplace
transform.

Existence of Laplace transform

If the causal function f(7) is piecewise-continuous on [0, o] and is of exponential order,
with abscissa of convergence o, then its Laplace transform exists, with region of con-
vergence Re(s) > o, in the s domain; that is,

oo

LU} = F(s) = J /(1 d1, Re(s) > o,

0

end of theorem

The conditions of this theorem are sufficient for ensuring the existence of the Laplace
transform of a function. They do not, however, constitute necessary conditions for
the existence of such a transform, and it does not follow that if the conditions are
violated then a transform does not exist. In fact, the conditions are more restrictive than
necessary, since there exist functions with infinite discontinuities that possess Laplace
transforms.

Properties of the Laplace transform

In this section we consider some of the properties of the Laplace transform that will
enable us to find further transform pairs { f(¢), F(s)} without having to compute them
directly using the definition. Further properties will be developed in later sections when
the need arises.
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Example 5.7

Solution

Property 5.1: The linearity property

A fundamental property of the Laplace transform is its linearity, which may be stated
as follows:

If f(f) and g(¢) are functions having Laplace transforms and if o and 8 are any
constants then

Llof(n) + Bg)} = oL f ()} + BL{g(D)}

As a consequence of this property, we say that the Laplace transform operator £ is
a linear operator. A proof of the property follows readily from the definition (5.2),
since

oo

Llaf(t)+ Bg(t)} =J [af(t) + Bg(t)] e dt

0

J af(t)e_”dt+f Bg(t)e™" dt
0 0

aJ f(t)e_‘”dt+ﬁj g(e”'dt
oL f(0} + BLg®)}

Regarding the region of convergence, if /(¢) and g(¢) have abscissae of convergence o,
and o, respectively, and o, > o}, 0, > 0, then

o,t 0.
Al < me,  len)] < Mye™
It follows that

lof(1) + PgO] < lal | /D] + 1Bl 1g(O)] < |a|M, e + || M, e
< (la|M, +|B M) e”

where ¢ = max(o,, 0,), so that the abscissa of convergence of the linear sum
of(t) + Pe(t) is less than or equal to the maximum of those for f(¢) and g(7).

This linearity property may clearly be extended to a linear combination of any finite
number of functions.

Determine #{3t + 2¢*}.

Using the results given in (5.6) and (5.7),

#itr =1 Res)>0
S

Fre’y = L3 Re(s) > 3
-
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so, by the linearity property,
L3t +2e%) =3L{t} + 2"}

:%+—2—, Re(s) > max{0,3}
T s-3

=342 Re(s) >3

s© s-=3

The answer can be checked using the commands

MATLAB MAPLE
syms s t with(inttrans) :
laplace(3*t + 2*exp(3*t)); laplace(3*t + 2*exp(3*t),t,s);

pretty (ans)

which return

2 1 1
— R

4&

0w
N

Example 5.8  Determine #{5 — 3¢+ 4 sin 2t — 6¢*}.

Solution  Using the results given in (5.5)—(5.8),

PI5) = g Re(s) >0  #{r}=1, Re(s)>0
S

Sfsin2e} = =2—, Re(s) >0  Z{e"} = —— Re(s)>4
sT+4 s—4

so, by the linearity property,
PS5 = 3t+4sin2t — 6e*} = L5} — 3Lt} + 4L sin 2t} — 6.F{e*}
5 3. 8 6

==-S+- - ——, Re(s) > max{0,4}
s s s+4 s-4
=33, 8 6 Res) >4
s s s+4 s-4
Again this answer can be checked using the commands
syms s t
laplace(5 - 3*t + 4*sin(2*t) - 6*exp(4*t))

in MATLAB, or the commands

with(inttrans) :
laplace(5 - 3*t + 4*sin(2*t) - 6*exp(4*t),t,s);

in MAPLE.
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Theorem 5.2

Proof

Example 5.9

Solution

The first shift property is another property that enables us to add more combinations
to our repertoire of Laplace transform pairs. As with the linearity property, it will prove
to be of considerable importance in our later discussions particularly when considering
the inversion of Laplace transforms.

Property 5.2: The first shift property

The property is contained in the following theorem, commonly referred to as the first
shift theorem or sometimes as the exponential modulation theorem.

The first shift theorem

If f(7) is a function having Laplace transform F(s), with Re(s) > o, then the function
e“f(¢) also has a Laplace transform, given by

PLe“f(H)} = F(s —a), Re(s) > o, + Re(a)

A proof of the theorem follows directly from the definition of the Laplace transform, since

oo oo

FLe"f(n} = J e”f(nedr = f Sy e dr

0 0

Then, since

oo

FLf(D} = F(s) =J f(tye™'dt, Re(s) > o,

0

we see that the last integral above is in structure exactly the Laplace transform of £{(7)
itself, except that s — a takes the place of s, so that

PLe"f()} = F(s —a), Re(s—a)> o,
or
LLe"f()} = F(s — a), Re(s) > o, + Re(a)

end of theorem

An alternative way of expressing the result of Theorem 5.2, which may be found
more convenient in application, is

L[} = [ LSO} e = [F9)] 55

In other words, the theorem says that the Laplace transform of e* times a function f(¢)
is equal to the Laplace transform of f{(¢) itself, with s replaced by s — a.

Determine #{te™}.

From the result given in (5.6),

Fitr=F(s)=L, Re(s)>0
N
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so, by the first shift theorem,
F{t e} = F(s +2) = [F(5)] 552, Re(s) >0-2

that is,

Re(s) > -2

27

Pfre?'y =
(s+

This is readily dealt with using MATLAB or MAPLE. The commands

MATLAB MAPLE
syms s t with (inttrans) :
laplace(t*exp(-2*t)) ; laplace(t*exp(-2*t),t,s);

pretty (ans)

return the transform as

1
(s+2)°

Example 5.10  Determine #{e™ sin 2¢}.

Solution  From the result (5.8),

Fsin2t} = F(s) = Re(s) > 0

2 b
s +4

so, by the first shift theorem,
Fle? sin2t} = F(s + 3) = [F(5)],,.3» Re(s) >0-3
that is,

2 B 2

Ple”'sin 21} = — =~
(s+3)+4 s +65+13

, Re(s) > -3

In MATLAB the commands:

syms s t
laplace(exp (-3*t) *sin(2*t))

return
ans = 2/((s + 3)72 + 4)
Entering the further commands

simple (ans) ;
pretty (ans)
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Theorem 5.3

returns
2/(s* + 6s + 13)

as an alternative form of the answer. Note that the last two commands could be
replaced by the single command pretty (simple(ans)).
In MAPLE the commands

with (inttrans) :
laplace(exp (-3*t) *sin(2*t),t,s);

return the answer

1

2 2
(s+3) +4

There is no simple command in MAPLE.

The function e sin 2¢ in Example 5.10 is a member of a general class of func-
tions called damped sinusoids. These play an important role in the study of engi-
neering systems, particularly in the analysis of vibrations. For this reason, we add
the following two general members of the class to our standard library of Laplace
transform pairs:

a

F{eMsinatt = ———_ Re(s) > -k (5.10)
(s+k)y +a

Fle™cosat} = —FK | Re(s) > -k (5.11)
(s+k)+a

where in both cases k and a are real constants.

Property 5.3: Derivative-of-transform property

This property relates operations in the time domain to those in the transformed s
domain, but initially we shall simply look upon it as a method of increasing our
repertoire of Laplace transform pairs. The property is also sometimes referred to as the
multiplication-by-¢ property. A statement of the property is contained in the following
theorem.

Derivative of transform

If f(¢) is a function having Laplace transform
F(s) = Z{f(0}, Re(s) > o,

then the functions ¢"f(f) (n =1, 2, . . .) also have Laplace transforms, given by

LA} = (—U”%Q, Re(s) > o,
S
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Proof By definition,

=

L)} =F(s) =J e flr)dt

0

so that
dF(S):g._ e—stf(t)dt
ds” ds" ),

Owing to the convergence properties of the improper integral involved, we can inter-
change the operations of differentiation and integration and differentiate with respect to
s under the integral sign. Thus

dis) f L e iy dr
ds o O
which, on carrying out the repeated differentiation, gives
S =y J &7 AN 01 = (1Y L), Re(s) > o,
S 0
the region of convergence remaining unchanged.
end of theorem
In other words, Theorem 5.3 says that differentiating the transform of a function

with respect to s is equivalent to multiplying the function itself by —¢. As with the pre-
vious properties, we can now use this result to add to our list of Laplace transform pairs.

Example 5.11  Determine #{¢ sin 3¢}.

Solution  Using the result (5.8),
3

2 b
s +9

Lsin3t} = F(s) = Re(s) > 0

so, by the derivative theorem,

FAtsin 3t} = _9F(s) _ _ 65

5 Re(s) > 0
ds  (s°+9)
In MATLAB the commands
syms s t
laplace(t*sin(3*t))
return
ans = 1/(s”2 + 9)*sin(2*atan(3/5))

Applying the further command

simple (ans)
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returns
ans = 6/(s”2 + 9)/s/(1 + 9/s"2)
Repeating the simple command
simple (ans)
returns the answer in the more desirable form
ans = 6*s/(s”2 + 9)72
In MAPLE the commands

with(intrans) :
laplace(t*sin(3*t),t,s);

return the transform as

sin(Zarctan(3§))

2
s +9

and there appears to be no command to simplify this.

Example 5.12  Determine #{t*¢'}.

Solution  From the result (5.7),
Fre'} = F(s) = Ll Re(s) > 1
=

so0, by the derivative theorem,

ff{tze’} = (1) szgzs! _ (_1)2d_2(L)
ds s—1

ds’
ot
ds{ (s—=1)

2
(s—1)"

Re(s) > 1

Note that the result is easier to deduce using the first shift theorem.

Using MATLAB or MAPLE confirm that the answer may be checked using the
following commands:

MATLAB MAPLE
syms s t with(inttrans) :
laplace(t"2*exp(t)) laplace(t™2*exp(t),t,s);
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Example 5.13  Determine #{t"}, where 7 is a positive integer.

Solution  Using the result (5.5),
P11 =L Re(s) >0
s

so, by the derivative theorem,

LI =(—1)"d—"(1)= L Re(s) > 0

dsn K Sn+l !

5.2.5 Table of Laplace transforms

It is appropriate at this stage to draw together the results proved to date for easy access.
This is done in the form of two short tables. Figure 5.5(a) lists some Laplace transform
pairs and Figure 5.5(b) lists the properties already considered.

Figure 5.5 (a) :
(a) Table of Laplace 1) L)} = F(s) Region of convergence
transform pairs; .
(b) some properties of ¢, ¢ a constant : Re(s) > 0
the Laplace transform.
t 12 Re(s) > 0
K
1
t", n a positive integer nm Re(s) >0
", k a constant —-1-—% Re(s) > Re(k)
5—
sin at, a a real constant > a > Re(s) >0
s"+a
cos at, a a real constant 5 s 5 Re(s) >0
s +a
e sin at, k and a real constants % Re(s) > —k
(s+k) +a
e cos at, k and a real constants % Re(s) > —k
(s+k) +a

®) L) =F(s), Re(s) >0, and Llg(n)} =G(s), Re(s) > o,
Linearity: Flaf(t) + Bg(1)} = aF(s) + BG(s), Re(s) > max(0,, ,)
First shift theorem: Fle“ f(t)}y = F(s —a), Re(s) > o, + Re(a)

Derivative of transform:

${t"f(r>}:<—1>"d~%ﬂ§), (n=1.2.. ). Re(s) > o,
S

n
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5.2.6 Exercises

1 Use the definition of the Laplace transform 3 Using the results shown in Figure 5.5, obtain the
to obtain the transforms of f(#) when £{(?) is Laplace transforms of the following functions,
given by stating the region of convergence:

(a) cosh2t  (b) £? (¢) 3+t  (d) te! (@) 5-3¢ (b) 7¢* —2sin3¢
stating the region of convergence in each case. (c) 3—2t+4cos2t (d) cosh3t¢
. inh 2¢ f) 5¢*+3 —2cos2t

2 What are the abscissae of convergence for the (e) sin (f) Se cos
following functions? (g) 4te™ (h) 2¢¥sin2¢
(a) & (b) e (i) e (j) 667 =3t*+4t-2
(c) sin2t (d) sinh 3¢ (k) 2cos 3t + 5sin 3¢ (1) tcos2t
(e) cosh2t f) t* (m) #2sin3¢ (n) > —3cos4t
(g) e +1¢* (h) 3 cos2t—1* (o) ?e*+e’cos2t+3
(i) 3e¥-2e™+sin2t  (j) sinh 3¢+ sin3¢ Check your answers using MATLAB or MAPLE.

5.2.7 The inverse transform

Figure 5.6
The Laplace transform
and its inverse.

The symbol £{F(s)} denotes a causal function f(¢) whose Laplace transform is F(s);
that is,

if Z{f(D} =F(s) then f(t)=L"{F(s)}

This correspondence between the functions F(s) and f{¢) is called the inverse
Laplace transformation, f(¢) being the inverse transform of F(s), and &' being
referred to as the inverse Laplace transform operator. These relationships are depicted
in Figure 5.6.

EAS

SRS

As was pointed out in observation (c) of Section 5.2.1, the Laplace transform F{(s)
only determines the behaviour of f(¢) for t = 0. Thus £ '{F(s)} = f(f) only for t = 0.
When writing #'{F(s)} = f(¢), it is assumed that ¢ = 0 so strictly speaking, we should
write

LYF(s)} = f(OH() (5.12)
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Example 5.14

Example 5.15

5.2.8

Since

#ey =

s —

if follows that

Since

[

2 2
N ()]

Fsin wt} =

it follows that

¥ 2(0 > = sin @t
s+

The linearity property for the Laplace transform (Property 5.1) states that if o and 8
are any constants then

Llaf() + Pt} = oL [} + L)} = aF(s) + BG(s)
It then follows from the above definition that
FHoaF(s) + BG(s)} = af(t) + Pg(t) = L {F(s)} + BL{G(s)}

so that the inverse Laplace transform operator £ is also a linear operator.

Evaluation of inverse transforms

The most obvious way of finding the inverse transform of the function F(s) is to make
use of a table of transforms such as that given in Figure 5.5. Sometimes it is possible
to write down the inverse transform directly from the table, but more often than not
it is first necessary to carry out some algebraic manipulation on F(s). In particular, we
frequently need to determine the inverse transform of a rational function of the form
p(s)/q(s), where p(s) and ¢(s) are polynomials in s. In such cases the procedure is first
to resolve the function into partial fractions and then to use the table of transforms.

Using MATLAB Symbolic Math Toolbox the commands

syms s t
ilaplace(F(s))

return the inverse transform of F(s). The corresponding MAPLE commands are

with(inttrans) :
invlaplace(F(s),s,t);


www.semeng.ir

366 LAPLACE TRANSFORMS

Example 5.16  Find

! 1
(s+3)(s-2)

Solution  First 1/(s + 3)(s — 2) is resolved into partial fractions, giving

D=

| - ;

(5+3)(5-2) 543 s5-2

Then, using the result £'{1/(s + a)} = ™ together with the linearity property, we
have

ff_l ; =_l$1 L +l$1 L =_le73t+le2t
(s+3)(s=2) > s+3| ° s=2 5 >

Using MATLAB or MAPLE the commands

MATLAB MAPLE

syms s t with (inttrans) :
ilaplace(1/((s + 3)*(s — 2))); ilaplace(1l/((s + 3)*
pretty (ans) (® = 2)),8,E) 5

return the anwers

—%exp(—Bt) + 1/5exp(2t) —%e(’m + %e(m

Example 5.17  Find
! s+ 1 }
{sz(sz +9)

Solution  Resolving (s + 1)/s°(s* + 9) into partial fractions gives

s+ 1
s (s°+9)

[
— 5,5 _1_S 1
2
S S

Using the results in Figure 5.5, together with the linearity property, we have

! 2S;I-l :é+ét—éCOS3t—§1;Sin3t
s (s"+9)
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Using MATLAB or MAPLE check that the answer can be verified using the
following commands:

MATLAB MAPLE

syms s t with (inttrans) :
ilaplace((s + 1)/ (s"2*(s"2 + 9))); invlaplace((s + 1)/
pretty (ans) (s”"2*(s"2 + 9)),s,t);

5.2.9 Inversion using the first shift theorem

In Theorem 5.2 we saw that if F(s) is the Laplace transform of f(¢) then, for a scalar a,
F(s — a) is the Laplace transform of e”f(¢). This theorem normally causes little diffi-
culty when used to obtain the Laplace transforms of functions, but it does frequently
lead to problems when used to obtain inverse transforms. Expressed in the inverse form,
the theorem becomes

LHF(s —a)} =e"f(1)

The notation

LHIFO)] s} = e [AD)]

where F(s) = #{f(¢)} and [F(s)],,., denotes that s in F(s) is replaced by s — a, may
make the relation clearer.

Example 5.18  Find

ke
(s+2)

Solution 1|1
(S + 2)2 S2 5—>5+2

and, since 1/s* = #{t}, the shift theorem gives
! { 1 } — e
(s+2)

Check the answer using MATLAB or MAPLE.
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Example 5.19  Find

2
FH
{s +6s+13}

Solution 2 _ 2 _|_ 2
sSS+6s+13 (s+3)'+4 |5 +27

and, since 2/(s* + 2%) = ¥{sin 2¢}, the shift theorem gives

L7 2; = e sin2s
s°+6s+13

The MATLAB commands

syms s t
ilaplace(2/(s"2 + 6*s + 13);
pretty (simple (ans))

return
ans = -1/2i(exp((-3 + 21)t) - exp((-3 - 2i)t))
The MAPLE commands

with(inttrans) :
invlaplace(2/(s"2 + 6*s + 13),s,t);
simplify (%) ;

return the same answer.
To obtain the same format as provided in the solution further manipulation is
required as follows:

12i[—e7 e + e¥e™"] = e7¥((e*" — e")/(2i) ) = &' sin 2¢

Example 5.20  Find

1 s+ 7
4 E—
{s +2s+5}

Solution s+7  _ __s+7
SS+25+5  (s+1)°+4
(s+1) 43 2

s+ DPH4 (s+1)+4

s 2
|:S2 + 22:|s~>s+1 |:S2 + 22:| s—s+1
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Since s/(s* + 2%) = ${cos 2t} and 2/(s* + 2%) = F{sin 2t}, the shift theorem gives

+7 - - .
fl{#s}=e'cos2t+3e’sm2t
S +25+

Example 5.21  Find

4

ories)
(s+1)°(s"+4)

Resolving 1/(s + 1)*(s* + 4) into partial fractions gives

Solution

2
1 _ 3

(s+ 12> +4) s+1 (s+1)

:|5—>s+1

2

25

s+ 1

25

|2S+3

s +4

2 S 3 2
25, 50 2 2

Since 1/s* = %{t}, the shift theorem, together with the results in Figure 5.5, gives

[ P S
= {(s+ 1)2(s2+4)}_

1 5t 2 R
€ +:€ f—35c082f—sin 2t

Check the answers to Examples 5.20 and 5.21 using MATLAB or MAPLE.

5.2.10 Exercise

Check your answers using MATLAB or MAPLE.

Find &£™'{F(s)} when F(s) is given by

1 s+5
@ e ® D63
© s (@ 28
s7(s+3) s +4
1 s+ 8
- fy —2T°
(e) S5+ 16) () EPU
(g) s+l h) 4
s°(s°+4s+8) (s=1D)(s+1)
0 5
S +2s5+5

(n)

, 35°=Ts+5 . 55=7
O c-ne-26-3  ® 1352
— () A2l
(s=1)(s"+2s+2) s +2s+5
s—1 0) 3s
(s=2)(s=3)(s-4) (s=1)(s*=4)

36

) s(sS+ 1)(s*+9)

25" +4s5+9
(s+2)(s" +3s+3)
1
(s + 1)(s+2)(s* + 25 + 10)
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Solution of differential equations

53.1

We first consider the Laplace transforms of derivatives and integrals, and then apply
these to the solution of differential equations.

Transforms of derivatives

If we are to use Laplace transform methods to solve differential equations, we need
to find convenient expressions for the Laplace transforms of derivatives such as df/dt,
d?f/d¢? or, in general, d"f/d¢". By definition,

T )
KA =| e dt
Integrating by parts, we have

oo

g{%{} = [ finls + sJ ef(1)d1=~£(0) + SF(s)

0

that is,

2{%{} =sF(s) — £(0) (5.13)

In taking the Laplace transform of a derivative we have assumed that f(7) is continuous
at t = 0, so that f(07) = f(0) = f(0"). In Section 5.5.8, when considering the impulse
function, f(07) # f(0") and we have to revert to a more generalized calculus to resolve
the problem.

The advantage of using the Laplace transform when dealing with differential equations
can readily be seen, since it enables us to replace the operation of differentiation in the
time domain by a simple algebraic operation in the s domain.

Note that to deduce the result (5.13), we have assumed that f(¢) is continuous, with
a piecewise-continuous derivative df/ds, for + = 0 and that it is also of exponential order
as t — oo,

Likewise, if both f{(f) and df/d¢ are continuous on ¢ = 0 and are of exponential order
as t — oo, and d*f/dt* is piecewise-continuous for ¢ = 0, then

3{(12-{}: r e’”—zfdt= [e”gq:sr e Uy = _[Q[} +S${Q[}
dr’ . d7 dr |, . dr de|,_, dr

which, on using (5.12), gives
2
AL = Y 57 () - £(0)]
dt2 dt =0
leading to the result

2{‘;—212} = 5"F(s) - sf(0) - {gf} = 5"F(s) = sf(0) = £"(0) (5.14)
t

4 =0
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5.3.2

Clearly, provided that f(f) and its derivatives satisfy the required conditions, this pro-
cedure may be extended to obtain the Laplace transform of f*(£) = d"f/d¢" in the form

LU0} =5"F(s) = s"f(0) = 5" V(0) — ... = f71(0)
= s"F(s) - 2 s"r00) (5.15)

i=1

a result that may be readily proved by induction.
Again it is noted that in determining the Laplace transform of f")(f) we have
assumed that £ “~(¢) is continuous.

Transforms of integrals

In some applications the behaviour of a system may be represented by an integro-
differential equation, which is an equation containing both derivatives and integrals
of the unknown variable. For example, the current i in a series electrical circuit con-
sisting of a resistance R, an inductance L and capacitance C, and subject to an applied
voltage E, is given by

di ... 1,
L= - =F
dt+1R+Cf0 i(t)dr

To solve such equations directly, it is convenient to be able to obtain the Laplace
transform of integrals such as [, f(7) dz.
Writing

g(t)=J fln)ydz
we have

dg _ _

dr =f(r), g0)=0

Taking Laplace transforms,

dg | _
f{dt}—f{f(t)}

which, on using (5.13), gives
sG(s) = F(s)
or

(ﬂgm}=mm=§ﬂm=§$wnn

leading to the result

${Jﬂnd%=§fuun=§ﬂw (5.16)
0
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Example 5.22

5.3.3

Obtain

£Z{J (7 + sin 27) dr}
0

In this case f(¢) = ¢ + sin 2¢, giving
Fls) = ZLAW)) = L%y + Psin 21}

6 2
==+
stosT+4
so, by (5.16),
2” (T3+sin21)d1}:lF(s):.6_5+ 22
0 s sT s(s +4)

Ordinary differential equations

Having obtained expressions for the Laplace transforms of derivatives, we are now in
a position to use Laplace transform methods to solve ordinary linear differential equations
with constant coefficients. To illustrate this, consider the general second-order linear
differential equation

2
ad—£+bg-)f+cx =u(t) (t=0) (5.17)
dff  dr

subject to the initial conditions x(0) = x,, x(0) = v, where as usual a dot denotes differ-
entiation with respect to time, ¢. Such a differential equation may model the dynamics
of some system for which the variable x(¢) determines the response of the system to the
forcing or excitation term u(f). The terms system input and system output are also
frequently used for u(¢) and x(¢) respectively. Since the differential equation is linear
and has constant coefficients, a system characterized by such a model is said to be a
linear time-invariant system.

Taking Laplace transforms of each term in (5.17) gives

af{(f—)%} + b${®£}+ cH{x}y=FL{u()}
dz dt
which on using (5.13) and (5.14) leads to
afs?X(s) — sx(0) — X(0)] + b[sX(s) — x(0)] + cX(s) = U(s)
Rearranging, and incorporating the given initial conditions, gives
(as® + bs + c)X(s) = U(s) + (as + b)x, + av,

so that

X(s) = U(s) + (as + b)x,+ av, (5.18)

2
as"+bs+c
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Example 5.23

Solution

Equation (5.18) determines the Laplace transform X{(s) of the response, from which, by
taking the inverse transform, the desired time response x(#) may be obtained.

Before considering specific examples, there are a few observations worth noting at

this stage.

(2)

(b)

(©)

(d)

As we have already noted in Section 5.3.1, a distinct advantage of using the
Laplace transform is that it enables us to replace the operation of differentiation
by an algebraic operation. Consequently, by taking the Laplace transform of each
term in a differential equation, it is converted into an algebraic equation in the
variable s. This may then be rearranged using algebraic rules to obtain an expres-
sion for the Laplace transform of the response; the desired time response is then
obtained by taking the inverse transform.

The Laplace transform method yields the complete solution to the linear differ-
ential equation, with the initial conditions automatically included. This contrasts
with the classical approach, in which the general solution consists of two compo-
nents, the complementary function and the particular integral, with the initial
conditions determining the undetermined constants associated with the comple-
mentary function. When the solution is expressed in the general form (5.18), upon
inversion the term involving U(s) leads to a particular integral while that involv-
ing x, and v, gives a complementary function. A useful side issue is that an
explicit solution for the transient is obtained that reflects the initial conditions.

The Laplace transform method is ideally suited for solving initial-value prob-
lems; that is, linear differential equations in which all the initial conditions
x(0), X(0), and so on, at time ¢ = 0 are specified. The method is less attractive for
boundary-value problems, when the conditions on x(¢) and its derivatives are not
all specified at r = 0, but some are specified at other values of the independent
variable. It is still possible, however, to use the Laplace transform method by
assigning arbitrary constants to one or more of the initial conditions and then
determining their values using the given boundary conditions.

It should be noted that the denominator of the right-hand side of (5.18) is the left-
hand side of (5.17) with the operator d/df replaced by s. The denominator equated
to zero also corresponds to the auxiliary equation or characteristic equation used
in the classical approach. Given a specific initial-value problem, the process of
obtaining a solution using Laplace transform methods is fairly straightforward,
and is illustrated by Example 5.23.

Solve the differential equation

2
d—f+5d—x+6x:2e” (t=0)
dt dt

subject to the initial conditions x = 1 and dx/dt =0 at 7 = 0.

Taking Laplace transforms

f{‘ﬁg}+ sg{d—x}+ 6.F{xt = 206"
dr dt
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leads to the transformed equation

[s*X(s) — sx(0) — x(0)] + 5[sX(s) — x(0)] + 6X(s) = ;%I
which on rearrangement gives

(s> + 55 + 6)X(s) = ;-%—1 + (s + 5)x(0) + #(0)

Incorporating the given initial conditions x(0) = 1 and x(0) = 0 leads to

(s + 55+ 6)X(s) = —2— + 5+ 5
s+1
That is,
X(s) = 2 n s+5

(s+1D)(s+2)(s+3) (s+3)(s+2)

Resolving the rational terms into partial fractions gives

X(s)=1—2+1+3—2
s+1 s+2 s+3 s+2 s+3

:1+1_1
s+1 s+2 s+3

Taking inverse transforms gives the desired solution

x()=e'+e¥—e? (t=0)

In principle the procedure adopted in Example 5.23 for solving a second-order linear
differential equation with constant coefficients is readily carried over to higher-order
differential equations. A general nth-order linear differential equation may be written as

n n—1
a,,d—x-i-a,,,ld _)f+...+a0x=u(t) (t=0) (5.19)
d¢’ dr”
where a,, a,_, ..., a, are constants, with a, # 0. This may be written in the more
concise form
q(D)x(f) = u(t) (5.20)

where D denotes the operator d/d¢ and ¢(D) is the polynomial

n
q(D) =Y aD’
r=0
The objective is then to determine the response x(¢) for a given forcing function u(f)
subject to the given set of initial conditions

d'x

D'x(0) = {—r} =c¢c, (r=0,1,...,n-1)
t=0

dr

Taking Laplace transforms in (5.20) and proceeding as before leads to
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Example 5.24

Solution

X(s) = ﬂ.)
q(s)

where

p(s) = U(s)+z Zas !

i=r+1

Then, in principle, by taking the inverse transform, the desired response x () may be
obtained as

_ g1 JPB)
x(t)—f{q(s)}

For high-order differential equations the process of performing this inversion may

prove to be rather tedious, and matrix methods may be used as indicated in Section 5.7.
To conclude this section, further worked examples are developed in order to help

consolidate understanding of this method for solving linear differential equations.

Solve the differential equation

d—x+6d—x+9x—smt

< (t = 0)

subject to the initial conditions x = 0 and dx/df =0 at = 0.

Taking the Laplace transforms

x{d x} 6§£{dx}+ 9.%fx} = Psint}
dr d

leads to the equation

[s°X(s) — sx(0) — %(0)] + 6[sX(s) — x(0)] + 9X(s) = B 1
S+

which on rearrangement gives

(s> + 65 + 9)X(s) = + (s + 6)x(0) + %(0)

ST+
Incorporating the given initial conditions x(0) = %(0) = 0 leads to
N S
(s + 1)(s+3)°
Resolving into partial fractions gives
1 3_8

1, 1 )
+L +2 -
s+3 “(s+3) P+l

X(s) =

X(s)=2

that is,

1 1 1 s
X(s)=2——+ L= +2—— -3
50 s+ 3 10| 2 s 25s2 50 2

N
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Taking inverse transforms, using the shift theorem, leads to the desired solution

3,730, 1 a3, 2 s 3
x(t) = € +5te +y;sint—gzcost (1=0)

In MATLAB, using the Symbolic Math Toolbox, the command dsolve computes
symbolic solutions to differential equations. The letter D denotes differentiation
whilst the symbols D2, D3, . .., DN denote the 2", 3™, ..., N" derivatives respec-
tively. The dependent variable is that preceded by D whilst the default independent
variable is t. The independent variable can be changed from t to another symbolic
variable by including that variable as the last input variable. The initial conditions
are specified by additional equations, such as Dx (0) = 6. If the initial conditions
are not specified the solution will contain constants of integration such as c1 and c2.
For the differential equation of Example 5.24 the MATLAB commands

syms x t
x = dsolve(’D2x + 6*Dx + 9*x = sin(t)’,‘x(0) = 0,Dx(0) =
07);

pretty (simple (x))
return the solution
x = -3/50cos(t) + 2/25sin(t) + 3/50(1l/exp(t)?)
+ 1/10(t/exp(t)?)
It is left as an exercise to express 1/exp (t)> as e °".
In MAPLE the command dsolve is also used and the commands
ode2:= diff(x(t),t,t) + 6*diff(x(t),t) + 9*x(t) = sin(t);
dsolve ({ode2, x(0) = 0, D(x)(0) = 0}, x(t));
return the solution

_ 3 (30 1 (3 _ 3 2 .
x(t) = 50e + 1Oe 5Ocos(t) + 25snl(t)

If the initial conditions were not specified then the command
dsolve ({ode2}, x(t));

returns the solution

_ A(30) (-3t) _ 3 2 .
x(t) = e _Cl + e t_ C2 50cos(t) + 25511’1(1:)

In MAPLE it is also possible to specify solution by the Laplace method and the
command
dsolve ({ode2, x(0) = 0, D(x)(0) = 0}, x(t),
method = laplace) ;

also returns the solution

_ 3 2 . 1 (-3
x(t) = 50cos(t) + 2551n(t) + £g® (5t + 3)

and, when initial conditions are not specified, the command
dsolve ({ode2},x(t), method = laplace);
returns the solution
x(t) = -Scos(t) + 2sin(t) + e (50 tD(x) (0)

50 25 50
+ 150 t x(0) + 5t + 50x(0) + 3)
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Solve the differential equation

Example 5.25

3 2

d—’f+5d—i;+17d—x+13x= 1 (t=0)

dt dt dt

subject to the initial conditions x = dx/dt = 1 and d*/d#* =0 at t = 0.
Solution  Taking Laplace transforms
d’x d’ d

x{—}}Jr 5${—§}+ 173{—x}+ 13L{x}=Lf1}

dt dt dt

leads to the equation
52 X(s) — s°x(0) — sx(0) — £(0) + 5[s>X(s) — sx(0) — x%(0)]

+ 17[sX(s) — x(0)] + 13X(s) = %

which on rearrangement gives
(8 + 5%+ 17s + 13)X(s) = Ly (5% + 55 + 17)x(0) + (s + 5)%(0) + %(0)
s
Incorporating the given initial conditions x(0) = X(0) = 1 and %(0) = 0 leads to

3 2
X(s) = s3 + 6s2 +22s+1
s(s”+ 55"+ 17s+13)
Clearly s + 1 is a factor of s* + 5% + 17s + 13, and by algebraic division we have

S +65 +22s+1
s(s+1)(s” +4s+13)

X(s) =

Resolving into partial fractions,
L 8 L 8
X(s)= B4 3 L 244s+7 _By_s _L44(S+2)2_272(3)
s s+1 s +4s5+13 5 s+1 (s+2)+3
Taking inverse transforms, using the shift theorem, leads to the solution

(1=0)

x(t)=%+5%7 - g‘s-e'Q’(44 cos 3¢ —27 sin 3¢)

Confirm that the answer may be checked using the commands

syms xX t
x = dsolve(’D3x + 5*D2x + 17*Dx + 13*x = 1’,’'x(0) = 1,
D2x(0) = 0');
pretty (simple (x))
in MATLAB, or the commands
ode3: = diff(x(t), ts$3) + 5*diff(x(t), ts$2)
+ 17*diff (x(t),t) + 13*x(t) = 1;
dsolve ({ode3,x(0) = 1,D(x)(0) = 1, (DR@2) (x)(0) = 0},
x(t),method = laplace);

in MAPLE.



www.semeng.ir

378 LAPLACE TRANSFORMS

5.34

Example 5.26

Solution

Simultaneous differential equations

In engineering we frequently encounter systems whose characteristics are modelled
by a set of simultaneous linear differential equations with constant coefficients. The
method of solution is essentially the same as that adopted in Section 5.3.3 for solving
a single differential equation in one unknown. Taking Laplace transforms throughout,
the system of simultaneous differential equations is transformed into a system of
simultaneous algebraic equations, which are then solved for the transformed variables;
inverse transforms then give the desired solutions.

Solve for t = 0 the simultaneous first-order differential equations

dx , dy —e

dt+dt+5x+3y_e (5.21)
dx d

2224 2 = 22
dt+dt+x+y 3 (5.22)

subject to the initial conditions x =2 and y =1 at = 0.

Taking Laplace transforms in (5.21) and (5.22) gives

sX(s) — x(0) + s¥(s) — »(0) + 5X(s) + 3Y(s) = s-l—Ll
2[sX(s) — x(0)] + s¥(s) — (0) + X(s) + Y(s) = %

Rearranging and incorporating the given initial conditions x(0) = 2 and y(0) = 1
leads to

.. 1 3544
(54 SIX() + (s + H¥(e) = 3+ —— = 24 (5.23)
Qs+ DX(s) + (s + DY(s) = 5 + % _ 3543 (5.24)

Hence, by taking Laplace transforms, the pair of simultaneous differential equations
(5.21) and (5.22) in x(¢) and y(¢) has been transformed into a pair of simultaneous
algebraic equations (5.23) and (5.24) in the transformed variables X(s) and Y(s).
These algebraic equations may now be solved simultaneously for X(s) and Y(s) using
standard algebraic techniques.

Solving first for X(s) gives

X(s) = 25+ 14549
s(s+2)(s=1)

Resolving into partial fractions,

1

o
s+2 s-1

|5

X(s) =—

=W [SYN=}
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which on inversion gives
x()==2-Ye?"+2e" (1=0) (5.25)

Likewise, solving for Y(s) gives

Y(s) = = 225" =395 15
s(s+ 1) (s+2)(s- 1)

Resolving into partial fractions,

[

1 u 25
g2 42 __2
s+1 s+2 s-1

Y(s) =

MIM

which on inversion gives

t

vy =5+ie"+Ye™-Ze (1=0)
Thus the solution to the given pair of simultaneous differential equations is

¥(f) =2 - e + ¢’ }
(t=0)
25e

2t

y(y=2+ie"+5e

Note: When solving a pair of first-order simultaneous differential equations such as
(5.21) and (5.22), an alternative approach to obtaining the value of y(¢) having obtained
x() is to use (5.21) and (5.22) directly.

Eliminating dy/d¢ from (5.21) and (5.22) gives

2y=(;—); A -34et

Substituting the solution obtained in (5.25) for x(¢) gives
2y=(Ser+2e)-4(-2-YeP+2)e -3 +e”

leading as before to the solution

t

y=2+le"+5e " -Ze

A further alternative is to express (5.23) and (5.24) in matrix form and solve for X(s)
and Y(s) using Gaussian elimination.

In MATLAB the solution to the pair of simultaneous differential equations of
Example 5.26 may be obtained using the commands

syms X y t

[x,v] = dsolve(’Dx + Dy + 5*x + 3*y = exp(-t)’,

‘2*Dx + Dy + X + vy = 37,

‘x(0) = 2,y(0) = 1)
which return

x = —11/6*exp(-2*t) + 25/3*exp(t)-9/2

y = —25/2*exp(t) + 11/2*exp(-2*t) + 15/2 + 1/2*exp(-t)
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These can then be expressed in typeset form using the commands pretty (x) and
pretty (v). In MAPLE the commands

odel:= D(x)(t) + D(y)(t) + 5*x(t) + 3*y(t) = exp(-t);
ode2:= 2*D(x) (t) + D(y) (t) + x(t) + yv(t) = 3;
dsolve ({odel,ode2, x(0) = 2,y(0) = 1},{x(t),y(E)});
return
_ 11 o 25 ¢ 9 _ 25 ¢ 11 (2 | 15 1 o
{x(t) ¢ e + 5e 50 v(t) = -5e+ e + 5+ 5e™)

In principle, the same procedure as used in Example 5.26 can be employed to solve a
pair of higher-order simultaneous differential equations or a larger system of differen-
tial equations involving more unknowns. However, the algebra involved can become
quite complicated, and matrix methods, considered in Section 5.7, are usually preferred.

5.3.5 Exercises

Check your answers using MATLAB or MAPLE.

d’x | dx

Using Laplace transform methods, solve for t = 0 (g) =S +=—-2x=5 e sin ¢

the following differential equations, subject to the de ds

specified initial conditions: subject to x = 1 and dx _ g ats=0
dr

@ 3=

(b)

(©) q

(d)

(e)

® 5

2

d’y  ,d
(h) —Z+2;j-z+3y=3t
t

subjecttox=2at¢=0 de
3——t—4x=sin2t subject to y = 0 and %:1 atr=0
2
subjectto x =1 at7=0 @) dx g 0x g 2o
i dr
+2=+5x=1 . | dx
subject to x =3 and d—t:0 atr=0
. dx
subjecttox=0and —=0 atz=0 2
dr G) 9LF s B yse—y
dr dr
2ty =4cos2s
v cos
subject to x = 0 and %)-;zo atr=0
subject to y = 0 and %Zzz atr=0 " d
! (k) =L +8=X+16x=16sin4¢
d’ d
u ! t
+2x=2e d
subject to x = —1 and d_)zle att=10
subject to x = 0 and %%C:l atr=0

2
) 9d—-§+1292+4y=e"

+4E_jic+5x:3e—2r dr dr

. _ dy _ _
dr subject to y = 1 and P =1atr=0

subject to x =4 and a=—7 atr=0
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3
(m)d_i;_zdx A oy =2+
dr dr’  dr
2
subject to x =0, d—X:Iandd—x=03tt=0
dt dt2
(n) zf 3x dx+x—cos3t
t t
subject to x =0, d—x:Ianddf lattr=0
dr dt

Using Laplace transform methods, solve for r = 0
the following simultaneous differential equations
subject to the given initial conditions:

dx ,dy Y
@ 28 -2 -9y e

s dx 4 dy
+4W 43720
2 g =

subjecttoszandy=i atr=0

(b) ‘(’j’t‘+2%2t+x-y=5sinz

sdx 5 dy _
dt+3d tx-y= e'

subjecttox=0andy=0atz=0

dx (_12 -3t
-+ +2x+y=
© drdr Y ¢

dy -2
+5x+3y=>5e
ds Ty

subjecttox=—landy=4att=0

dr sdy 5 ¢

@ 3 dr dt

dx+292_

-1
dr Cde

subjecttox=1andy=1atzr=0

(e) 3(;—);+%Zt—2x=3sint+5cost

2 Ay Gin+ cost

dr dt

subjecttox=0andy=-1atr=0

(0 LBy

dr dr
dx dy

+4% 4o
dr o Cdi

subjecttox=1andy=0atz=0

dx d

+3L+7x=141+7
(@ 2 *3q tTx=14

dx ,dy
s34y b6y = 140— 14
di Cdi Y

subjecttox=y=0atr=0
d’x d’
(hy —==y-2x Loy 2y
dr’ dr’
subject tox =4, y=2, dx/df =0 and dy/dt =0
atr=0
d X
dt2
d X
dt2

subject tox=1,y=1, dx/df=0and dy/dr =0
atr=0

@) +12—¥+6x—0
dr’

+16—¥+6y 0
dr’

. dx _d’y dx dy_
g) 2 =3y-9x
4 df dr de

2
Zd—)-c—d—2+(l)£+g-2=5y—7x
df  d7f dr dr

subjecttox=dx/dt=1andy=dy/dr=0att=0

0 I e GG P T L B electrical circuits and

mechanical vibrations

To illustrate the use of Laplace transforms, we consider here their application to the
analysis of electrical circuits and vibrating mechanical systems. Since initial con-
ditions are automatically taken into account in the transformation process, the Laplace
transform is particularly attractive for examining the transient behaviour of such

systems.
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54.1

Figure 5.7
Constituent elements
of an electrical circuit.

Example 5.27

Using the commands introduced in previous sections MATLAB or MAPLE can be
used throughout this section to check answers obtained.

Electrical circuits

Passive electrical circuits are constructed of three basic elements: resistors (having
resistance R, measured in ohms Q), capacitors (having capacitance C, measured in
farads F) and inductors (having inductance L, measured in henries H), with the asso-
ciated variables being current i(f) (measured in amperes A) and voltage v(¢) (measured
in volts V). The current flow in the circuit is related to the charge ¢(¢) (measured in
coulombs C) by the relationship

- dg
dt

Conventionally, the basic elements are represented symbolically as in Figure 5.7.

Cc
+ R + P + L -
o—[}—o0 0—' o—"—>0
{t)—» i(t)—> i(r)—»
(a) Resistor (b) Capacitor (¢) Inductor

The relationship between the flow of current i(¢) and the voltage drops v(¢) across
these elements at time 7 are

voltage drop across resistor = Ri (Ohm’s law)

voltage drop across capacitor = é Ji dt = -(é

The interaction between the individual elements making up an electrical circuit is deter-
mined by Kirchhoff’s laws:
Law 1

The algebraic sum of all the currents entering any junction (or node) of a circuit is zero.

Law 2

The algebraic sum of the voltage drops around any closed loop (or path) in a circuit is zero.

Use of these laws leads to circuit equations, which may then be analysed using Laplace
transform techniques.

The LCR circuit of Figure 5.8 consists of a resistor R, a capacitor C and an inductor L
connected in series together with a voltage source e(#). Prior to closing the switch at
time # = 0, both the charge on the capacitor and the resulting current in the circuit are
zero. Determine the charge ¢(¢) on the capacitor and the resulting current i(¢) in the
circuit at time ¢ given that R=160 Q, L=1H, C=10" F and e(t) =20 V.
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Figure 5.8
LCR circuit of
Example 5.27.

Solution

e(r) C)ﬂ('t) C==q

Applying Kirchhoff’s second law to the circuit of Figure 5.8 gives
coodi 1]
Ri+L=+=|idt=e(t
i ar CJI e(t)
or, using i = dg/dt,
2
199 R, Ly
dr dr C
Substituting the given values for L, R, C and e(¢) gives
2
99 16099 + 10% = 20
dr dr

Taking Laplace transforms throughout leads to the equation

(5* + 160s + 10H0(s) = [sq(0) + ¢(0)] + 1604(0) + g-s(—)

(5.26)

where Q(s) is the transform of ¢(f). We are given that ¢g(0) = 0 and ¢(0) = i(0) =0, so

that this reduces to
(s> + 160s + 1090(s) = 22
S

that is,

_ 20
s(s”+160s + 10"

O(s)

Resolving into partial fractions gives

1
300 + 160
O(s) =20 _ L —s¥ o0V
s s +160s+ 10*

1 (s+80)+35(60)| |1 [s+2x60
s (5480460 s | sPH607 |

Taking inverse transforms, making use of the shift theorem (Theorem 5.2), gives

q(1) = s (1 — e cos 607 — 2™ sin 607)

The resulting current i(¢) in the circuit is then given by

! e ™ sin 607

o _dg
=4 =
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Example 5.28

Figure 5.9
Parallel circuit of
Example 5.28.

Solution

Note that we could have determined the current by taking Laplace transforms in (5.26).
Substituting the given values for L, R, C and e(#) and using (5.26) leads to the trans-
formed equation

4
1601(s) +sI(s) + 22 I(s5) = 22
N N
that is,
_ 20 3 . ~
I(s) = ————=—— (=50(s) since ¢(0)=0)
(s> +80) + 60

which, on taking inverse transforms, gives as before

i(t) = Le™" sin 60t

In the parallel network of Figure 5.9 there is no current flowing in either loop prior to
closing the switch at time # = 0. Deduce the currents #,(¢) and i,(¢) flowing in the loops
at time ¢.

R, =20Q L, =05H L,=1H
1 VYN { Y.

— [
. 1
t=0 l *il 2
R,=8Q Ry=10Q
e(r) =200V

[

Applying Kirchhoff’s first law to node X gives
i=i+1i
Applying Kirchhoff’s second law to each of the two loops in turn gives

Ry +i)+ 1L, O%(i1 + i) + Ry, = 200

L,— +R;i,— R,i;,=0
2 d ¢ 302 201
Substituting the given values for the resistances and inductances gives

di, di, .. .
£+ﬁ+5611+4012=400

%—8i,+ 10i,=0
dr

(5.27)

Taking Laplace transforms and incorporating the initial conditions i,(0) = i,(0) = 0
leads to the transformed equations

(s + S6)I,(s) + (s + 40)L,(s) = 4% (5.28)

—81,(s) + (s + 10),(s) = 0 (5.29)
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385

Example 5.29

Figure 5.10
Circuit of
Example 5.29.

Solution

Hence

3200 _ 3200
s(s”+ 745 +880)  s(s+59.1)(s+14.9)

L(s) =

Resolving into partial fractions gives

364 122 4286
s+59.1 s+14.9

I(s) =

which, on taking inverse transforms, leads to
i(1)=3.64 +1.22e" — 4,864
From (5.27),

di
i () = ;| 100 2)
(1) = ( i+ o
that is,
i(t)=4.55-17.49 e 91 1 0 g8 e 14

Note that as t — oo, the currents #,(f) and i,(f) approach the constant values 4.55 and 3.64
A respectively. (Note that i(0) =7,(0) + i,(0) # 0 due to rounding errors in the calculation.)

A voltage e(f) is applied to the primary circuit at time 7 = 0, and mutual induction
M drives the current i,(¢) in the secondary circuit of Figure 5.10. If, prior to closing
the switch, the currents in both circuits are zero, determine the induced current i,(7)
in the secondary circuit at time t when R, =4 Q, R, =10 Q, L, =2 H, L, =8 H,

M =2 H and e(¢) = 28 sin 2t V.

=0
e(t)() t /\il(t) L1§ ng Ciz(z)

Applying Kirchhoff’s second law to the primary and secondary circuits respectively gives

dil dzz

+M e(t)

d12+Mdi1

Ryi, +L
20> 2d ds

=0

Substituting the given values for the resistances, inductances and applied voltage leads to

dll
d
di; dzz
a T

di,

+ 41, +2d =28 sin 2¢

2 +10i,=0
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5.4.2

Figure 5.11
Constituent elements
of a translational
mechanical system.

Taking Laplace transforms and noting that #,(0) = i,(0) = 0 leads to the equations

(s + 2)Ii(s) + sly(s) = 228 (5.30)
s +4
shi(s) + (4s +5)(s) =0 (5.31)
Solving for /,(s) yields
28s

I(s) =

(Bs+10)(s+1)(s" +4)
Resolving into partial fractions gives

45 4
i ; - 26
L(s)=-—T—+ ==+ L5
3s+10 s+1 s +4

Taking inverse Laplace transforms gives the current in the secondary circuit as

i(1)=%e" =157 + L cos 2¢— 2 sin 2t
As t — oo, the current will approach the sinusoidal response

ir(t) = &£ cos 2¢ 2L sin 2¢

Mechanical vibrations

Mechanical translational systems may be used to model many situations, and involve
three basic elements: masses (having mass M, measured in kg), springs (having spring
stiffness K, measured in Nm™') and dampers (having damping coefficient B, measured
in Nsm™). The associated variables are displacement x(¢) (measured in m) and force
F(t) (measured in N). Conventionally, the basic elements are represented symbolically
as in Figure 5.11.

— x1 = x I,—— X1 —> X
| | !
|
F x F | K L F 5 | d | F
— M it —
(a) Mass (b) Spring (c) Damper

Assuming we are dealing with ideal springs and dampers (that is, assuming that they
behave linearly), the relationships between the forces and displacements at time # are:

2
mass: F= M‘;—%‘ =Mx (Newton’s law)
t
spring:  F=K(x, — x;) (Hooke’s law)
dx, dx ..
damper: F = B(Et—z - Et—l) = B(%, — X))
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Example 5.30

Figure 5.12
Mass—spring—damper
system of

Example 5.30.

Solution

Using these relationships leads to the system equations, which may then be analysed
using Laplace transform techniques.

The mass of the mass—spring—damper system of Figure 5.12(a) is subjected to an
externally applied periodic force F(f) = 4 sin @t at time ¢ = 0. Determine the resulting
displacement x(#) of the mass at time ¢, given that x(0) = x(0) = 0, for the two cases

(a) =2 b) =5

In the case @ =5, what would happen to the response if the damper were missing?

Fi()=Kx(t) Fy(1)=Bx()

K=25 L

M
l,__ M=1 F(t) = 4 sin wr l F(1) = 4 sin wt
t
x(0) ® (b)

As indicated in Figure 5.12(b), the forces acting on the mass M are the applied force
F(¢) and the restoring forces /', and F’, due to the spring and damper respectively. Thus,
by Newton’s law,

Mi(r) = F(t) = F\(1) = Fx(1)
Since M =1, F(t) =4 sin wt, F\(t) = Kx(t) = 25x(t) and F,(t) = BX(t) = 6x(¢), this gives
X(t) + 6x(t) + 25x(t) = 4 sin wt (5.32)

as the differential equation representing the motion of the system.
Taking Laplace transforms throughout in (5.32) gives

(s> + 65 + 25)X(s) = [s(0) + £(0)] + 6x(0) + —+2.

S+
where X(s) is the transform of x(#). Incorporating the given initial conditions
x(0) =%(0) = 0 leads to

X(s) = 40 (5.33)

(S + @) (5 + 65 +25)

In case (a), with = 2, (5.33) gives

N 8
(s*+4)(s* + 65 +25)

X(s)
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which, on resolving into partial fractions, leads to
i—4S+14+L 8s +20
P +4 PP r6s+25

L 8(s+3)—4
P (s+3)+16

X(s) =

—-4s+ 14
=wa, T
s +4

Taking inverse Laplace transforms gives the required response

x(f) = 1= (7 sin 21— 4 cos 21) + = €"'(8 cos 4¢ — sin 47)

In case (b), with =5, (5.33) gives

X(s) = — 20
(s"+25)(s"+ 65 +25)
that is,
X(s) = “ES L1 2(s+3)+6

s +25 U(s+3)+16
which, on taking inverse Laplace transforms, gives the required response

=3t

x(1) =—2cos 5t + 75 (2 cos 41+ sin 41)

If the damping term were missing then (5.35) would become

X(s) = —20—
(s> +25)

By Theorem 5.3,

F{tcos5t} = —f— Plcos 5t} = _a ( _.....:Y...._)
S

ds \s*+25

that is,

Lo, 2% 1 50
$$4+25 (s54+25)2 S+25  (s8+25)
50

(s°+25)

F{tcos 5t}

L P{sin 5t} -

Thus, by the linearity property (5.11),

50

&A% sinSt—tcos 5t} = —;
(s*+25)°

so that taking inverse Laplace transforms in (5.37) gives the response as

x() = £ (sin 5¢= 5t cos 5¢)

(5.34)

(5.35)

(5.36)

(5.37)
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Example 5.31

Figure 5.13
Two-mass system of
Example 5.31.

Solution

Because of the term f cos 5¢, the response x(¢) is unbounded as r — oo. This arises
because in this case the applied force F(¢) = 4 sin 5¢ is in resonance with the system
(that is, the vibrating mass), whose natural oscillating frequency is 5/2n Hz, equal to
that of the applied force. Even in the presence of damping, the amplitude of the system
response is maximized when the applied force is approaching resonance with the sys-
tem. (This is left as an exercise for the reader.) In the absence of damping we have the
limiting case of pure resonance, leading to an unbounded response. As noted in Sec-
tion 10.10.3 of Modern Engineering Mathematics, resonance is of practical importance,
since, for example, it can lead to large and strong structures collapsing under what
appears to be a relatively small force.

Consider the mechanical system of Figure 5.13(a), which consists of two masses M, = 1
and M, = 2, each attached to a fixed base by a spring, having constants K, = 1 and
K = 2 respectively, and attached to each other by a third spring having constant K, = 2.
The system is released from rest at time # = 0 in a position in which M, is displaced
1 unit to the left of its equilibrium position and M, is displaced 2 units to the right of its
equilibrium position. Neglecting all frictional effects, determine the positions of the
masses at time ¢.

My=1 My=2 Fp=Kylxg-x))
K2=2 K3—2 F1=K1x1 F3=K3X2
BALLLLAS M M
. . e e I !
| | ! I
x (1) x(1) ¥1(0) Xp(1)
(a) ®

Let x,(¢) and x,(¢) denote the displacements of the masses M, and M, respectively from
their equilibrium positions. Since frictional effects are neglected, the only forces acting
on the masses are the restoring forces due to the springs, as shown in Figure 5.13(b).
Applying Newton’s law to the motions of M, and M, respectively gives

Mi =F,—F, =Ky(x,—x;) — Kx,

M,x%, = -F; - F, =-Kyx,— K,(x, — x)
which, on substituting the given values for M|, M,, K,, K, and K;, gives

X +3x,-2x,=0 (5.38)

2%, + 4x, — 2x, =0 (5.39)
Taking Laplace transforms leads to the equations

(8% + 3)X,(s) — 2X,(s5) = sx,(0) + x,(0)

=X,(5) + (s* + 2)X,(5) = 57x5(0) + %,(0)
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Since x,(¢) and x,(¢) denote displacements to the right of the equilibrium positions, we
have x,(0) =—1 and x,(0) = 2. Also, the system is released from rest, so that x,(0) = x,(0)
= 0. Incorporating these initial conditions, the transformed equations become

(s> + 3)X,(s) — 2X,(s) = —s (5.40)

—X,(5) + (s* + 2)X,(s) = 25 (5.41)
Hence

X (s) = 25’ + 5s

(s"+4)(s"+1)

Resolving into partial fractions gives

2S +2S
s+1 s +4

Xo(s) =

which, on taking inverse Laplace transforms, leads to the response

X,(t) = cost + cos 2t

Substituting for x,(¢) in (5.39) gives

x,(1) = 2x,(1) + X(1)

=2cost+ 2cos2t—cost—4cos 2t

that is,

x,(t) =cost—2cos 2t

Thus the positions of the masses at time ¢ are

x,(t) =cos t —2cos 2t,

X(t) = cos t + cos 2t

5.4.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Use the Laplace transform technique to find the
transforms /,(s) and Z,(s) of the respective currents
flowing in the circuit of Figure 5.14, where i,(¢) is
that through the capacitor and i,() that through

e=o 4 0
E sin 100t 2H 100Q2

Figure 5.14 Circuit of Exercise 7.

the resistance. Hence, determine 7,(¢). (Initially,
i1(0) = i,(0) = ¢,(0) = 0.) Sketch i,(¢) for large
values of 7.

At time ¢ = 0, with no currents flowing, a voltage
v(t) = 10 sin ¢ is applied to the primary circuit of
a transformer that has a mutual inductance of 1 H,
as shown in Figure 5.15. Denoting the current
flowing at time 7 in the secondary circuit by ,(7),
show that

10s
(sS+Ts+6)(s*+1)

Hi(n}=
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10

11

2Q
—L—1
t=

O'\'
1H

v(t) = 10 sin iy(n)

§2Di2(f) 20

~_ v
M=1H

Figure 5.15 Circuit of Exercise 8.

and deduce that

. _ _at 12 —6r 25 35 o
LH(H)y=-€ +35€ +5cost+3sint

In the circuit of Figure 5.16 there is no energy
stored (that is, there is no charge on the capacitors
and no current flowing in the inductances) prior to
the closure of the switch at time # = 0. Determine
i,(t) for t > 0 for a constant applied voltage
E,=10V.

Figure 5.16 Circuit of Exercise 9.

Determine the displacements of the masses M, and
M, in Figure 5.13 at time # > 0 when

M,=M,=1

K, =1,K,=3 and K;=9

What are the natural frequencies of the
system?

When testing the landing-gear unit of a space
vehicle, drop tests are carried out. Figure 5.17 is a
schematic model of the unit at the instant when it
first touches the ground. At this instant the spring
is fully extended and the velocity of the mass is
J(2gh), where h is the height from which the

unit has been dropped. Obtain the equation
representing the displacement of the mass at

time ¢ > 0 when M = 50 kg, B =180 N sm™" and

12

Ay

x(t)
k s

Figure 5.17 Landing-gear of Exercise 11.

K =474.5Nm", and investigate the effects of
different dropping heights /4. (g is the acceleration
due to gravity, and may be taken as 9.8 m s72.)

Consider the mass—spring—damper system
of Figure 5.18, which may be subject to two
input forces u,(¢) and u,(¢). Show that the
displacements x,(#) and x,(¢) of the two masses
are given by

x1(1)
By ux(1)

— M,

x(t)

Figure 5.18 Mechanical system of Exercise 12.

2
0 =" {@-i—i—lii’f% Uy(s) + ZEA‘—S U2<s)}

2
() =%" {gif U,(s) +4./[.1.£_i.§..1.s.:...1.<_1 UZ(S)}

where

A=(M;s*+ B,s + K,\)(M,s* + B;s + K,) — Bis®
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m Step and impulse functions

5.5.1 The Heaviside step function

Figure 5.19
Heaviside unit
step function.

Figure 5.20
Piecewise-continuous
function.

In Sections 5.3 and 5.4 we considered linear differential equations in which the forcing
functions were continuous. In many engineering applications the forcing function may
frequently be discontinuous, for example a square wave resulting from an on/off
switch. In order to accommodate such discontinuous functions, we use the Heaviside
unit step function H(¢), which, as we saw in Section 5.2.1, is defined by

0 (t<0)

H(t) =
@) {1 (t=0)

and is illustrated graphically in Figure 5.19(a). The Heaviside function is also fre-
quently referred to simply as the unit step function. A function representing a unit step
at + = a may be obtained by a horizontal translation of duration a. This is depicted
graphically in Figure 5.19(b), and defined by

0 (t<a)
1 (t=a)

H(t—a)z{

H() A H(t - a)

~Y
-y

(a) (b)

The product function f(#)H(t — a) takes values

0 (t<a)

f (=a)

so the function H(¢ — a) may be interpreted as a device for ‘switching on’ the function
f(t) at t = a. In this way the unit step function may be used to write a concise formula-

tion of piecewise-continuous functions. To illustrate this, consider the piecewise-
continuous function f{¢) illustrated in Figure 5.20 and defined by

f(t)H(t—a)={

[

,\/-Z(y

f3(0)

~Y

%)
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Figure 5.21
Top hat function.

fHi)y (0=st<t)
() =3/ L <t<t)
L) (= 1)
To construct this function f(¢), we could use the following ‘switching’ operations:

(a) switch on the function f{(¢) at t = 0;
(b) switch on the function £,(¢) at # = ¢, and at the same time switch off the function

Si(@);

(c) switch on the function f;(¢) at # = ¢, and at the same time switch off the function
SA0).

In terms of the unit step function, the function f(#) may thus be expressed as
J@) = HOH®) + [ (1) = OIH(E = 1) + [ /(1) = fo(O1H (1 = 1)

Alternatively, f(#) may be constructed using the top hat function H(f — a) — H(t — b).
Clearly,

1 (a<t<b)

) (5.42)
0 otherwise

H(t—a)-H(t-b) = {

which, as illustrated in Figure 5.21, gives

(a<t<bh)

otherwise

f(O[H(t—a)-H(t-D)] = {{)(t)

H(t—a)—H(t—-b) A

14  ———

4

0 7 b
Using this approach, the function f{(¢) of Figure 5.20 may be expressed as
SO =AOH(®) = H(t = 1)] + LOIH( = 1) = H(E = )] + [(OH(E = 1,)
giving, as before,
SO = HOH(®) + [ L) = AOHE = 1) + /(1) = LO1H( - 1,)
It is easily checked that this corresponds to the given formulation, since for 0 < ¢ < ¢,
H(t)=1, Ht-t)=Ht-1)=0
giving
JO=/0) O=1<n)
while fort, <t <,
H(t)y=H(t—-1t)=1, Ht-t)=0
giving

SO =HO+[LHO-[O]I=40) (h<t<1)
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and finally for r = ¢,
Ht)=H({t-t)=H(t-t)=1
giving

SO =10 + [0 =AO] + [0 =LO] = /) (= 1)

Example 5.32  Express in terms of unit step functions the piecewise-continuous causal function

2 (0=t<3)
ft) =3t+4 3 =<1<5)

9 (t=5)
Figure 5.22 A
Piecewise-continuous 1
function of 18 ;
Example 5.32. nd :
—
61 | l
1 ]
1 ]
O 1 2 3 4 5 6 7 8 1

Solution  f{(¢) is depicted graphically in Figure 5.22, and in terms of unit step functions it may be
expressed as

() =20H(t) + (t+4 - 2tHH(t - 3) + (9 — t — HH(t - 5)
That is,
() =20H(t) + (4 +t = 2tHH(t - 3) + (5 — HH(t - 5)

Example 5.33 Express in terms of unit step functions the piecewise-continuous causal function

0 (<1

1 (1 =s1r<3)
f(H) =493 B3 =t<53)

2 (5=s1<6)

0 (t=6)

Solution  f{(¢) is depicted graphically in Figure 5.23, and in terms of unit step functions it may be
expressed as

f()y=1H(t—- 1)+ B - DH(t-3)+ (2 —-3)H(t—5)+ (0 —2)H(t - 6)
That is,
f(ty=1H(t - 1)+ 2H(t — 3) — 1H(t — 5) — 2H(t — 6)
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Figure 5.23

Piecewise-continuous

function of
Example 5.33.

f) A
4__
3" r—
: |
) : -
. X
b [
I+ : :
]
—t
o 12 3 4 5 6 7 f

5.5.2

Laplace transform of unit step function
By definition of the Laplace transform, the transform of H(t — a), a = 0, is given by

${H(1—a)}=J H(t—a)e™'dt = J Oe‘“dz+J 1o ds
0 0 a
= i i = e_a?
- " S
That is,
PIH(t-a)} =~ (a=0) (5.43)
S

and in the particular case of @ =0

PIH(D)Y = % (5.44)

This may be implemented in MATLAB using the commands

syms s t
H=sym(‘Heaviside(t) ")
laplace (H)

which return
ans=1/s
It may also be obtained directly using the command
laplace (sym(‘Heaviside(t)’))
Likewise to obtain the Laplace transform of H(t-2) we use the commands

H2=sym(‘Heaviside(t-2)")
laplace (H2)


www.semeng.ir

396 LAPLACE TRANSFORMS

which return
ans=exp(-2*s) /s
In MAPLE the results are obtained using the commands:

with(inttrans) :
laplace (Heaviside(t),t,s);
laplace (Heaviside(t-2),t,s);

Example 5.34  Determine the Laplace transform of the rectangular pulse

0 (t<a)
f(t) =3K (a<t<b) Kconstant, b >a >0
0 (t=0b)

Solution  The pulse is depicted graphically in Figure 5.24. In terms of unit step functions, it may
be expressed, using the top hat function, as

S0
K R St)=K[H(t - a) - H(t - D)]
e Then, taking Laplace transforms,

0 a bt
L)} = KLH(t — a)} — KL{H( - b)}
Figure 5.24 ) ) )
Rectangular pulse. which, on using the result (5.24), gives
—as —bs
L)}y =K =-K=
s s
That is,

LU0} = ’f (e -e™)

Example 5.35 Determine the Laplace transform of the piecewise-constant function f(#) shown in
Figure 5.23.

Solution  From Example 5.33 f(¢) may be expressed as
f(t)y=1H(t — 1)+ 2H(t — 3) — 1H(t — 5) — 2H(t — 6)
Taking Laplace transforms,
LU = LLLH(E = 1)} + 2L{H(t - 3)} — LLLH(t — 5)} — 2L{H(t — 6)}

which, on using the result (5.43), gives

- -3s =55 —6s
AfO) =425 -2

s K
That is,

S = L2 2
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5.5.3

Theorem 5.4

Proof

Check that the same answer is obtained using the MATLAB sequence of commands

syms s t

Hl=sym(‘Heaviside(t-1)");
H3=sym(‘Heaviside (t-3) ') ;
H5=sym (‘Heaviside (t-5) ") ;

7

H6=sym (‘Heaviside(t-6) ")
laplace (H1-2*H3-H5-2*H6)

In MAPLE the commands
with (inttrans) :
laplace (Heaviside (t-1)+Heaviside (t-3)*2 - Heaviside (t-5)
- Heaviside(t-6)*2,t,s);
return the answer

) 4 239 | 59 | 5 (69)

S

The second shift theorem

This theorem is dual to the first shift theorem given as Theorem 5.2, and is sometimes
referred to as the Heaviside or delay theorem.

If #{f(t)} = F(s) then for a positive constant a
LUt - a)H(t ~ a)} = e F(s)

By definition,

oo

Flif(t-a)H(t-a)} = J f(t—a)H(t—a)e " dt

0
= J f(t—a)e "dt
Making the substitution 7=t — a,

.ff{f(t—a)H(t— a)} = 4[ f(T) e—s(T+u)dT
0

= eJ f(Tye*"dr
0

oo

Since F(s) = £{f()} = J F(T) e, it follows that

Lt - a)H(t — a)} = e F(s)

end of theorem
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SOHH(@)

It is important to distinguish between the two functions f(#)H(t — a) and f(t — a)H(t — ).
As we saw earlier, f(¢)H(t — a) simply indicates that the function f(¢) is ‘switched on’
at time ¢ = a, so that
0 (t < a)

S (t=a)

On the other hand, f(# — a)H(¢ — a) represents a translation of the function f(#) by a units
to the right (to the right, since a > 0), so that

S(OH(t-a) = {

0 (t<a)
f(t—a) (t=a)

The difference between the two is illustrated graphically in Figure 5.25. f(t — a)H(t — a)
may be interpreted as representing the function f(¢) delayed in time by a units. Thus, when
considering its Laplace transform e *F(s), where F(s) denotes the Laplace transform of
f(t), the component e may be interpreted as a delay operator on the transform F(s),
indicating that the response of the system characterized by F(s) will be delayed in time
by a units. Since many practically important systems have some form of delay inherent
in their behaviour, it is clear that the result of this theorem is very useful.

St-—a)H(t-a) = {

SOH(-a) ) fe-aH(1~-a) §

O | a

e

t

~-Y
=y

O

Figure 5.25 Illustration of f(# — a)H (¢ — a).

Example 5.36

Solution

f0

0 b

Figure 5.26
Sawtooth pulse.

Determine the Laplace transform of the causal function f(¢) defined by

_jt (0st<Db)
f(t)_{o (t=0b)

f(¢) is illustrated graphically in Figure 5.26, and is seen to characterize a sawtooth pulse
of duration b. In terms of unit step functions,

f(t) = tH(t) — tH(t - b)

In order to apply the second shift theorem, each term must be rearranged to be of the
form f(¢ — a)H(t — a); that is, the time argument 7 — a of the function must be the same
as that of the associated step function. In this particular example this gives

f(t)=tH(t) — (t — b)H(t — b) — bH(t — b)
Taking Laplace transforms,

L)} = L (1)} — L{(t - b)H(t = b)} — bL{H(t = b))}
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Example 5.37

Solution

which, on using Theorem 5.4, leads to

1 —bs e_bs _ 1 e‘bs e—bs
P} =5-e" L) -b"— == - ~b
s S sT s s
giving
FU)} = L1 - -
N

N

It should be noted that this result could have been obtained without the use of the
second shift theorem, since, directly from the definition of the Laplace transform,

oo

0 0

b oo
‘Eg{f(’)}zj f(t)e“”dtzj te""dt+J 0e™dt
b

1]
—
|

-
v |o
4
(IS
(=} [~
+
—_—
(=1 o>
|n>
N
4
2
o
~
1]
—
|
v |
&
|
9 |@‘
[ ) >
(I
(=3 o>~

1l
|
S
[ (¢}
&
>
|
v |2
] 3
S
~
|
|
“ol—
N7
1l
“ol—
N

as before.

Obtain the Laplace transform of the piecewise-continuous causal function

27 (0=<1t<3)
S =3t+4 B =<1<5)
9 (t=5)

considered in Example 5.32.

In Example 5.32 we saw that f(#) may be expressed in terms of unit step functions as
f(t)=22H(t) — 21> =t = HH(t — 3) — (t — 5)H(t - 5)

Before we can find #{ f(¢)}, the function 2¢* — t — 4 must be expressed as a function of
t — 3. This may be readily achieved as follows. Let z =t — 3. Then

22— t-4=20z+3yY—-(z+3)—4
=222+ 11z+ 11
=2(t-3)+11(t-3)+ 11
Hence
f(t)=202H(t) = [2(t = 3)* + 11(t = 3) + 11]H(t — 3) — (t — 5)H(t - 5)
Taking Laplace transforms,
LUy =2F{PH(t)} — L{[2(t —3)* + 11(t = 3) + 11]H(t — 3)}
— F{(t - 5)H(t - 5)}
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which, on using Theorem 5.4, leads to

LIy =2 % —e PR+ 1+ 11 - F 1}
S

—Ss
:i_e_35(£+u+u)_e_z

3 3 2
N N N N

Again this result could have been obtained directly from the definition of the Laplace
transform, but in this case the required integration by parts is a little more tedious.

Having set up s and ¢ as symbolic variables and specified 5, H1 and H5 then the
MATLAB commands
laplace (2*t"2*H- (2*t"2-t-4) *H3-(t-5) *H5) ;
pretty (ans)

generate
ans= 4/s’-1lexp(-3s)/s-1llexp(-3s)/s’-4dexp(-3s)/s’-exp(-5s) /s
In MAPLE the commands

with (inttrans) :
laplace (Heaviside (t) *2*t"2 - Heaviside(t-3)* (2*t"2-t-4)
- Heaviside(t-5)*(t-5),t,s);

return the answer

e 4 - (1182 + 115 + 4)
s? ! SR

5.5.4 Inversion using the second shift theorem

We have seen in Examples 5.34 and 5.35 that, to obtain the Laplace transforms of
piecewise-continuous functions, use of the second shift theorem could be avoided,
since it is possible to obtain such transforms directly from the definition of the Laplace
transform.

In practice, the importance of the theorem lies in determining inverse transforms,
since, as indicated earlier, delays are inherent in most practical systems and engineers
are interested in knowing how these influence the system response. Consequently, by
far the most useful form of the second shift theorem is

P F(s)} = f(t — a)H(t - a) (5.45)

Comparing (5.45) with the result (5.12), namely
LHF(s)} =f(HH(1)

we see that

F e F(s)) = [ f(t)H(t)] with ¢ replaced by t — a
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Example 5.38

Solution

indicating that the response f(#) has been delayed in time by a units. This is why the
theorem is sometimes called the delay theorem.

This is readily implemented in MATLAB using the command ilaplace.

—4s
Determine &' de .
s(s+2)

This may be written as ¥ {e™F(s)}, where

_ 4
F(s) = s(s+2)

First we obtain the inverse transform f{(¢) of F(s). Resolving into partial fractions,

F(s) =

] )

__2
s+2
which, on inversion, gives
f(ty=2-2¢*

a graph of which is shown in Figure 5.27(a). Then, using (5.45), we have

f‘{e“ s(s4+2)} =P e F(s)} = f(t—4)H(t-4)

= (2 -2 )H(1 - 4)

giving

1] 4™ 0 (1< 4)
Al
s(s+2) 2(l-e Y (t=4)

which is plotted in Figure 5.27(b).

Using MATLAB confirm that the commands

ilaplace (4*exp(-4*s)/ (s*(s+2)));
pretty (ans)

generate the answer
2H(t-4)(l-exp(-2t+8))
The same answer is obtained in MAPLE using the commands

with(inttrans) :
invlaplace (4*exp (-4*s)/(s*(s+2)),s,t);


www.semeng.ir

402 LAPLACE TRANSFORMS

Figure 5.27 Inverse
transforms of
Example 5.38.

Example 5.39

Solution

VIUNY
24
14

0 | 2 3 4 5 6 7 8 9 t

(a) Graph of f(1)

fle—HHE - 4) 4
2]
14

0 1 2 3 4 5 6 7 8 9

(b) Graph of f(+ — 4)H(t — 4)

Determine fl{e 2S+3 }
s(s“+1)

This may be written as ¥ {e™"F(s)}, where

F(s) = =3
s(s”+1)
Resolving into partial fractions,

F(s)=§—23—s+2;
s s +1 s +1

which, on inversion, gives

f(t)=3 -3 cost+sint

a graph of which is shown in Figure 5.28(a). Then, using (5.45), we have

gl{ewfﬁ }: FHFW)} = f(-mH(-m)
s(s”+1)

=[3—-3cos(t—m) + sin(t—m)]|H(t — )
=B +3cost—sint)H(t — 1)
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MUY
10 +
5 —4
0
-5 —— % ; ; : —>
0 2 n 4 6 8 10 12 14 1t
(a)
f{t — m)H({t — 7) A
10 -+
5 —+
0
-5 T : % : : e
0 2 bis 4 6 8 10 12 14 t
(b)
Figure 5.28 Inverse transforms of Example 5.39.
giving
! e "(s+3 _ 0 (t<m
s(s*+1) 3+3cost—sint (¢t =m)

which is plotted in Figure 5.28(b).

5.5.5 Differential equations

We now return to the solution of linear differential equations for which the forcing
function f{f) is piecewise-continuous, like that illustrated in Figure 5.20. One

approach to solving a differential

equation having such a forcing function is to solve

it separately for each of the continuous components f,(¢), f,(¢), and so on, comprising
f(t), using the fact that in this equation all the derivatives, except the highest, must
remain continuous so that values at the point of discontinuity provide the initial con-

ditions for the next section. This

approach is obviously rather tedious, and a much

more direct one is to make use of Heaviside step functions to specify f(¢). Then the
method of solution follows that used in Section 5.3, and we shall simply illustrate it

by examples.
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Example 5.40  Obtain the solution x(¢), ¢ = 0, of the differential equation
2
dxy sdxy 6v = ) (5.46)

ds dt

where f(¢) is the pulse function

3 (0<1<6)

f(t)={0 (t = 6)

and subject to the initial conditions x(0) = 0 and x(0) = 2.

Solution  To illustrate the advantage of using a step function formulation of the forcing function
f(t), we shall first solve separately for each of the time ranges.

Method I  For 0 < t < 6, (5.46) becomes

2
d—)zc +5 dx +6x=3
a7
with x(0) = 0 and %(0) = 2.
Taking Laplace transforms gives
(82 + 55 + 6)X(s) = x(0) + £(0) + 5x(0) + > =2+ 2
S S

That is,

25+3 ;3 1
X(s) = —=51 =i 2 _
s(s+2)(s+3) s s+2 s+3

which, on inversion, gives
11 - _
x(f)=3+3¢ = (0<1t<6)

We now determine the values of x(6) and X(6) in order to provide the initial conditions
for the next stage:

x(6)=1+le

12 _ e—lS =a, x(6) — _e—12 + 3 €_|8 — ﬁ

For t = 6 we make the change of independent variable 7'= ¢ — 6, whence (5.46) becomes

2
dx sdr 69
dr’ dT

subject to x(T=0) = and X(T = 0) = 3.
Taking Laplace transforms gives
(*+ 55+ 6)X(s) =sx(T=0) +X(T=0)+5x(T=0) = ots + St + 3
That is,

X(s) = as+So+f _ B+3a_B+2a
(s+2)(s+3) s+2 s+3
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Figure 5.29
Forcing function
and response of
Example 5.40.

Method 2

which, on taking inverse transforms, gives
XT)=(B+3we™ - (f+2a)e"

Substituting the values of o and f and reverting to the independent variable ¢ gives
M)=G+3e?)eX 0 —(1+e'e® (1= 06)

That is,
)y=(GeP—e?)+ (G0 -0 (1= 6)

Thus the solution of the differential equation is

x(1) ={%+ie

1 =2t -3¢ 3 _=2(t-6) -3(1-6)
;€ —e )t+(5e -e )

(0=r<06)
(t=6)

The forcing function f{(¢) and response x(#) are shown in Figures 5.29(a) and (b)
respectively.

S A x(1) A
0.6 1+
6 4
0.4
I
: 0.2 -
1
1
1
: | | | : : : : -
0 3 6 9 12 ¢ 0 2 4 6 8 10 ¢
(@) (b)

In terms of Heaviside step functions,
f(¢t)=3H(t)— 3H(t - 6)
so that, using (5.43),
3 3 -6
() ==~-=e"
s s
Taking Laplace transforms in (5.46) then gives
(8% + 55 + 6)X(s) = sx(0) + %(0) + 5x(0) + L{f(t)} =2+ 3_ ée_(’s
s s
That is,

X(S) — 25+ 3 _ e—6s 3
s(s+2)(s+3)

s(s+2)(s+3)
(§+_%___1_)_e—6s(ﬁ_ : +_1_)
s s+2 s5+3 s s+2 s+3

Taking inverse Laplace transforms and using the result (5.45) gives

X(t)=(; +3e¥—e¥)— (5 — 320+ ) H(1 - 6)
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Example 5.41

Solution

which is the required solution. This corresponds to that obtained in Method 1, since,
using the definition of H(# — 6), it may be written as

1 1 -2t =3t
{§+§e -e (0=1t<06)
(%efzt_ efsz) n (% o 2076 _efsofe)) (t = 6)

This approach is clearly less tedious, since the initial conditions at the discontinuities
are automatically taken account of in the solution.

It seems that the standard dsolve command is unable to deal with differential
equations having such Heaviside functions as their forcing function. To resolve this
problem use can be made of the maple command in MATLAB, which lets us
access MAPLE commands directly. Confirm that the following commands produce
the correct solution:

maple(‘de:=diff (x(t),t$2)+5*diff(x(t),t)+6*x(t)

=3*Heaviside-3*Heaviside (t-6); ")

de := diff(x(t),’S’(t,2))+5*diff(x(t),t)+6*x(t)
= 3*Heaviside-3*Heaviside (t-6)
maple (‘dsolve({de,x(0)=0,D(x) (0)=2},x(t)),method=1laplace; ")

In MAPLE the answer may be obtained directly using the commands:

with(inttrans) :

de:=diff (x(t),t$2)+5*diff (x(t),t)+6*x(t)
-3*Heaviside-3*Heaviside (t-6) ;

dsolve ({de,x(0)=0,D(x) (0)=2},x(t)),method=1aplace;

Determine the solution x(¢), t = 0, of the differential equation

d’x dx

E+25+5X=f(t) (5.47)
where
_Jjt (0st=sm
S = {0 (t=m)

and subject to the initial conditions x(0) = 0 and x(0) = 3.

Following the procedures of Example 5.36, we have
f(t) =tH(t) — tH(t — )
=tH(t) - (t —)H(t — ) — tH(t — )
so that, using Theorem 5.4,

A =-S5 B = Lo (1. E)
N S

N N N


www.semeng.ir

5.5 STEP AND IMPULSE FUNCTIONS 407

Taking Laplace transforms in (5.47) then gives

(8% + 25 + 5)X(s) = sx(0) + X(0) + 2x(0) + F{ f(1)}

using the given initial conditions.

Thus
2
X(S) - :jS +1 —e™ : 2l-l-STC
s (s"+2s+5) s (s"+2s+5)

which, on resolving into partial fractions, leads to

X(s) = i{—2+§+~2ﬁiﬂz}_ L{S_T_t:_zg _ (5ﬁ—2)s+(10n+1)}

s s (s+1)2+ 25 N s (s+1)2+4

|
)
G

L[_g+§+2gs+1)+72}

Pls 8 (s+1)’+4

+ 2 2
25 K s (s+1)+4

e {575—2 5 (5n=2)(s+1)+(5m+ 3)}
Taking inverse Laplace transforms and using (5.45) gives the desired solution:
x(f) = 35 (=2 + 5t + 2 €' cos 2¢ + 36 ¢ sin 27)
-5 [(5n—2)+5(t—-m) - (51 —2) ™ cos 2(t — m)
— 151 +3) e sin2(t — m)]H(t — )
That is,
x(t) = 3 [5t — 2 + 2 e7(cos 2¢ + 18 sin 21)]
— £ {5t—2—¢€"e'[(5Sn—2) cos2t + 1 (5n+3)sin2/]} H(t — )
or, in alternative form,

{;—S[St—2+2e_’(cos 2t+18sin2f)] (0 <t < m)
x(1) =

e {(2+(5n-2)e") cos2t+[36+1(5Sn+3)e"|sin2¢} (t=m)

5.5.6 Periodic functions

We have already determined the Laplace transforms of periodic functions, such
as sin @t and cos @?, which are smooth (differentiable) continuous functions. In many
engineering applications, however, one frequently encounters periodic functions that
exhibit discontinuous behaviour. Examples of typical periodic functions of practical
importance are shown in Figure 5.30.

Such periodic functions may be represented as infinite series of terms involving step
functions; once expressed in such a form, the result (5.43) may then be used to obtain
their Laplace transforms.
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Figure 5.30 ONY
Typical practically K : .
important periodic : : : ) | '
functions: (a) square ) ' : : : |
wave; (b) sawtooth 0 X X X X l X »
wave; (c) repeated it T E 27 L 3T t
pulse wave; (d) half- i : | | : :
wave rectifier. -kl X X X X X :
(a)
F@ A
| / /
o T T T / >
T 2T 3T 47 t
(b)
S A
Koo r— [r—
0 FR S S — >
iT T 2T 1
(©)
f@ A

~Y

N(—
~
~
[
~

(d)

Example 5.42  Obtain the Laplace transform of the square wave illustrated in Figure 5.30(a).

Solution  In terms of step functions, the square wave may be expressed in the form
S(t)=KH(t) = 2KH(t — 3 T) + 2KH(t — T) = 2KH(t — 3 T) + 2KH(t = 2T) + . . .
=K[H(t) - 2H(t = 3T)+ 2H(t - T) = 2H(t — : T) + 2H(t = 2T) + . . . |

Taking Laplace transforms and using the result (5.43) gives

LUt} = F(s) = K(l L2 TR 2 T2 TR 2T )
S

N N N N

_ ZTK[I _e T2 (6757/2)2_ (e—sT/2)3 n (e—sT/2)4 _ ]_I_Sg
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The series inside the square brackets is an infinite geometric progression with first
term 1 and common ratio —e ™", and therefore has sum (1 + ¢™"?)"". Thus,

—sT/2
F(S):;Z_.I_{;_I_( _Kl-e ~

—sT/2 —sT/2
S 1+e” s S1+e”

That is,

PLF)Y = F(s) = Iftanh LsT

The approach used in Example 5.42 may be used to prove the following theorem, which
provides an explicit expression for the Laplace transform of a periodic function.

Theorem 5.5 If f(7), defined for all positive ¢, is a periodic function with period 7, that is
f(t+ nT) = f(¢) for all integers n, then

LU} = L J e f(r) di

—e 0

Proof TIf, as illustrated in Figure 5.31, the periodic function f(¢) is piecewise-continuous over
an interval of length 7, then its Laplace transform exists and can be expressed as a
series of integrals over successive periods; that is,

oo

LLfny = J Sfirye™"dt

0

T 27 3T
= J f(t)e_‘”dt+J f(t)e‘”dt+J AHede+ ...

0 T 2T
nT
+ J finede+. ..
(n-1)T
If in successive integrals we make the substitutions
t=7+nT (n=0,1,2,3,...)

then

T

L) = iJ fr+nT)e™ ™" dr

0

Figure 5.31 f

Periodic function
having period T. '/——/1/—/:/—-/1/
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f1(®

Y T t

Figure 5.32

Plot of periodic
function within one
period.

Example 5.43

Solution

Since f{¢) is periodic with period T,
fz+nT)=f(t) (n=0,1,2,3,...)
so that
w (T - T
LAY = EJ frye” e dr = [2 e‘”T] J f(r) e™"dr
n=0 0 n=0 0

The series Yy e =1+e*"+e >+ e+ ... is an infinite geometric progression
with first term 1 and common ratio ™. Its sum is given by (1 —e™")™, so that

LS} = lﬂrf.ﬂf)éﬂdr

l-e 0

Since, within the integral, 7is a ‘dummy’ variable, it may be replaced by 7 to give the
desired result.

end of theorem

We note that, in terms of the Heaviside step function, Theorem 5.5 may be stated as
follows:

If 1(#), defined for all positive ¢, is a periodic function with period 7 and

J(@) = f(O)(H(t) — H(t = T))

then

0}y =1 - ) L)}

This formulation follows since f{¢) is periodic and f,(#) = 0 for > T. For the periodic
function f(#) shown in Figure 5.31 the corresponding function f,(¢) is shown in
Figure 5.32. We shall see from the following examples that this formulation simplifies
the process of obtaining Laplace transforms of periodic functions.

Confirm the result obtained in Example 5.42 using Theorem 5.5.

For the square wave f(¢) illustrated in Figure 5.30(a), f(¢) is defined over the period
0<t<Tby

K (0<t<iT)

ﬂn={ 1
K (ir<:<T)

Hence we can write f,(¢) = K[H(t) — 2H(t — %T) + H(t — T)], and thus

FLHOY :K(l_ 2 T2 4 1 e—sr) _ I—<(1 T2y
s S Ky s
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Using the result of Theorem 5.5,

—sT/2.2 —sT/2\2
g Bl B b
s(l-e™) s(l—-e "H)(1+e )
—sT/2
=1_<le =IStanhisT
sl+e s

confirming the result obtained in Example 5.42.

Example 5.44 Determine the Laplace transform of the rectified half-wave defined by

sinwt (0 <t <m/w)
0 (m/ow <t<2m/w)
f(t+2nm/w) =f(¢t) for all integers n

o-|

Solution  f{(¢) is illustrated in Figure 5.30(d), with 7= 2nt/@. We can express f,(¢) as
£(1) = sin wt[H(t) — H(t — T/o)]
=sin wtH(t) + sinw(t — T/W)H(t — T/w)
So

[0) - w w -
LA} =T=+e e = =2 (1+7™)
s+ o sSS+o s+ o
Then, by the result of Theorem 5.5,
—sTU/w

P @ 1+e _ ()
{f( )} S2+ (!f l_e—2s1r/cu (S2+ d)(l _e—sﬂ:/a))

5.5.7 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

13 A function f{(#) is defined by 37 0<t<4)
¢ O=t<1) (a) flr) =42¢-3 (4<t<6)

f(t)=0 (t>1) 5 (t>6)
Express f(¢) in terms of Heaviside unit step t O0=zr<1)
functions and show that (b) g(t) =42-t (1<t<2)

1 0 (t>2)

1 =S =5
L= (1-e")-~e
s s
15  Obtain the inverse Laplace transforms of the

14 Express in terms of Heaviside unit step functions the following:
following piecewise-continuous causal functions. sy Y
In each case obtain the Laplace transform of the (a) ¢ (b) 3¢

function. (s - 2)4 (s+3)(s+1)
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s+ 1 -5 s+ 1 —ns
- —¢ d) ——e
s (s +1) s +s+1
_4ns 7“'1— -5

(e) 2s oS (f) ezgz e’)
s +25 s(sT+1)

16  Given that x = 0 when ¢ = 0, obtain the solution of
the differential equation

Lorx = fin

where f(#) is the function defined in Exercise 13.
Sketch a graph of the solution.

(t=0)

17  Given that x = 1 and dx/df = 0, obtain the solution
of the differential equation
d’x | dx _ -
— t—+x=g() (t=0)
drr dr

where g(¢) is the piecewise-continuous function
defined in Exercise 14(b).

18  Show that the function
. _{0 (0<1t<3m)
sint (t = im)
may be expressed in the form f{(¢) = cos (t — %n)
H(t - %11:), where H(t) is the Heaviside unit step
function. Hence solve the differential equation
2
3 dx v s
dt dr

where f(¢) is given above, and x = 1 and
dx/dt = -1 when t=0.

19  Express the function

3 0=r<4

fin= ( )

2t=5 (t=4)
in terms of Heaviside unit step functions and obtain
its Laplace transform. Obtain the response of the
harmonic oscillator

X+x=f(t)

to such a forcing function, given that x = 1 and
dx/dt =0 when ¢ = 0.

20  The response 6,(¢) of a system to a forcing function
6,(¢) is determined by the second-order differential
equation

6,+60,+100,=0, (t=0)
Suppose that 6,(¢) is a constant stimulus applied for
a limited period and characterized by

Gi(t)={3 (0<t<a)
0 (t=a)

21

22

23

24

Determine the response of the system at time ¢
given that the system was initially in a quiescent
state. Show that the transient response at time
T(>a)is

—2e”"{cos T+ 3sin T — e*[cos (T - a)

+3sin (T'—a)]}
The input 6(¢) and output 6,(¢) of a servomechanism
are related by the differential equation
0, +80,+166,=6, (t=0)
and initially 6,(0) = 6,(0) = 0. For 6, = f(t), where
1-t (0<t<1
fit) = ( )
0 (t>1)
Show that

Loy =2+ Le
s s
and hence obtain an expression for the response of
the system at time 7.

During the time interval 7, to ¢,, a constant
electromotive force ¢, acts on the series RC circuit
shown in Figure 5.33. Assuming that the circuit is
initially in a quiescent state, show that the current
in the circuit at time ¢ is

ey . ~(-1)/RC
[S

. ~(-1,)/RC
l(t):E[ H(t—1t)—e H(t-1,)]

Sketch this as a function of time.

R C
e(;)( ; /V in) }—‘

Figure 5.33 Circuit of Exercise 22.

A periodic function f(#), with period 4 units, is
defined within the interval 0 < ¢ < 4 by

3t (0=<1<2)

f(t)={6 Q<t<4)

Sketch a graph of the function for 0 < 7 < 12 and
obtain its Laplace transform.

Obtain the Laplace transform of the periodic
sawtooth wave with period 7, illustrated in
Figure 5.30(b).
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5.5.8

Figure 5.34
Impulse function.

The impulse function

Suppose a hammer is used to strike a nail then the hammer will be in contact with the
nail for a very short period of time, indeed almost instantaneously. A similar situation
arises when a golfer strikes a golf ball. In both cases the force applied, during this short
period of time, builds up rapidly to a large value and then rapidly decreases to zero.
Such short sharp forces are known as impulsive forces and are of interest in many
engineering applications. In practice it is not the duration of contact that is important
but the momentum transmitted, this being proportional to the time integral of the force
applied. Mathematically such forcing functions are represented by the impulse function.
To develop a mathematical formulation of the impulse function and obtain some insight
into its physical interpretation, consider the pulse function ¢(z) defined by

0 (0<t<a-il)
¢(t) =14/T (a—=3T<t<a+iT)
0 (t=a+iT)

and illustrated in Figure 5.34(a). Since the height of the pulse is 4/T and its duration (or
width) is 7, the area under the pulse is 4; that is,

had a+T/2 A
¢(t)dt:J ddr=4
J—w a-T/2 T

If we now consider the limiting process in which the duration of the pulse approaches
zero, in such a way that the area under the pulse remains 4, then we obtain a formula-
tion of the impulse function of magnitude 4 occurring at time ¢ = . It is important to
appreciate that the magnitude of the impulse function is measured by its area.

The impulse function whose magnitude is unity is called the unit impulse function
or Dirac delta function (or simply delta function). The unit impulse occurring at
t = a is the limiting case of the pulse @(¢) of Figure 5.34(a) with 4 having the value
unity. It is denoted by &(¢ — @) and has the properties

0t—a)=0 (t#a)

J S(t-a)dt=1

Likewise, an impulse function of magnitude A occurring at = a is denoted by 46(t — a)
and may be represented diagrammatically as in Figure 5.34(b).

An impulse function is not a function in the usual sense, but is an example of a class
of what are called generalized functions, which may be analysed using the theory of

o(1) Ad(t-a)
A fr—
T I !
- :
o 0 .

a-tTaa+iT 1 a

(a) (b)
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5.5.9

A 9200
o1(1)

~l—

prm——
1 T
1 1
1 1
| |
—— > ; ’ >
o a-T a a+T t T O AT !
Figure 5.35 Approximation to a unit pulse. Figure 5.36 Pulse at the origin.

generalized calculus. (It may also be regarded mathematically as a distribution and
investigated using the theory of distributions.) However, its properties are such that,
used with care, it can lead to results that have physical or practical significance and
which in many cases cannot be obtained by any other method. In this context it provides
engineers with an important mathematical tool. Although, clearly, an impulse function
is not physically realizable, it follows from the above formulation that physical signals
can be produced that closely approximate it.

We noted that the magnitude of the impulse function is determined by the area under
the limiting pulse. The actual shape of the limiting pulse is not really important, pro-
vided that the area contained within it remains constant as its duration approaches zero.
Physically, therefore, the unit impulse function at # = @ may equally well be regarded
as the pulse ¢,(#) of Figure 5.35 in the limiting case as T approaches zero.

In some applications we need to consider a unit impulse function at time # = 0. This
is denoted by O(¢) and is defined as the limiting case of the pulse ¢,(¢) illustrated in
Figure 5.36 as T approaches zero. It has the properties

8(t)=0 (1#0)

f o(nde=1

The sifting property

An important property of the unit impulse function that is of practical significance is
the so-called sifting property, which states that if f(¢) is continuous at ¢ = a then

J £(O8(t-a)dt = f(a) (5.48)

This is referred to as the sifting property because it provides a method of isolating, or
sifting out, the value of a function at any particular point.

For theoretical reasons it is convenient to use infinite limits in (5.48), while in reality
finite limits can be substituted. This follows since for o < a < f3, where o and J are
constants,

B
J f(H)o(t—a)dt = f(a) (5.49)

o
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5.5.10

For example,

2n
J cos to(¢—1im)dr = cos ;7 =1
0

Laplace transforms of impulse functions

By the definition of the Laplace transform, we have for any a > 0

FL{S(t—a)} = J S(t—a)e™'dt
0

which, using the sifting property, gives the important result

F{o(t—a)}=e® (5.50)
or, in terms of the inverse transform,

F e ™ =68(t—a) (5.51)

As mentioned earlier, in many applications we may have an impulse function &(¢) at
t=0, and it is in order to handle such a function that we must carefully specify whether
the lower limit in the Laplace integral defined in Section 5.2.1 is 0~ or 0". Adopting the
notation

LASfW} =J f(e™de

oo

LLf(D} = f S edt

0

we have

oo

f()ye'de + J f(t)ye ' dt

ot

ot

LA} =J

0

If /(#) does not involve an impulse function at = 0 then clearly £, { (1)} = L_{f(1)}.
However, if f(¢) does involve an impulse function at # = 0 then

0+
J f()ydt #0

0

and it follows that

LS} # LS}

In Section 5.2.1 we adopted the definition

L)y = L)}
so that (5.50) and (5.51) hold for a = 0, giving

oo

FL6(1)} =J S(nedi=e"=1

0
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Example 5.45

Solution

so that
FLo) =1 (5.52)
or, in inverse form,

L1 = 8(r) (5.53)

This transform can be implemented in MATLAB using the sequence of commands

syms s t
del=sym(‘Dirac(t) ') ;
laplace (del)

Likewise for (5.50); for example, if a = 2 then the Laplace transform of &(¢ — 2) is
generated by the commands

del2=sym(‘Dirac(t-2)");
laplace (del?2)

or directly using the command
laplace(sym(‘Dirac(t-2) "))

giving the answer exp (-2*s) in each case.
In MAPLE the commands

with(inttrans) :
laplace(Dirac(t-2), t, s);

return the answer 2.

2
Determine &~ 1{ 2S }
sT+4

Since
' _s+d-4_, 4
s +4 s +4 s +4
we have
: 4
s*+4 s*+4
giving

2
fl{zs }:5(t)—25in2t
s +4
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In MATLAB this is obtained directly, with the commands

ilaplace(s™2/ (s”2+4));
pretty (ans)

generating the answer
Dirac(t)-2sin2t
The answers may also be obtained in MAPLE using the commands

with(inttrans) :
invlaplace(s"2/(s"2+4), s, t);

Example 5.46  Determine the solution of the differential equation

d’x dx _
== +3=+2x=1+5(t-4) (5.54)
dr dt

subject to the initial conditions x(0) = x(0) = 0.

Solution Taking Laplace transforms in (5.54) gives
[s2X(s) — sx(0) — %(0)] + 3[sX(s) — x(0)] + 2X(s) = L{1} + F{6(t — 4)}

which, on incorporating the given initial conditions and using (5.50), leads to
(s +3s +2)X(s) = % +e™
giving

1 —4s 1

X = G576 GG D)

Resolving into partial fractions, we have

X0 =3t Lo L)t (-

s+2 s+1 s+1 s+2

which, on taking inverse transforms and using the result (5.45), gives the required
response:

x)y=1(1+e?=2e")+ (e - H(t - 4)
or, in an alternative form,
1+e™-2eT) (0<t<4)
x(t) = 4 —t 8 -2t
I+ -De'—(e-pe” (=4

We note that, although the response x(7) is continuous at ¢ = 4, the consequence of the
impulsive input at f = 4 is a step change in the derivative X(¢).
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5.5.11

As was the case in Example 5.40, when considering Heaviside functions as forcing
terms, it seems that the dsolve command in MATLAB cannot be used directly in
this case. Using the maple command the following commands:

maple(‘de:=diff (x(t),ts$2)+3*diff (x(t),t)+2*x(t)

= l+Dirac(t-4);")

ans=

de := diff(x(t), S’ (t,2))+3*diff(x(t),t)+2*x(t)

= l+Dirac(t-4)

maple(‘dsolve({de,x(0)=0,D(x)(0)=0},x(t)),

method=1laplace; ')
output the required answer:

xX(t)=1/2-exp(-t)+1/2*exp(-2*t)-Heaviside (t-4)*
exp (-2*t+8) +Heaviside (t-4) *exp (-t+4)

Relationship between Heaviside step and
impulse functions

From the definitions of H(¢) and (¢), it can be argued that
t
H(t) = J o(7)dr (5.55)

since the interval of integration contains zero if # > 0 but not if + < 0. Conversely,
(5.55) may be written as

8(t) = (% H(t) = H'(t) (5.56)

which expresses the fact that H’(¢) is zero everywhere except at ¢ = 0, when the jump
in H(¢) occurs.

While this argument may suffice in practice, since we are dealing with generalized
functions a more formal proof requires the development of some properties of gener-
alized functions. In particular, we need to define what is meant by saying that two
generalized functions are equivalent.

One method of approach is to use the concept of a test function 6(¢), which is a
continuous function that has continuous derivatives of all orders and that is zero outside
a finite interval. One class of testing function, adopted by R. R. Gabel and R. A. Roberts
(Signals and Linear Systems, Wiley, New York, 1973), is

2,2 2
(1) = {e_d (1t < d),  where d = constant
0 otherwise

For a generalized function g(¢) the integral
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G(0) = J 0(t)g(t)dt

is evaluated. This integral assigns the number G(0) to each function 6(¢), so that G(6)
is a generalization of the concept of a function: it is a linear functional on the space of
test functions 6(¢). For example, if g(¢) = 0(¢) then

G(0) :J 6(1)8(r)dr = 6(0)

so that in this particular case, for each weighting function 6(¢), the value 6(0) is
assigned to G(6).

We can now use the concept of a test function to define what is meant by saying that
two generalized functions are equivalent or ‘equal’.

Definition 5.2: The equivalence property

If g,(¢) and g,(¢) are two generalized functions then g,(7) = g,(¢) if and only if

J 0(1)gi (1) dr = j 0(1)g,(1) dt
for all test functions 8(¢) for which the integrals exist.

The test function may be regarded as a ‘device’ for examining the generalized func-
tion. Gabel and Roberts draw a rough parallel with the role of using the output of a
measuring instrument to deduce properties about what is being measured. In such an
analogy g,(f) = g,(f) if the measuring instrument can detect no differences between
them.

Using the concept of a test function 6(¢), the Dirac delta function 6(¢) may be
defined in the generalized form

J 0(t)8(t) dt = 6(0)

Interpreted as an ordinary integral, this has no meaning. The integral and the function
O(t) are merely defined by the number 6(0). In this sense we can handle 8(¢) as if it
were an ordinary function, except that we never talk about the value of (¢); rather we
talk about the value of integrals involving (7).
Using the equivalence property, we can now confirm the result (5.56), namely that
5 _ d — 7
(1= S H(=H'()

To prove this, we must show that
J 0(r)6(t)dt = J O(t)H' (1) dt (5.57)

Integrating the right-hand side of (5.57) by parts, we have
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Figure 5.37
Piecewise-continuous
function with jump
discontinuities.

oo

J O(HH'(t)dt = [H(1)0(H)] .. —J H(t)6' (1) dt

—oo

=0 —J 6’(t)dt  (by the definitions of 6(¢) and H(t))

=-[6(n]; = 6(0)

Since the left-hand side of (5.57) is also 6(0), the equivalence of 6(¢) and H'(¢) is proved.
Likewise, it can be shown that

8(t—a) = (% H(t-a)= H'(t - a) (5.58)

The results (5.56) and (5.58) may be used to obtain the generalized derivatives of
piecewise-continuous functions having jump discontinuities d,, d, . . . , d, at times
t, b, ..., t, respectively, as illustrated in Figure 5.37. On expressing f(¢) in terms of
Heaviside step functions as in Section 5.5.1, and differentiating using the product rule,
use of (5.56) and (5.58) leads to the result

[(0=g 0+ dot-1) (5.59)

i=1

where g’(¢) denotes the ordinary derivative of /(¢) where it exists. The result (5.59) tells
us that the derivative of a piecewise-continuous function with jump discontinuities
is the ordinary derivative where it exists plus the sum of delta functions at the discon-
tinuities multiplied by the magnitudes of the respective jumps.

[ A

ﬂir\gw{‘u d3
- |

. . L -
o 'l 13 / '

By the magnitude d; of a jump in a function f(¢) at a point #,, we mean the difference
between the right-hand and left-hand limits of /() at #;; that is,

di :f(ti+0) _f(ti - 0)

It follows that an upward jump, such as d, and d, in Figure 5.37, is positive, while a
downward jump, such as d; in Figure 5.37, is negative.

The result (5.59) gives an indication as to why the use of differentiators in practical
systems is not encouraged, since the introduction of impulses means that derivatives
increase noise levels in signal reception. In contrast, integrators have a smoothing effect
on signals, and are widely used.
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Example 5.47

Figure 5.38 Piecewise-
continuous function of
Example 5.47.

Obtain the generalized derivative of the piecewise-continuous function

2041 (0=<t<3)
A =1t+4 (B3=<t<5)
4 (t=5)
A
19+
sllz
10+ X
— s
1 , . . . C
0 12 3 4 s 61t

Solution  f(z) is depicted graphically in Figure 5.38, and it has jump discontinuities of magni-

Example 5.48

Solution

tudes 1, —12 and -5 at times # = 0, 3 and 5 respectively. Using (5.59), the generalized
derivative is

£ =g/(t) + 18(t) — 128(t = 3) = 58(t — 5)

where
4t (0=<t<3)
g =491 (B3=<t<53)
0 (=5)

A system is characterized by the differential equation model
dx du

2
d—)zc+5—+6x=u+3—
dr dt ds

(5.60)

Determine the response of the system to a forcing function u(z) = e applied at time
t =0, given that it was initially in a quiescent state.

Since the system is initially in a quiescent state, the transformed equation correspond-
ing to (5.60) is

(s + 55 + 6)X(s) = (3s + DU(s)
giving

X(s) = 23s+1

s +5s5+6

U(s)

In the particular case when u(t) =e™, U(s) = 1/(s + 1), so that

_ 3s+1) _ -l + 5 4
(s+1D)(s+2)(s+3) s+1 s+2 s+3

X(s)
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which, on taking inverse transforms, gives the desired response as
x()=—e'+5e¥ -4 (t=0)

One might have been tempted to adopt a different approach and substitute for u(¢)
directly in (5.60) before taking Laplace transforms. This leads to

2
d—)zc+5(£+6x =e’'—-3e"'=-2¢"
dt dt

which, on taking Laplace transforms, leads to

(s> + 55 + 6)X(s) = — —2—
s+1
giving
X(s) = ) -1, 2 1

Gr1)(s5+2)(5+3) s+1 s+2 s+3
which, on inversion, gives
x(t)=-e"+2e¥ - (t=0)

Clearly this approach results in a different solution, and therefore appears to lead to a
paradox. However, this apparent paradox can be resolved by noting that the second
approach is erroneous in that it ignores the important fact that we are dealing with
causal functions. Strictly speaking,

u(t) = e'H(t)

and, when determining du/dz, the product rule of differential calculus should be
employed, giving

du o at —ri
i e H(t)+e dtH(t)

=—e"H(t) +e'0(¢)

Substituting this into (5.60) and taking Laplace transforms gives

(s2+5s+6)X(s):~L+3(_L+1):3s+1
s+ 1 s+ 1 s+ 1

That is,

X(s) = 3s2+1
(s+1)(s"+55+6)

leading to the same response
x()=—e'+5e¥ -4 (t=0)

as in the first approach above.
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25

26

The differential equation used in Example 5.48 is of a form that occurs frequently in
practice, so it is important that the causal nature of the forcing term be recognized.

The derivative 6’(¢) of the impulse function is also a generalized function, and, using
the equivalence property, it is readily shown that

oo

J A () dt = -f7(0)

or, more generally,
J f()6'(t-a)dt = -f"(a)

provided that f”(¢) is continuous at ¢ = a.
Likewise, the nth derivative satisfies

oo

J f(O& ¢t -a)dt = (=1)"f"(a)

provided that £ *(¢) is continuous at ¢ = a.
Using the definition of the Laplace transform, it follows that

L8t —a)} =s"e™

and, in particular,

PLED()} = 5" (5.61)

5.5.12 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

2
Obtain the inverse Laplace transforms of the (c) d_)zc +7 dx +12x=06(t-3)
following: 4 dr
2 2 2
(a) 25 +1 (b) s —1 (¢) s +2 subjecttoleandgzlattzo
(s+2)(s+3) s +4 sTH+25+5 dr

Solve for t = 0 the following differential equations,

subject to the specified initial conditions: 27  Obtain the generalized derivatives of the following

piecewise-continuous functions:

d’x dx _
(a) 5 +7=+12x=2+6(t-2) 5
dt dt

3¢ (0<t<4)
e (@) f()=421-3 (4=<1<6)
subject to x = 0 and aanttzO 5 (t = 6)
2
() X694 130 = 5(r-2m) t 0=t<1
dt dt
(b) g()=<2-t (1=t<2)
subjecttoszand(—iiczomt:O 0 (t=2)

dr
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2t+5 (0=¢1<2)
(¢) f()=49-3t (2

r£—t

28  Solve for ¢ = 0 the differential equation

2
d—)2‘+7d—x+10x=2u+3— o

dr

subject to x = 0 and dx/df =2 at # = 0 and where

u(t) = e Hi(t).

2
=) =0
dr
Show that

i x(z)=iiH(t—nT)sinw(t—nT) (t=0)

dr
and sketch the responses from 7 =0 to = 67/w for
the two cases (a) 7= n/w and (b) T'=2n/®.

29 A periodic function f(7) is an infinite train of unit 30  An impulse voltage E6(¢) is applied at time ¢ =0
impulses at 7 = 0 and repeated at intervals of 7 = 7. to a circuit consisting of a resistor R, a capacitor
Show that C and an inductor L connected in series. Prior to

application of this voltage, both the charge on
L} = — the capacitor and the resulting current in the
I-e circuit are zero. Determine the charge ¢(¢) on the
The response of a harmonic oscillator to such a periodic capacitor and the resulting current i(¢) in the circuit
stimulus is determined by the differential equation at time 7.
5.5.13 Bending of beams
So far, we have considered examples in which Laplace transform methods have been
used to solve initial-value-type problems. These methods may also be used to solve
boundary-value problems, and, to illustrate, we consider in this section the application
of Laplace transform methods to determine the transverse deflection of a uniform thin
beam due to loading.

Consider a thin uniform beam of length / and let y(x) be its transverse displacement,
at distance x measured from one end, from the original position due to loading. The
situation is illustrated in Figure 5.39, with the displacement measured upwards. Then,
from the elementary theory of beams, we have

EI (—f-y =-W(
= = X) (5.62)
dx

where W(x) is the transverse force per unit length, with a downwards force taken to be
positive, and EI is the flexural rigidity of the beam (£ is Young’s modulus of elasticity
and / is the moment of inertia of the beam about its central axis). It is assumed that the
beam has uniform elastic properties and a uniform cross-section over its length, so that
both E and [/ are taken to be constants.

Figure 5.39 YA y

Transverse deflection

of a beam: (a) initial

position; (b) displaced

position. 7,
0 I

W(x)

=Y
o
=Y

(@) (b)
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Equation (5.62) is sometimes written as

EIQZ—W
= Wi(x)

dx

where y(x) is the transverse displacement measured downwards and not upwards as
in (5.62).

In cases when the loading is uniform along the full length of the beam, that is
W(x) = constant, (5.62) may be readily solved by the normal techniques of integral
calculus. However, when the loading is non-uniform, the use of Laplace transform
methods has a distinct advantage, since by making use of Heaviside unit functions and
impulse functions, the problem of solving (5.62) independently for various sections of
the beam may be avoided.

Taking Laplace transforms throughout in (5.62) gives

EI[5*¥() = $(0) = 5,(0) = 59(0) = 15(0)] = ~I¥(s) (5.63)
where
_(dy _(dy _(dy
(0) (x) ¥2(0) (dx) 7 = dxz)x_o

and may be interpreted physically as follows:
Elyy(0) isthe shearatx=0
Ely,(0) is the bending moment at x =0
»1(0) 1is the slope atx =0
1(0) is the deflection at x =0

Solving (5.63) for y(s) leads to

Y(s) = W(S4)+y(0)+y1(20)+yz(30)+y3(40) (5.64)
Els s s s s

Thus four boundary conditions need to be found, and ideally they should be the shear,
bending moment, slope and deflection at x = 0. However, in practice these boundary
conditions are not often available. While some of them are known, other boundary con-
ditions are specified at points along the beam other than at x = 0, for example conditions
at the far end, x =/, or conditions at possible points of support along the beam. That is,
we are faced with a boundary-value problem rather than an initial-value problem.

To proceed, known conditions at x = 0 are inserted, while the other conditions among
1(0), ¥,(0), ,(0) and y,(0) that are not specified are carried forward as undetermined
constants. Inverse transforms are taken throughout in (5.45) to obtain the deflection
y(x), and the outstanding undetermined constants are obtained using the boundary con-
ditions specified at points along the beam other than at x = 0.

The boundary conditions are usually embodied in physical conditions such as the
following:

(a) The beam is freely, or simply, supported at both ends, indicating that both the
bending moments and deflection are zero at both ends, so that y = d*y/dx* = 0 at
bothx=0andx=1.

(b) At both ends the beam is clamped, or built into a wall. Thus the beam is horizontal
at both ends, so that y = dy/dx =0 at both x =0 and x = /.
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Example 5.49

Figure 5.40
Loaded beam of
Example 5.49.

Solution

(c) The beam is a cantilever with one end free (that is, fixed horizontally at one end,
with the other end free). At the fixed end (say x = 0)

y= dy_ 0 atx=0
dx
and at the free end (x =), since both the shearing force and bending moment are zero,

2

3
R P
dx dx

If the load is not uniform along the full length of the beam, use is made of Heaviside
step functions and impulse functions in specifying W(x) in (5.62). For example, a
uniform load w per unit length over the portion of the beam x = x, to x = x, is specified
as wH(x — x,) — wH(x — x,), and a point load w at x = x, is specified as wo(x — x,).

Figure 5.40 illustrates a uniform beam of length /, freely supported at both ends, bending
under uniformly distributed self-weight /¥ and a concentrated point load P at x = 1 1.
Determine the transverse deflection y(x) of the beam.

y

Ry At 4 R,

O -
! 3! iP iw b
[P S
DI ,

As in Figure 5.39, the origin is taken at the left-hand end of the beam, and the deflection
y(x) measured upwards from the horizontal at the level of the supports. The deflection
y(x) is then given by (5.62), with the force function #(x) having contributions from the
weight ¥, the concentrated load P and the support reactions R, and R,. However, since
we are interested in solving (5.62) for 0 < x < /, point loads or reactions at the end
x = [ may be omitted from the force function.

As a preliminary, we need to determine R,. This is done by taking static moments
about the end x =/, assuming the weight /7 to be concentrated at the centroid x = %l,
giving

R\ =W+ P3l
or
R, =;3;W+3P

The force function W(x) may then be expressed as
W(x) = —ZW-/H(x) +PS— L1 — AW+ 1P)S(x)
with a Laplace transform

W(s) = ZV_V+ P - (W +1P)
S
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Since the beam is freely supported at both ends, the deflection and bending moments
are zero at both ends, so we take the boundary conditions as

y=0 atx=0andx=/

‘lZ =0 atx=0andx=1/
dx’

The transformed equation (5.64) becomes

Y( )____I_{V_V_FP —lv/3_(%W+§P)l4:| +)LO)+)LO)
S

Ell s st

Taking inverse transforms, making use of the second shift theorem (Theorem 5.4),
gives the deflection y(x) as

y(x)z_El,[|:2_4V—VX + - P(x—ll)H(x—l[)_l( W+ 2 P)X:|

+31(0)x + s (0)x

To obtain the value of the undetermined constants y,(0) and y,(0), we employ the
unused boundary conditions at x = /, namely y(/) = 0 and y,(/) = 0. For x > 1/

y(x) = EI[ZLVIV X +iP(x —ll) -Ldw+3 P)x}+y1(0)x+6y3(0)x

2

3-22 = y,y(x) = —EI{VZ’Z‘ +P(x-11)- ( W+ 2?1)))6] +»3(0)x

X

Thus taking y,(/) = 0 gives y;(0) = 0, and taking y(/) = 0 gives
1
—E(zg WE+ &P —LWwP —LPI) + y,(0)1 =0
so that
y1(0) = (24W+ siP)

Substituting back, we find that the deflection y(x) is given by

v == Z (e ) - B et - Lty e 1)
EI\24] 12 24 o 6E1
or, for the two sections of the beam,

W x 3

—E—I(ZTZ——H lx)——(81 -1x7) (0 <x <1l

y(x) = \
W x 3 2 3
—E(m—ﬁx +2L41x) Larve =Ll - ) (r<x<D
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31

32

5.5.14 Exercises

Find the deflection of a beam simply supported at
its ends x = 0 and x = /, bending under a uniformly
distributed self-weight M and a concentrated load
Watx= % L.

A cantilever beam of negligible weight and of
length / is clamped at the end x = 0. Determine the
deflection of the beam when it is subjected to a load

33

per unit length, w, over the section x = x; to x = x,.
What is the maximum deflection if x, =0 and x, = [?

A uniform cantilever beam of length / is subjected
to a concentrated load }¥ at a point distance b from
the fixed end. Determine the deflection of the beam,
distinguishing between the sections 0 < x < b and
b<x=<I

Transfer functions

5.6.1 Definitions

The transfer function of a linear time-invariant system is defined to be the ratio of
the Laplace transform of the system output (or response function) to the Laplace trans-
form of the system input (or forcing function), under the assumption that all the initial
conditions are zero (that is, the system is initially in a quiescent state).

Transfer functions are frequently used in engineering to characterize the input—
output relationships of linear time-invariant systems, and play an important role in the

analysis and design of such systems.

Consider a linear time-invariant system characterized by the differential equation

d"x d"'x
dt dt

aVI

1+...-i—0t0x=b,,,d—
de

m
u

=+ bou (5.65)

where n = m, the as and bs are constant coefficients, and x(#) is the system response or
output to the input or forcing term u(f) applied at time # = 0. Taking Laplace transforms
throughout in (5.65) will lead to the transformed equation. Since all the initial condi-
tions are assumed to be zero, we see from (5.15) that, in order to obtain the transformed
equation, we simply replace d/df by s, giving

(@, s"+a, ;s"" +...+a)X(s)=(b,s" + ...+ by)U(s)

where X(s) and U(s) denote the Laplace transforms of x(¢) and u(f) respectively.
The system transfer function G(s) is then defined to be

X(s) _b,s"+...+b,

G(s) =

U(s) a,s"+...+a,

(5.66)

with (5.66) being referred to as the transfer function model of the system characterized

by the differential equation model (5.65). Diagramatically this may be represented by the

Input  System Output
U(s) X(s) input—output block diagram of Figure 5.41.
— | G(s) —> Writi
riting
Figure 5.41 P(s)=b,s"+...+b,

Transfer function

block diagram.

s)=a,s"+...+a
n 0
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Example 5.50

the transfer function may be expressed as

G(s) = L&)
0(s)

where, in order to make the system physically realizable, the degrees m and n of the
polynomials P(s) and O(s) must be such that n = m. This is because it follows from
(5.61) that if m > n then the system response x(¢) to a realistic input u(f) will involve
impulses.

The equation Q(s) = 0 is called the characteristic equation of the system; its order
determines the order of the system, and its roots are referred to as the poles of the
transfer function. Likewise, the roots of P(s) = 0 are referred to as the zeros of the
transfer function.

It is important to realize that, in general, a transfer function is only used to character-
ize a linear time-invariant system. It is a property of the system itself, and is independent
of both system input and output.

Although the transfer function characterizes the dynamics of the system, it provides
no information concerning the actual physical structure of the system, and in fact sys-
tems that are physically different may have identical transfer functions; for example,
the mass—spring—damper system of Figure 5.12 and the LCR circuit of Figure 5.8 both
have the transfer function

X(s) _ 1

G =
O =06 " w ey

In the mass—spring—damper system X(s) determines the displacement x(f) of the mass
and U(s) represents the applied force F(z), while o denotes the mass, 3 the damping
coefficient and y the spring constant. On the other hand, in the LCR circuit X(s) deter-
mines the charge ¢(f) on the condenser and U(s) represents the applied emf e(f), while
o denotes the inductance, 3 the resistance and Y the reciprocal of the capacitance.

In practice, an overall system may be made up of a number of components each
characterized by its own transfer function and related operation box. The overall system
input—output transfer function is then obtained by the rules of block diagram algebra.

Since G(s) may be written as

G(S) = % (S_Zl)(S_ZZ) co (S_Zm)
a,(s=p)(s=py)...(s=p,)

where the z;s and p;s are the transfer function zeros and poles respectively, we observe
that G(s) is known, apart from a constant factor, if the positions of all the poles and
zeros are known. Consequently, a plot of the poles and zeros of G(s) is often used as
an aid in the graphical analysis of the transfer function (a common convention is to
mark the position of a zero by a circle O and that of a pole by a cross X). Since the
coefficients of the polynomials P(s) and Q(s) are real, all complex roots always occur in
complex conjugate pairs, so that the pole-zero plot is symmetrical about the real axis.

The response x(¢) of a system to a forcing function u(#) is determined by the differential
equation
2
04X pdx 3 pdu 5,
dt dt dt


www.semeng.ir

430 LAPLACE TRANSFORMS

(a) Determine the transfer function characterizing the system.

(b)  Write down the characteristic equation of the system. What is the order of the
system?

(c) Determine the transfer function poles and zeros, and illustrate them diagram-
matically in the s plane.

Solution (a)  Assuming all the initial conditions to be zero, taking Laplace transforms throughout
in the differential equation

2
odx 1pdr 13— ot 3,
dFd dr
leads to

(95 + 125 + 13)X(s) = (25 + 3)U(s)
so that the system transfer function is given by

X(s) _ 2s+3

G(s) =
U(s) 95>+ 125 + 13

(b)  The characteristic equation of the system is
95+ 125+ 13=0
and the system is of order 2.

(c)  The transfer function poles are the roots of the characteristic equation
95+ 125 +13=0

which are

oo Tl2+ [(144-468) 243
18 3

That is, the transfer function has simple poles at

—_2 : —_2 :
s=—;+j and s=-3 —]

The transfer function zeros are determined by equating the numerator polynomial
2s + 3 to zero, giving a single zero at

=3
§=-3

The corresponding pole—zero plot in the s plane is shown in Figure 5.42.

Figure 5.42 Im(s) A
Pole (x)—zero (O) plot 3.1
for Example 5.50.
2 4
X 1+
Py ! ! ! ! [ I w
\TJ T T T T T T Lol
15 -1 -05 0 05 1 15 2Re
x -1+

2+
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5.6.2

A transfer function (tf) is implemented within MATLAB using the commands

s = tf(’'s’)
G = G(s)

Thus, entering G=(2*s+3) / (9*s"~2+12*s+13) generates

2s + 3
98’ + 12s + 13

transfer function =

The command poly (G) generates the characteristic polynomial, whilst the commands
pole(G) and zero (G) generate the poles and zeros respectively. The command
pzmap (G) draws the pole—zero map.

Stability

The stability of a system is a property of vital importance to engineers. Intuitively, we
may regard a stable system as one that will remain at rest unless it is excited by an
external source, and will return to rest if all such external influences are removed. Thus
a stable system is one whose response, in the absence of an input, will approach zero
as time approaches infinity. This then ensures that any bounded input produces a
bounded output; this property is frequently taken to be the definition of a stable linear
system.

Clearly, stability is a property of the system itself, and does not depend on the
system input or forcing function. Since a system may be characterized in the s domain
by its transfer function G(s), it should be possible to use the transfer function to specify
conditions for the system to be stable.

In considering the time response of

X(s)= G(s)U(s),  G(s) = gi(%

to any given input u(?), it is necessary to factorize the denominator polynomial
os)=a,s"+a, s"" +...+a,

and various forms of factors can be involved.

Simple factor of the form s + o, with o real

This corresponds to a simple pole at s = —¢, and will in the partial-fractions expansion
of G(s) lead to a term of the form ¢/(s + «) having corresponding time response
c e *H(f), using the strict form of the inverse given in (5.12). If o > 0, so that the pole
is in the left half of the s plane, the time response will tend to zero as t — eo. If &t < 0,
so that the pole is in the right half of the s plane, the time response will increase without
bound as ¢ — oo. It follows that a stable system must have real-valued simple poles of
G(s) in the left half of the s plane.

o = 0 corresponds to a simple pole at the origin, having a corresponding time
response that is a step cH(#). A system having such a pole is said to be marginally
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stable; this does not ensure that a bounded input will lead to a bounded output, since,
for example, if such a system has an input that is a step d applied at time 7 = 0 then the
response will be a ramp cdtH(t), which is unbounded as ¢ — eo.

Repeated simple factors of the form (s + )", with « real

This corresponds to a multiple pole at s = —¢, and will lead in the partial-fractions
expansion of G(s) to a term of the form ¢/(s + )" having corresponding time response
[c/(n — D!t"" e *H(f). Again the response will decay to zero as t — oo only if ot > 0,
indicating that a stable system must have all real-valued repeated poles of G(s) in the
left half of the s plane.

Quadratic factors of the form (s + @)’ + f°, with a and f real

This corresponds to a pair of complex conjugate poles at s = —o + jf3, s = —o — jf, and
will lead in the partial-fractions expansion of G(s) to a term of the form

cgs+(x!+d£)’
(s+oc)2+ﬁ2

having corresponding time response
e “(ccosPt+dsinPry=Ae*sin (Bt + )

where 4 = ((¢* + d*) and y= tan™'(c/d).

Again we see that poles in the left half of the s plane (corresponding to o > 0) have
corresponding time responses that die away, in the form of an exponentially damped
sinusoid, as t — oo. A stable system must therefore have complex conjugate poles
located in the left half of the s plane; that is, all complex poles must have a negative
real part.

If oo = 0, the corresponding time response will be a periodic sinusoid, which will not
die away as t — oo. Again this corresponds to a marginally stable system, and will, for
example, give rise to a response that increases without bound as # — o when the input
is a sinusoid at the same frequency f.

A summary of the responses corresponding to the various types of poles is given in
Figure 5.43.

The concept of stability may be expressed in the form of Definition 5.3.

Definition 5.3

A physically realizable causal time-invariant linear system with transfer function
G(s) is stable provided that all the poles of G(s) are in the left half of the s plane.

The requirement in the definition that the system be physically realizable, that is n = m
in the transfer function G(s) of (5.66), avoids terms of the form s”™ in the partial-
fractions expansion of G(s). Such a term would correspond to differentiation of degree
m — n, and were an input such as sin @¢ used to excite the system then the response
would include a term such as @”™ sin @f or @"™" cos @t, which could be made as large
as desired by increasing the input frequency .
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Figure 5.43 Poles of G(s) in Poles in complex Corresponding Nature of response
Relationship between form ¢ + jw s plane time response
transfer function poles

and time response. w 4
og=w=0 . Constant
g t
w
og=w=0
(multiplicity 2) - Ramp
t
w
6<0,w=0 Sxponenual
= ecay
1
w
650.0=0 E:ol:;,):;,emlal
T ; g
w
g=0,w>0 Sinusoidal
o !
w
0=0.050 srowing
(multiplicity 2) o sinusoidal

Exponentially

c<0,w>0 decaying
sinusoidal
Exponentially

c>0,w>0 growing
sinusoidal

In terms of the poles of the transfer function G(s), its abscissa of convergence o,
corresponds to the real part of the pole located furthest to the right in the s plane. For
example, if

s+ 1

) = T 72)

then the abscissa of convergence o, = —2.
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Example 5.51

Solution

It follows from Definition 5.3 that the transfer function G(s) of a stable system has an
abscissa of convergence o, = —¢, with o > 0. Thus its region of convergence includes
the imaginary axis, so that G(s) exists when s = jw. We shall return to this result when
considering the relationship between Laplace and Fourier transforms in Section 8.4.1.

According to Definition 5.3, in order to prove stability, we need to show that all the
roots of the characteristic equation

Os)=a,s"+a, s""'+...+as+a,=0 (5.67)

have negative real parts (that is, they lie in the left half of the s plane). Various criteria
exist to show that all the roots satisfy this requirement, and it is not necessary to solve
the equation to prove stability. One widely used criterion is the Routh—Hurwitz criterion,
which can be stated as follows:

A necessary and sufficient condition for all the roots of equation (5.67)
to have negative real parts is that the determinants A,, A,, . .., A, are
all positive, where

a,_ a, 0 0 ... 0
a,_5 a,, a4, a, ... 0
5.68
Ar = a,-s (£ a,-3 ay_» 000 O ( )
an—(2r—1) Ay Ay_2r-1 Ay_2r-2 ©oo Ay

it being understood that in each determinant all the as with subscripts
that are either negative or greater than n are to be replaced by zero.

Show that the roots of the characteristic equation
s*+95° + 3357 + 515 +26=0

all have negative real parts.

In this case n =4, a, =26, a, =51, a,=33,a;=9,a,=1and a, =0 (r > 4). The
determinants of the Routh—Hurwitz criterion are

A=la, |=la|=19]=9 >0

Az — a, -y a, — as ay
ay_3  dy a, da
9 1
= =246 >0
51 33
a,., a, 0 a; as O
As=la,; a,, a,, a, da, das;
Aps dyg4 4y3 a, dy a
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Example 5.52

Solution

a,., a, 0 0 as a, 0 0
Ap3  dypp Ay a, a; a as ay
A4 = =
ay-s dypyg dy3 Ay a_, 4y a,  a
Ay dype dy-s dyy as d, d d
9 1 0 0
51 33 9 1
= = 26A;>0
0 26 51 37
0 0 0 26

Thus A, > 0, A, > 0, A; > 0 and A, > 0, so that all the roots of the given characteristic
equation have negative real parts. This is readily checked, since the roots are -2, —1,
-3 +j2 and -3 —j2.

The steady motion of a steam-engine governor is modelled by the differential equations
mij+bn+dn—ew=0 (5.69)
Lo =1 (5.70)

where 71 is a small fluctuation in the angle of inclination, @ a small fluctuation in the
angular velocity of rotation, and m, b, d, e, f'and [, are all positive constants. Show that
the motion of the governor is stable provided that

bd _ ef

m I,

Differentiating (5.69) gives
mi] + brj +dn —ew»=0
which, on using (5.70), leads to
mij + bij + dn + i n=0
0
for which the corresponding characteristic equation is
ms® + bs* + ds + ?20
0

This is a cubic polynomial, so the parameters of (5.67) are

n=3, a0=§[, a=d, a=b, ay=m (a,=0,r>3)
0

The determinants (5.68) of the Routh—Hurwitz criterion are
A=la)=b>0

a, as

A, =

ag a, ef/[() d

b m‘_ me
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5.6.3

(and so A, > 0 provided that bd — mef/1, > 0 or bd/m > ef/l,), and

a, a; O
As=la, a, a|=aA, >0 ifA,>0
0 0 a

Thus the action of the governor is stable provided that A, > 0; that is,

bd _ of
m 1,

Impulse response

From (5.66), we find that for a system having transfer function G(s) the response x(f)
of the system, initially in a quiescent state, to an input u(¢) is determined by the
transformed relationship

X(s) = G(s)U(s)

If the input u(f) is taken to be the unit impulse function §(¢) then the system response
will be determined by

X(s) = G()ZL{6(1)} = G(s)

Taking inverse Laplace transforms leads to the corresponding time response %(f), which
is called the impulse response of the system (it is also sometimes referred to as the
weighting function of the system); that is, the impulse response is given by

h() = LHX(s)} = LH{G(s)} (5.71)

We therefore have the following definition.

Definition 5.4: Impulse response

The impulse response /(#) of a linear time-invariant system is the response of the
system to a unit impulse applied at time ¢ = 0 when all the initial conditions are zero.
It is such that £{A(¢)} = G(s), where G(s) is the system transfer function.

Since the impulse response is the inverse Laplace transform of the transfer function,
it follows that both the impulse response and the transfer function carry the same informa-
tion about the dynamics of a linear time-invariant system. Theoretically, therefore, it is
possible to determine the complete information about the system by exciting it with an
impulse and measuring the response. For this reason, it is common practice in engineering
to regard the transfer function as being the Laplace transform of the impulse response,
since this places greater emphasis on the parameters of the system when considering
system design.

We saw in Section 5.6.2 that, since the transfer function G(s) completely characterizes
a linear time-invariant system, it can be used to specify conditions for system stability,
which are that all the poles of G(s) lie in the left half of the s plane. Alternatively,
characterizing the system by its impulse response, we can say that the system is stable
provided that its impulse response decays to zero as t — oo,


www.semeng.ir

5.6 TRANSFER FUNCTIONS 437

Example 5.53

Solution

5.6.4

Theorem 5.6

Determine the impulse response of the linear system whose response x(¢) to an input
u(f) is determined by the differential equation

d’x | dx _
— +5=+6x=5u(?) (5.72)
dt d¢

The impulse response 4(¢) is the system response to u(f) = 6(f) when all the initial
conditions are zero. It is therefore determined as the solution of the differential equation

‘ﬁ; +592 L 6n = ss50) (5.73)
dr dr
subject to the initial conditions A(0) = 4(0) = 0. Taking Laplace transforms in (5.73) gives
(s + 55 + 6)H(s) = 5£{6(t)} = 5
so that
5 __5 __5
(s+3)(s+2) s+2 s+3
which, on inversion, gives the desired impulse response
h() =5 —e™)
Alternatively, the transfer function G(s) of the system determined by (5.72) is
S
S +55+6

so that i(f) = L {G(s)} = 5(¢™¥— ™) as before.

H(s) =

G(s) =

Note: This example serves to illustrate the necessity for incorporating 0~ as the lower
limit in the Laplace transform integral, in order to accommodate for an impulse applied
at #=0. The effect of the impulse is to cause a step change in X(¢) at £ = 0, with the initial
condition accounting for what happens up to 0~.

In MATLAB a plot of the impulse response is obtained using the commands
s=tf(’s’")
G=G(s)
impulse (G)

Initial- and final-value theorems

The initial- and final-value theorems are two useful theorems that enable us to predict
system behaviour as  — 0 and # — oo without actually inverting Laplace transforms.

The initial-value theorem

If /() and f*(¢) are both Laplace-transformable and if lim sF(s) exists then

tlirggf(t) =f(0") = lim sF(s)
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Proof

Example 5.54

From (5.13),

oo

A0} = J S e dt=sE(s) = f(0)

where we have highlighted the fact that the lower limit is 0~. Hence

oo

1mwm<mnﬂmjfmwm
§—>00 §—>o0 o

ot oo
ﬂmemmememww (5.74)
soe |- soe | s

If f(¢) is discontinuous at the origin, so that f{0%) # f(0"), then, from (5.59), /() contains
an impulse term [ f(0%) — f(07)]6(¢), so that

0+
1imJ S(0ye™dt=f(0%) - f(07)
s | -

Also, since the Laplace transform of f(¢) exists, it is of exponential order and we have

oo

hmJ FHhedt=0
O+

so that (5.74) becomes

lim sF(s) = f(0°) = £(0) = f(0°)
giving the required result:

lim sF(s) = f(07)
If (¢) is continuous at the origin then f(f) does not contain an impulse term, and the
right-hand side of (5.74) is zero, giving

lim sF(s) = /(07) = (0)

end of theorem

It is important to recognize that the initial-value theorem does not give the initial
value f(07) used when determining the Laplace transform, but rather gives the value of
f(t) as t — 0". This distinction is highlighted in the following example.

The circuit of Figure 5.44 consists of a resistance R and a capacitance C connected in
series together with constant voltage source E. Prior to closing the switch at time =0,
both the charge on the capacitor and the resulting current in the circuit are zero. Deter-
mine the current () in the circuit at time ¢ after the switch is closed, and investigate the
use of the initial-value theorem.
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Solution
=0 R
E \ lc
W)
Figure 5.44

RC circuit of
Example 5.54.

Theorem 5.7

Proof

Applying Kirchhoff’s law to the circuit of Figure 5.44, we have
Ri+ Ll idr=
1+ -é idt=E,

which, on taking Laplace transforms, gives the transformed equation

RI(s) + 118) _ Eo
c s K
Therefore
I(s) = _Eo/R
s+ 1/RC

Taking inverse transforms gives the current i(f) at # = 0 as
i(t) = Ey g-ure (5.75)
R
Applying the initial-value theorem,

sEo/R T E()/R _ EO

e = 1 _ _
lim i(7) = lim s/(s) = lim == 70 = = lim === = 5

That is,
E
. 0+ — Lo
i(0) = =

a result that is readily confirmed by allowing t — 0" in (5.75). We note that this is
not the same as the initial state i((0) = 0 owing to the fact that there is a step change in
i(t)att=0.

The final-value theorem

If () and f*(¢) are both Laplace-transformable and lim f(#) exists then

t—oo

limf(¢) = lim sF(s)
t—o0 5s—0

From (5.13),

oo

L0} = J S dr=sE(s) - f(0)

Taking limits, we have

oo oo

lim [sF(s) = /(0)] = lim J Fyedi= J Sy de= 10l
= lim () = /(0")
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Example 5.55

Solution

giving the required result:
lim f(?) = lim sF(s)
t—o0 s—0
end of theorem

The restriction that lim f(#) must exist means that the theorem does not hold for func-

tions such as €', wh{gh tends to infinity as t — oo, or sin @z, whose limit is undefined.
Since in practice the final-value theorem is used to obtain the behaviour of () as t — oo
from knowledge of the transform F(s), it is more common to express the restriction in
terms of restrictions on F(s), which are that sF(s) must have all its poles in the left half
of the s plane; that is, sF(s) must represent a stable transfer function. It is important that
the theorem be used with caution and that this restriction be fully recognized, since the
existence of lirrol sF(s) does not imply that f(¢) has a limiting value as ¢ — oo.
Rrd

Investigate the application of the final-value theorem to the transfer function

1

=56

(5.76)

lim sF(s) = lim ———— =0
lim sF(s) = lim = 5 =3)

so the use of the final-value theorem implies that for the time function f{) corresponding
to F(s) we have

lim f(1)=0

t—co

However, taking inverse transforms in (5.76) gives

S =Lt — o)

implying that f{7) tends to infinity as # — co. This implied contradiction arises since the
theorem is not valid in this case. Although lim sF(s) exists, sF(s) has a pole at s = 3,
which is not in the left half of the s plane. 0

The final-value theorem provides a useful vehicle for determining a system’s steady-
state gain (SSG) and the steady-state errors, or offsets, in feedback control systems,
both of which are important features in control system design.

The SSG of a stable system is the system’s steady-state response, that is the response
as t — oo, to a unit step input. For a system with transfer function G(s) we have, from
(5.606), that its response x(¢) is related to the input u(¢) by the transformed equation

X(s) = G(s)U(s)

For a unit step input

u(t) = 1H(f) giving U(s):%
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Example 5.56

Solution

R(: E(s) X(
(rl% (s Gis) (s)

Figure 5.45 Unity
feedback control
system.

Example 5.57

Solution

so that

From the final-value theorem, the steady-state gain is

SSG = limx(?) = ling sX(s) = lin(} G(s)
t—>0 5= s>

Determine the steady-state gain of a system having transfer function

Gs) = 2001 +35)

S+ 7s+10

The response x(¢) to a unit step input u(f) = 1H(¢) is given by the transformed equation
X(s) = G(s)Uls) = 2202390 1
s +7s+10s
Then, by the final-value theorem, the steady-state gain is given by

SSG = limx(#) = lim sX(s) = lim 4_220 1+3s) _»
-0 520 §° 4+ 75+ 10

—oo s

Note that for a step input of magnitude K, that is u(f) = KH(f), the steady-state response
will be lim kG(s) = 2K; that is,

s—0

steady-state response to step input = SSG X magnitude of step input

A unity feedback control system having forward-path transfer function G(s), reference
input or desired output (¢) and actual output x(7) is illustrated by the block diagram
of Figure 5.45. Defining the error to be e(f) = r(f) — x(¢), it follows that

G(s)E(s) = X(s) = R(s) — E(s)

giving
E(s) = —R6)
1+ G(s)
Thus, from the final-value theorem, the steady-state error (SSE) is
SSE = lim e(f) = lim sE(s) = lim —2) (5.77)
t—o0 5—0 s—0 1 + G(S)

Determine the SSE for the system of Figure 5.45 when G(s) is the same as in
Example 5.50 and r(¢) is a step of magnitude K.

Since r(f) = KH(t), we have R(s) = K/s, so, using (5.77),

. K/s K
SSE = lim — =
1+ G(s) 1+SSG
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34

35

36

37

where SSG =2 as determined in Example 5.56. Thus

SSE=!K

It is clear from Example 5.57 that if we are to reduce the SSE, which is clearly
desirable in practice, then the SSG needs to be increased. However, such an increase
could lead to an undesirable transient response, and in system design a balance must be
achieved. Detailed design techniques for alleviating such problems are not considered
here; for such a discussion the reader is referred to specialist texts (see for example
J. Schwarzenbach and K. F. Gill, System Modelling and Control, Edward Arnold,

London, 1984).

5.6.5 Exercises

The response x(¢) of a system to a forcing function
u(t) is determined by the differential equation model

2
d—’2‘+2d—x+5x = 3du
ds dt dr

+2u

(a) Determine the transfer function characterizing
the system.

(b) Write down the characteristic equation of the
system. What is the order of the system?

(c) Determine the transfer function poles and
zeros, and illustrate them diagrammatically in
the s plane.

Repeat Exercise 34 for a system whose response
x(?) to an input u(f) is determined by the differential
equation
3 2 2
drysda jgdxy g o du gdu g
dt dt dr dt dr

Which of the following transfer functions represent
stable systems and which represent unstable systems?

(a s—1 (s+2)(s=2)
(s+2)(s"+4) (s+1)(s=1)(s+4)

© s—1 6
(s+2)(s+4) (s"+s+D)(s+1)

© 5(s+10)
(s+5)(s*=s+10)

Which of the following characteristic equations are
representative of stable systems?

(a) —4s+13=0

(b) 58+ 135 +31s+15=0

38

39

40

41

(c) $+82+s5s+1=0
(d) 24s* + 115 +265* + 455 +36 =0
(&) £ +25%+2s+1=0

The differential equation governing the motion of a
mass—spring—damper system with controller is

3 2
md—);+cd—)zc+Kd—x+er: 0
dr dt
where m, ¢, K and r are positive constants. Show
that the motion of the system is stable provided that
r<<c/m.

The behaviour of a system having a gain controller
is characterized by the characteristic equation
S 28+ (K+2)s°+Ts+K=0
where K is the controller gain. Show that the system
is stable provided that K > 2.1.
A feedback control system has characteristic equation
s+ 15K+ 2K - 1)s + 5K =0

where K is a constant gain factor. Determine the
range of positive values of K for which the system
will be stable.

Determine the impulse responses of the linear
systems whose response x(f) to an input u(z) is
determined by the following differential equations:

2
(@ 211594 s6x = 3u(n)
ad de
d*x dx

(b) == +8=+25x=u(r)
dr dt
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42

43

44

2
() L2 _gy — 4y
¢ dr

2
() a8 g3 =y
dt

dr

What can be said about the stability of each of the
systems?

The response of a given system to a unit step
u(f) = 1H(?) is given by

L

_1_1at 2—2
x(f)=1-3e +3e :

What is the transfer function of the system?

Verify the initial-value theorem for the functions

(a) 2—-3cost (b) (3t—1) (c) t+ 3sin2¢

Verity the final-value theorem for the functions

45

46

47

(a) 1+3e7sin2t  (b) *e™

(c) 3-2e™ +e7cos2t
Using the final-value theorem, check the value

obtained for 7,(f) as t — oo for the circuit of
Example 5.28.

Discuss the applicability of the final-value theorem
for obtaining the value of i,(f) as t — oo for the
circuit of Example 5.29.

Use the initial- and final-value theorems to find the
jump at ¢ = 0 and the limiting value as # — oo for the
solution of the initial-value problem

7%+ Sy=4+e>+25(f)

with (07) =-1.

5.6.6 Convolution

Convolution is a useful concept that has many applications in various fields of
engineering. In Section 5.6.7 we shall use it to obtain the response of a linear system to
any input in terms of the impulse response.

Definition 5.5: Convolution

Given two piecewise-continuous functions f{(#) and g(#), the convolution of f() and

2(f), denoted by £ g(¢), is defined as

f*g(f)=J fDg(t -7 dr

In the particular case when £(#) and g(¢) are causal functions

git—1=0 (t>1

f)=g®)=0 (r<0),

and we have

t

f*g(f)=J Sf)g(t - dr

0

(5.78)

The notation f+ g(f) indicates that the convolution f % g is a function of 7; that is, it could
also be written as ( f * g)(f). The integral [~ f(t) g(t — T) d7 is called the convolution
integral. Alternative names are the superposition integral, Duhamel integral, folding

integral and faltung integral.

Convolution can be considered as a generalized function, and as such it has many of
the properties of multiplication. In particular, the commutative law is satisfied, so that

Sxg(t)=gx* f(1)
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or, for causal functions,

J f(o)g(t—t)dr= J ft—1)g(r)dr (5.79)

0

This means that the convolution can be evaluated by time-shifting either of the two
functions. The result (5.79) is readily proved, since by making the substitution 7, =¢— 7
in (5.78) we obtain

fxgt)= J St = 1)g(T)(—d7)) = J St = 1)g(t)dt, = g* f(1)

0

Example 5.58  For the two causal functions
A = tH(5),  g(f) = sin 20 H(?)
show that = g(f) = g = ().

t t

Jf(o)g(t—1)dr= j Tsin2(t — 7)dt

0

Solution fg(t)= j

0
Integrating by parts gives
frg(t)=[3Tcos2(t—17)+ ;sin2(t— 1)])= 31— sin2t

t t

ft—vg(r)dr= J (t—1)sin2tdrt

0

g*f(t)=J

0
=[-3(t— 1)cos2T— }sin27])= 37— }sin2¢

so that /= g(¢) = g = f(?).

The importance of convolution in Laplace transform work is that it enables us to
obtain the inverse transform of the product of two transforms. The necessary result for
doing this is contained in the following theorem.

Theorem 5.8 Convolution theorem for Laplace transforms

If f(r) and g(7) are of exponential order o, piecewise-continuous on ¢ = 0 and
have Laplace transforms F'(s) and G(s) respectively, then, for s > o,

i{f fg(t-1) dt} =L{f*g()} = F(s)G(s)
0

or, in the more useful inverse form,

L HE(s)G(s)} =f*g(1) (5.80)
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Proof

Figure 5.46
Regions of integration.

Example 5.59

Solution

By definition,

F(s)G(s) = Z{f(n}L{g(} = [J e”f(X)dXI [J e g(y) dy]

0 0

where we have used the ‘dummy’ variables x and y, rather than ¢, in the integrals to
avoid confusion. This may now be expressed in the form of the double integral

F(5)G(s) = J J e fx)g(y) dxdy = J J e fx)g(y) dx dy

where R is the first quadrant in the (x, y) plane, as shown in Figure 5.46(a). On making
the substitution

x+y=it, y=1

the double integral is transformed into

F(s)G(s) = JJ e f(t— 1)g(t)dedr

where R, is the semi-infinite region in the (7, f) plane bounded by the lines 7= 0 and
T=t, as shown in Figure 5.46(b). This may be written as

0

F(S)G(S)=J e_”[f f(t—T)g(T)dTJdﬁJ e [gxf(D]dr = F{g*f(D)}

Y

(a) Region R (b) Region R

and, since convolution is commutative, we may write this as

F($)G(s) = L{ [+ g(0)}

which concludes the proof.

end of theorem

Using the convolution theorem, determine £ {-—;—-—L—-——Z}
s (s+2)

We express 1/s*(s + 2)* as (1/s*)[1/(s + 2)*]; then, since

Hn=1, ey 1
s (s+2)
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5.6.7

Figure 5.47
Approximation to a
continuous input.

taking f(¢) = ¢ and g(¢) = te™ in the convolution theorem gives

fg‘l{l I }:j f(t—T)g(T)d‘L':f (t—-1)Tedr
0

s (s+2)2 0

which on integration by parts gives

-1 1 1 =27 _
£ {—2 2} = [—%e [((t-1)T+ %(t— 27) — %]](’)z i[t —1+(+1)e?]
s (s+2)
We can check this result by first expressing the given transform in partial-fractions
form and then inverting to give
1 _1 1 1 1

- __4 + 12 + _4 + ;2

s (s+2) s s s+2 (s+2)

so that
- 1 —21 -2t -2t
P =l e e = L T (14 1)e ]
{SQ(S+2)2} 4 4 4 4 4

as before.

System response to an arbitrary input

The impulse response of a linear time-invariant system is particularly useful in practice
in that it enables us to obtain the response of the system to an arbitrary input using the
convolution integral. This provides engineers with a powerful approach to the analysis
of dynamical systems.

Let us consider a linear system characterized by its impulse response /4(¢). Then
we wish to determine the response x(¢) of the system to an arbitrary input u(¢) such as
that illustrated in Figure 5.47(a). We first approximate the continuous function u(r) by
an infinite sequence of impulses of magnitude u(nAT), n =0, 1, 2, ..., as shown in
Figure 5.47(b). This approximation for u(#) may be written as

u(t) = Z u(nAT)S(t — nAT) AT (5.81)
n=0
u(r)
0 i O AT [3aT Y
2AT
(@ (b)

Since the system is linear, the principle of superposition holds, so that the response of
the system to the sum of the impulses is equal to the sum of the responses of the system
to each of the impulses acting separately. Depicting the impulse response /(f) of the
linear system by Figure 5.48, the responses due to the individual impulses forming the
sum in (5.81) are illustrated in the sequence of plots in Figure 5.49.
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Figure 5.48

()

-y

~Y

~Y

~ Y

[\

Impulse response A Linear o
of a linear system. > system ’
|
0 (0]
Output
Input
u(0)ATS (1) ATu(0)h (1)
—» 1§ [—
u(Q)AT
0 i 0
Output
Input wWATYAT ATu(AT)
Xd(t ~ AT) xh (1 — AT)
—» S |—
I WATAT
0  Ar / O ar
Output
Input u(QADAT ATu(24T)
Xd(t — 2AT) xh(t - 2AT)
—» LS
t u(2AT)AT
0 2AT ! 0 AT
Output
Input u (RAT)AT ATu(nAT)
Xo(f — nAT) xh (t — nAT)
—>» LS }—
' u(nAt) AT
0 nAT 1 0

Figure 5.49 Responses due to individual impulses.

nAT

~ Y

Summing the individual responses, we find that the response due to the sum of the

impulses is

S u(nAT)h(i ~ nAT) AT

(5.82)

Allowing AT — 0, so that nAT approaches a continuous variable 7, the above sum will
approach an integral that will be representative of the system response x(#) to the
continuous input u(#). Thus

x(1) = J u(t)h(t — 7)dr = J

t

0

u(T)h(t — t)d7t (since A(f) is a causal function)
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That is,
x(t) = u * h(f)

Since convolution is commutative, we may also write

t

x(f) =h = u(t) = J h(Tu(t—t)dr

0

In summary, we have the result that if the impulse response of a linear time-invariant
system is () then its response to an arbitrary input u(z) is

t

x(f) = J u@h(t - 7)dr= J h(@)u(t - 7)dt (5.83)

0 0

It is important to realize that this is the response of the system to the input u(#) assuming
it to be initially in a quiescent state.

Example 5.60  The response 6,(¢) of a system to a driving force 6(7) is given by the linear differential

equation
2
40,246, 59,= 0,
dr dr

Determine the impulse response of the system. Hence, using the convolution integral,
determine the response of the system to a unit step input at time ¢ = 0, assuming that it
is initially in a quiescent state. Confirm this latter result by direct calculation.

Solution  The impulse response /(%) is the solution of

2
d—}2l+2@+5h = 6(1)
dr dt

subject to the initial conditions 4(0) = 4(0) = 0. Taking Laplace transforms gives
(s + 25 + S)H(s) = £{6(1)} = 1
so that
1 | 2

H(s) = -1
SSH25+5 C(s+ 1) 427

which, on inversion, gives the impulse response as
1ot
h(f) = 5 e'sin2¢

Using the convolution integral

0,(1) = J h(0)0,t — 1) dt

0

with 6,(f) = 1H(¢) gives the response to the unit step as

t
0,1 =1 J e’sin2rdr

0
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Integrating by parts twice gives

t

0,(f)=—5¢"sin2t —ecos2t +1 -2 J e ’sin27dt

0
= —% e’'sin2t —e'cos2t + 1 —46,(1)
Hence

0,(1) = 5 (1 —e"'cos 2t — L esin27)

(Note that in this case, because of the simple form of 6,(¢), the convolution integral
Ji h(t)0,(t — 7) d7is taken in preference to [ 6(T)h(t — 7)dT.)
To obtain the step response directly, we need to solve for + = 0 the differential
equation
2
49, + 2@’ +56,=1
'  dr

subject to the initial conditions 8,(0) = 8,(0) = 0. Taking Laplace transforms gives
(s + 25 + 5)0(s) = L
s

so that

U s st2

Cs(4+25+5) s C(s+1) +4
which, on inversion, gives

0, () =1 —Le(cos2t+ §sin2r) =1 (1 —e"cos2t—§esin2r)

1
5

confirming the previous result.

We therefore see that a linear time-invariant system may be characterized in the
frequency domain (or s domain) by its transfer function G(s) or in the time domain by
its impulse response 4(f), as depicted in Figures 5.50(a) and (b) respectively. The
response in the frequency domain is obtained by algebraic multiplication, while the
time-domain response involves a convolution. This equivalence of the operation of
convolution in the time domain with algebraic multiplication in the frequency domain
is clearly a powerful argument for the use of frequency-domain techniques in
engineering design.

U(s) X(s) u(1) x(1)
—_— G e T €y ——
X(s) = G(s)U(s) x(t) = u* h(t)

(a) (b)

Figure 5.50 (a) Frequency-domain and (b) time-domain representations of a linear
time-invariant system.
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48

49

50

5.6.8 Exercises

For the following pairs of causal functions f(f) and
g(t) show that [ g(f) = g = f(¢):

(@ fn=t, g(t) = cos 3t
b) fH=t+1, g)=e™
(c) f(n=17 g(r) = sin2¢
(d fy=e", g(t) =sint

Using the convolution theorem, determine the
following inverse Laplace transforms. Check your
results by first expressing the given transform in
partial-fractions form and then inverting using the
standard results:

ool
s(s+3)

A —
(s=2)%(s+3)

P
s (s+4)

Taking (1) = A and g(A) = e, use the inverse form
(5.80) of the convolution theorem to show that the
solution of the integral equation

Wt) = J Ae P da

0

51

52

is
yy=@—-1)+e™.

Find the impulse response of the system
characterized by the differential equation

2
e R
dr dt

and hence find the response of the system to the
pulse input u(f) = A[H(¢) — H(t — T')], assuming that
it is initially in a quiescent state.

The response 6,(¢) of a servomechanism to a driving

force 6,(7) is given by the second-order differential
equation
2

4, + 4% +50,=6;

- (t=0)
af dr

Determine the impulse response of the system,
and hence, using the convolution integral, obtain
the response of the servomechanism to a unit step
driving force, applied at time ¢ = 0, given that the
system is initially in a quiescent state.
Check your answer by directly solving the
differential equation
2

d—92° + 4% +560,=1

dt dt
subject to the initial conditions 6,= 6, = 0
when #=0.

Solution of state-space equations

In this section we return to consider further the state-space model of dynamical systems
introduced in Section 1.9. In particular we consider how Laplace transform methods
may be used to solve the state-space equations.

5.7.1 SISO systems

In Section 1.9.1 we saw that the single input—single output system characterized by the
differential equation (1.66) may be expressed in the state-space form

x=Ax+ bu

y=c"x

(5.84a)
(5.84b)
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Example 5.61

Solution

where x = x(f) =[x, x, . . . x,]" is the state vector and y the scalar output, the correspond-
ing input—output transfer function model being

Y(s) _ b,s"+...+b, ¢
Us) s"+a,s""'+...+a, <A

G(s) = (5.85)
where Y(s) and U(s) are the Laplace transforms of y(¢) and u(f) respectively. Defining
A and b as in (1.60), that is, we take A to be the companion matrix of the left-hand side
of (1.66) and take b=[0 0 . .. 0 1]". In order to achieve the desired response, the vector
¢ is chosen to be

c=[byb,...b,0...0" (5.86)

a structure we can confirm to be appropriate using Laplace transform notation. Defining
X(s) = £{x(f)} and taking
1

n—1

s"+a, 8"+ +a,

X, (s) = U(s)

we have
Xy(s) = sX(5), X5(5) = sX5(5) = $°X(5), . . ., X,(5) = sX,,(5) = 5" X;(s)
so that
Y(s) = bXi(s) + b Xo(8) + . . . + b, X,.1(5)
=b0+b,s+b2s2+. .. b,s

m
n n—1 U(S)
sS"va, "+ +a,

which confirms (5.86).

Note that adopting this structure for the state-space representation the last row in A
and the vector ¢ may be obtained directly from the transfer function (5.85) by reading
the coefficients of the denominator and numerator backwards as indicated by the
arrows, and negating those in the denominator.

For the system characterized by the differential equation model

3 2 2

4y ¢4y, 1A 3y - sdu du (5.87)
dr  dx® e et dt

considered in Example 1.41, obtain

(a) a transfer function model;
(b) a state-space model

(a)  Assuming all initial conditions to be zero, taking Laplace transforms throughout
in (5.87) leads to

(87 + 65+ 11s + 3)Y(s) = (5s* + 5 + HU(s)
so that the transfer-function model is given by

_Y(s) _ 55°+s+1 —c
Uls) sF+6s5°+11s+3 <A
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0 1 0 0
(b) Taking A to be the companion matrix A = | ( 0 1| and b = |(| then
-3 -11 -6 1

¢=[11 5]" and the corresponding state-space model is given by (5.84).

Note: The eigenvalues of the state matrix A are given by the roots of the charac-
teristic equation | Al — Al = X + 6 + 111+ 3 = 0, which are the same as the poles
of the transfer function G(s).

Defining

E{x (@)} Xi(s)

F{x(0)} Xy (s)

Fix(n} = = X(s)

L{x, (0} X,(s)

and then taking the Laplace transform throughout in the state equation (5.84a) gives
sX(s) — x(0) = AX(s) + bU(s)

which on rearranging gives
(sl = A)X(s) = x(0) + bU(s)

where | is the identity matrix. Premultiplying throughout by (sl — A)™ gives
X(s) = (s1 = A 'x(0) + (sl = A)'bU(s) (5.88)

which on taking inverse Laplace transforms gives the response as
x(0) = L7 (sl = A1x(0) + L7 (sl — A)'BU(s)} (5.89)

Having obtained an expression for the system state x(¢) its output, or response, y(f) may
be obtained from the linear output equation (5.84b).
Taking the Laplace transform throughout in (5.84b) gives

Y(s) = ¢"X(s) (5.90)
Assuming zero initial conditions in (5.88) we have

X(s) = (sl = A)'bU(s)
which, on substitution in (5.90), gives the input—output relationship

Y(s) = " (sl — A'bU(s) (5.91)

From (5.91) it follows that the system transfer function G(s) may be expressed in the form

sl Ay CadiGsl ~ A
G(s)=c'(sI-A)'b det(s] —A)

which indicates that the eigenvalues of A are the same as the poles of G(s), as noted at
the end of Example (5.61). It follows, from Definition 5.2, that the system is stable
provided all the eigenvalues of the state matrix A have negative real parts.
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On comparing the solution (5.89) with that given in (1.81), we find that the transition
matrix @(¢) = ¢*' may also be written in the form

D(1) =L (s - A
As mentioned in Section 1.10.3, having obtained @(t),
D(t,1,) ="

may be obtained by simply replacing ¢ by ¢ — ¢,.

Example 5.62 Using the Laplace transform approach, obtain an expression for the state x(z) of the
system characterized by the state equation

ol Sl e
X, (1) 1 =3[ x(9) 1
when the input u(¢) is the unit step function

0 (t<0)

u(t) = H(?) ={1 ‘=0

and subject to the initial condition x(0) =[1 1]".

Solution In this case

A:{_l 0}, bzﬂ, W)= Hi),  xo=[1 1T
1 -3 1

Thus

sI—Az[SJrl 0}, det(sl — A) = (s + 1)(s + 3)

-1 s+3
giving
L 0
(Sl—A)_1=+ s+3 0 _ s+1
(s+D(s+3)] 1 s+1 1 1 1

2(s+1) 2(s=3) s+3

which, on taking inverse transforms, gives the transition matrix as

M=F (s -A) "} =

L s =AY I, = - ° (5.92)
1 e_


www.semeng.ir

454 LAPLACE TRANSFORMS

Since U(s) = L{H(t)} = /s,

1 s+3 0 1
(s+D(s+3)| 1 s+ 1|1

_ 1 s+3
Cs(s+D)(s+3) [ g+2

(sl =AY 'bU(s) =

©—

@ =

__L
s+1
2 1 1

35 2(s+1) 6(s+3)

so that the second term in (5.89) becomes

L (sl =AY 'bU(s)} = (5.93)

5.7.2 Exercises

53 A system is modelled by the following differential
equations

X, + 5x, +x,=2u
X, — 3x, +x,=5u 56

coupled with the output equation
y=x+2x,
Express the model in state-space form and obtain

the transfer function of the system.

54  Find the state-space representation of the second
order system modelled by the transfer function

+
G(s) = Y(s) _ 2s 1
Us) &+7s+6

55  Obtain the dynamic equations in state-space form
for the systems having transfer-function models

S +3s5+2

2
() s +3s+5 b s s
s +4s +3s

S 65 +55+7

using the companion form of the system matrix in
each case.

In formulating the state-space model (5.84) it is
sometimes desirable to specify the output y to

be the state variable x,; that is, we take

c'=[1 0 0]". If A is again taken to be

the companion matrix of the denominator then it
can be shown that the coefficients b, b,, . . ., b, of
the vector b are determined as the first # coefficients
in the series in s~ obtained by dividing the
denominator of the transfer function (5.85) into the
numerator. [llustrate this approach for the transfer-
function model of Figure 5.51.

Uts) 552 +5+ 1 Yis)

34652+ 11s+6 |

Figure 5.51 Transfer-function model of Exercise 56.
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57

58

59

A system is governed by the vector—matrix
differential equation

(1) = 3 4x(t)+ 0 1u(t) (t=0)
T2 1 11 -

where x(¢) and u(f) are respectively the state
and input vectors of the system. Use Laplace
transforms to obtain the state vector x(#) for the
input u(f) = [4 3]" and subject to the initial
condition x(0) =[1 2]

Given that the differential equations modelling a
certain control system are

X, =x —3x,+u

X,=2x,—4x,+u

use (5.89) to determine the state vector

x=[x; x,]" for the control input u = ¢,
applied at time # = 0, given that x, =x, = 1 at time
t=0.

Using the Laplace transform approach, obtain
an expression for the state x(7) of the system
characterized by the state equation

e 0 1/ 2
X = = + u
X5 -2 =3[ 0
where the input is

u(r) = {01 (t<0)
e (t=0)

and subject to the initial condition x(0) =[1 0]".

60

61

A third-order single-input—single-output system is
characterized by the transfer-function model

Y(s) _ _3s°+2s+1
Us) s+65°+11s+6

Express the system model in the state-space form

%=Ax+bu (5.94a)

y=cx (5.94b)

where A is in the companion form. By making a
suitable transformation x = Mz, reduce the state-
space model to its canonical form, and comment
on the stability, controllability and observability
of the system.

Given that

(i) a necessary and sufficient condition for
the system (5.94) to be controllable is
that the rank of the Kalman matrix
[b Ab A’ A"'b] be the same
as the order of A, and

(i) a necessary and sufficient condition for it to
be observable is that the rank of the Kalman
matrix [c ATe  (AT)’c (A"Y"'c] be
the same as the order of A,

evaluate the ranks of the relevant Kalman matrices
to confirm your earlier conclusions on the
controllability and observability of the given
system.

Repeat Exercise 60 for the system characterized by
the transfer-function model

s +35+5
465> +5s

5.7.3 MIMO systems

As indicated in (1.69) the general form of the state-space model representation of an
nth-order multi-input-multi-output system subject to » inputs and / outputs is

x=Ax+Bu
y=Cx+ Du

(5.952)
(5.95b)

where x is the n-state vector, u is the r-input vector, y is the /-output vector, A is the
n X n system matrix, B is the n X r control (or input) matrix and C and D are respectively
I X n and I X r output matrices, with the matrix D relating to the part of the input that is

applied directly into the output.
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Defining
20l [ne
Sy = [THON O )
OO0
L] [Uis)
Pluny = [THON JHEO) g

Hu ()} U.(s)

and taking Laplace transforms throughout in the state equation (5.95a), following the
same procedure as for the SISO case, gives

X(s) = (s1 = A)'x(0) + (s1 = Ay 'BU(s) (5.96)
Taking inverse Laplace transforms in (5.96) gives
x(t) = L7 (sl = A" }x(0) + L7 {(s| — A 'BU(s)} (5.97)

The output, or response, vector y(f) may then be obtained directly from (5.95b).

We can also use the Laplace transform formulation to obtain the transfer matrix
G(s), between the input and output vectors, for a multivariable system. Taking Laplace
transforms throughout in the output equation (5.95b) gives

Y(s) = CX(s) + DU(s) (5.98)
Assuming zero initial conditions in (5.96) we have

X(s) = (sl = AY'BU(s)
Substituting in (5.98), gives the system input—output relationship

Y(s) = [C(s| — A)'B + D]U(s)

Thus the transfer matrix G(s) model of a state-space model defined by the quadruple
{4, B, C, D} is

G(s)=C(sl —AY'B+D (5.99)

The reverse problem of obtaining a state-space model from a given transfer matrix
is not uniquely solvable. For example, in Section 1.10.6 we showed that a state-space
model can be reduced to canonical form and indicated that this was without affecting the
input—output behaviour. In Section 1.10.6 it was shown that under the transformation
x = Tz, where T is a non-singular matrix, (5.95) may be reduced to the form

i=Az+ Bu
v=Ce+ Du (5-100)
where z is now a state vector and

A=T'AT,B=T'B,C=CT,D=D
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Example 5.63

Figure 5.52 Network
of Example 5.63.

Solution

From (5.99), the input—output transfer matrix corresponding to (5.100) is
G,s)=C(sl-A'B+D
=CT(sI-T'AT)Y'T'B+D
=CTGTUT-TAT)'T'B+D
=CT[T'sI-AT]'T'B+D
=CT[T'(s1-=A)'T]T'B+D (using the commutative property)
=C@sl-A"'B+D
=G(s)

where G(s) is the transfer matrix corresponding to (5.95), confirming that the input—output
behaviour of the state-space model defined by the quadruple {4, B, C, D} is the same as
that defined by the quadruple {4, B, C, D}. The problem of finding state-space models
that have a specified transfer-function matrix is known as the realization problem.

It follows from (5.99) that

G(s) = Cadj(sl —A}B+D
det(sl —A)

Clearly, if s = p is a pole of G(s) then it must necessarily be an eigenvalue of the state
matrix A, but the converse is not necessarily true. It can be shown that the poles of G(s)
are identical to the eigenvalues of A when it is impossible to find a state-space model
with a smaller state dimension than » having the same transfer-function matrix. In such
cases the state space model is said to be in minimal form.

(a) Obtain the state-space model characterizing the network of Figure 5.52. Take the
inductor current and the voltage drop across the capacitor as the state variables,
take the input variable to be the output of the voltage source, and take the output
variables to be the currents through L and R, respectively.

(b) Find the transfer-function matrix relating the output variables y, and y, to the
input variable u. Thus find the system response to the unit step u(#) = H(¢), assuming
that the circuit is initially in a quiescent state.

R =2Q

+
(r\,) u=e(l)

(a)  The current i, in the capacitor is given by
ic=Co.= Cx,
Applying Kirchhoff’s second law to the outer loop gives

e=R\(i,+ic) +vc+ Ry = Ri(x, + CX)) + x; + R,CxX,
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leading to

- 1 X = R, X, + £
C(R,+R,) C(R,+R,) C(R,+R»)

X1=

Applying Kirchhoff’s second law to the left-hand loop gives

e=R,(i, +ic) +Li, = R (x, + Cx,) + Lx,

leading to

. Rl Rle e Rz

xz— xl_ )C2 -
L(R,+R,) L(R,+R,) LR, +R,

Also,

i=x

Yy =Cx =~ ! Ry £

X — X, +
R1+R2 R1+R2 R1+R2

Substituting the given parameter values leads to the state-space representation

| (=2 -4l |2
= + o, |u

Xy —11 Xy 2

Vi I L]|x 0
= + u

7)’27 5 _14_5 X2 I2§

which is of the standard form

[\S]

\S}

(=)

()

X=Ax+bu
y=Cx+du

(b)  From (5.99), the transfer-function matrix G (s) relating the output variables y, and
¥, to the input u is

G(s)=C(sl-Ay'b+d

Now

S —A= s+2 4
-2 s+11

giving

(sl — A) = 1 s+11 -4
(s+3)(s+10)| 2 s+2

B 1 0 1 [s+11 -4 |[2
Cisl=A) p=————
+3)G+10)|-2 ]| 2 se2fld

. LU+ 15
C (s+3)(s+10) 254
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so that
lzls+15
G(s)= —1 7S+ 15 N Ol _| (s+3)(s+10)
(s+3)(s+10) _%3—4 12_5 _%s_4 .

—+__
(s+3)(s+10) B

The output variables y, and y, are then given by the inverse Laplace transform of
Y(s) =G (s)U(s)
where U(s) = Lu(t)] = L[H(t)] = 1/s; that is,

Us+15
s(s+3)(s+10)

Y(s) =
—%gs—4 2

e
s(s+3)(s+10) 15s

1

L1 7
s+3 s+10

2 2 4 2

15 _35 21 5

s s+3 s+10 s

[ES

Uy oi—

which on taking inverse Laplace transforms gives the output variables as

1 1 —3t_4_; —10¢
i ctae ;€
= (t=0)
2 3t 4 107
V2 TS TR

In MATLAB the function t £2ss can be used to convert a transfer function to state-
space form for SISO systems. At present there appears to be no equivalent function
for MIMO systems. Thus the command

[A,B,C,D] = tf2ss(b,a)

returns the A, B, C, D matrices of the state-form representation of the transfer function

i b,s" '+ ... +b,_,s+Db,
G(s) = C(sI-A) B+D =

n-1
a;s + ... +a,_1S +a,

where the input vector a contains the denominator coefficients and the vector b
contains the numerator coefficients, both in ascending powers of s.

(Note: The function t fss can also be used in the case of single-input-multi-output
systems. In such cases the matrix numerator must contain the numerator coefficients
with as many rows as there are outputs.)

To illustrate consider the system of Example 5.61, for which

55°+s5+ 1

G(s)=—3—————2—————————
S +6s +11s+3
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In this case the commands:

b= (51 1];
a = [1 6 11 3];
[A,B,C,D] = tf2ss(b,a)
return

A = -6 -11 -3

1 0 0

0 1 0
B =1

0

0
cC =511
D=0

giving the state-space model

X -6 -11 =3||x; 1 X
X =1 0 O|x+|0jv;y=1[5 1 1]|x,
X3 0 I 0]|x; 0 3

(Note: This state-space model differs from the one given in the answer to Example
5.61. Both forms are equivalent to the given transfer function model, with an alter-
native companion form taken as indicated in Section 1.9.1.)

Likewise, in MATLAB the function ss2t £ converts the state-space representa-
tion to the equivalent transfer function/matrix representation (this being applicable
to both SISO and MIMO systems). The command

[b,al] = ss2tf(A,B,C,D,iu)
returning the transfer function/matrix
G(s)=C(sl-A)y'B+D

from the iu-th input. Again the vector a contains the coefficients of the denominator
in ascending powers of s and the numerator coefficients are returned in array b with
as many rows as there are outputs.

(Note: The entry iu in the command can be omitted when considering SISO
systems so, for example, the commands:

[-6 -11 -3; 1 0 0; 0 1 0];

b =0 5.0000 1.0000 1.0000
a = 1.0000 6.0000 11.0000 3.0000
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giving the transfer function representation

2
G(s) = 35s2+s+1
s +6s +11s+3

which confirms the answer to the above example. As an exercise confirm that the
state-space model obtained in the answer to Example 5.61 is also equivalent to this
transfer function representation.)

To illustrate a MIMO system consider the system in Exercise 63, in which the
state-space model is

bt o 1 o olx Jo o

Bl _ -1 -1 0 1x2+10H

X5 0O 0 0 1 x5 0 0||u,

B [0 1 -1 -1flx] |01
X

b _f1 o o o

¥, ;OOIOJ)@

and we wish to determine the equivalent transfer matrix. The commands:

A =[0100;-1 -101;0 00 1;0 1 -1 -11;
B=[0 0;1 0;0 0;0 17;

c=[1 00O0; 001 O0];

D=[0 0 ;0 0];

[bl,a] = ss2tf(A,B,C,D,1)

return the response to u,

bl = 0 0 1.0000 1.0000 1.0000
0 0.0000 0.0000 1.0000 0.0000
a = 1.0000 2.0000 2.0000 2.0000 1.0000

and the additional command
[b2,a] = ss2tf(A,B,C,D,2)
returns response to u,

b2 = 0 0.0000 0.0000 1.0000 0.0000
0 0.0000 1.0000 1.0000 1.0000
A = 1.0000 2.0000 2.0000 2.0000 1.0000

leading to the transfer matrix model

2
G(s) = 1 s +s+1 K

ST 257+ 257+ 25+ 1 s S+ s+1

1 S s+ s

s+ + )| S+s+1
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62

63

64

5.7.4 Exercises

Determine the response y = x, of the system
governed by the differential equations

X, =-2x,+u;—u, } (t=0)

Xy =x,-3x,+u; +u,

to aninput # = [u;, u,]"=[1 £]" and subject to
the initial conditions x,(0) = 0, x,(0) = 1.

Consider the 2-input—2-output system modelled by
the pair of simultaneous differential equations

H+y—mtyi=uy
Dt =yt yn=u

Taking the state vector tobe x=1[y, ¥ ¥, ¥|"
express the model as a state-space model of the form

x=Ax+ Bu
y=Cx

Determine the transfer matrix and verify that its
poles are identical to the eigenvalues of the state
matrix A.

Considering the network of Figure 5.53
(a) Determine the state-space model in the form
x=Ax+ Bu

y=Cx

u =j

Figure 5.53 Network of Exercise 64.

Take the inductor currents in L, L, and L, as
the state variables x,, x,, x; respectively; take
the input variables , and u, to be the outputs
of the current and voltage sources respectively;
and take the output variables y, and y, to be the
voltage across R, and the current through L
respectively.

(b) Determine the transfer matrix G(s) relating the
output vector to the input vector.

(c) Assuming that the circuit is initially in a
quiescent state, determine the response y(7)
to the input pair

uy(f) = H(1)
u(t) = tH(?)

where H(f) denotes the Heaviside function.

R 2 P Tl T I frequency response

Frequency-response methods provide a graphical approach for the analysis and design
of systems. Traditionally these methods have evolved from practical considerations,
and as such are still widely used by engineers, providing tremendous insight into over-
all system behaviour. In this section we shall illustrate how the frequency response can
be readily obtained from the system transfer function G(s) by simply replacing s by j@.
Methods of representing it graphically will also be considered.

Consider the system depicted in Figure 5.41, with transfer function

K(s—z)(s=2zy) ...(s—2,)

G(s) =

(m < n) (5.101)

(s=p)(s=p2) ... (s—p,)

When the input is the sinusoidally varying signal

u(t) = A sin wt
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applied at time ¢ = 0, the system response x(#) for = 0 is determined by
X(s) = G(s)L{ A sin ot}

That is,

Aw

2
()

X(s) = G(s)

s +

_ KAw(s—z)(s—2z) ... (s—2z,)
(s=p)(s=pi) ... (s=p)(s—]jo)(s+]w)

which, on expanding in partial fractions, gives

n

o o B;
X(s)=— +——+ -
ot 2

s—jo s+ ~ s —p,

where a;, o, B, Bs, . . ., B, are constants. Here the first two terms in the summation are

generated by the input and determine the steady-state response, while the remaining

terms are generated by the transfer function and determine the system transient response.
Taking inverse Laplace transforms, the system response x(¢), ¢ = 0, is given by

n
x(f) = o, e/ + o, e + Z Bier" (t=0)
i=1

In practice we are generally concerned with systems that are stable, for which the poles
p»i=1,2, ..., n, of the transfer function G(s) lie in the left half of the s plane.
Consequently, for practical systems the time-domain terms f,e”,i=1,2, ..., n, decay
to zero as ¢ increases, and will not contribute to the steady-state response x(¢) of the
system. Thus for stable linear systems the latter is determined by the first two terms as

x () = o &1+ o, e

Using the ‘cover-up’ rule for determining the coefficients o, and «, in the partial-
fraction expansions gives

_ {(s— ja))Ggs)Aa)J _ %G(jw)
5=

o= - -
(s—jw)(s+ jow)

o, = {gﬁ ja))Ggs)AwJ _ _%G(_jw)

(s=jo)s+jw) | -~
so that the steady-state response becomes
— A : jot A4 : —jot
x (1) = 52 G(jw) ™ — = G(—jw) e (5.102)
2j 2j

G(jw) can be expressed in the polar form
G(jo) = G(jo) e

where |G(jw)| denotes the magnitude (or modulus) of G(jw). (Note that both the
magnitude and argument vary with frequency ®.) Then, assuming that the system has
real parameters,

G(=jw) = |G( jo)| e
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Example 5.64

Solution

and the steady-state response (5.102) becomes

5.0 = £ 11G( o) e = L [|G(ja| e
J ]

— fi : jlorrarg G(jw)] _ ,—jlotrarg G(jw)]
7 1GGo)l[e e ]

That is,
x(1) = A|G(jw)| sin [wt + arg G(jw)] (5.103)

This indicates that if a stable linear system with transfer function G(s) is subjected to a
sinusoidal input then

(a) the steady-state system response is also a sinusoid having the same frequency @
as the input;

(b) the amplitude of this response is |G(jw)| times the amplitude 4 of the input
sinusoid; the input is said to be amplified if |G(jw)| > 1 and attenuated if
G(jw)| < 1;

(c) the phase shift between input and output is arg G(jw). The system is said to lead
if arg G(jw) > 0 and lag if arg G(jw) < 0.

The variations in both the magnitude |G(jw)| and argument arg G(jw) as the fre-
quency @ of the input sinusoid is varied constitute the frequency response of the
system, the magnitude | G(jw)| representing the amplitude gain or amplitude ratio of
the system for sinusoidal input with frequency , and the argument arg G(j®) represent-
ing the phase shift.

The result (5.103) implies that the function G(j®) may be found experimentally by
subjecting a system to sinusoidal excitations and measuring the amplitude gain and
phase shift between output and input as the input frequency is varied over the range
0 < w < eo. In principle, therefore, frequency-response measurements may be used to
determine the system transfer function G(s).

In Chapters 7 and 8, dealing with Fourier series and Fourier transforms, we shall see
that most functions can be written as sums of sinusoids, and consequently the response
of a linear system to almost any input can be deduced in the form of the corresponding
sinusoidal responses. It is important, however, to appreciate that the term ‘response’ in
the expression ‘frequency response’ only relates to the steady-state response behaviour
of the system.

The information contained in the system frequency response may be conveniently
displayed in graphical form. In practice it is usual to represent it by two graphs: one
showing how the amplitude | G(jw)| varies with frequency and one showing how the
phase shift arg G(jw) varies with frequency.

Determine the frequency response of the RC filter shown in Figure 5.54. Sketch the
amplitude and phase-shift plots.

The input—output relationship is given by

Ey(s) =

|
E.
RGr10®


www.semeng.ir

5.8 ENGINEERING APPLICATION: FREQUENCY RESPONSE 465

R
o_IL—F9—o0

e(t) C eqt)
o——o—0

Figure 5.54 RC filter.

Figure 5.55
Frequency-response

plots for Example 5.64:

(a) amplitude plot;
(b) phase-shift plot.

so that the filter is characterized by the transfer function

1
G =
)= ResT1
Therefore
, 1 1-jRCw
G a) = =
() RCjo+1 14+RCw
_ 1 —j RCw
1+R°Cw "1+RCw

giving the frequency-response characteristics

amplitude ratio = |G(jw)|

1
+
\/[(1 +RC@ )

1
J1+RCa)

R Cw
(1+R°Cw )

phase shift = arg G(jw) = —tan™' (RCw)
Note that for =0
IG(jo)l =1,  argG(jw)=0

and as @ — oo
G(jo)l = 0,  argG(jw) > —im

Plots of the amplitude and phase-shift curves are shown in Figures 5.55(a) and (b)
respectively.

arg G(jw) A
1GGw)| 920° T
1
! ®C
(6] : >
—45° - “
_gQe - mmm oo
0 2 w
RC RC

(a) (b)

For the simple transfer function of Example 5.64, plotting the amplitude and phase-
shift characteristics was relatively easy. For higher-order transfer functions it can be
a rather tedious task, and it would be far more efficient to use a suitable computer
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Example 5.65

Solution

package. However, to facilitate the use of frequency-response techniques in system
design, engineers adopt a different approach, making use of Bode plots to display
the relevant information. This approach is named after H. W. Bode, who developed
the techniques at the Bell Laboratories in the late 1930s. Again it involves drawing
separate plots of amplitude and phase shift, but in this case on semi-logarithmic graph
paper, with frequency plotted on the horizontal logarithmic axis and amplitude, or phase,
on the vertical linear axis. It is also normal to express the amplitude gain in decibels
(dB); that is,

amplitude gain in dB = 20log|G(jw)|
and the phase shift arg G(jw) in degrees. Thus the Bode plots consist of

(a) aplot of amplitude in decibels versus log , and

(b) aplot of phase shift in degrees versus log .

Note that with the amplitude gain measured in decibels, the input signal will be
amplified if the gain is greater than zero and attenuated if it is less than zero.

The advantage of using Bode plots is that the amplitude and phase information can
be obtained from the constituent parts of the transfer function by graphical addition. It
is also possible to make simplifying approximations in which curves can be replaced by
straight-line asymptotes. These can be drawn relatively quickly, and provide sufficient
information to give an engineer a ‘feel’ for the system behaviour. Desirable system
characteristics are frequently specified in terms of frequency-response behaviour, and
since the approximate Bode plots permit quick determination of the effect of changes,
they provide a good test for the system designer.

Draw the approximate Bode plots corresponding to the transfer function

Gs) = —2X 10°(5 +5)
$(100 +5)(20 +5)

(5.104)

First we express the transfer function in what is known as the standard form, namely

G(s) = 10(140.2s)
s(1+0.01s)(1 +0.055)
giving
G(jw) = 10(1 +j0.2w)

jo(1+j0.01w)(1 +j0.05w)
Taking logarithms to base 10,

20log|G(jw)| =201og 10 +201log|1 +j0.2w| —201log|jo|
—20log |1 +j0.0lw|—201log|1 +j0.05m|
arg G(jw) = arg 10 + arg (1 +j0.2w) — arg jo — arg (1 + j0.01 w)
—arg(1 +j0.05w) (5.105)
The transfer function involves constituents that are again a simple zero and simple

poles (including one at the origin). We shall now illustrate how the Bode plots can be
built up from those of the constituent parts.
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Consider first the amplitude gain plot, which is a plot of 20 log | G(jw)| versus log @:

(a) for a simple gain k a plot of 20 log & is a horizontal straight line, being above the
0dB axis if £ > 1 and below it if £ < 1;

(b) for a simple pole at the origin a plot of =20 log w is a straight line with slope
—20 dB/decade and intersecting the 0 dB axis at w = 1;

(c) for a simple zero or pole not at the origin we see that

. 0 asw— 0
20log |1 +jTo| —
20 logtw = 20logw—201og(l/7) as @ — oo

Note that the graph of 20log Tw is a straight line with slope 20 dB/decade and inter-
secting the 0 dB axis at @ = 1/7. Thus the plot of 201log|1 + jTw| may be approximated
by two straight lines: one for @ < 1/7and one for @ > 1/7. The frequency at intersection
o= 1/7is called the breakpoint or corner frequency; here |1 +jT®|= 2, enabling the
true curve to be indicated at this frequency. Using this approach, straight-line approxima-
tions to the amplitude plots of a simple zero and a simple pole, neither at zero, are
shown in Figures 5.56(a) and (b) respectively (actual plots are also shown).

20 log tl + jwrl -20 log Il + jowtl
Corner frequency

20T w=1l/t . 10

5 1"

10 —M»’—]zOdB/decade 8 e

0 - =3 =

-5 -10 <
-10 Decade -15 20 dB[Fecad;‘ .
} ——t } t > -20 } { >
2 34 5 10 20 2 20
wirad s~ w/rad s=!
(a) (b)

Figure 5.56 Straight-line approximations to Bode amplitude plots: (a) simple zero; (b) simple pole.

Using the approximation plots for the constituent parts as indicated in (a)—(c) ear-
lier, we can build up the approximate amplitude gain plot corresponding to (5.104) by
graphical addition as indicated in Figure 5.57. The actual amplitude gain plot, produced
using a software package, is also shown.

The idea of using asymptotes can also be used to draw the phase-shift Bode plots,
again taking account of the accumulated effects of the individual components making
up the transfer function, namely that

(1)  the phase shift associated with a constant gain & is zero;

(i) the phase shift associated with a simple pole or zero at the origin is +90° or —90°
respectively;

(iii) for a simple zero or pole not at the origin

O 0 asw—0
tan” (w7) —>
90° as w — o

tan' (w7) =45° when w7=1
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Figure 5.57 log | G (jw) | 40 '
Amplitude Bode 1
plots for the G(s) Je*
of Example 5.65. 30 ~ .
\\ L[ 201og! 1 +j0.2w
\\ "r J J_
20 ‘s 4 il T
. L 20 log 10
s '\ R
10 - \\\ R
e R P
~§ \'--:\~ * —
" SIS
0 Nal N\ “201ogl 1 +j0.0lw|
h ~ \'\ ~
‘~9~ ~~~~\~'Q\ ~~~‘
0 Feo] | -20T0g 11 +j0.05w 1 [+ NS, ..
— §~~ i.. + §.~
|—2 log|lj¢u|l \.. \\ .\.
1 o »
=20 >
107! 109 10! 102 103
wirad s~

=:== Approximate plot Actual plot

With these observations in mind, the following approximations are made. For fre-
quencies @ less than one-tenth of the corner frequency w = 1/7 (that is, for @ < 1/107)
the phase shift is assumed to be 0°, and for frequencies greater than ten times the
corner frequency (that is, for @ > 10/7) the phase shift is assumed to be +90°. For
frequencies between these limits (that is, 1/107 < © < 10/7) the phase-shift plot is
taken to be a straight line that passes through 0° at = 1/107, £45° at w= 1/1, and £90°
at o= 10/7. In each case the plus sign is associated with a zero and the minus sign with
a pole. With these assumptions, straight-line approximations to the phase-shift plots for
a simple zero and pole, neither located at the origin, are shown in Figures 5.58(a) and
(b) respectively (the actual plots are represented by the broken curves).

Using these approximations, a straight-line approximate phase-gain plot correspond-
ing to (5.105) is shown in Figure 5.59. Again, the actual phase-gain plot, produced using
a software package, is shown.

iigure 558t Bod arg [ (1 + jwn)] A
pproximate Bode

phase-shift plots: arg (1 +jwr)
(a) simple zero;

(b) simple pole. 90° 0 =
45° 450 T
-90° 1

0° =

(b)
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Figure 5.59

Phase-shift Bode
plot for the G(s)
of Example 5.65.

arg G (jo)  90°

,-" —arg (1 +j0.2w)
50° e
Oo L | - —
—mg(l+J005w).".._ .".._ —arg (1 +j0.0lw)
7500 _H_E\~.‘ _ '~~_-~
AT~ | H
‘7/ = .. Y~ 1 K
=== < IS N I S I ----._--E\\_.- [ B A I I A E W
—~100° —arg (jw) SN
TR
\3
..
~150° N, |
—180° [T
10! 100 10! 102 103
wirad s=!
— == Approximate plot Actual plot

In MATLAB the amplitude and phase-gain plots are generated using the commands
s=tf(’s")
G=4*10"3* (s+5)/ (s* (100+s) *(20+s) ) ;
bode (G)

In the graphical approach adopted in this section, separate plots of amplitude gain
and phase shift versus frequency have been drawn. It is also possible to represent the
frequency response graphically using only one plot. When this is done using the pair of
polar coordinates (|G(jw)|, arg G(jw)) and allowing the frequency @ to vary, the resulting
Argand diagram is referred to as the polar plot or frequency-response plot. Such a
graphical representation of the transfer function forms the basis of the Nyquist approach
to the analysis of feedback systems. In fact, the main use of frequency-response methods
in practice is in the analysis and design of closed-loop control systems. For the unity
feedback system of Figure 5.45 the frequency-response plot of the forward-path
transfer function G(s) is used to infer overall closed-loop system behaviour. The Bode
plots are perhaps the quickest plots to construct, especially when straight-line approx-
imations are made, and are useful when attempting to estimate a transfer function
from a set of physical frequency-response measurements. Other plots used in practice
are the Nichols diagram and the inverse Nyquist (or polar) plot, the first of these
being useful for designing feedforward compensators and the second for designing
feedback compensators. Although there is no simple mathematical relationship, it is
also worth noting that transient behaviour may also be inferred from the various frequency-
response plots. For example, the reciprocal of the inverse M circle centred on the —1
point in the inverse Nyquist plot gives an indication of the peak over-shoot in the transient
behaviour (see, for example, G. Franklin, D. Powell and A. Naeini-Emami, Feedback
Control of Dynamic Systems, Reading, MA, Addison-Wesley, 1986).

Investigation of such design tools may be carried out in MATLAB, incorporating
Control Toolbox, using the command r1tool (G).
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5.9.1

5.9.2

In Chapter 1 we examined the behaviour of linear continuous-time systems modelled in
the form of vector-matrix (or state-space) differential equations. In this chapter we have
extended this, concentrating on the transform domain representation using the Laplace
transform. In Chapter 6 we shall extend the approach to discrete-time systems using the
z-transform. So far we have concentrated on system analysis; that is, the question ‘Given
the system, how does it behave?’ In this section we turn our attention briefly to consider
the design or synthesis problem, and while it is not possible to produce an exhaustive
treatment, it is intended to give the reader an appreciation of the role of mathematics in
this task.

Poles and eigenvalues

By now the reader should be convinced that there is an association between system
poles as deduced from the system transfer function and the eigenvalues of the system
matrix in state-space form. Thus, for example, the system modelled by the second-order
differential equation

&y, 1dy

1.0 _
a7 tar ¥

has transfer function

The system can also be represented in the state-space form
Xx=Ax+bu, y=c'x (5.106)

where

0 1
x=[x x], A={ 1], b=[0 1], c=[1 0]

1
2 2

It is easy to check that the poles of the transfer function G(s) are at s = —1 and s = %,
and that these values are also the eigenvalues of the matrix A. Clearly this is an
unstable system, with the pole or eigenvalue corresponding to s = % located in the
right half of the complex plane. In Section 5.9.2 we examine a method of moving this
unstable pole to a new location, thus providing a method of overcoming the stability
problem.

The pole placement or eigenvalue location technique

We now examine the possibility of introducing state feedback into the system. To do
this, we use as system input

u=k'x+u

ext


www.semeng.ir

5.9 ENGINEERING APPLICATION: POLE PLACEMENT 471

Figure 5.60 Feedback
connections for eigen-
value location.

where k = [k, k)" and u,,, is the external input. The state equation in (5.106) then
becomes
oo
X=1, Xt [(kyxy + hoxy) + ey ]
i 2 T2
That is,
. 0 1 0
X = 1 X+ Uext
kl +5 kz - %

Calculating the characteristic equation of the new system matrix, we find that the
eigenvalues are given by the roots of

= (k= HA-(kh+ H=0

Suppose that we not only wish to stabilize the system, but also wish to improve the
response time. This could be achieved if both eigenvalues were located at (say) A = -5,
which would require the characteristic equation to be

X +101+25=0
In order to make this pole relocation, we should choose

—(kz—%):lO, —(k1+%):25

indicating that we take k, = -2

> and k, = —12—9 . Figure 5.60 shows the original system and
the additional state-feedback connections as dotted lines. We see that for this example
at least, it is possible to locate the system poles or eigenvalues wherever we please in
the complex plane, by a suitable choice of the vector k. This corresponds to the choice
of feedback gain, and in practical situations we are of course constrained by the need
to specify reasonable values for these. Nevertheless, this technique, referred to as pole
placement, is a powerful method for system control. There are some questions that
remain. For example, can we apply the technique to all systems? Also, can it be extended
to systems with more than one input? The following exercises will suggest answers to
these questions, and help to prepare the reader for the study of specialist texts.
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65

66

67

5.9.3 Exercises

An unstable system has Laplace transfer function

1

Hes) = G+hHe-1)

Make an appropriate choice of state variables to
represent this system in the form

X=Ax+bu, y=c'x
where
. 0 1
X = [xl -XZ] > A = 1 1
2 2
b=[0 17, c=[1 0]

This particular form of the state-space model in
which A takes the companion form and b has a
single 1 in the last row is called the control
canonical form of the system equations, and
pole placement is particularly straightforward
in this case.

Find a state-variable feedback control of the
form u = k"x that will relocate both system poles
at s = —4, thus stabilizing the system.

Find the control canonical form of the state-space
equations for the system characterized by the
transfer function

2

G(s) = s+ D(s+1

Calculate or (better) simulate the step response

of the system, and find a control law that relocates
both poles at s = —5. Calculate or simulate the step
response of the new system. How do the two
responses differ?

The technique for pole placement can be adapted
to multi-input systems in certain cases. Consider
the system

T

x=Ax+Bu, y=cx

where

68

69

Writing Bu = byu, + byu,, where b, =[1 1]" and
b,=[0 17", enables us to work with each input
separately. As a first step, use only the input u,

to relocate both the system poles at s = —5.
Secondly, use input u, only to achieve the same
result. Note that we can use either or both inputs
to obtain any pole locations we choose, subject of
course to physical constraints on the size of the
feedback gains.

The bad news is that it is not always possible to
use the procedure described in Exercise 67. In the
first place, it assumes that a full knowledge of the
state vector x(f) is available. This may not always
be the case; however, in many systems this problem
can be overcome by the use of an observer. For
details, a specialist text on control should be
consulted.

There are also circumstances in which the
system itself does not permit the use of the
technique. Such systems are said to be
uncontrollable, and the following example, which
is more fully discussed in J. G. Reed, Linear System
Fundamentals (McGraw-Hill, Tokyo, 1983),
demonstrates the problem. Consider the system

S

y=10 1lx

with

Find the system poles and attempt to relocate both
of them, at, say, s = —2. It will be seen that no gain
vector k can be found to achieve this. Calculating
the system transfer function gives a clue to the
problem, but Exercise 69 shows how the problem
could have been seen from the state-space form of
the system.

In Exercise 60 it was stated that the system
X =Ax+bu
y=c"x

where A is an n X n matrix, is controllable provided
that the Kalman matrix

M=[b Ab A% A"'p]
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70

is of rank ». This condition must be satisfied if
we are to be able to use the procedure for pole
placement. Calculate the Kalman controllability
matrix for the system in Exercise 68 and confirm
that it has rank less than n = 2. Verify that the
system of Exercise 65 satisfies the controllability
condition.

We have noted that when the system equations
are expressed in control canonical form, the
calculations for pole relocation are particularly
easy. The following technique shows how to
transform controllable systems into this form.
Given the system

X =Ax+ bu, y=c'x

calculate the Kalman controllability matrix M,
defined in Exercise 69, and its inverse M.
Note that this will only exist for controllable
systems. Set " as the last row of M~ and form
the transformation matrix

T -1
v A"

A transformation of state is now made by
introducing the new state vector z(f) = Tx(#), and the
resulting system will be in control canonical form.
To illustrate the technique, carry out the procedure
for the system defined by

A

and show that this leads to the system

0

Finally, check that the two system matrices have
the same eigenvalues, and show that this will
always be the case.

5.10 Review exercises (1-34)

Check your answers using MATLAB or MAPLE whenever possible.

1

2

Solve, using Laplace transforms, the following
differential equations:

2
(a) d—’26+4d—x+5x=8cost
dr dt

subject to x = (l)g=0att=0
dr

2
b) sEE_ 3o 6
d dr

subject to x = 1 and % =latr=0

(a) Find the inverse Laplace transform of

1
(s+1)(s+2)(s"+25+2)

(b) A voltage source Ve™sint is applied across a
series LCR circuit with L=1,R=3 and C = % .

Show that the current #(¢) in the circuit
satisfies the differential equation
2. 9
d—§+3g+2i = Ve'sint
dr dr

Find the current i(¢) in the circuit at time
t = 0 if i(z) satisfies the initial conditions
i(0) = 1 and (di/dr)(0) = 2.

Use Laplace transform methods to solve the
simultaneous differential equations

2

d—f—x+59-2:t
dr dr

2

gy o®_
dt dt

subjecttox =y = %z%anttzO.
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4

Solve the differential equation

dx dx

—+2—+ 2x = cost
dr dt

subject to the initial conditions x = x, and

dx/dt =x, at t = 0. Identify the steady-state and
transient solutions. Find the amplitude and phase
shift of the steady-state solution.

Resistors of 5 and 20 Q are connected to the
primary and secondary coils of a transformer with
inductances as shown in Figure 5.61. At time 7= 0,
with no currents flowing, a voltage £ = 100 V

is applied to the primary circuit. Show that
subsequently the current in the secondary circuit is

20
(e (11+41)t/2 e —(11- 41)[/2)

J41
5Q 20Q
| _
E() 2H§ §3H
-~
M=1H

Figure 5.61 Circuit of Review exercise 5.

(a) Find the Laplace transforms of

(i) e

(b) Using Laplace transform methods, solve the
differential equation

dx dx+8x—cos21

o e
given that x = 2 and dx/dz =1 when 7 = 0.

(i) cos(wt+ ¢) sin (w1 + ¢)

(a) Find the inverse Laplace transform of
s—4
s +ds+13
(b) Solve using Laplace transforms the differential
equation
% +2y=2(2 + cost + 2sin)

given that y = —3 when ¢ = 0.

Using Laplace transforms, solve the simultaneous
differential equations

3—); +5x+3y=15sint—2cost

10

11

12

(—% +3y+5x=06sint—3cost
where x = 1 and y = 0 when 7 = 0.

The charge ¢ on a capacitor in an inductive circuit
is given by the differential equation

d—-q +30094 12 x 10*g = 200 sin 1007

dr’ dr
and it is also known that both ¢ and dg/dr are zero
when 7 = 0. Use the Laplace transform method to
find g. What is the phase difference between the
steady-state component of the current dg/d¢ and
the applied emf 200 sin 1007 to the nearest
half-degree?

Use Laplace transforms to find the value of x
given that

4%)—; 4 6x +y=2sin2s

2
d)zc+x—g-Z =3e”
dt dt
and that x = 2 and dx/d¢ =—2 when ¢ = 0.

(a) Use Laplace transforms to solve the
differential equation

2
@ + 89:@
ar dr
given that 8= 0 and d6/df = 0 when 7= 0.

+ 166 = sin 2¢

(b) Using Laplace transforms, solve the
simultaneous differential equations

di
d;+211+6l2—0

o di .
i +d—:—312 =0
given that i, = 1, i, = 0 when = 0.

The terminals of a generator producing a voltage
J are connected through a wire of resistance

R and a coil of inductance L (and negligible
resistance). A capacitor of capacitance C

is connected in parallel with the resistance

R as shown in Figure 5.62. Show that the
current / flowing through the resistance R is
given by

dZ+Ld +Ri=V

dr dr

LCR
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13

14

QO ©

Figure 5.62 Circuit of Review exercise 12.

Suppose that

(i) V=0fors<0andV=EF (constant) for t = 0
(i) L=2RC
(iii)) CR=1/2n

and show that the equation reduces to

2.

2. .
(l—l+2ng+2n i

2 an
dt dt

=2

Hence, assuming that i = 0 and di/d¢ = 0 when
t = 0, use Laplace transforms to obtain an
expression for 7 in terms of 7.

Show that the currents in the coupled circuits of
Figure 5.63 are determined by the simultaneous
differential equations

di . .
Ld_t2+Rl2_R(l1 —i,)=0

Find 7, in terms of z, L, E and R, given that i, = 0 and
di,/dt = E/L at ¢t = 0, and show that 7, = %E/R for
large . What does i, tend to for large #?

A system consists of two unit masses lying in a
straight line on a smooth surface and connected
together to two fixed points by three springs. When
a sinusoidal force is applied to the system, the
displacements x,(#) and x,(¢) of the respective
masses from their equilibrium positions satisfy

the equations

15

16

17

d2x1 .
— =X 2x, + sin 2t
dz

d’x

—22 =-2x, + X,

dr

Given that the system is initially at rest in the
equilibrium position (x, = x, = 0), use the Laplace
transform method to solve the equations for x,(#)
and x,(7).

(a) Obtain the inverse Laplace transforms of

. s+4 o5 s—3
O 5—F——— (i) ——=—r
s +2s+ 10 (s=1)(s=-2)
(b) Use Laplace transforms to solve the

differential equation

2
(l%+29-2+y=3te”
dr dt

given that y = 4 and dy/d¢ =2 when 7= 0.

(a) Determine the inverse Laplace transform of

5
s°—l4s +53

(b) The equation of motion of the moving coil
of a galvanometer when a current i is passed
through it is of the form

00 g d0, 2 _ 1

dr’ dr K
where 6 is the angle of deflection from the
‘no-current’ position and » and K are positive
constants. Given that i is a constant and
60 =0 = d6/dr when 7= 0, obtain an expression
for the Laplace transform of 6.

In constructing the galvanometer, it is desirable
to have it critically damped (that is, n = K).
Use the Laplace transform method to solve the
differential equation in this case, and sketch the
graph of 6 against ¢ for positive values of 7.

(a) Given that ¢ is a positive constant, use the
second shift theorem to

(i) show that the Laplace transform of
sint H(t — o) is
cwecosats sin o
s+
(i) find the inverse transform of

—as
S €

SS+2545
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18

19

20

(b) Solve the differential equation

2
&y odvy sy = sing - sint H( - m)
dr dt

given that y = dy/d¢ =0 when ¢ = 0.

Show that the Laplace transform of the
voltage v(#), with period 7, defined by

1 (0sr<im)
v(t) = ' v(t+T)=uv(t)
-1 (T<:<T)
is
1 l_e—ST/2
V(s) = =
(S) s 1+e—sT/2

This voltage is applied to a capacitor of 100 uF and
a resistor of 250 Q in series, with no charge initially
on the capacitor. Show that the Laplace transform
I(s) of the current i(f) flowing, for = 0, is

1 efsT/Z

1
250(s +40) 1 472

I(s)r=

and give an expression, involving Heaviside step
functions, for i(f) where 0 < ¢ < 2T. For T=10"s,
is this a good representation of the steady-state
response of the circuit? Briefly give a reason for
your answer.

The response x(z) of a control system to a forcing
term u(?) is given by the differential equation
2
dx  odx o = u@)
dt

" (t=0)

Determine the impulse response of the system, and
hence, using the convolution integral, obtain the
response of the system to a unit step u(¢) = 1H(¢)
applied at # = 0, given that initially the system is in
a quiescent state. Check your solution by directly
solving the differential equation

2
Cr oo -1 @=0
d? de

with x =dx/df =0 at = 0.

A light horizontal beam, of length 5 m and constant
flexural rigidity £7, built in at the left-hand end
x =0, is simply supported at the point x = 4 m and
carries a distributed load with density function

W) = {12 kNm_l 0<x<4)
24kNm™' (4 <x<5)

1

21

22

23

Write down the fourth-order boundary-value
problem satisfied by the deflection y(x). Solve this
problem to determine y(x), and write down the
resulting expressions for y(x) for the cases 0 < x
=< 4 and 4 < x < 5. Calculate the end reaction and
moment by evaluating appropriate derivatives of
y(x) at x = 0. Check that your results satisfy the
equation of equilibrium for the beam as a whole.

(a) Sketch the function defined by

0 (0s:<1)
fity =41 (1<:<2)
0 (t>2)

Express f(7) in terms of Heaviside step
functions, and use the Laplace transform to
solve the differential equation

Svx = (1)

given that x =0 at 7 = 0.
(b) The Laplace transform /(s) of the current i(¢)

in a certain circuit is given by
£
s[Ls+ R/(1+ Cs)]
where E, L, R and C are positive constants.
Determine (i) lim #(¢) and (ii) lim i(?).

1—>00

t—0

I(s) =

Show that the Laplace transform of the half-
rectified sine-wave function

(1) = {sint
0

of period 2m, is

S S

(1+s)(1-e™)
Such a voltage v(?) is applied to a 1 € resistor and
a 1 H inductor connected in series. Show that the
resulting current, initially zero, is X.',_, f(f — nm),
where f(f) = (sint — cos t + ¢ ~")H(¢). Sketch a
graph of the function £{(7).

O=t=m

<
(n<t=<2mn)

(a) Find the inverse Laplace transform of
1/s*(s + 1)* by writing the expression in
the form (1/s*)[1/(s + 1)*] and using the
convolution theorem.

(b) Use the convolution theorem to solve the
integral equation

y(?) =t+2J y(u)cos(t—u)du

0
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24

25

26

and the integro-differential equation

t
J Y )y’ (t — u)du = y(?)
0

where y(0) = 0 and y’(0) = y,. Comment on the
solution of the second equation.

A beam of negligible weight and length 3/ carries a
point load /¥ at a distance / from the left-hand end.
Both ends are clamped horizontally at the same
level. Determine the equation governing the
deflection of the beam. If, in addition, the beam

is now subjected to a load per unit length, w,

over the shorter part of the beam, what will then
be the differential equation determining the
deflection?

(a) Using Laplace transforms, solve the
differential equation

d’x 3dx_'_3 -
— 3= +3x= (t—a) (a>0)
dt dt

where H(f) is the Heaviside unit step function,
given that x = 0 and dx/dr =0 at 7 = 0.

(b) The output x(#) from a stable linear control
system with input sin @t and transfer function
G(s) is determined by the relationship

X(s) = G(s)L{sin or}

where X(s) = £{x(f)}. Show that, after a long
time #, the output approaches x(¢), where

5 ) = Re(iﬂl—%ﬁ-@)

Consider the feedback system of Figure 5.64, where
K is a constant feedback gain.

G(s)

1
s-D(s+3)

Figure 5.64 Feedback system of Review
exercise 26.

(a) Inthe absence of feedback (that is, K = 0) is the
system stable?

(b) Write down the transfer function G,(s) for the
overall feedback system.

27

28

(c) Plot the locus of poles of G(s) in the s plane
for both positive and negative values of K.

(d) From the plots in (c), specify for what
range of values of K the feedback system is
stable.

(e) Confirm your answer to (d) using the
Routh—Hurwitz criterion.

(a) For the feedback control system of
Figure 5.65(a) it is known that the impulse
response is A(f) = 2 e ¥ sint. Use this to
determine the value of the parameter .

(b) Consider the control system of Figure 5.65(b),
having both proportional and rate feedback.
Determine the critical value of the gain K for
stability of the closed-loop system.

G(s)
U(s) 5 X(5)

+ s+ os+3

(b)

Figure 5.65 Feedback control systems of
Review exercise 27.

A continuous-time system is specified in
state-space form as

X(1) = Ax(?) + bu(?)

() = 'x(?)

where

{1 g ) -l

(a) Draw a block diagram to represent the
system.

(b) Using Laplace transforms, show that
the state transition matrix is given by

o F e 2 e _6 eq

% = -3 P
e —e 3e -2¢
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29

30

(c) Calculate the impulse response of the system,
and determine the response y(¢) of the system to
an input u(f) = 1 (¢ = 0), subject to the initial
state x(0) =[1 0]

A single-input—single-output system is represented
in state-space form, using the usual notation, as
x(7) = Ax(?) + bu(t)
(D) = e'x(?)

For

show that

A = ef'( cos ¢ — sin t) —e 'sin ¢
2¢ 'sint e '(cos ¢+ sin 1)
and find x(7) given the x(0) =0 and u(¢) =1 (¢ = 0).
Show that the Laplace transfer function of the
system is

Hs) = ‘(YJ((% = (sl =AYb

and find H(s) for this system. What is the system
impulse response?

A controllable linear plant that can be
influenced by one input u(7) is modelled by
the differential equation

%(t) = Ax(?) + bu(f)

where x(7) = [x,(£)  x,(f) x,(0]" is
the state vector, A is a constant matrix with
distinct real eigenvalues A, A,, ..., A, and
b=1[b, b, b,]" is a constant vector.
By the application of the feedback control

u(t) = Kvgx(f)

where vy is the eigenvector of AT corresponding
to the eigenvalue A, of AT (and hence of A), the
eigenvalue A, can be changed to a new real value pj
without altering the other eigenvalues. To achieve
this, the feedback gain K is chosen as

K= Px—Ax
Pk

where py = vLb.

31

32

Show that the system represented by

I 2 0 0
x()=| 0 -1 0ofx()+|1|u®)
=3 =3 =2 0

is controllable, and find the eigenvalues and
corresponding eigenvectors of the system matrix.
Deduce that the system is unstable in the absence
of control, and determine a control law that will
relocate the eigenvalue corresponding to the
unstable mode at the new value —5.

A second-order system is modelled by the
differential equations

X +2x, —4x,=u
Xp—Xp=U
coupled with the output equation

=X
(a) Express the model in state-space form.

(b) Determine the transfer function of the system
and show that the system is unstable.

(c) Show that by using the feedback control law
u(?t) = r(t) — ky(t)

where £ is a scalar gain, the system will be
stabilized provided k& > % .

(d) If r(t) = H(f), a unit step function, and k > %
show that y(f) — 1 as  — o if and only if k= % .

(An extended problem) The transient response
of a practical control system to a unit step input
often exhibits damped oscillations before reaching
steady state. The following properties are some
of those used to specify the transient response
characteristics of an underdamped system:

rise time, the time required for the response
to rise from 0 to 100% of its final value;

peak time, the time required for the response
to reach the first peak of the overshoot;

settling time, the time required for the response
curve to reach and stay within a range about
the final value of size specified by an absolute
percentage of the final value (usually 2% or
5%);

maximum overshoot, the maximum peak
value of the response measured from unity.
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33

X(s)

Y

Figure 5.66 Feedback control system of Review
exercise 32.

Consider the feedback control system of
Figure 5.66 having both proportional and
derivative feedback. It is desirable to choose the
values of the gains K and K, so that the system
unit step response has a maximum overshoot of
0.2 and a peak time of 1s.

(a) Obtain the overall transfer function of the
closed-loop system.

(b) Show that the unit step response of the system,
assuming zero initial conditions, may be
written in the form

x(1) = 1—¢ | cosmyt + —5—2 sin wyt
V(1=&)

where @, = 0,/(1 — &), ®2 =K and
20,6 =1 +KK,.

(c) Determine the values of the gains K and K, so
that the desired characteristics are achieved.

(d) With these values of K and K, determine the
rise time and settling time, comparing both the
2% and 5% criteria for the latter.

(An extended problem) The mass M, of the
mechanical system of Figure 5.67(a) is subjected to
a harmonic forcing term sin wt. Determine the
steady-state response of the system.

Figure 5.67 Vibration absorber of
Review exercise 33.

34

It is desirable to design a vibration absorber to
absorb the steady-state oscillations so that in the
steady state x(#) = 0. To achieve this, a secondary
system is attached as illustrated in Figure 5.67(b).

(a) Show that, with an appropriate choice of M,
and K, the desired objective may be achieved.
(b) What is the corresponding steady-state
motion of the mass M,?
(c) Comment on the practicality of your design.

(An extended problem) The electronic amplifier
of Figure 5.68 has open-loop transfer function G(s)
with the following characteristics: a low-frequency
gain of 120 dB and simple poles at | MHz, 10 MHz
and 25 MHz. It may be assumed that the amplifier
is ideal, so that KA1 + Kf3) = 1/B, where f3 is

the feedback gain and K the steady-state gain
associated with G(s).

Input

Figure 5.68 Electronic amplifier of Review
exercise 34.

(a) Construct the magnitude versus log frequency
and phase versus log frequency plots (Bode
plots) for the open-loop system.

(b) Determine from the Bode plots whether or
not the system is stable in the case of unity
feedback (that is, B=1).

(c) Determine the value of 8 for marginal stability,
and hence the corresponding value of the
closed-loop low-frequency gain.

(d) Feedback is now applied to the amplifier to
reduce the overall closed-loop gain at low
frequencies to 100 dB. Determine the gain
and phase margin corresponding to this
closed-loop configuration.

(e) Using the given characteristics, express G(s)
in the form

_ K
(1+s7)(1 + s7,)(1 + 573)

G(s)

and hence obtain the input—output transfer
function for the amplifier.

(f) Write down the characteristic equation for the
closed-loop system and, using the Routh—
Hurwitz criterion, reconsider parts (b) and (c).
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6.1

Introduction

In this chapter we focus attention on discrete-(time) processes. With the advent of fast
and cheap digital computers, there has been renewed emphasis on the analysis and
design of digital systems, which represent a major class of engineering systems. The
main thrust of this chapter will be in this direction. However, it is a mistake to believe
that the mathematical basis of this area of work is of such recent vintage. The first
comprehensive text in English dealing with difference equations was The Treatise of
the Calculus of Finite Differences by George Boole and published in 1860. Much of the
early impetus for the finite calculus was due to the need to carry out interpolation and
to approximate derivatives and integrals. Later, numerical methods for the solution of
differential equations were devised, many of which were based on finite difference
methods, involving the approximation of the derivative terms to produce a difference
equation. The underlying idea in each case so far discussed is some form of approx-
imation of an underlying continuous function or continuous-time process. There are
situations, however, where it is more appropriate to propose a discrete-time model from
the start.

Digital systems operate on digital signals, which are usually generated by sampling
a continuous-time signal, that is a signal defined for every instant of a possibly infinite
time interval. The sampling process generates a discrete-time signal, defined only at
the instants when sampling takes place so that a digital sequence is generated. After
processing by a computer, the output digital signal may be used to construct a new
continuous-time signal, perhaps by the use of a zero-order hold device, and this in
turn might be used to control a plant or process. Digital signal processing devices
have made a major impact in many areas of engineering, as well as in the home. For
example, compact disc players, which operate using digital technology, offer such
a significant improvement in reproduction quality that recent years have seen them
rapidly take over from cassette tape players and vinyl record decks. DVD players
are taking over from video players and digital radios are setting the standard for
broadcasting. Both of these are based on digital technology.

We have seen in Chapter 5 that the Laplace transform was a valuable aid in the
analysis of continuous-time systems, and in this chapter we develop the z transform,
which will perform the same task for discrete-time systems. We introduce the transform in
connection with the solution of difference equations, and later we show how difference
equations arise as discrete-time system models.

The chapter includes two engineering applications. The first is on the design of
digital filters, and highlights one of the major applications of transform methods as
a design tool. It may be expected that whenever sampling is involved, performance will
improve as sampling rate is increased. Engineers have found that this is not the full
story, and the second application deals with some of the problems encountered. This
leads on to an introduction to the unifying concept of the & transform, which brings
together the theories of the Laplace and z transforms.
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The z transform

6.2.1

Since z transforms relate to sequences, we first review the notation associated with
sequences, which were considered in more detail in Chapter 7 of Modern Engineering
Mathematics. A finite sequence {x;}, is an ordered set of n + 1 real or complex
numbers:

{xk}g = {xm Xis Xps ovvs xn}

Note that the set of numbers is ordered so that position in the sequence is important.
The position is identified by the position index k, where £ is an integer. If the number
of elements in the set is infinite then this leads to the infinite sequence

{xk}: = {x05 Xps Xoy oo }

When dealing with sampled functions of time ¢, it is necessary to have a means of
allowing for # < 0. To do this, we allow the sequence of numbers to extend to infinity
on both sides of the initial position x,, and write

{xk}io = { s s Xgy Xopy Xy Xy Xy -t }
Sequences {x,}”. for which x, = 0 (k < 0) are called causal sequences, by analogy
with continuous-time causal functions f(#)H(#) defined in Section 5.2.1 as
0 (t<0)

HH(t) =
JOHD {f(t) (1=0)

While for some finite sequences it is possible to specify the sequence by listing all the
elements of the set, it is normally the case that a sequence is specified by giving a
formula for its general element x,.

Definition and notation

The z transform of a sequence {x;}”. is defined in general as

Xk
k
f=—oo Z

o = X(2) = (6.1)

whenever the sum exists and where z is a complex variable, as yet undefined.

The process of taking the z transform of a sequence thus produces a function
of a complex variable z, whose form depends upon the sequence itself. The symbol
% denotes the z-transform operator; when it operates on a sequence {x,} it trans-
forms the latter into the function X(z) of the complex variable z. It is usual to refer
to {x,}, X(z) as a z-transform pair, which is sometimes written as {x,} < X(z).
Note the similarity to obtaining the Laplace transform of a function in Section 5.2.1.
We shall return to consider the relationship between Laplace and z transforms in
Section 6.7.
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Example 6.1

Solution

For sequences {x,}”. that are causal, that is

=0 (k<0)
the z transform given in (6.1) reduces to
Kl =X =Y = 6.2)
k=0 Z

In this chapter we shall be concerned with causal sequences, and so the definition
given in (6.2) will be the one that we shall use henceforth. We shall therefore from now
on take {x,} to denote {x;},; . Non-causal sequences, however, are of importance, and
arise particularly in the field of digital image processing, among others.

Determine the z transform of the sequence
=% *k=0

From the definition (6.2),
kv _ - 2_= - Z)k
272y =Y % =32

which we recognize as a geometric series, with common ratio » = 2/z between successive
terms. The series thus converges for |z| > 2, when

i(z)k - lim L= 2/2)" 1
=| =lm =
z ke 1 =2/z 1-2/z

k=0
leading to
F2' === (2] > 2) (6.3)
z=2
so that
{x,} ={2"}
X(z) = 22—
(2) )

is an example of a z-transform pair.

From Example 6.1, we see that the z transform of the sequence {2} exists provided
that we restrict the complex variable z so that it lies outside the circle |z| = 2 in the
z plane. From another point of view, the function

X2 == (z1>2)
z-2
may be thought of as a generating function for the sequence {2}, in the sense that the
coefficient of z™* in the expansion of X(z) in powers of 1/z generates the kth term of

the sequence {2*}. This can easily be verified, since
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Example 6.2

Solution

z __1 :(1_2)'1
z=2 1-2/z z

and, since |z| > 2, we can expand this as

-1 2 k
(1—2) =1+g+(2)+...+(2)+...
z z z z

and we see that the coefficient of z™ is indeed 2, as expected.
We can generalize the result (6.3) in an obvious way to determine Z{a*}, the z trans-
form of the sequence {a‘}, where a is a real or complex constant. At once

#a't =Y % = —— (21 >al)

il l-alz
so that
#{d} === (z] > lal) (6.4)
z—a
Show that
I\k 2z 1
—_— = > -
HD'Y =50 (21> D)

Taking a = =3 in (6.4), we have

= (=)
_Iyky = LI z > 1
Z{(-D' ; o (1>
so that
N3 22 1
HDY =50 (21> D)

Further z-transform pairs can be obtained from (6.4) by formally differentiating
with respect to @, which for the moment we regard as a parameter. This gives

dogr by _ g )dd" =£(L)
da&w{a} gz){da} da\z-a

leading to

z

Flka '} =

= (Iz] > lal) (6.5)
zZ—d

In the particular case @ = 1 this gives

z

F{k} =

(z1 =1 (6.6)

z—
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Example 6.3

Solution

Find the z transform of the sequence

{2k} =10,2,4,6,8, ...}

From (6.6),

%{k}=£{0,1,2,3,...}:2%: i

Using the definition (6.1),

2.4 6.8 Sk
£{0,2,4,6,8,...}—0+—+—2+—3+—4+...—22;

z z' z z s
so that

2z
(z-1)

F{2k} =2%{k} = 6.7)

Example 6.3 demonstrates the ‘linearity’ property of the z transform, which we shall
consider further in Section 6.3.1.
A sequence of particular importance is the unit pulse or impulse sequence

{Sk}:{l}:{laosoﬂ}
It follows directly from the definition (6.4) that
(5 =1 (6.8)

In MATLAB, using the Symbolic Math Toolbox, the z-transform of the sequence
{x,} is obtained by entering the commands

syms kK z
ztrans (xy)

As for Laplace transforms (see Section 5.2.2), the answer may be simplified using
the command simple (ans) and reformatted using the pretty command. Con-
sidering the sequence {x,} = {2"} of Example 6.1, the commands

syms kK z
ztrans (27°k)

return
ans=1/2*z/(1/2*z-1)

Entering the command
simple (ans)

returns

ans=z/(z-2)
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6.2.2

Figure 6.1 Sampling
of a continuous-time
signal.

Example 6.4

Solution

z transforms can be performed in MAPLE using the ztrans function; so the
commands:
ztrans (2°k, k, z) ;
simplify (%) ;

return

Z—2

Sampling: a first introduction

Sequences are often generated in engineering applications through the sampling of
continuous-time signals, described by functions f(#) of a continuous-time variable 7.
Here we shall not discuss the means by which a signal is sampled, but merely suppose
this to be possible in idealized form.

SKT) A y=f)
l"
L4
L4
’
’
4
’
L4
,
[ -
O T 2T 3T 4T 5T 6T kT !

Figure 6.1 illustrates the idealized sampling process in which a continuous-time
signal f{(7) is sampled instantaneously and perfectly at uniform intervals 7, the sampling
interval. The idealized sampling process generates the sequence

(D)} = {/(0), D), f2T), ... f(nT), ... }

Using the definition (6.1), we can take the z transform of the sequence (6.9) to give

(6.9)

gy =y LD (6.10)
=0

whenever the series converges. This idea is simply demonstrated by an example.

The signal f{f) = e"H(¢) is sampled at intervals 7. What is the z transform of the resulting
sequence of samples?

Sampling the causal function f{(¢) generates the sequence

UKD} = {A0), AT), fC2T), ... f(nT), ... }

_ - 2T .-3T -nT
={l,e, e, e, ...,e", ...}
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Then, using (6.1),

=)

- oo

oo kT
FLKT)} =Y =
k=0 Z

k=0

so that

#e = —= (z] > €7) (6.11)

It is important to note in Example 6.4 that the region of convergence depends on the
sampling interval 7.

In MATLAB the commands
syms k T z

ztrans (exp (-k*T) ) ;

pretty (simple (ans))
return

ans = z/(z-exp(-T))
which confirms (6.11).

In MAPLE the commands:
ztrans (exp (-k*T) ,k, z) ;
simplify (%) ;

return
T
ze
ze -1

6.2.3 Exercises
1 Calculate the z transform of the following sequences, 2  The continuous-time signal f(¢) = e, where @ is
stating the region of convergence in each case: a real constant, is sampled when # = 0 at intervals

T. Write down the general term of the sequence

@ {(‘_1‘ ¥ (b) {3 © {2 of samples, and calculate the z transform of the
(d) {—(2k)} (e) {3k} sequence.

Properties of the z transform

In this section we establish the basic properties of the z transform that will enable us to
develop further z-transform pairs, without having to compute them directly using the
definition.
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6.3.1

Example 6.5

Solution

The linearity property

As for Laplace transforms, a fundamental property of the z transform is its linearity,
which may be stated as follows.

If {x,} and {y,} are sequences having z transforms X(z) and Y(z) respectively and if
o and J3 are any constants, real or complex, then

Hlox, + By} = aZ{x,} + BE{y} = aX(2) + BY(2) (6.12)

As a consequence of this property, we say that the z-transform operator & is a linear
operator. A proof of the property follows readily from the definition (6.4), since

oo

F{ox,+ By} = 2axk+'ByA ZX— i
z

k=0 z

|‘<
P,N

= aX(z) + BY(z)

The region of existence of the z transform, in the z plane, of the linear sum will be the
intersection of the regions of existence (that is, the region common to both) of the
individual z transforms X(z) and Y(z).

The continuous-time function f(#) = cos wt H(t), @ a constant, is sampled in the ideal-
ized sense at intervals 7'to generate the sequence {cos kwT}. Determine the z transform
of the sequence.

Using the result cos kT = 1 (e”“" + ¢7*“") and the linearity property, we have
F{cos koT} = Z{1 "7+ LT} = L F T} + L F{eT)
Using (6.7) and noting that |[e/*“"| = [ **T| = | gives

z

1 1
F{coskwT} =5 2 —ar (lz| > 1)
z—¢e z—¢
_1z(z- e+ z(z= )
@ ez 1

leading to the z-transform pair

z(z—cos wT)
22 =2zcos wT+ 1

F{cos koT} = (Jz] > 1) (6.13)

In a similar manner to Example 6.5, we can verify the z-transform pair

z sin T
2 —2zcos T+ 1

F{sinkoT?} = (z| > 1) (6.14)

and this is left as an exercise for the reader (see Exercise 3).
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6.3.2

Check that in MATLAB the commands

syms k z @ T
ztrans (cos (K*®W*T) ) ;
pretty (simple (ans))

return the transform given in (6.13) and that the MAPLE commands:

ztrans (cos (kK*®*T) ,k, z) ;

simplify (%) ;

do likewise.

The first shift property (delaying)

In this and the next section we introduce two properties relating the z transform of a
sequence to the z transform of a shifted version of the same sequence. In this section
we consider a delayed version of the sequence {x,}, denoted by {y,}, with

Ve = Xk,

Here k, is the number of steps in the delay; for example, if k, = 2 then y, = x,_,,
so that

Yo=X2, V1 =Xy =X V3=X

and so on. Thus the sequence {y,} is simply the sequence {x,} moved backward, or
delayed, by two steps. From the definition (6.1),

B I T I
z{yk} - sz - 2 Zk - Zp+k0
k=0 k=0 p=h,
where we have written p = k — k. If {x;} is a causal sequence, so that x,= 0 (p < 0),
then

oo

_ Y 1% 1
Lt = z Ptk zky z P zkoX(Z)
p=0

=0

where X(z) is the z transform of {x,}.
We therefore have the result

Flxis} = o Fln) (6.15)

which is referred to as the first shift property of z transforms.

If {x,} represents the sampled form, with uniform sampling interval 7, of the con-
tinuous signal x(¢) then {x;, } represents the sampled form of the continuous signal
x(t — k,T) which, as illustrated in Figure 6.2, is the signal x(¢) delayed by a multiple
k, of the sampling interval 7. The reader will find it of interest to compare this result
with the results for the Laplace transforms of integrals (5.16).
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Figure 6.2
Sequence and its
shifted form.

Example 6.6

Solution

6.3.3

{xi) A {xe—x,) 4

-
-
-

O T 2r3T nT t

The causal sequence {x,} is generated by

=3 (k=0)

Determine the z transform of the shifted sequence {x,,}.

By the first shift property,
_ 1 1k
H{xiat = - F{(5)'}
z

which, on using (6.4), gives

Floah =L E (z1>h) =L
z72z-1 z(2z-1)

z Z_E

--
-
-

koT (ko +m)T

2

(Iz1 >3

~yY

We can confirm this result by direct use of the definition (6.1). From this, and the fact

that {x,} is a causal sequence,

{xk—Z} = {x—29 X_15 X X5 v vt } = {05 On 1

Thus,

1 1
EMVE

Hxiat =040+ L+
z zo 4z

1
= 5= (z1>)

1
1+——+—2+...)

4z

(z1>3)

The second shift property (advancing)

In this section we seek a relationship between the z transform of an advanced version
of a sequence and that of the original sequence. First we consider a single-step
advance. If {y,} is the single-step advanced version of the sequence {x,} then {y,} is

generated by

W=xq (£=0)
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6.3.4

Then

and putting p =k + 1 gives

Hvit = Zi;-cf, = Z[iﬁf—xo] = zX(z) - zx,

p=1 p=0

where X(z) is the z transform of {x,}.
We therefore have the result

F{ Xy} = 2X(2) — zx, (6.16)

In a similar manner it is readily shown that for a two-step advanced sequence {x,,,}

Fix,.,) = 2°X(2) — z°x, — 2, (6.17)
Note the similarity in structure between (6.16) and (6.17) on the one hand and those for
the Laplace transforms of first and second derivatives (Section 5.3.1). In general, it is
readily proved by induction that for a kj-step advanced sequence {xj }

ko—1

F{xe,} = 2°X(2) = Y x,20

n=0

(6.18)

In Section 6.5.2 we shall use these results to solve difference equations.

Some further properties

In this section we shall state some further useful properties of the z transform, leaving
their verification to the reader as Exercises 9 and 10.

(i) Multiplication by a*

If Z{x,} = X(z) then for a constant a

F{a*x,) = X(a'z) (6.19)
(ii) Multiplication by k"
If Z{x;} = X(z) then for a positive integer n
F(H'%,} = (—zdi)"X(z) (6.20)
Z
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Note that in (6.20) the operator —z d/dz means ‘first differentiate with respect
to z and then multiply by —z’. Raising to the power of » means ‘repeat the
operation n times’.

(iii) Initial-value theorem

If {x,} is a sequence with z transform X(z) then the initial-value theorem states
that

li_r)n X(2) = x, 6.21)
(iv) Final-value theorem

If {x;} is a sequence with z transform X(z) then the final-value theorem states
that

lim x, = lim(1 -z ) X(2) (6.22)

k— oo z—1

provided that the poles of (1 — z7")X(z) are inside the unit circle.

6.3.5 Table of z transforms

Figure 6.3 A short
table of z transforms.

It is appropriate at this stage to draw together the results proved so far for easy access.
This is done in the form of a table in Figure 6.3.

{x3 (k=0) F{x,} Region of existence
i = L (k=0 1 All z
0 (k>0)
(unit pulse sequence)
%, = 1 (unit step sequence) _Zi |z| >1
o
X = a (a constant) La |z] > |a]
o
%=k (;1)2 lz]>1
o
X, = ka"* (a constant) ( g . |z] > a
zZ—a
%= e (T constant) 2 |z] >eT
z—¢e’
X = cos kT (w, T constants) _z(z=cos o) lz| > 1

22— 2zcos @T+ 1

X = sinkaT (w, T constants) __zsinoll lz] > 1
22 —2zcos T+ 1
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6.3.6 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

3 Use the method of Example 6.5 to confirm (6.14), 6  Determine Z{(3)"}. Using (6.6), obtain the z
namely transform of the sequence {k(% ).
' - - sin @ 7  Show that for a constant
Hsinkolt = ——— . zsinh
z"=2zcos wT+ 1 (a) Z{sinhka} = 7—————
z"=2zcosha+1
where w and T are constants. 2 _ - cosha
(b) Zfcoshko} = -————
4 Use the first shift property to calculate the z Z-2zcosha+1
transform of the sequence {y,}, with 8  Sequences are generated by sampling a causal
continuous-time signal u(?) (t = 0) at uniform
V= {0 (k<3) intervals 7. Write down an expression for u,, the
Xy (K=3) general term of the sequence, and calculate the
corresponding z transform when u(?) is
where {x;} is causal and x; = (4 )*. Confirm your B )
result by direct evaluation of #{y,} using the (@) e (b) sint (c) cos2t
definition of the z transform. 9  Prove the initial- and final-value theorems given in
(6.21) and (6.22).

5  Determine the z transforms of the sequences

@ {(-3)}  (b) {coskm}

m The inverse z transform

In this section we consider the problem of recovering a causal sequence {x,} from
knowledge of its z transform X(z). As we shall see, the work on the inversion of Laplace
transforms in Section 5.2.7 will prove a valuable asset for this task.

10  Prove the multiplication properties given in (6.19)
and (6.20).

Formally the symbol & '[X(z)] denotes a causal sequence {x,} whose z transform is
X(z); that is,

if #{x,} = X(z) then {x,}=%"[X(2)]

This correspondence between X(z) and {x,} is called the inverse z transformation,
{x,} being the inverse transform of X(z), and Z ' being referred to as the inverse
z-transform operator.

As for the Laplace transforms in Section 5.2.8, the most obvious way of finding the
inverse transform of X(z) is to make use of a table of transforms such as that given in
Figure 6.3. Sometimes it is possible to write down the inverse transform directly from
the table, but more often than not it is first necessary to carry out some algebraic manip-
ulation on X(z). In particular, we frequently need to determine the inverse transform of
a rational expression of the form P(z)/Q(z), where P(z) and Q(z) are polynomials in z.
In such cases the procedure, as for Laplace transforms, is first to resolve the expression,
or a revised form of the expression, into partial fractions and then to use the table of
transforms. We shall now illustrate the approach through some examples.
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6.4.1

Example 6.7

Solution

Example 6.8

Solution

Inverse techniques
Find

=

From Figure 6.3, we see that z/(z — 2) is a special case of the transform z/(z — a), with
a =2. Thus

T _Z | _
* [z—z} = {2}
Find

1 z
z [(z— l)(z—2)}

Guided by our work on Laplace transforms, we might attempt to resolve

_ zZ
& =they

into partial fractions. This approach does produce the correct result, as we shall show
later. However, we notice that most of the entries in Figure 6.3 contain a factor z in the
numerator of the transform. We therefore resolve

Yoy 1
z (z=-1)(z=-2)

into partial fractions, as

Y _ 1 __1

z z=2 z-1
so that

Y(z) = —%2— - %2

@ =57

Then using the result #'[z/(z — a)] = {a"} together with the linearity property, we have

r'ren =2 (- )7 ()2 ()
=20 - {1 (k=0)

so that

1 z _ k_ -
gzr[m}_{z 1Y (k=0) (6.23)



www.semeng.ir

496 THE Z TRANSFORM

Suppose that in Example 6.8 we had not thought so far ahead and we had simply
resolved Y(z), rather than Y(z)/z, into partial fractions. Would the result be the same?
The answer of course is ‘yes’, as we shall now show. Resolving

_ zZ
Sy v

into partial fractions gives

2 1
Y(z) = =— - —
(2) z=2 z-1

which may be written as

y(z):l_z-_z__l_z_
zz=2 zz-1
Since
g71k22 :2gr1( z )22{2/(}
z=2 z=2

it follows from the first shift property (6.15) that
g [L22] _ {{2 27 k>0

122-2 0 (k=0)
Similarly,
[l _z ] =+{1“} = {1} (k>0)
zz-1 0 (k=0)

Combining these last two results, we have

a! [Y(z)] = a! P_ iZ_J _g! P_ _LJ

zz=-2 zz-1

:{{2"—1} (k> 0)
0 (k = 0)

which, as expected, is in agreement with the answer obtained in Example 6.8.

We can see that adopting this latter approach, while producing the correct result,
involved extra effort in the use of a shift theorem. When possible, we avoid this by
‘extracting’ the factor z as in Example 6.8, but of course this is not always possible,
and recourse may be made to the shift property, as Example 6.9 illustrates.

The inverse z-transform {x,} of X(z) is returned in MATLAB using the command

iztrans (X(z),k)

[Note: The command iztrans (X (z)) by itself returns the inverse transform

expressed in terms of # rather than £.]

For the z-transform in Example 6.8 the MATLAB command

iztrans(z/((z-1)*(z-2)),k)
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returns
ans=-1+2"k

as required.
The inverse z-transform can be performed in MAPLE using the invztrans
function, so that the command

invztrans (z/ (z"2-3*z+2)z,Kk) ;
also returns the answer
2k — 1

Example 6.9  Find
2z+1
e
[(z +1)(z- 3)}
Solution In this case there is no factor z available in the numerator, and so we must resolve

Y(z) = _2z+1
(z+1)(z=-3)

into partial fractions, giving

1
z+1

[N}
I—
E

1
H3T

Y(z) = 41'1

INTE
N =
[\
+
—_—
+
I
[N}
[\N]
|
w

Since

z+1

Q’I[L}ﬂ(—l)k} (k=0)
y‘[—-z-}z{#} (k=0)
z-3

it follows from the first shift property (6.15) that

o [1_ L} _ {{(—1)“} (k > 0)
zz+1 0 (k=0)

o [1_ L} _ {3"‘1 (k> 0)
zz-3 0 (k=0)

Then, from the linearity property,

! gLz | 1|l 2
z [Y(z)]—4£‘f |:ZZ+1:|+4£ZF [22—3}
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Example 6.10

Solution

giving
gt 2241 ={{i<—1)""+§3"“} (k> 0)
G+ 1)(z-3) 0 (k= 0)
In MATLAB the command
iztrans((2*z+1)/((z+1)*(z-3)),k)

returns
ans=-1/3*charfcn[0] (k)-1/4*(-1)"k+7/12*3"k
[Note: The charfen function is the characteristic function of the set 4, and is defined
to be
1 if kis in 4
0 if k£ is not in 4
Thus charfen [0](k) = 1 if £ =0 and 0 otherwise. ]

It is left as an exercise to confirm that the answer provided using MATLAB
concurs with the calculated answer.

charfen[A4](k) = {

It is often the case that the rational function P(z)/Q(z) to be inverted has a quadratic
term in the denominator. Unfortunately, in this case there is nothing resembling the
first shift theorem of the Laplace transform which, as we saw in Section 5.2.9, proved
so useful in similar circumstances. Looking at Figure 6.3, the only two transforms with
quadratic terms in the denominator are those associated with the sequences {cos kwT}
and {sin k@T}. In practice these prove difficult to apply in the inverse form, and a
“first principles’ approach is more appropriate. We illustrate this with two examples,
demonstrating that all that is really required is the ability to handle complex numbers
at the stage of resolution into partial fractions.

Invert the z transform

z

2 2
z +a

Y(z) =

where a is a real constant.

In view of the factor z in the numerator, we resolve Y(z)/z into partial fractions, giving

Y(2) _ 1 _ 1 11 11

z 22+a2_(z+ja)(z—ja) _j2a (z—ja) j2a(z+]ja)

That is

Y(z)=.—1—( oz )

j2a\z-ja z+ja
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Example 6.11

Solution

Using the result % '[z/(z — a)] = {a*}, we have

ngl[ = } = {(ja)'} = {j'a"}
z—]a

! [—} = {(mja)'} = {(=))"a"}

z+ja
From the relation ¢!’ = cos @ + j sin 8, we have
: jn/2 : —jn/2
j=e™, —j=eT

so that

z—ja

! [ Z. } = {a" (™)'} = {a"¢"™} = {a"(cos tkm + jsin 1km)}

7! [—fj——} = {a"(cos Lkm - j sin 1km)}
z+ja

The linearity property then gives
k
F'Y@e)] = {j—;;(cos km + jsin 1k — cos kT + jsin %kﬂ:)}

= {d""sin Tkm}

Whilst MATLAB or MAPLE may be used to obtain the inverse z transform when
complex partial fractions are involved, it is difficult to convert results into a simple
form, the difficult step being that of expressing complex exponentials in terms of
trigonometric functions.

Invert
Y(z) = 2;
z'—z+1

The denominator of the transform may be factorized as

2 e -3
z —z+1z(z—%—}¢—)(z—%+]l——)

2 2

In exponential form we have § +ji3 = ¢, so the denominator may be written as

Z—z+1=(z-e™)(z-eT?)
We then have

Y(z) _ 1

z (z=e™)(z=eT)

which can be resolved into partial fractions as

Y(z) _ 1 1 1 1

i3 —jn/3 in/3 + —in/3 in/3 —in/3
z e’ T —e z—¢ e -e Tz—¢
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Noting that sin 8 = (e!? — €7%)/j2, this reduces to

Y(z) _ 1 z _ 1 z
T PN L7 I PRILE
z J2sinsmwz—e j2sinsmwz—e
1z 1 =z
j3z-e™ j3z-e

Using the result % '[z/(z — a)] = {d"}, this gives

F'YE)] = J...l..?_) (o173 _ gy _ {2\§ sin %kn}
v

We conclude this section with two further examples, illustrating the inversion
technique applied to frequently occurring transform types.

Example 6.12  Find the sequence whose z transform is

2 +27+ 1
JE

F(z) =

Solution  F(z) is unlike any z transform treated so far in the examples. However, it is readily
expanded in a power series in z”' as

Foy=1+2+1
z z
Using (6.4), it is then apparent that

FNF1={f=11,2,0,1,0,0,...}

The MATLAB command
iztrans ((z"3+2*z"2+1) /273, k)
returns
charfcen[0](k)+2*charfcn([1l] (k) +charfcn([3]1(k)
which corresponds to the sequence
{1,2,0,1,0,0,...}

Example 6.13 Find Z'[G(z)] where
—aT
G(z) = z(l-¢ ]T
(z=1)(z-€")

where a and T are positive constants.

Solution  Resolving into partial fractions,
Gz _ 1 1

z z—1 z-e
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11

12

giving
1 1

G(Z) = -aT
z—=1 z-e

Using the result & '[z/(z — a)] = {d"}, we have

FNGEN={1~ ")} (k=0)
In this particular example G(z) is the z transform of a sequence derived by sampling the
continuous-time signal

fi=1-c*

at intervals 7.

The MATLAB commands

syms k z a T
iztrans ((z* (l-exp(-a*T)) )/ ((z-1)*(z-exp(-a*T))),k);
pretty (simple (ans) )

return
ans=1-exp (-aT) "

In MAPLE the command
invztrans((z*(l-exp(-aT)))/((z-1)*(z-exp(-aT))),z,Kk);

returns

6.4.2 Exercises

Confirm your answers using MATLAB or MAPLE whenever possible.

Invert the following z transforms. Give the general ) z 27517z
term of the sequence in each case. 2 2/3z+4 ) (z-1)*(z=3)
z V4 Y4
=z b Z 2
(2) z—1 (®) z+1 (©) z—% (h) +
W@ 2 © z ) z (z=1)(z-z+ 1)
3z+1 z—] z+j|2 . . .
| o 13 Find Z'[Y(z)] when Y(2) is given by
(@ — =
z—1 z+1 (a) l+_2_7 (b) 1_,_.3_2__2_9
By first resolving Y(z)/z into partial fractions, find z =z z =z
% '[Y(z)] when Y(z) is given by (© 32 +24+55° (@) Lz, 3z
(a) ———— (b) s z 2 3z+1
(z=1)(z+2) 2z+1)(z-3) 5 ) 5
) 2246z +5z+1 £ 2z =Tz+7
©) —2i—— () —2E— (©) 2224 1) (z—-1)%(z-2)
(2z+D@E-1) 27 +2-1 = e
() 52— [Hint: £+ 1= (z+j)(z))] () =22

241 23242
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m Discrete-time systems and difference equations

6.5.1

Figure 6.4 Discrete-
time signal processing
system.

In Chapter 5 the Laplace transform technique was examined, first as a method for
solving differential equations, then as a way of characterizing a continuous-time system.
In fact, much could be deduced concerning the behaviour of the system and its pro-
perties by examining its transform-domain representation, without looking for specific
time-domain responses at all. In this section we shall discuss the idea of a linear
discrete-time system and its model, a difference equation. Later we shall see that the
z transform plays an analogous role to the Laplace transform for such systems, by
providing a transform-domain representation of the system.

Difference equations

First we illustrate the motivation for studying difference equations by means of an
example.

Suppose that a sequence of observations {x,} is being recorded and we receive
observation x, at (time) step or index k. We might attempt to process (for example,
smooth or filter) this sequence of observations {x,} using the discrete-time feedback
system illustrated in Figure 6.4. At time step k the observation x, enters the system as
an input, and, after combination with the ‘feedback’ signal at the summing junction S,
proceeds to the block labelled D. This block is a unit delay block, and its function is to
hold its input signal until the ‘clock’ advances one step, to step k£ + 1. At this time the
input signal is passed without alteration to become the signal y,,,, the (kK + 1)th member
of the output sequence {y,}. At the same time this signal is fed back through a scaling
block of amplitude ¢ to the summing junction S. This process is instantaneous, and at
S the feedback signal is subtracted from the next input observation x,,, to provide the
next input to the delay block D. The process then repeats at each ‘clock’ step.

To analyse the system, let {r,} denote the sequence of input signals to D; then,
owing to the delay action of D, we have

Vet = T

Also, owing to the feedback action,
Te =X — Q)

where « is the feedback gain. Combining the two expressions gives
Viet =X = Oy

or

Vit T O = X (6.24)

Equation (6.24) is an example of a first-order difference equation, and it relates adjacent
members of the sequence {y,} to each other and to the input sequence {x,}.
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Example 6.14

Figure 6.5 Thesystem
for Example 6.14.

Solution

A solution of the difference equation (6.24) is a formula for y,, the general term of
the output sequence {y,}, and this will depend on both & and the input sequence {x,} as
well as, in this case, the feedback gain c.

Find a difference equation to represent the system shown in Figure 6.5, having input
and output sequences {x,} and {y,} respectively, where D is the unit delay block and a
and b are constant feedback gains.

Introducing intermediate signal sequences {r;} and {v,} as shown in Figure 6.5, at each
step the outputs of the delay blocks are

Vier1 = Uy (6.25)

Vi =1 (6.26)
and at the summing junction

n=Xx—av, + by, 6.27)
From (6.25),

Y2 = Ukt

which on using (6.26) gives
Vi =T

Substituting for 7, from (6.27) then gives
Vi =X — avi + by,

which on using (6.25) becomes
Vw2 =X — @pr + byy

Rearranging this gives

Vie2 T @ — by =x; (6.28)

as the difference equation representing the system.

The difference equation (6.28) is an example of a second-order linear constant-
coefficient difference equation, and there are strong similarities between this and a second-
order linear constant-coefficient differential equation. It is of second order because the
term involving the greatest shift of the {y,} sequence is the term in y,.,, implying a shift
of two steps. As demonstrated by Example 6.14, the degree of shift, or the order of the
equation, is closely related to the number of delay blocks in the block diagram.
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6.5.2

Example 6.15

Solution

The solution of difference equations

Difference equations arise in a variety of ways, sometimes from the direct modelling of
systems in discrete time or as an approximation to a differential equation describing the
behaviour of a system modelled as a continuous-time system. We do not discuss this
further here; rather we restrict ourselves to the technique of solution but examples of
applications will be apparent from the exercises. The z-transform method is based upon
the second shift property (Section 6.3.3), and it will quickly emerge as a technique
almost identical to the Laplace transform method for ordinary differential equations
introduced in Section 5.3.3. We shall introduce the method by means of an example.

If in Example 6.14, a = 1, b = 2 and the input sequence {x,} is the unit step sequence
{1}, solve the resulting difference equation (6.28).

Substituting for a, b and {x,} in (6.28) leads to the difference equation

V2t Vin —2n=1 (k=0) (6.29)
Taking z transforms throughout in (6.29) gives

F Ve + Vi — 20 =F{1, 1, 1,...}
which, on using the linearity property and the result Z{1} = z/(z — 1), may be written as

g{ykﬁ} + g{ykﬂ} - Z&P{yk} = Z_Ll
Using (6.16) and (6.17) then gives

[22Y(2) — 2%, — 2] + [2Y(2) — zpy] — 2Y(2) = z—Ll

which on rearranging leads to
(2 +z-2)Y(z) = Z—fi + 2%+ 2(0, + 1) (6.30)

To proceed, we need some further information, namely the first and second terms y, and
y, of the solution sequence {y,}. Without this additional information, we cannot find a
unique solution. As we saw in Section 5.3.3, this compares with the use of the Laplace
transform method to solve second-order differential equations, where the values of the
solution and its first derivative at time # = 0 are required.
Suppose that we know (or are given) that
=0, y=1
Then (6.30) becomes

P +z-2)Y()=z+ =
z—1
or

+2)z-DYz)=z+ ;f-—l
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and solving for Y(z) gives

2
4 4 4

Y(z) = + 5 = > (6.31)
(z+2)(z=1) (z+2)(z-1) (z+2)(z-1)

To obtain the solution sequence {y,}, we must take the inverse transform in (6.31).
Proceeding as in Section 6.4, we resolve Y(z)/z into partial fractions as

Y(z) _ z -
z (z+2)(z-1)

1

1 + 1
(z—l)2 z—1 "z+2

N=TIN]
=11

1
3

and so

Z Z 4

Y(z) =! +2

(z—l)2 z—1 z+2

_2
9

Using the results Z'[z/(z — a)] = {a*} and & '[z/(z — 1)*] = {k} from Figure 6.3, we
obtain

i} = k+2-3=2)"Y (k=0)

as the solution sequence for the difference equation satisfying the conditions y, = 0
and y, = 1.

The method adopted in Example 6.15 is called the z-transform method for solving
linear constant-coefficient difference equations, and is analogous to the Laplace
transform method for solving linear constant-coefficient differential equations.

To conclude this section, two further examples are given to help consolidate under-
standing of the method.

Such difference equations can be solved directly in MAPLE using the rsolve
command. In the current version of the Symbolic Math Toolbox in MATLAB there
appears to be no equivalent command for directly solving a difference equation.
However, as we saw in Section 5.5.5, using the maple command in MATLAB
lets us access MAPLE commands directly. Hence, for the difference equation in
Example 6.15, using the command

maple (‘rsolve ({y (k+2)+y (k+1)-2*y (k)
=1,y(0)=0,y(1)=1},yv(k))")

in MATLAB returns the calculated answer
-2/9*(-2)"k+2/9+1/3*k

In MAPLE difference equations can be solved directly using rsolve, so that the
command

rsolve ({y (k+2)+y (k+1)-2*y (k)=1,y (0)=0,y (1)=1},y (k));

returns
2 _ 22" |k
9 9 3
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Example 6.16  Solve the difference equation
82— OV + =9 (k= 0)
given that y, =1 and y, = 3.

Solution  Taking z transforms
8F Vi) — 6% yin} + i} = 9F{1}

Using (6.16) and (6.17) and the result Z{1} =z/(z — 1) gives
8[22¥(2) — 2%y — 2y,] — 6[zY(2) — zy] + Y(2) = 9_21
z—

which on rearranging leads to

(822 — 62 + 1)Y(2) = 822y, + 82y, — 62, + —2

z—1
We are given that y, =1 and y, = 2, so
2 _ 2 9z
8z°—6z+ 1)V (z) =82z +6z+—1
z—
or
Y(z) _ 8z+6 + 9
z (4z-1)2z=-1) (4z-1)2z-1)(z-1)

3 9
zZ+; 8

= +
(z-PE-3 (E-DE-PiE-1)
Resolving into partial fractions gives
Yo _ 5 4,6 9 . 3

z z—% Z—i z—}‘ z—% z—1
-2 4 3
z—i z—% z—1
and so
Y(Z):_zil_iz_l_,__}_?_
z-% z—3 z-1

Using the result Z'{z/(z — a)} = {d*} from Figure 6.3, we take inverse transforms, to
obtain

(v} = 200" -4 +31 (k=0

as the required solution.

Check that in MATLAB the command

maple (‘rsolve ({8*y (k+2)-6*y (k+1)+y (k)=9,y(0)=1,
y(1)=3/2},y(k))")

returns the calculated answer or alternatively use the command rsolve in MAPLE.
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Example 6.17  Solve the difference equation
Vit 20=0 (k= 0)

given that y,=1 and y, = 2.

Solution  Taking z transforms, we have
[22Y(z) — 2%y — 21 ] + 2Y(2) = 0
and substituting the given values of y, and y, gives
V() -z - 22+ 2Y(z) =0
or
EZ+2)Y(2)=z"+ 2z
Resolving Y(z)/z into partial fractions gives

Y(z) _z+2 _ z4 2
z  Z4+2  (z+j2)(z-]{2)

Following the approach adopted in Example 6.13, we write

_]\2 = \2 ejn/Z, _sz — \2 e in2
re) - Z+ 2 _ (2 - (=i
z (Z _ 2 eJn/Q)(z Jn/2) 7 \2 ej1t/2 - \2 efjn/z
Thus

Y(z) = [(HJ)W—( _J)Z—Z—_Jm}
which on taking inverse transforms gives
k/2 )
{n} = {2 [((1+ye™ - —j)e‘”"”]}

= {2"%(cos lkm +sinlkm)} (k= 0)

as the required solution.

The solution in Example 6.17 was found to be a real-valued sequence, and this
comes as no surprise because the given difference equation and the ‘starting’ values y,
and y, involved only real numbers. This observation provides a useful check on the
algebra when complex partial fractions are involved.
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15

If complex partial fractions are involved then, as was mentioned at the end of Ex-
ample 6.10, it is difficult to simplify answers when determining inverse z transforms
using MATLAB. When such partial fractions arise in the solution of difference
equations use of the command evalc alongside rsolve in MAPLE attempts to
express complex exponentials in terms of trigonometric functions, leading in most

cases to simplified answers.

Considering the difference equation of Example 6.17, using the command

maple (‘rsolve ({y (k+2)+2*y (k) =0,y (0)=1,y (1)

=27(1/2)},y(k)) ")

in MATLAB returns the answer
(AL /2L /23t ) &3 ((=al v 2

whilst using the command

(1/2))"k+(1/2=1/2*1)* (1*2~(1/2)) "k

maple (‘evalc (rsolve ({y (k+2)+2*y (k)=0,y (0)=1,v (1)

=27(1/2)},y(k))) ")

returns the answer

exp(1/2*1log(2)*k)*cos (1/2*k*pi)+exp(l/2*1log(2) *k)

*sin(1/2*k*pi)

Noting that €°® = 2 it is readily seen that this corresponds to the calculated

answer

ki2 1 il
277 (cos; kT + sin; kTr)

6.5.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Find difference equations representing the discrete-
time systems shown in Figure 6.6.

Figure 6.6 The systems for Exercise 14.

Using z-transform methods, solve the following
difference equations:

() Y2 = 2V + =0 subject to y, =0, y; = 1
(b) Ynra = 8yn+1 - 9yn =0 SUbjeCt tOyO = 29)’1 =1
(©) Vi +4y,=0 subject to y,=0,y, =1

(d) 2V = 5Ypn — 3y, =0 subject to y, =3,y =2

Using z-transform methods, solve the following
difference equations:

(@) 62 + Vi — =3 subject to y, =y, =0

(b) Vi — SV + 6y, =5 subject to yy =0, y, =1
(€) Y2 = 5V, + 6y, = (5)" subject to y, =y, =0
(d) Y2 =3y, +3y,=1subjecttoy,=1,y,=0

©) 2y — 3V, — 2y, =6n+ 1 subjectto y, =1,
»n=2
(f) Yo —4y,=3n—5 subjectto yy=y,=0
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17

18

19

A person’s capital at the beginning of, and expenditure
during, a given year k are denoted by C, and E,
respectively, and satisfy the difference equations

Ci = 1.5C,— E,
E,,, = 021G, + 0.5E,

(a) Show that eventually the person’s capital
grows at 20% per annum.

(b) Ifthe capital at the beginning of year 1 is £6000
and the expenditure during year 1 is £3720 then
find the year in which the expenditure is a
minimum and the capital at the beginning of
that year.

The dynamics of a discrete-time system are
determined by the difference equation

Y2 = Sk + OV =1y
Determine the response of the system to the unit
step input
{o (k < 0)
U, =
1 (k=0)
given that y, =y, = 1.
As a first attempt to model the national economy,
it is assumed that the national income /, at year k&
is given by
L,=C+ P+ G,
where C, is the consumer expenditure, P, is private
investment and G, is government expenditure.
It is also assumed that the consumer spending is

proportional to the national income in the previous
year, so that

20

Ci=al_, 0<a<l

It is further assumed that private investment is
proportional to the change in consumer spending
over the previous year, so that

P=b(C,—C.) (0<b=<1)

Show that under these assumptions the national
income /, is determined by the difference equation

Lo = a(l + D)y + ably = Gy

Ifa= % ,b=1, government spending is at a constant
level (that is, G, = G for all k) and [, = 2G,
1, = 3G, show that

L,=2[1+(3)"sin ; kn]G
Discuss what happens as k — oo.
The difference equation for current in a particular
ladder network of N loops is
RlinH + Rl(inﬂ - ln) + RZ(inH - in+2) = 0
O=n=N-2)

where i, is the current in the (# + 1)th loop, and R,
and R, are constant resistors.

(a) Show that this may be written as
inn—2coshaiy, +i,=0 (0<n<N-2)
where

o = cosh™ (1 + &)
2R,

(b) By solving the equation in (a), show that

i = iysinhno—i;sinh(n—1)o

n - (2=n=N)
sinh o

DI CICRIEETESR G characterization

In this section we examine the concept of a discrete-time linear system and its difference
equation model. Ideas developed in Chapter 5 for continuous-time system modelling
will be seen to carry over to discrete-time systems, and we shall see that the z transform
is the key to the understanding of such systems.

6.6.1

z transfer functions

In Section 5.6, when considering continuous-time linear systems modelled by differential
equations, we introduced the concept of the system (Laplace) transfer function. This is a
powerful tool in the description of such systems, since it contains all the information
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on system stability and also provides a method of calculating the response to an
arbitrary input signal using a convolution integral. In the same way, we can identify a
z transfer function for a discrete-time linear time-invariant system modelled by a difference
equation, and we can arrive at results analogous to those of Chapter 5.

Let us consider the general linear constant-coefficient difference equation model for
a linear time-invariant system, with input sequence {u,} and output sequence {y,}. Both
{u,} and {y,} are causal sequences throughout. Such a difference equation model takes
the form

Ay Ykin + Ay Vien-1 + Ay Vin-2 +... 1+ AoV
= bmuk+m + bm—luk+m—l + bm—2uk+m—2 +...+ b()uk (6'32)

where k= 0 and n, m (with n = m) are positive integers and the g, and b, are constants.
The difference equation (6.32) differs in one respect from the examples considered in
Section 6.5 in that the possibility of delayed terms in the input sequence {u,} is also
allowed for. The order of the difference equation is » if a,# 0, and for the system
to be physically realizable, n = m.

Assuming the system to be initially in a quiescent state, we take z transforms
throughout in (6.32) to give

(a,z"+a, z"" +...+a)Y(2) = (b,z" + b, z""'+ ... + by)U(2)

where Y(z) = #{y,} and U(z) = #{u, }. The system discrete or 7 transfer function G(z)
is defined as

Y(z) b,z +b, 2" +... +b,

G(Z) = - n n—1
U(z) a,z +a,z +...ta,

(6.33)

and is normally rearranged (by dividing numerator and denominator by a,) so that the
coefficient of z" in the denominator is 1. In deriving G(z) in this form, we have assumed
that the system was initially in a quiescent state. This assumption is certainly valid for
the system (6.32) if

Vo=n=...=y =0
Uy=u;=...=u, =0
This is not the end of the story, however, and we shall use the term ‘quiescent’ to mean

that no non-zero values are stored on the delay elements before the initial time.
On writing

P(z)=b,z" + b, z""+...+ b,
O@)=az"+a,z""+...+a,
the discrete transfer function may be expressed as
G(z) = £
0(2)

As for the continuous model in Section 5.6.1, the equation O(z) = 0 is called the
characteristic equation of the discrete system, its order, #, determines the order of the
system, and its roots are referred to as the poles of the discrete transfer function. Like-
wise, the roots of P(z) = 0 are referred to as the zeros of the discrete transfer function.
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Example 6.18

Solution

Figure 6.7

(a) The basic second-
order block diagram
substructure; (b) block
diagram representation
of (6.34).

Figure 6.8 (a) The
z-transform domain
basic second-order
block diagram
substructure;

(b) the z-transform
domain block

diagram representation
of (6.34).

Draw a block diagram to represent the system modelled by the difference equation

Vis2 F 3Vt — Vi =ty (6.34)

and find the corresponding z transfer function.

The difference equation may be thought of as a relationship between adjacent members
of the solution sequence {y,}. Thus at each time step k£ we have from (6.34)

Ve =3V Vet U (6.35)

which provides a formula for y,,, involving y,, y,,, and the input u,. The structure shown
in Figure 6.7(a) illustrates the generation of the sequence {y,} from {y,,} using two
delay blocks.

S {yke2) ket {yi}
o—=p o |~

() (b)

We now use (6.35) as a prescription for generating the sequence {y,,,} and arrange
for the correct combination of signals to be formed at each step k at the input summing
junction S of Figure 6.7(a). This leads to the structure shown in Figure 6.7(b), which is
the required block diagram.

We can of course produce a block diagram in the z-transform domain, using a similar
process. Taking the z transform throughout in (6.34), under the assumption of a quiescent
initial state, we obtain

22 Y(z) + 3zY(z) — Y(z) = U(z) (6.36)
or
22 Y(z) = =3zY(2) + Y(2) + Ulz) (6.37)

The representation (6.37) is the transform-domain version of (6.35), and the z-transform
domain basic structure corresponding to the time-domain structure of Figure 6.7(a) is
shown in Figure 6.8(a).

U(z) Y(z)
— ——

S 2y Y Y(2)

(a) (b)

The unit delay blocks, labelled D in Figure 6.7(a), become ‘1/z’ elements in the
z-transform domain diagram, in line with the first shift property (6.15), where a number
k, of delay steps involves multiplication by o,

It is now a simple matter to construct the ‘signal’ transform z?¥(z) from (6.37) and
arrange for it to be available at the input to the summing junction S in Figure 6.8(a).
The resulting block diagram is shown in Figure 6.8(b).
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Example 6.19

Solution

The z transfer function follows at once from (6.36) as

Yiz) _ 1

G(z) = .
Uiz) z+3z-1

(6.38)

A system is specified by its z transfer function

z—1

G(Z)=2—
zZ+3z+2

What is the order n of the system? Can it be implemented using only » delay elements?
[lustrate this.

If {u;} and {y,} denote respectively the input and output sequences to the system
then

G(z) = Y(z) _ _z-1
U(z) Z+3z+2
so that
@*+3z+2)Y(2) = (z - HU(2)

Taking inverse transforms, we obtain the corresponding difference equation model
assuming the system is initially in a quiescent state

Vw2t 3V + 20 =ty — 1y (6.39)

The difference equation (6.39) has a more complex right-hand side than the difference
equation (6.34) considered in Example 6.18. This results from the existence of z
terms in the numerator of the transfer function. By definition, the order of the
difference equation (6.39) is still 2. However, realization of the system with two
delay blocks is not immediately apparent, although this can be achieved, as we shall
now illustrate.

Introduce a new signal sequence {r,} such that

(z*+3z+2)R(z) = U(z) (6.40)

where R(z) = #{r,}. In other words, {r,} is the output of the system having transfer
function 1/(z* + 3z + 2).
Multiplying both sides of (6.40) by z, we obtain

2(z* + 3z + 2)R(z) = zU(z)
or

(z* + 3z + 2)zR(z) = zU(z) (6.41)
Subtracting (6.40) from (6.41) we have

(z2+3z+2)zR(z) — (2> + 3z + 2)R(2) = zU(z) — U(2)
giving

(z*+ 32+ 2)[zR(z) = R(z)] = (z — DHU(2)
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U(z) Z2R(z) zZR(2) R(z)
()

1A 2

(a)

+
{ug) + {ria2l {rie1} {re} ( )Uk}
D D >
2

()

Figure 6.9 The z-transform block diagrams for (a) the system (6.40), (b) the system (6.39), and (c) the time-domain
realization of the system in Example 6.19.

Example 6.20

Solution

Finally, choosing
Y(z) =zR(z) — R(2) (6.42)
(Z*+3z+2)Y(2) = (z- DHU(2)

which is a realization of the given transfer function.

To construct a block diagram realization of the system, we first construct a block
diagram representation of (6.40) as in Figure 6.9(a). We now ‘tap off’ appropriate
signals to generate Y(z) according to (6.42) to construct a block diagram representation
of the specified system. The resulting block diagram is shown in Figure 6.9(b).

In order to implement the system, we must exhibit a physically realizable time-domain
structure, that is one containing only D elements. Clearly, since Figure 6.9(b) contains
only ‘1/z” blocks, we can immediately produce a realizable time-domain structure as
shown in Figure 6.9(c), where, as before, D is the unit delay block.

A system is specified by its z transfer function

z

BT s
Z+032z+0.02

Draw a block diagram to illustrate a time-domain realization of the system. Find a
second structure that also implements the system.

We know that if {u,} = U{z} and Z#{y,} = Y(z) are the z transforms of the input and
output sequences respectively then, by definition,
Y(z) _ z

U(z) 2°+03z+0.02

G(z) = (6.43)
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¥(z) {ved

(a) (b)

Figure 6.10 (a) The z-transform block diagram for the system of Example 6.20; and (b) the time-domain
implementation of (a).

which may be rewritten as
(z*+0.3z+ 0.02)Y(2) = zU(2)

Noting the presence of the factor z on the right-hand side, we follow the procedure of
Example 6.19 and consider the system

(z*+ 0.3z + 0.02)R(z) = U(z) (6.44)
Multiplying both sides by z, we have
(z*+ 0.3z + 0.02)zR(z) = zU(z)

and so, if the output Y(z) = zR(z) is extracted from the block diagram corresponding to
(6.44), we have the block diagram representation of the given system (6.43). This is
illustrated in Figure 6.10(a), with the corresponding time-domain implementation
shown in Figure 6.10(b).

To discover a second form of time-domain implementation, note that

z _ 2 _ 1
Z+032z+0.02 z+02 z+0.1

G(z) =

We may therefore write

Yz) = GV = (z +20 2z +10 1)U(Z)
so that
Y(2) = R\(2) — Ry(2)
where
2
R\(z) = s U(z) (6.452)
1
Ry(z) = o U(z) (6.45b)

From (6.45a), we have

(z + 0.2)R,(z) = 2U(z)
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Figure 6.11 The block
diagrams for (a) the
subsystem (6.45a),

(b) the subsystem
(6.45b), and (c) an
alternative z-transform
block diagram for

the system of
Example 6.20.

6.6.2

which can be represented by the block diagram shown in Figure 6.11(a). Likewise,
(6.45b) may be represented by the block diagram shown in Figure 6.11(b).

Recalling that Y(z) = R,(z) — R,(z), it is clear that the given system can be represented
and then implemented by an obvious coupling of the two subsystems represented by
(6.45a, b). The resulting z-transform block diagram is shown in Figure 6.11(c). The
time-domain version is readily obtained by replacing the ‘1/z” blocks by D and the
transforms U(z) and Y(z) by their corresponding sequences {u,} and { y,} respectively.

The impulse response

In Example 6.20 we saw that two quite different realizations were possible for the
same transfer function G(z), and others are possible. Whichever realization of the
transfer function is chosen, however, when presented with the same input sequence
{u,}, the same output sequence {y,} will be produced. Thus we identify the system as
characterized by its transfer function as the key concept, rather than any particular
implementation. This idea is reinforced when we consider the impulse response sequence
for a discrete-time linear time-invariant system, and its role in convolution sums.
Consider the sequence

(5)=11,0,0,...}

that is, the sequence consisting of a single ‘pulse’ at £ = 0, followed by a train of zeros.
As we saw in Section 6.2.1, the z transform of this sequence is easily found from the
definition (6.1) as

F#(5,) =1 (6.46)

The sequence {J,} is called the impulse sequence, by analogy with the continuous-
time counterpart d(f), the impulse function. The analogy is perhaps clearer on con-
sidering the transformed version (6.46). In continuous-time analysis, using Laplace
transform methods, we observed that Z{d(7)} = 1, and (6.46) shows that the ‘entity’
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Example 6.21

Solution

with z transform equal to unity is the sequence {§,}. It is in fact the property that
Z{0,} = | that makes the impulse sequence of such great importance.

Consider a system with transfer function G(z), so that the z transform Y(z) of the
output sequence { y,} corresponding to an input sequence {u,} with z transform U(z) is

Y(z) = G(2)U(z) (6.47)

If the input sequence {y,} is the impulse sequence {J,} and the system is initially
quiescent, then the output sequence {y; } is called the impulse response of the system.
Hence

Hys 1= Ys(2) = G(2) (6.48)

That is, the z transfer function of the system is the z transform of the impulse response.
Alternatively, we can say that the impulse response of a system is the inverse z trans-
form of the system transfer function. This compares with the definition of the impulse
response for continuous systems given in Section 5.6.3.

Substituting (6.48) into (6.47), we have

Y(2) = Y5(2)U(z) (6.49)

Thus the z transform of the system output in response to any input sequence {u,} is the
product of the transform of the input sequence with the transform of the system impulse
response. The result (6.49) shows the underlying relationship between the concepts of
impulse response and transfer function, and explains why the impulse response (or the
transfer function) is thought of as characterizing a system. In simple terms, if either of
these is known then we have all the information about the system for any analysis we
may wish to do.

Find the impulse response of the system with z transfer function

G(z) = _Z_Z.__
zZ+3z+2
Using (6.48),
Ys(z) = 57— = 2

43242 (z+2)(z+1)
Resolving Ys(z)/z into partial fractions gives

Ys(z) _ 1 __ 1 1
z (z+2)(z+1) z+1 z+2

which on inversion gives the impulse response sequence

z+1 z+2

{Yék}:g{{z i }

={(-D'-(=2)}y (k=0
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Example 6.22

Solution

Since the impulse response of a system is the inverse z transform of its transfer func-
tion G(z) it can be obtained in MATLAB using the command

syms k z
iztrans (G(z), k)

so for the G(z) of Example 6.21

syms k z
iztrans (z/ (z72+3*z+2) ,k)

returns
ans=(-1)"k-(-2)"k
A plot of the impulse response is obtained using the commands
z=tE(“87,1) ¢
G=G(z) ;
impulse (G)

Likewise in MAPLE the command
invztrans (z/ (z"2+3*z+2) ,z,k) ;

returns the same answer
(=1)* = (=2)F%

A system has the impulse response sequence

{3} = {a" - 0.5}

where a > 0 is a real constant. What is the nature of this response when (a) a = 0.4,
(b) a = 1.2? Find the step response of the system in both cases.

Whena=04

{5} = (0.4~ 0.5}

and, since both 0.4* — 0 as k — e and 0.5 — 0 as k — oo, we see that the terms of the
impulse response sequence go to zero as k — co.

On the other hand, when a = 1.2, since (1.2)" — oo as k — oo, we see that in this case
the impulse response sequence terms become unbounded, implying that the system
‘blows up’.

In order to calculate the step response, we first determine the system transfer function
G(z), using (6.48), as

G(z) = Yi(z) = #{d" - 0.5}
giving
z

G(z) = 2 —
() z—a z-0.5

The system step response is the system response to the unit step sequence {4} =
{1, 1, 1, ... } which, from Figure 6.3, has z transform
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6.6.3

F{h} = —=—

z—1

Hence, from (6.46), the step response is determined by

Y(z) = G(2)&{h,} = (_..E._ z )_z__

z—a_z—0.5 z—1
so that
Yo _ 2z
z (z=a)(z-1) (z=-0.5)(z-1)
— a L_ 1 +(_2+ 1 )L
a-1lz—-a z-0.5 l-a/z-1
giving

Y(z)= 4 2 __Z +(—2+ 1)-5—
a-1z-a z-0.5 l-a/z-1

which on taking inverse transforms gives the step response as

a-1 -a

{yk}z{ a ak—(O.S)k+(—2+11 )} (6.50)

Considering the output sequence (6.50), we see that when a = 0.4, since (0.4)° = 0
as k — oo (and (0.5)F — 0 as k — oo), the output sequence terms tend to the constant
value

1
1-04

-2+ = (0.3333

In the case of @ = 1.2, since (1.2)" — oo as k — oo, the output sequence is unbounded,
and again the system ‘blows up’.

Stability

Example 6.22 illustrated the concept of system stability for discrete systems. When
a = 0.4, the impulse response decayed to zero with increasing k, and we observed
that the step response remained bounded (in fact, the terms of the sequence
approached a constant limiting value). However, when a = 1.2, the impulse response
became unbounded, and we observed that the step response also increased without
limit. In fact, as we saw for continuous systems in Section 5.6.3, a linear constant-
coefficient discrete-time system is stable provided that its impulse response goes to zero
as t — oo. As for the continuous case, we can relate this definition to the poles of the
system transfer function

G(z) = L&)
0(2)

As we saw in Section 6.6.1, the system poles are determined as the n roots of its charac-
teristic equation

O@) =az"+a,z""'+...+a,=0 (6.51)
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For instance, in Example 6.19 we considered a system with transfer function

z—1

G(z)=5——7—
zZ +3z+2

having poles determined by z* + 3z + 2 = 0, that is poles at z = —1 and z = —2. Since the
impulse response is the inverse transform of G(z), we expect this system to ‘blow up’
or, rather, be unstable, because its impulse response sequence would be expected to
contain terms of the form (—1)* and (=2)*, neither of which goes to zero as k — oo.
(Note that the term in (=1)* neither blows up nor goes to zero, simply alternating
between +1 and —1; however, (-2)* certainly becomes unbounded as k — .) On
the other hand, in Example 6.20 we encountered a system with transfer function

z

L s
2 +0.32+0.02

having poles determined by
0()=2z"+03z+0.02=(z+0.2)(z+0.1)=0

that is poles at z = —0.2 and z = —0.1. Clearly, this system is stable, since its impulse
response contains terms in (—=0.2)" and (—0.1), both of which go to zero as k — .

Both of these illustrative examples gave rise to characteristic polynomials Q(z)
that were quadratic in form and that had real coefficients. More generally, O(z) = 0
gives rise to a polynomial equation of order n, with real coefficients. From the theory
of polynomial equations, we know that O(z) =0 has n roots ¢, (i =1, 2, ..., n), which
may be real or complex (with complex roots occurring in conjugate pairs).

Hence the characteristic equation may be written in the form

0@ =az—o)z—a) ...(z—a,)=0 (6.52)

The system poles ; (i=1, 2, ..., n) determined by (6.52) may be expressed in the polar
form

a=r% (i=1,2,...,n)

where 6, = 0 or = if ¢ is real. From the interpretation of the impulse response as the
inverse transform of the transfer function G(z) = P(z)/0(z), it follows that the impulse
response sequence of the system will contain terms in

rE ejw‘, s ejw?, U &%
Since, for stability, terms in the impulse response sequence must tend to zero as
k — oo, it follows that a system having characteristic equation Q(z) = 0 will be stable
provided that

<l for i=1,2,...,n

Therefore a linear constant-coefficient discrete-time system with transfer function
G(z) is stable if and only if all the poles of G(z) lie within the unit circle |z] < I in
the complex z plane, as illustrated in Figure 6.12. If one or more poles lie outside
this unit circle then the system will be unstable. If one or more distinct poles lie on
the unit circle |z| = 1, with all the other poles inside, then the system is said to be
marginally stable.
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Figure 6.12 Region of
stability in the z plane.

Example 6.23

Solution

Im (z) A
1

/\< Unit circle |z| =1
Q_Jl -

Which of the following systems, specified by their transfer function G(z), are stable?

1 z =
G(z) = b) G(z) = e e
@oO=Zos © OO © 9T TN

(a)  The single pole is at z =—0.25, so r, = 0.25 < 1, and the system is stable.
(b)  The system poles are determined by
22 —z+05=[z-0.5(1+)]z-0.5(1-7)]=0

giving the poles as the conjugate pair z; = 0.5(1 + j), z, = 0.5(1 —j). The ampli-
tudes », =r, =0.707 < 1, and again the system is stable.

(c)  The system poles are determined by
23 =322 +25z-1=(z-2)[z— 0.5(1 +)][z - 0.5(1 = )]

giving the poles as z, = 2, z, = 0.5(1 +j), z; = 0.5(1 —j), and so their amplitudes
are r, =2, r,=ry=0.707. Since r, > 1, it follows that the system is unstable.

According to our definition, it follows that to prove stability we must show that all
the roots of the characteristic equation

O@)=z"+a,z""'+...+a,=0 (6.53)

lie within the unit circle |z] = 1 (note that for convenience we have arranged for the
coefficient of z" to be unity in (6.53) ). Many mathematical criteria have been developed
to test for this property. One such method, widely used in practice, is the Jury stability
criterion introduced by E. I. Jury in 1963. This procedure gives necessary and suffi-
cient conditions for the polynomial equation (6.53) to have all its roots inside the unit
circle |z| = 1.

The first step in the procedure is to set up a table as in Figure 6.13 using information
from the given polynomial equation (6.53) and where

1 ay by b1 Co  Cp-k
bk = s Cr = s dk = s B
Ay dpi b, by () Cp
o I
to =
ry Ty
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Figure 6.13 Jury
stability table for the
polynomial equation
(6.53).

Example 6.24

Solution

Row z" z"! "2 o "k o z z' 2°
1 1 a, a,., R a, . a, a, a,
2 a, a, a, R a; . a,., a, 1
3 A, = b, b, b, - by - b, b,

4 b, b, b, s byok s b, by

5 A=Icy c c, C . Cprn

6 Cha Ch3 Ch-a cee Cha-k cee Co

7 Ay =d, d, d, - d,

8 d,; d, d,s - dy sy

2n—->5 ATR=Tsy Sy S5 S5

2n—4 S5 S5 Sy So

2n-3 Am=ir " r

2n—-2 r " o

2n—1 A=t

Note that the elements of row 2;j + 2 consist of the elements of row 2j + 1 written in the
reverse order for j =0, 1, 2, ..., n; that is, the elements of the even rows consist of the
elements of the odd rows written in reverse order. Necessary and sufficient conditions
for the polynomial equation (6.53) to have all its roots inside the unit circle |z| =1 are
then given by
H o1)>0, )o-1)=>0

(6.54)
(11) A1 > 0’ AZ > 0’ AS > 09 DY An—Z > 0’ An—l > 0

Show that all the roots of the polynomial equation
Fiz)y=z"+ %zz— iz— ﬁ =0

lie within the unit circle |z| = 1.

The corresponding Jury stability table is shown in Figure 6.14. In this case

(i) F(l)=1+i-1-1>9

3 4 12
YFD) =11+ + - 1y>0
(i) A=2>0, A=(2)’-2>0

144 144

Thus, by the criteria (6.54), all the roots lie within the unit circle. In this case this is
readily confirmed, since the polynomial F(z) may be factorized as

F@) == e+ He+1H)=0

So the roots are z, = 1, z, =—1 and z; = —1.
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Figure 6.14 Jury
stability table for
Example 6.24.

Example 6.25

Figure 6.15 Jury
stability table for
Example 6.25.

Solution

Row 7z 2 7! z°
1 _1 _L
1 1 3 1 12
_L 1 1
2 [ i 3 1
i 1 1
B 1 iz 1 i 1 3
3 A =
1 1l 1o
12 2 7 i
_ 1 _s _ 2
124 16 5
-2 s 143
4 5 16 124
143 2
o
5 A, =
2w
5 124
=0.93678

The Jury stability table may also be used to determine how many roots of the
polynomial equation (6.53) lie outside the unit circle. The number of such roots is
determined by the number of changes in sign in the sequence

I, A, Ay, ..., A

n—1

Show that the polynomial equation
Fz)=z-3z" - }‘z+ % =0

has roots that lie outside the unit circle |z| = 1. Determine how many such roots there are.

Row z? z? z! Z°
1 1 -3 _}‘ %
2 : - -3 1
3 A=1L - 2

4 2 s 2

5 A, = _15_6

The corresponding Jury stability table is shown in Figure 6.15. Hence, in this case

F)=1-3-1+3=22

)'FED)=(1)(1-3+3+3)=3

As F(1) < 0, it follows from (6.54) that the polynomial equation has roots outside the

unit circle |z| = 1. From Figure 6.15, the sequence 1, A, A, is 1, %, —%, and since

there is only one sign change in the sequence, it follows that one root lies outside the

unit circle. Again this is readily confirmed, since F(z) may be factorized as
F2)=(-3)z+3)z-3)=0

showing that there is indeed one root outside the unit circle at z = 3.
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Example 6.26  Consider the discrete-time feedback system of Figure 6.16, for which 7 is the sampling
period and £ > 0 is a constant gain:

(a) Determine the z transform G(z) corresponding to the Laplace transform G(s).

(b) Determine the characteristic equation of the system when 7= 1 and k& = 6 and
show that the discrete-time system is unstable.

(¢) For T'=1 show that the system is stable if and only if 0 < k < 4.33.

(d) Removing the sampler show that the corresponding continuous-time feedback
system is stable for all £ > 0.

Solution (a)  First invert the Laplace transform to give the corresponding time-domain func-
tion /() and then determine the z transform of f(?):

Gs) = —— —k__k
s(s+1) s s+1
() =k — ke’
kz  _kz_ _ _kz(1-¢)

Gyz) =Z{k} — Z{ke™} =

z=1 z_e7  (z-1)(z-¢T)

(b) Withk=6and T=1
-1

Gy(z) = _QU__G_ZZ:_

(z=1)(z-¢")

The closed loop transfer function is
Gy(2)
1+ Gy(2)

giving the characteristic equation

1+Gyz)=0as(z—1)z-e)+6(l—ehz=0
or

224+z[6(1 —eH)—(1+eH]+e'=0
which reduces to

z7+2.324z+0.368 =0

The roots of this characteristic equation are z, = —0.171 and z, = —2.153. Since
one of the roots lies outside the unit circle | z| = 1 the system is unstable.

Figure 6.16
Discrete-time system ‘ |
of Example 6.26.

s
+ U 3 Sampler s(s+1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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6.6.4

(c) For T=1 and general gain k > 0 the characteristic equation of the system is
F@)=Gz-Diz-eY+k(1-€")z=0
which reduces to
F(z) =z*+(0.632k — 1.368)z + 0.368 = 0
By Jury’s procedure conditions for stability are:

F(1)= 1+ (0.632k — 1.368) + 0.368 > 0 since k > 0
2.736

(-1)F(=1) = 2736 ~ 0.632k > 0 provided k < 520 = 4.3
A= ‘ 1 0.368‘ -
0.568 1

Thus F(1) > 0, (-1)*)F(-=1) > 0 and A, > 0 and system stable if and only if & < 4.33.

(d) In the absence of the sampler the characteristic equation of the continuous-time
feedback system is 1 + G(s) = 0, which reduces to

S+s+k=0

All the roots are in the negative half of the s-plane, and the system is stable, for
all k> 0.

Convolution

Here we shall briefly extend the concept of convolution introduced in Section 5.6.6 to
discrete-time systems. From (6.45), for an initially quiescent system with an impulse
response sequence {ys,} with z transform Y(z), the z transform Y(z) of the output
sequence {y,} in response to an input sequence {u,} with z transform U(z) is given by

Y(2) = Y{2)U(z) (6.49)
For the purposes of solving a particular problem, the best approach to determining {y,}
for a given {u,} is to invert the right-hand side of (6.49) as an ordinary z transform with
no particular thought as to its structure. However, to understand more of the theory of
linear systems in discrete time, it is worth exploring the general situation a little further.
To do this, we revert to the time domain.

Suppose that a linear discrete-time time-invariant system has impulse response
sequence {ys,}, and suppose that we wish to find the system response {y,} to an input
sequence {u,}, with the system initially in a quiescent state. First we express the
input sequence

{uey = {ug, w1y, .oty oo} (6.55)
as

{u =ugl{Op} + {0} + {0} + ...+, {04} + ... (6.56)
where

5“:{0 (k # )
- k=))
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Example 6.27

In other words, {J,;} is simply an impulse sequence with the pulse shifted to k = ;.
Thus, in going from (6.55) to (6.56), we have decomposed the input sequence {u,}
into a weighted sum of shifted impulse sequences. Under the assumption of an ini-
tially quiescent system, linearity allows us to express the response {y,} to the input
sequence {u,} as the appropriately weighted sum of shifted impulse responses. Thus,
since the impulse response is {ys }, the response to the shifted impulse sequence
{6} will be {y,g/w_}, and the response to the weighted impulse sequence u,{5,_}
will be simply u;{ ng}. Summing the contributions from all the sequences in (6.56),
we obtain

oo

= iy}

J=0

(6.57)

as the response of the system to the input sequence {u,}. Expanding (6.57), we have

D =l ysd (s Y+t udys Y+

= uO{yﬁoa yﬁla yﬁza ey yéha }
+ ul{o> y509 )431, ey y&hila e }
Tu{0,0, Yopoois Vo, - )
+uh{070> 0; ""anéos y515"'}
T
+... hth position

From this expansion, we find that the Ath term of the output sequence is deter-
mined by

h

Y= uys, (6.58)
Jj=0
That is,
k
{n} = {2 ”jyak,} (6.59)
j=0

The expression (6.58) is called the convolution sum, and the result (6.59) is analogous
to (5.83) for continuous systems.

A system has z transfer function

G(z) = =
Z+§

What is the system step response? Verify the result using (6.59).
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Solution

From (6.46), the system step response is
Y(z) = G Z{h}
where {h,} = {1, 1, 1, ... }. From Figure 6.3, Z{h,} =z/(z— 1), so

Y(z) = = —=
Z+EZ_1

Resolving Y(z)/z into partial fractions gives

Yo oz §L+

- 1
z (z+%)(z—l) z-1 *z+

SO

Taking inverse transforms then gives the step response as
= G+3ED0
Using (6.59), we first have to find the impulse response, which, from (6.48), is given by

(s} =2 [GE) = 2 {T}
so that
{ys} = {(-D"

Taking {u,} to be the unit step sequence {A,}, where &, =1 (k = 0), the step response
may then be determined from (6.59) as

k k )
{0} = {2 u,-ys,;j} = {2 L <—%)""}
ey s} s e

Recognizing the sum as the sum to k£ + 1 terms of a geometric series with common ratio
-2, we have

AR {(—g)" 1—1‘_%%)—} = (D 21 = B3

which concurs with the sequence obtained by direct evaluation.

Example 6.27 reinforces the remark made earlier that the easiest approach to
obtaining the response is by direct inversion of (6.32). However, (6.59), together with
the argument leading to it, provides a great deal of insight into the way in which the
response sequence {y,} is generated. It also serves as a useful ‘closed form’ for the
output of the system, and readers should consult specialist texts on signals and systems
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for a full discussion (P. Kraniauskas, Transforms in Signals and Systems, Addison-
Wesley, Wokingham, 1992).

The astute reader will recall that we commenced this section by suggesting that we
were about to study the implications of the input—output relationship (6.49), namely

Y(z) = Y{2)U(z)

We have in fact explored the time-domain input—output relationship for a linear system,
and we now proceed to link this approach with our work in the transform domain. By
definition,

= - u, u u
U(Z)=Z”kzk=”0+_l+_zz+"'+_;]§+'“

k=0 z z z
Yo2) =Y vs2 " R LI L
k=0 z V4 z
SO
1 1
Y{2U@) = toys, + (oys, +thYs,) 2 + (WoYs, +ur¥s, +1:5)5 +... (6.60)
z

Considering the kth term of (6.60), we see that the coefficient of z™*is simply

k
Z UYs;
=0

However, by definition, since Y(z) = Yy(z)U(z), this is also y(k), the kth term of the
output sequence, so that the latter is

k
() = {2 u,yak_j}
Jj=0

as found in (6.59). We have thus shown that the time-domain and transform-domain
approaches are equivalent, and, in passing, we have established the z transform of the
convolution sum as

k
35’{2 u,ukj} = U(2)V(z) (6.61)
=0

where
Hu =U@), HHod=Wo)
Putting p = k —j in (6.61) shows that

k k
2 Uy = Z Uy U, (6.62)
=0 p=0

confirming that the convolution process is commutative.
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21

22

23

24

25

26

6.6.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Find the transfer functions of each of the following
discrete-time systems, given that the system is
initially in a quiescent state:

(@) YViw2 = 3V + 20 =1
(b) Virr = 3Vpr + 206 = Uy — Uy
(©) YViws = Ve + 2 0=ty + 14y,

Draw a block diagram representing the discrete-
time system

Y2 + 0.5y + 025y, =,

Hence find a block diagram representation of the
system

Vi + 0.5y, + 0.25y, = u — 0.6u,,

Find the impulse response for the systems with
z transfer function

2

() 2; (b) ZZ—
8z +6z+1 z=3z+3

2 2
© . z d 522 - 12z
z=0.2z-0.08 zZ—6z+8

Obtain the impulse response for the systems of
Exercises 21(a, b).

Which of the following systems are stable?
@) Wi+ Wi + 2=,

() W2 = 3V — 2=y

(©) 2Vka = 2Vt + Vi = Ui — Uy

(d) 2yea+ 3y — V=

(©) Az = i = Vi = Uy — 214

Use the method of Example 6.27 to calculate

the step response of the system with transfer
function

z

1
z 2

Verify the result by direct calculation.

27  Following the same procedure as in Example 6.26

show that the closed-loop discrete-time system of
Figure 6.17, in which £ > 0 and 7 > 0, is stable if
and only if

0 <k <2coth(L)

T
4 X k
+ U sampler s(zs + 1)

- k>0,7>0

Figure 6.17 Discrete-time system of Exercise 27.

28 A sampled data system described by the difference
equation
Vo1 =Vn = Uy

is controlled by making the input u, proportional to
the previous error according to

u,= K(L _ynfl)
9"

where K is a positive gain. Determine the range of
values of K for which the system is stable. Taking
K= % , determine the response of the system given

Yo=y=0.
29  Show that the system
yn+2 + 2yn+1 + 2yn = un+1 (n = 0)

has transfer function

z

D(z)=2—
zZ+2z+2

Show that the poles of the system are at z=—1 +
and z = —1 — j. Hence show that the impulse
response of the system is given by

h,=%"'D(z) =2""sin 3nn
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The relationship between Laplace and z transforms

Figure 6.18 Sampled
function f(7).

Throughout this chapter we have attempted to highlight similarities, where they occur,
between results in Laplace transform theory and those for z transforms. In this section
we take a closer look at the relationship between the two transforms. In Section 6.2.2
we introduced the idea of sampling a continuous-time signal f{(f) instantaneously at
uniform intervals 7 to produce the sequence

T} = {0, AT), f2T), ... f(nT), ... }

An alternative way of representing the sampled function is to define the continuous-
time sampled version of f(¢) as f(f) where

(6.63)

A = if(t)B(t—nT) zif(nT)&t—nT) (6.64)

n=0 n=0

The representation (6.64) may be interpreted as defining a row of impulses located at
the sampling points and weighted by the appropriate sampled values (as illustrated in
Figure 6.18). Taking the Laplace transform of /(¥), following the results of Section 5.5.10,
we have

0 | k=0

L/} =J [2 JKT) 81 - kT)] e dr

_ i f(kT)J S(t—kT)e™ di
k=0 -

0

giving
L} = i Sk ™" (6.65)
k=0
Making the change of variable z = €7 in (6.65) leads to the result
Lify =Y SUT) = F2) (6.66)

k=0

o A

~Y

2T 3T 4T 5T 6T kT
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6.8.1

where, as in (6.10), F(z) denotes the z transform of the sequence {f(kT)}. We can
therefore view the z transform of a sequence of samples in discrete time as the Laplace
transform of the continuous-time sampled function f(#) with an appropriate change of
variable

1
z=¢eT or s=-=Inz
T

In Chapter 4 we saw that under this transformation the left half of the s plane, Re(s) < 0,
is mapped onto the region inside the unit circle in the z plane, |z] < 1. This is
consistent with our stability criteria in the s and z domains.

Solution of discrete-time state-space equations

The state-space approach to the analysis of continuous time dynamic systems, developed
in Section 5.7, can be extended to the discrete-time case. The discrete form of the state-
space representation is quite analagous to the continuous form.

State-space model

Consider the nth-order linear time-invariant discrete-time system modelled by the
difference equation

Vien t et Vint + Vi + -+ QoY = bouy (6.67)

which corresponds to (6.32), with ,=0 (i > 0). Recall that {y,} is the output sequence,
with general term y,, and {u,} the input sequence, with general term u,. Following the

procedure of Section 1.9.1, we introduce state variables x,(k), x,(k), . . . , x,(k) for the
system, defined by
(O =y 0O =yu, s X0 = Vi (6.68)

Note that we have used the notation x,(k) rather than the suffix notation x;, for clarity.
When needed, we shall adopt the same convention for the input term and write u(k) for
u, in the interests of consistency. We now define the state vector corresponding to this
choice of state variables as x(k) = [x,(k) xy(k) ... x,(k)]". Examining the system
of equations (6.68), we see that

xi(k+ 1) =y = xy(k)
Xk + 1) =y = x3(k)

Xt (k4 1) = Yipr = x,(k)
x(k+1) =y,
= 1 Vinot = Gp2Viena =+ - -~ Ao+ Dotly
=—a,_x,(k) — a,x,_,(k) — ... = ayx,(k) + byu(k)

using the alternative notation for u,.
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Example 6.28

Solution

We can now write the system in the vector—matrix form

[x,(k+1)] 0 1 0 0 0 |[x k)
x(k+1) o0 0 1 0 0 |lx, (k)
x(k+1) = Lo : - |u(k)
0O 0 0 0 1 :
x,(k+1) —-a, —a, —-a, —a, —a,_ | |x,(k) by
(6.69)

which corresponds to (1.60) for a continuous-time system. Again, we can write this

more concisely as
x(k+ 1) = Ax(k) + bu(k) (6.70)

where A and b are defined as in (6.69). The output of the system is the sequence {y,},
and the general term y, = x,(k) can be recovered from the state vector x(k) as

yk)y=xk)=[1 0 0 0]x (k) = ¢"x(k)

As in the continuous-time case, it may be that the output of the system is a combination
of the state and the input sequence {u(k)}, in which case (6.71) becomes

y(k) = ¢"x(k) + du(k)

6.71)

(6.72)

Equations (6.70) and (6.72) constitute the state-space representation of the system,
and we immediately note the similarity with (1.63a, b) derived for continuous-time
systems. Likewise, for the multi-input-multi-output case the discrete-time state-space
model corresponding to (1.69a, b) is

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(6.732)
(6.73b)

Determine the state-space representation of the system modelled by the difference
equation
Yiea T 0.2y, + 0.3y, =, (6.74)

We choose as state variables

x,(k) =y
Thus

Xo(K) = Y

x,(k+ 1) =x,(k)
and from (6.74),

X,(k + 1) ==0.3x,(k) — 0.2x,(k) + u(k)
The state-space representation is then

x(k+ 1) = Ax(k) + bu(k), (k) = c"x(k)
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Figure 6.19 Block
diagram of system
with transfer
function G(z) =

(z— DI+ 32+ 2).

with

We notice, from reference to Section 6.6.1, that the procedure used in Example 6.28
for establishing the state-space form of the system corresponds to labelling the output
of each delay block in the system as a state variable. In the absence of any reason for
an alternative choice, this is the logical approach. Section 6.6.1 also gives a clue
towards a method of obtaining the state-space representation for systems described by
the more general form of (6.32) with m > (0. Example 6.19 illustrates such a system,
with z transfer function

The block diagram for this system is shown in Figure 6.9(c) and reproduced for
convenience in Figure 6.19. We choose as state variables the outputs from each delay
block, it being immaterial whether we start from the left- or the right-hand side of the
diagram (obviously, different representations will be obtained depending on the choice
we make, but the different forms will yield identical information on the system).
Choosing to start on the right-hand side (that is, with x,(k) the output of the right-hand
delay block and x,(k) that of the left-hand block), we obtain

x,(k+ 1) = x,(k)
X(k + 1) = =3x,(k) — 2x,(k) + u(k)
with the system output given by
Yk) = —=x,(k) + x,(k)
Thus the state-space form corresponding to our choice of state variables is

x(k+ 1) = Ax(k) + bu(k),  y(k) = c"x(k)

A:{O 1}, b:H, F=[-1 1]
-2 -3 1

We notice that, in contrast with the system of Example 6.28, the row vectore' = [-1 1]
now combines contributions from both state variables to form the output y(k).

with

+

u(k) +< ) Exz(k) 5 xl(kl: (k)
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6.8.2

Example 6.29

Solution

Solution of the discrete-time state equation

As in Section 1.10.1 for continuous-time systems, we first consider the unforced or
homogeneous case

x(k+ 1) = Ax(k) (6.75)
in which the input u(k) is zero for all time instants k. Taking k= 0 in (6.75) gives
x(1) = Ax(0)
Likewise, taking £ =1 in (6.75) gives
x(2) = Ax(1) = A’x(0)

and we readily deduce that in general
x(k)=A*(0) (k= 0) (6.76)

Equation (6.76) represents the solution of (6.75), and is analogous to (1.80) for the
continuous-time case. We define the transition matrix @(k) of the discrete-time
system (6.75) by

@D(k)=A*
and it is the unique matrix satisfying
D(k+1)=AdD(k), D(0) =1

where | is the identity matrix.
Since A is a constant matrix, the methods discussed in Section 1.7 are applicable for
evaluating the transition matrix. From (1.34a),

Af = o y(b)l + a (DA + a(HA* + ...+ o, (KA (6.77)
where, using (1.34b), the (k) (k=0, ..., n — 1) are obtained by solving simultane-
ously the n equations

X=o(k) + o (A, + o, (A:+ ...+ o, (AT (6.78)

where A,(j=1,2,...,n)are the eigenvalues of A. As in Section 1.7, if A has repeated
eigenvalues then derivatives of A with respect to A will have to be used. The method
for determining A* is thus very similar to that used for evaluating e*’ in Section 1.10.3.

Obtain the response of the second-order unforced discrete-time system

k Lo
x(k+1) = ):((k)) - 21 x(k)
. _

Wi

subject to x(0) =[1 17"

In this case the system matrix is
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having eigenvalues A, =1 and 1, =1 . Since A is a 2 x 2 matrix, it follows from (6.77)
that

Al = a k)l + o, (bA
with a (k) and o, (k) given from (6.78),

M= ayk)+ oA, (j=1,2)
Solving the resulting two equations

G =afd)+ ok, ()= ayk) + (5o k)
for a(k) and (k) gives

oh)=3G) -2G), ) =6[G) -G)]

Thus the transition matrix is
k
(3) 0

D(k) = A'= k k k
6l -1 &

Note that @(0) = |, as required.
Then from (6.76) the solution of the unforced system is

O 0 ||1 '
X+ 1) = 1\K 1\k 1)k - 1 2 1
6[3)-G)1 G| 7(3) —6(3)

k k

Having determined the solution of the unforced system, it can be shown that the
solution of the state equation (6.73a) for the forced system with input u(k), analogous
to the solution given in (1.81) for the continuous-time system

x=Ax+Bu

is

k-1
x(k) = A'%x(0) + 3 A" Bu(}) (6.79)

J=0

Having obtained the solution of the state equation, the system output or response y (k)
is obtained from (6.73b) as

¥k = CA(0) + C . A Bu(j) + Duck) (6.80)

Jj=0

In Section 5.7.1 we saw how the Laplace transform could be used to solve the state-
space equations in the case of continuous-time systems. In a similar manner, z trans-
forms can be used to solve the equations for discrete-time systems.
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Example 6.30

Defining #{x(k)} = X(z) and Z{u(k)} = U(z) and taking z transforms throughout in
the equation

x(k+ 1) = Ax(k) + Bu(k)
gives
zX(z) — zx(0) = AX(2) + BU(2)
which, on rearranging, gives
(zl = A)X(z) = zx(0) + BU(z)
where | is the identity matrix. Premultiplying by (zI — A)™ gives
X(2) =z(zl = A)'x(0) + (zl - A)'BU(z) (6.81)

Taking inverse z transforms gives the response as
x(k) = F{X(z)} = ' {z(zl - AYIx(0) + Z'{(zl - A)Y'BU(2)} (6.82)

which corresponds to (5.89) in the continuous-time case.
On comparing the solution (6.82) with that given in (6.79), we see that the transition
matrix @(¢) = A" may also be written in the form

D) =A =F"{z(z2l - A)"}

This is readily confirmed from (6.81), since on expanding z(zl — A)™" by the binomial
theorem, we have

2 r
FEIER S iy - S = W
z z z
=S A - gAY
r=OZV

Using the z-transform approach, obtain an expression for the state x(k) of the system
characterized by the state equation

x(k+1) ={ i Z}x(k) + {j u(k) (k=0)

when the input is the unit step function

u(k):{o (k < 0)
1 (k=0)

and subject to the initial condition x(0) =[1 -1]".
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Solution In this case

giving
(ZI—A)_IZ 1 zZ+6 5
z+DE+3) -3 z-2
5 3 s s
> 2 2 2
_|lz+1 z+3 z+1 z+3
_3 3 _3 3
2,2 2,2
z+1 z+3 z+1 z+3
Then
s_Z __3 2 s_Z 5 _Z
. o Ltz Pz43 z41l Pz 43
FHz(zl =AY} =F
3_Z 3 Z 3 _Z 5 _=Z
2 2 2 2
z+ 1 z+3 z+ 1 z+3

FEDT-IED FED 33
SED HIE3) HED Y

so that, with x(0) =[1 —1]7, the first term in the solution (6.82) becomes

F! - _| ¥
{z(zl = A) " }x(0) = . (6.83)
[—(—30 ]

Since U(z) = Z{u(k)} =z/(z - 1),

B — L [+6 s |[1] =
(Zl_A) BU(Z)—(Z+ ])(Z+3)|: -3 Z—2:||:1:|Z—1

_ z z+ 11
S z-DE+DEz+3)] -5

3 z _5 z z

2z—1 2z+1 z+3
z z z

-l . _
z—1 z+1 z+3
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30

31

32

so that the second term in the solution (6.82) becomes

Pz - AY'BU)) =

I-3-D"+ (=3)

(6.84)

53D - (3

Combining (6.83) and (6.84), the response x(k) is given by

P 3D+ 2(=3)

x(k) =

-1 +3(-D =23

Having obtained an expression for a system’s state x(7), its output, or response, y(f) may
be obtained from the linear transformation (6.73b).

6.8.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Use z transforms to determine A’ for the matrices

@ {0 1} ®) {-1 3} © {—1 1}
4 0 3 -1 0 -1

Solve the discrete-time system specified by
x(k+ 1) = =T7x(k) + 4y(k)
y(k+ 1) ==8x(k) + y(k)

with x(0) = 1 and »(0) = 2, by writing it in the form
x(k+ 1) = Ax(k). Use your answer to calculate x(1)
and x(2), and check your answers by calculating
x(1), »(1), x(2), ¥(2) directly from the given
difference equations.

Using the z-transform approach, obtain an
expression for the state x(k) of the system
characterized by the state equation

x(k+ 1) = { 0 1}«1() + ﬂ u(k)
~0.16 -1 1

S5

when the input is the unit step function

u(k):{o (k < 0)
1 k=0)

and subject to the initial condition x(0) =[1 —1]".

The difference equation

Wk +2) = ylk+ 1) +y(k)

with »(0) =0, and y(1) = 1, generates the Fibonacci
sequence { y(k)}, which occurs in many practical
situations. Taking x,(k) = y(k) and x,(k) = y(k + 1),
express the difference equation in state-space form
and hence obtain a general expression for y(k).
Show that as k — oo the ratio y(k + 1)/y(k) tends

to the constant % (y5 + 1). This is the so-called
Golden Ratio, which has intrigued mathematicians
for centuries because of its strong influence on art
and architecture. The Golden Rectangle, that is one
whose two sides are in this ratio, is one of the most
visually satisfying of all geometric forms.
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6.9.1

Discretization of continuous-time state-space models

In Sections 1.10 and 5.7 we considered the solutions of the continuous-time state-space
model

%(t) = Ax(t) + Bu(t) (6.852)
y(t) = Cx(?) (6.85b)

If we wish to compute the state x(¢) digitally then we must first approximate the continuous
model by a discrete-time state-space model of the form

x[(k + 1)T] = Gx(kT) + Hu(kT) (6.86a)
y(kT) = Cx(kT) (6.86b)

Thus we are interested in determining matrices G' and H such that the responses to the
discrete-time model (6.86) provide a good approximation to sampled-values of the
continuous-time model (6.85). We assume that sampling occurs at equally spaced
sampling instances ¢ = k7, where 7 > 0 is the sampling interval. For clarification we
use the notation x(k7') and x[(k + 1)T] instead of k and (k+ 1) as in (6.73).

Euler’s method

A simple but crude method of determining G and H is based on Euler’s method con-
sidered in Section 10.6 of Modern Engineering Mathematics. Here the derivative of the
state is approximated by

x(t)gx!t+TT!—x§T!

which on substituting in (6.85a) gives

’—‘ﬂ—*l%:-’fiﬁ = Ax(f) + Bu(?)

which reduces to

x(t+ T) = (TA + I)x(¢) + TBu(r) (6.87)
Since ¢ is divided into equally spaced sampling intervals of duration 7 we take ¢ = kT,
where £k is the integer index k=0, 1, 2, .. ., so that (6.87) becomes

x[(k+ DT =(TA + Ix(kT) + TBu(kT) (6.88)
Defining

G=G,=(TA+I)and H=H,=1TB (6.89)

(6.86) then becomes the approximating discrete-time model to the continuous-time
model (6.85). This approach to discretization is known as Euler’s method and simply
involves a sequential series of calculations.
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Example 6.31  Consider the system modelled by the second-order differential equation

(@)
(b)

(©)

Solution (a)

(b)

V(1) + 39(t) + 2y = 2u(r)
Choosing the state-vector x = [ y y]" express this in a state-space form.

Using Euler’s method, determine the approximating discrete-time state-space
model.

[1lustrate by plotting the responses y(f), for both the exact continuous response
and the discretized responses, for a step input u(¢) = 1 and zero initial conditions,
taking 7= 0.2

Since x, =y, x, =y we have that
X =y=x
X, =y=-2x,—3x,+2u

so the state-space model is
o] I LU A Gl L
X, -2 =3||% 2
v=1 mf]

X

From (6.89)
G =TAd+1=| ! r
=27 -3T+1
H =TB= 0
2T
so the discretized state-space model is
x,[(k+ 1)TT] _ 1 T | [x(kT) N 0 u(kT)
x[(k+1)T] -2T =3T+1]|x:(kT)| |27
x, (kT
wkry = (1 0D
x,(kT)
Using the MATLAB commands:
A = [0,1;-2,-3]; B = [0;2]; C = [1,0];
K = 0;
for T = 0.2
k =k + 1;

Gl = [1,T;-2*T,-3*T+1]; H1 = [0;2*T];
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T = T*[0:30];

y = step(A,B,C,0,1,t); yd = dstep(G1l,H1,C,0,1,31);
plot(t,y,t,yd, 'x")

end

step responses for both the continuous model and the Euler discretized model are
displayed in Figure 6.20 with ‘X’ denoting the discretized response.

Figure 6.20 1 T T T T %

. . . . X _X
Discretization using N X

Euler’s method. 09| % X i

0.7 - B

05F R

Step response

04F .

03F R

02 4

0.1 4

6.9.2 Step-invariant method

To determine the matrices G and H in the discrete-time model (6.86), use is made of
the explicit solution to the state equation (6.85a). From (1.81) the solution of (6.85a) is
given by

A(1=1))

x(f) = e"("’°)x(to)+J ¢""Bu(r,) dr, (6.90)

)
Taking t,= kT and ¢ = (k+ 1)T in (6.90) gives

(k+1)T
Al(k+1)T-17]

x[(k+ DT = eATx(kT)+J Bu(t) dr,

kT

Making the substitution 7= 7, — kT in the integral gives

T

x[(k+1)T] = eATx(kT)+J " "Bu(kT+ 1) dr (6.91)

0
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The problem now is: How do we approximate the integral in (6.91)? The simplest
approach is to assume that all components of u(¢) are constant over intervals between
two consecutive sampling instances so

ukT+ ) =u(kT), 0<T<T, k=0,1,2,...

The integral in (6.91) then becomes

{ J ' dr} u(kT)
0

Defining
G=¢'T (6.92a)
T T
and H= J ¢ PBdr = f ¢ B dt, using substitution 7= (T—-1) (6.92b)
0 0
then (6.91) becomes the discretized state equation
x[(k+ )T] = Gx(kT) + Hu(kT) (6.93)

The discretized form (6.93) is frequently referred to as the step-invariant method.

Comments
1. From Section (5.7.1) we can determine G using the result
et = LMl - A7) (6.94)

2. If the state matrix A is invertible then from (1.37)
T
H= J ¢"Bdr =A(G-1)B=(G-1)A"'B (6.95)
0

3. Using the power series expansion of e* given in (1.27) we can express G and H
as the power series

2a2 e AT
G=|+TA+T2—f‘+...=2TﬂA (6.96)
I 2
2 oo rar—1
H=(ﬂ+%’5+...)3:(ZTﬁ JB (6.97)
) r=1 '

We can approximate G' and H by neglecting higher-order terms in 7. In the par-
ticular case when we neglect terms of order two or higher in 7 results (6.97) give

G=|+TAand H=TB

which corresponds to Euler’s discretization.
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Example 6.32  Using the step-invariant method, obtain the discretized form of the state equation for
the continuous-time system

el [s AR

considered in Example 6.31. Plot the response y(k7T) = [1 O]x(kT), for a step input
u(t) = 1 and zero initial conditions, taking 7'= 0.2.

T

Solution Using (6.93) G=¢'"and H = J ¢"'B dr. From (6.94)

0

- _ S 1fs+3 1
G=LsI-A"} =L~ A= (s+2)(s+1
{1 =A" {A{_Z 5” (s+2)(s+1)
1,2 L, 1
gt s+2 s+l s+2 s+
2 2 2 1

s+2_s+1 s+2_s+1
so that
G=e'T= —e42e" T 4e”
2¢—2e¢" 2e7T-¢"

and

T 1e—2r ze—t 1e—2t e—t r
At 5 - 5 -
H=| ¢"Bdt = |2 2
0 _e—21 + 2e—t _e—2t+ e—t .

_ e —2e+1
—2¢7 4+ 2e7

Thus, the discrete form of the state equation is

o7 -7 o7, -T o7 T
x[(k+1>'f]={‘e e +e_T}(kT)+[e o ”]“U‘T)

=27 =T 2T -T
2¢ T =2e 2 —e —-2¢ 7 +e

In the particular case 7= 0.2 the state equation is

Akt 10.2] = | 09671 01484 oo [0.0329) oo
~0.2968 0.5219 ~0.2968

Using MATLARB step responses for both the continuous-time model and the discretized
step-invariant model are displayed in Figure 6.21, with X’ denoting the discretized
response.
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Figure 6.21 1 T T T T
Discretization using the
step-invariant method. 09 F E

0.7 - -
0.6 - -

0.5 - -

Step response

04| .

02 -

0.1 - -

For a given value of 7' the matrices G and H may be determined by the step-invariant
method using the MATLAB function c2d (continuous to discrete). Thus, for the
system of Example 6.32 with 7'= 0.2, the commands

A= [0,1;-2,-3];
B = [0; 2];
[G,H] = c2d(A,B,0.2)

return
G = 0.9671 0.1484
=0,2968 00,5219
H = 0.0329
-0.2968

which checks with the answers given in Example 6.32.

6.9.3 Exercises

34 Using the step-invariant method obtain the discretized L% [0 1]y 0
form of the continuous-time state-equation X = * 1 u(®)

[l fo tffx] fo] _
X = Lj = {0 _JLJ+M (1) y=[1 0]x

(a) Determine the Euler form of the discretized
Check your answer using MATLAB for the state-space model.

rticul hen th i iodis 7= 1.
parhicwiat case when the Sampling perioc 15 (b) Determine the discretized state-space model

35  An LCR circuit, with L = C=R =1, may be using the step-invariant method.
modelled by the continuous-time state-space model (Hint: Use (6.95) to determine the H matrix.)
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(c) Using MATLAB plot, for each of the three
models, responses to a unit step input u(f) = 1
with zero initial conditions, taking the
sampling period 7'= 0.1.

36 A linear continuous-time system is characterized by
the state matrix

]

(a) Show that the system is stable.

(b) Show that the state matrix of the corresponding
Euler discrete-time system is

A, = 1-T T
-T 1-2T
(c) Show that stability of the discretized system

requires 7 < 1.

37 A simple continuous-time model of a production
and inventory control system may be represented by
the state-space model

x,(1)
X,(1)
-1 0] |x(?) + ki Of|u,(9)
1 0] |xx(2) 0 1] |ux(t)

where x,(#) represents the actual production rate and
X,(%) represents the current inventory level; u,(7)

x(1)

represents the scheduled production rate, u,(7)
represents the sales rate and %, is a constant
gain factor.

(a) Determine, using the step-invariant method,
the discretized form of the model. Express the
model in the particular case when the sampling
period 7= 1.

(b) Suppose the production schedule is determined
by the feedback policy

u,(kT) = k, — x,(kT)

where £, is the desired inventory level. The
system is originally in equilibrium with x,(0)
equal to the sales rate and x,(0) = £,. At time
t = 0 the sales rate suddenly increases by
10%; that is, u,(f) = 1.1x,(0) for # > 0. Find
the resulting discrete-time state model, with
sampling rate 7= 1 and taking &, = f-(;.

(c) Find the response of the given continuous-time
model, subject to the same feedback control
policy

uy(t) = k. — xx(1)
and the same initial conditions.

The exercise may be extended to include simulation
studies using MATLAB.

(This exercise is adapted from an illustrative
problem in William L. Brogan, Modern Control
Theory, 2™ edition, Prentice-Hall, 1985.)

I EE DR design of discrete-time
systems

An important development in many areas of modern engineering is the replacement
of analogue devices by digital ones. Perhaps the most widely known example is the
compact disc player, in which mechanical transcription followed by analogue signal
processing has been superseded by optical technology and digital signal processing.
Also, as stated in the introduction, DVD players and digital radios are setting new
standards in home entertainment. There are other examples in many fields of engineering,
particularly where automatic control is employed.
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6.10.1

Figure 6.22
Amplitude response

for an ideal low-pass
filter.

Figure 6.23

LCR network for
implementing a
second-order
Butterworth filter.

Analogue filters

At the centre of most signal processing applications are filters. These have the effect
of changing the spectrum of input signals; that is, attenuating components of signals
by an amount depending on the frequency of the component. For example, an analogue
ideal low-pass filter passes without attenuation all signal components at frequencies
less than a critical frequency ® = @, say. The amplitude of the frequency response
|G(jw)| (see Section 5.8) of such an ideal filter is shown in Figure 6.22.

One class of analogue filters whose frequency response approximates that of the
ideal low-pass filter comprises those known as Butterworth filters. As well as having
‘good’ characteristics, these can be implemented using a network as illustrated in
Figure 6.23 for the second-order filter.

It can be shown (see M. J. Chapman, D. P. Goodall and N. C. Steele, Signal Processing
in Electronic Communication, Horwood Publishing, Chichester, 1997) that the transfer
function G,(s) of the nth-order filter is

where B,(x) = Z akxk

k=0

G,(s) = 5 tx)

with

sinror 2n

k
s cos(r—1)
= enll S -
r=1

C

Using these relations, it is readily shown that

2
Gy(s) = Oe (6.98)

2 | 2
s+ 205+ o,

3
[
Gi(s) =

; > . ; (6.99)
S +20.8 + 20,5+ o,

and so on. On sketching the amplitudes of the frequency responses G,(jw), it becomes
apparent that increasing n improves the approximation to the response of the ideal
low-pass filter of Figure 6.22.

1G ()| A
1
-, 0 we W

R L
—] ~
A 2
Wy C €y = )
v T T
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6.10.2 Designing a digital replacement filter

Suppose that we now wish to design a discrete-time system, to operate on samples
taken from an input signal, that will operate in a similar manner to a Butterworth filter.
We shall assume that the input signal «(#) and the output signal y(¢) of the analogue filter
are both sampled at the same intervals 7 to generate the input sequence {u(k7T)} and
the output sequence {y(kT)} respectively. Clearly, we need to specify what is meant
by ‘operate in a similar manner’. In this case, we shall select as our design strategy a
method that matches the impulse response sequence of the digital design with a
sequence of samples, drawn at the appropriate instants 7" from the impulse response of
an analogue ‘prototype’. We shall select the prototype from one of the Butterworth
filters discussed in Section 6.10.1, although there are many other possibilities.

Let us select the first-order filter, with cut-off frequency @,, as our prototype. Then
the first step is to calculate the impulse response of this filter. The Laplace transfer
function of the filter is

.
s+,

G(s) =

So, from (5.71), the impulse response is readily obtained as
W) = oe ™ (1=0) (6.100)
Next, we sample this response at intervals 7 to generate the sequence
kT

(h(kT)} = {w.e "}

which on taking the z transform, gives

FLh(kT)} = H(z) = 0.~

z—=¢

-, T

Finally, we choose H(z) to be the transfer function of our digital system. This means

simply that the input—output relationship for the design of the digital system will be
Y(z) = H(z)U(z)

where Y(z) and U(z) are the z transforms of the output and input sequences {y(k7T")}
and {u(kT)} respectively. Thus we have

Y(2) = o, Z—M U(z) (6.101)

z—=¢

Our digital system is now defined, and we can easily construct the corresponding
difference equation model of the system as

- ¢ ") = 0zUc)
that is
2Ye) - e Y(2) = 0zU(z)

Under the assumption of zero initial conditions, we can take inverse transforms to obtain
the first-order difference equation model

Yk+1)— e " y(k) = oulk + 1) (6.102)
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Figure 6.24 Block
diagram for the digital
replacement filter,
oa=ko, f=e".

A block diagram implementation of (6.102) is shown in Figure 6.24.

ores

y(k)

+T—

6.10.3 Possible developments

6.11

6.11.1

The design method we have considered is called the impulse invariant technique,
and is only one of many available. The interested reader may develop this study in

various ways:

(1) Write a computer program to evaluate the sequence generated by (6.102) with
o, = 1, and compare with values obtained at the sampling instants for the impulse
response (6.100) of the prototype analogue filter.

(2)  Repeat the||
(3) By setting
in the z tre
frequency
see Chapte

(4) An alterna
with

cond-order Butterworth filter.

nsfer function of the prototype, and z = e/*”
gital design, compare the amplitude of the
For an explanation of the results obtained,

h replace s in the Laplace transfer function

2z-1
Tz+1

(this is a process that makes use of the trapezoidal method of approximate
integration). Design alternative digital filters using this technique, which is
commonly referred to as the Tustin (or bilinear transform) method (see

Section 6.11.3).

(5) Show that filters designed using either of these techniques will be stable provided
that the prototype design is itself stable.

AN DTN the delta operator and

Introduction

the & transform

In recent years, sampling rates for digital systems have increased many-fold, and tradi-
tional model formulations based on the z transform have produced unsatisfactory


IS1833
Text Box
�
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6.11.2

results in some applications. It is beyond the scope of this text to describe this situation
in detail, but it is possible to give a brief introduction to the problem and to suggest an
approach to the solution. For further details see R. M. Middleton and G. C. Goodwin,
Digital Control and Estimation, A Unified Approach (Prentice Hall, Englewood Cliffs,
NJ, 1990) or W. Forsythe and R. M. Goodall, Digital Control (Macmillan, London, 1991).
The contribution of Colin Paterson to the development of this application is gratefully
acknowledged.

The q or shift operator and the 6 operator

In the time domain we define the shift operator q in terms of its effect on a sequence
{x;} as

q{xet = {Xe}

That is, the effect of the shift operator is to shift the sequence by one position, so that
the kth term of the new sequence is the (k + 1)th term of the original sequence. It is then
possible to write the difference equation

Visa T 2 + 5V =t —
as
T+ 2q+ 5= quy —
or
(¢*+2q+5)y,=(q- Dy, (6.103)

Note that if we had taken the z transform of the difference equation, with an initially
quiescent system, we would have obtained

(Z*+2z+5Y(z) =(z- HU(z)

We see at once the correspondence between the time-domain q operator and the
z-transform operator &.
The next step is to introduce the 0 operator, defined as

s=1=1
A

where A has the dimensions of time and is often chosen as the sampling period 7. Note
that

Dy _ Y=y
Sv. = (q k _ Vsl k
Vi A A

so that if A = T then, in the limit of rapid sampling,

~d

o
Vi dr

Solving for q we see that

q=14+A6
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6.11.3

The difference equation (6.103) can thus be written as
(1 + A8 +2(1 + A8) + 5y, = [(1 + AS) — 1]u,
or
[(AS)* + 4A8 + 8]y, = Adu,

or, finally, as

Constructing a discrete-time system model

So far, we have simply demonstrated a method of rewriting a difference equation in an
alternative form. We now examine the possible advantages of constructing discrete-
time system models using the § operator. To do this, we consider a particular example,
in which we obtain two different discrete-time forms of the second-order Butterworth
filter, both based on the bilinear transform method, sometimes known as Tustin’s
method. This method has its origins in the trapezoidal approximation to the integra-
tion process; full details are given in M. J. Chapman, D. P. Goodall and N. C. Steele,
Signal Processing in Electronic Communication (Horwood Publishing, Chichester,
1997).

The continuous-time second-order Butterworth filter with cut-off frequency @, = 1
is modelled, as indicated by (6.98), by the differential equation

2
1414219y = () (6.104)
dr dt

where u(f) is the input and y(¢) the filter response. Taking Laplace transforms through-
out on the assumption of quiescent initial conditions, that is y(0) = (dy/df)(0) = 0, we
obtain the transformed equation

(s*+ 1.414 21s + 1)Y(s) = U(s) (6.105)
This represents a stable system, since the system poles, given by
s+ 1.41421s+1=0

are located at s =—0.70710 £j0.707 10 and thus lie in the left half-plane of the complex
s plane.

We now seek a discrete-time version of the differential equation (6.104). To do this,
we first transform (6.105) into the z domain using the bilinear transform method,
which involves replacing s by

2z-1
Tz+1

Equation (3.74) then becomes

{_4_ (E:.l)z +1.414 21%(5—;—%) + 11 Y(2) = U(2)

72\z+1 z
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or
[(GT°+ 141421 X ST+ 42+ GT° = 8)z+ 1 17 — 1.41421 X [ T+ 4]Y(2)
=17 +2z+ DHU(2) (6.106)
We can now invert this transformed equation to obtain the time-domain model
GT+ 141421 X ST+ 4y + GT7 = 8y + (G T7 — 141421 X S T+ 4)y,
= 1 T2y + 204,y + 1) (6.107)
For illustrative purposes we set 7= 0.1 s in (6.107) to obtain
4.07321y;,, — 7.995 00y,,, + 3.93179y, = 0.025 0014y, + 21, + 1)

Note that the roots of the characteristic equation have modulus of about 0.9825, and are
thus quite close to the stability boundary.
When 7'=0.01 s, (6.107) becomes

4.007 10y,,, — 7.999 95y,.,, + 3.992 95y, = 0.000 03 (115, + 2045, + t1;)

In this case the roots have modulus of about 0.9982, and we see that increasing the
sampling rate has moved them even closer to the stability boundary, and that high
accuracy in the coefficients is essential, thus adding to the expense of implementation.

An alternative method of proceeding is to avoid the intermediate stage of obtaining
the z-domain model (6.106) and to proceed directly to a discrete-time representation
from (6.104), using the transformation

,29-1
Tq+1

leading to the same result as in (6.107). Using the & operator instead of the shift operator
g, noting that q = 1 + AJ, we make the transformation

2 _AS
T2+A8

or, if 7= A, the transformation

26
ST 2% As
in (6.105), which becomes
[§+ 1.41421 x 182+ A8) + L2 + A8y, = L2+ Ad)Yu,

Note that in this form it is easy to see that in the limit as A — 0 (that is, as sampling
becomes very fast) we regain the original differential equation model. Rearranging this
equation, we have

&4 (141421 + A) P 1 y
k
(1+1.41421 x1A+1A% (1+1.41421 x1A+1A%

_ (2+A8)’
4(1+1.41421 x 1A +1A%

Uy (6.108)
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6.11.4

Figure 6.25
The &' block.

In order to assess stability, it is helpful to introduce a transform variable y associated
with the 0 operator. This is achieved by defining yin terms of z as
_z—1

TR

The region of stability in the z plane, |z| < 1, thus becomes
1+Ay| <1

or

1 1

‘A+ y‘ < 3 (6.109)
This corresponds to a circle in the y domain, centre (—1/A, 0) and radius 1/A. As
A — 0, we see that this circle expands in such a way that the stability region is the
entire open left half-plane, and coincides with the stability region for continuous-time
systems.

Let us examine the pole locations for the two cases previously considered, namely
T=0.1 and 7=0.01. With A= T = 0.1, the characteristic equation has the form

¥+ 141092y +0.93178 =0

with roots, corresponding to poles of the system, at —0.705 46 + j0.658 87. The centre
of the circular stability region is now at —1/0.1 = —10, with radius 10, and these roots
lie at a radial distance of about 9.3178 from this centre. Note that the distance of
the poles from the stability boundary is just less than 0.7. The poles of the original
continuous-time model were also at about this distance from the appropriate boundary,
and we observe the sharp contrast from our first discretized model, when the discretiza-
tion process itself moved the pole locations very close to the stability boundary. In
that approach the situation became exacerbated when the sampling rate was increased,
to 7=0.01, and the poles moved nearer to the boundary. Setting 7= 0.01 in the new
formulation, we find that the characteristic equation becomes

7+ 141413y +0.99295 =0

with roots at —0.707 06 £ j0.702 14. The stability circle is now centred at —100, with
radius 100, and the radial distance of the poles is about 99.2954. Thus the distance from
the boundary remains at about 0.7. Clearly, in the limit as A — 0, the pole locations
become those of the continuous-time model, with the stability circle enlarging to
become the entire left half of the complex yplane.

Implementing the design

The discussion so far serves to demonstrate the utility of the 6 operator formulation, but
the problem of implementation of the design remains. It is possible to construct a §'
block based on delay or 1/z blocks, as shown in Figure 6.25. Systems can be realized
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using these structures in cascade or otherwise, and simulation studies have produced
successful results. An alternative approach is to make use of the state-space form of
the system model (see Section 6.18). We demonstrate this approach again for the case
T=0.01, when, with T=A = 0.01, (6.108) becomes

(8 +1.414 136+ 0.99295)y,

=(0.000 028 + 0.009 306 + 0.992 95)u, (6.110a)
Based on (6.110a) we are led to consider the equation

(68" +1.414 136+ 0.99295)p, = uy, (6.110b)
Defining the state variables

X1 =Pio Xop = Op;
equation (6.110b) can be represented by the pair of equations

OX) 4 = Xy

Ox,; =—0.99295x,;, — 1.414 13x,, + u;
Choosing

e =0.99295p, + 0.009 305p, + 0.000 0025°p, (6.110¢)

equations (6.110b) and (6.110c) are equivalent to (6.110a). In terms of the state
variables we see that

¥, = 0.99293x, , + 0.009 72x, , + 0.000 024,

Defining the vectors x;, = [x,; x,,]" and 8x, =[x, dx,,]", equation (6.111a) can be
represented in matrix form as

X = 0 1 xk+ O Uy (6.1113)
-0.99295 -1.41413 1
with
3, =[0.99293  0.009 72]x, + 0.000 02, (6.111b)

We now return to the q form to implement the system. Recalling that § = (q — 1)/A,
(6.111a) becomes

QX =X =X+ A 0 ! Xx; + 0 Uy (6.112)
-0.99295 -1.41413 1

with (6.111b) remaining the same and where A = 0.01, in this case. Equations (6.112)
and (6.111b) may be expressed in the vector—matrix form

Xp1 = X5+ A[A(A)x; + buy]

y = c"(Ax, + d(A)uy
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6.11.5

This matrix difference equation can now be implemented without difficulty using
standard delay blocks, and has a form similar to the result of applying a simple Euler
discretization of the original continuous-time model expressed in state-space form.

The & transform

In Section 6.11.3 we introduced a transform variable

_z=1
=74
The purpose of this was to enable us to analyse the stability of systems described in the
0 form. We now define a transform in terms of the z transform using the notation given
by R. M. Middleton and G. C. Goodwin, Digital Control and Estimation, A Unified
Approach (Prentice Hall, Englewood Cliffs, NJ, 1990). Let the sequence { f;,} have z

transform F(z); then the new transform is given by

FA(Y) = F(2).oap
-y L
S (+ay)
The 9 transform is formally defined as a slight modification to this form, as

D(fi) = Fu(y) = AFL(y)

oo

fi
=A ————e
Z(1+Ay)k

k=0

The purpose of this modification is to permit the construction of a unified theory of
transforms encompassing both continuous- and discrete-time models in the same
structure. These developments are beyond the scope of the text, but may be pursued
by the interested reader in the reference given above. We conclude the discussion
with an example to illustrate the ideas. The ramp sequence {u,} = {kA} can be
obtained by sampling the continuous-time function f(#) = ¢ at intervals A. This sequence
has z transform

Az

U(z) = -
(z=1)

and the corresponding & transform is then

AUS(y) = 128

2

Note that on setting A = 0 and ¥ = s one recovers the Laplace transform of £(7).
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6.11.6 Exercises

38 A continuous-time system having input y(¢) and
output y(¢) is defined by its transfer function

1
(s+1)(s+2)

Use the methods described above to find the q and
6 form of the discrete-time system model obtained
using the transformation

H(s) =

2z-1
%—_
Az+1

where A is the sampling interval. Examine the
stability of the original system and that of the
discrete-time systems when A = 0.1 and when
A=0.01.

39  Use the formula in equation (6.99) to obtain the
transfer function of the third-order Butterworth
filter with @, = 1, and obtain the corresponding
6 form discrete-time system when 7= A.

40  Make the substitution

X0 =0
x(n = 240

in Exercise 38 to obtain the state-space form of the
system model,

%(t) = Ax(1) + bu(1)

41

Wt) = c™x(t) + du(r)
The Euler discretization technique replaces x(7) by

X((k+1A) —x(kA)
A

Show that this corresponds to the model obtained
above with A = A(0), ¢ = ¢(0) and d = d(0).

The discretization procedure used in Section 6.11.3
has been based on the bilinear transform method,
derived from the trapezoidal approximation to the
integration process. An alternative approximation
is the Adams—Bashforth procedure, and it can be
shown that this means that we should make the
transformation

2
s%l—z—zz —
A 5z +8z-1

where A is the sampling interval (see W. Forsythe
and R. M. Goodall, Digital Control, Macmillan,
London, 1991). Use this transformation to
discretize the system given by

H(s) = ——
(s) s+1

when A=0.1in

(a) the z form, and
(b) the yform.

6.12 Review exercises (1-18)

Check your answers using MATLAB or MAPLE whenever possible.

1 The signal /() = ¢ is sampled at intervals 7 to
generate the sequence { f(k7)}. Show that

Tz

F{f(kT)} = 5
(z-1)
2  Show that
#{d" sin kot = —ZSO__ (4> q)
z'—2azcos W+a
3  Show that

gy =2z 1)
(z=1)

4

Find the impulse response for the system with
transfer function

2
3z° -z

H(z) = 4
z=2z+1

Calculate the step response for the system with
transfer function

1

H(z)=2——
zZ +3z+2

A process with Laplace transfer function
H(s) = 1/(s + 1) is in cascade with a zero-order
hold device with Laplace transfer function
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G(s) = (1 — e*T)/s. The overall transfer function
is then

1-¢*

s(s+1)
Write F(s) = 1/s(s + 1), and find () = £ {F(s)}.
Sample f(#) at intervals 7 to produce the

sequence { f(kT)} and find F(z) = Z{ f(kT)}.
Deduce that

&TF(s) — iﬁ(z)

and hence show that the overall z transfer function
for the process and zero-order hold is

A system has Laplace transfer function

) = SRl
(s+2)(s+3)

Calculate the impulse response, and obtain the
z transform of this response when sampled at
intervals 7.

It can be established that if X(z) is the z transform
of the sequence {x,} then the general term of that
sequence is given by

", = L% X(2)Z"" dz
j2n

C

where C is any closed contour containing all

the singularities of X(z). If we assume that all the
singularities of X(z) are poles located within a circle
of finite radius then it is an easy application of the
residue theorem to show that

x, = 2. [residues of X(z)z"™" at poles of X(z)]

(a) Let X(z) = z/(z — a)(z — b), with a and b real.
Where are the poles of X(z)? Calculate the
residues of z"'X(z), and hence invert the
transform to obtain {x,}.

(b) Use the residue method to find

. 1 z a9 1 z_
R e I et

The impulse response of a certain discrete-time
system is {(—=1)“ — 2*}. What is the step response?

11

12

A discrete-time system has transfer function

2
4

H@) = e-D

Find the response to the sequence {1,-1,0,0,...}.

Show that the response of the second-order
system with transfer function
2

_Z
(z-)(z-p)

to the input (1, (et + ), 3, 0,0,0, ...} is
{6, =1{1,0,0,...}

Deduce that the response of the system
—%
(z-)(z-p)

to the same input will be

{6} =10,1,0,0,...}

A system is specified by its Laplace transfer
function

H(s) = —3—
(s+1)(s+2)
Calculate the impulse response y(t) = £ {H(s)},
and show that if this response is sampled at
intervals 7 to generate the sequence {ys(n7)}
(n=0,1,2,...)then
2
&) = G = ===

2T =T
zZ—¢€ z—¢€

A discrete-time system is now constructed so that
Y(z) = TD(2)X(2)

where X(z) is the z transform of the input
sequence {x,} and Y(z) that of the output
sequence {y,}, with x, = x(nT") and y, = y(nT).
Show that if 7= 0.5 s then the difference
equation governing the system is

Y, — 0.9744y,. +0.2231y,
=0.5x,,,— 0.4226x,,,

Sketch a block diagram for the discrete-time
system modelled by the difference equation

Pun—0.9744p,., + 0.2231p, = x,

and verify that the signal y,, as defined above, is
generated by taking y, = 0.5p,.,, — 0.4226p,,, as
output.
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13

14

In a discrete-time position-control system the
position y, satisfies the difference equation

Y1 =Y, +av, (a constant)

where v, and u, satisfy the difference equations

Uy = U, + bu, (b constant)

u, = k(x,—y,) — kv, (ki k, constants)

(a) Show that if k; = 1/4ab and k, = 1/b then the
z transfer function of the system is

Y _ 1
X(z)  (1-22)

where Y(z) = #{y,} and X(z) = Z{x,}.

(b) Ifalsox, =4 (where 4 is a constant),
determine the response sequence {y,} given
that y, =y, =0.

The step response of a continuous-time system is
modelled by the differential equation

2
g—%+3£-12+2y=1 (t=0)
dr dr

with »(0) = y(0) = 0. Use the backward-difference
approximation

dy _ Ye=Vi
dr T

2

dy =20tV

dr’ T’
to show that this differential equation may be
approximated by

Vi~ 2)’k-21 Vi 43X Vier 29, =1

T T
Take the z transform of this difference equation,
and show that the system poles are at

1
=
1+2T

1
Z=T7,
1+T

Deduce that the general solution is thus

el ol
% 1+ 7T 1+2T

Show that y = 1 and, noting that the initial

conditions y(0) = 0 and y(0) = 0 imply
Vo =y_; = 0, deduce that

i 1Y 1Y
! oL Y41
& 2(1+2T) (1+T)

15

16

Note that the z-transform method could be used to
obtain this result if we redefine Z{y,} = X._1(/z)),
with appropriate modifications to the formulae for
g{ykﬂ} and g{yku}'

Explain why the calculation procedure is
always stable in theory, but note the pole
locations for very small T.

Finally, verify that the solution of the
differential equation is

W) = % (e*-2e"+1)
and plot graphs of the exact and approximate

solutions with 7= 0.1 s and 7= 0.05 s.

Again consider the step response of the system
modelled by the differential equation

&y ady, o -
2+3 +2y=1 (t=0)
dr dt

with y(0) = y(0) = 0. Now discretize using the
bilinear transform method; that is, take the
Laplace transform and make the transformation

where 7 is the sampling interval. Show that the
poles of the resulting z transfer function are at

_1-T

_2-T
z= )
1+T

7 ==L
24T
Deduce that the general solution is then
1-TY (Z—T)k
=al— | +B|=—= | +
yk a(1+T) Pt

Deduce that y = % and, using the conditions
Vo =y, = 0, show that

neunfisf)-e-nGsh)

Plot graphs to illustrate the exact solution and
the approximate solution when 7= 0.1 s and
T'=0.05s.

Show that the z transform of the sampled version
of the signal f(¢) = £* is

F(Z)zmlez
(z-1)

where A is the sampling interval. Verify that
the & transform is then
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17

18

(+Av)(2 +Av)

3
v

Show that the eigenvalues of the matrix

1 1 -2
A=|-1 2 1
0 1 -1

are 2, 1 and —1, and find the corresponding

eigenvectors. Write down the modal matrix M and

spectral matrix A of A, and verify that MA = AM.
Deduce that the system of difference equations

x(k+ 1) = Ax(k)
where x(k) = [x,(k) x,(k) x3(k)]", has a solution
x(k) = My(k)

where p(k) = A'p(0). Find this solution, given
x(0)=[1 0 0]".

The system shown in Figure 6.26 is a realization
of a discrete-time system. Show that, with state
variables x,(k) and x,(k) as shown, the system may
be represented as

YK)

Figure 6.26 Discrete-time system of Review
exercise 19.

x(k+ 1) = Ax(k) + bu(k)
y(k) = ¢'x(k)

where

A= =3 —4’ b= 1, o 1
-2 -1 0 -1
Calculate the z transfer function of the system,
D(z), where
D(z)=c(zl - A)'b

Reduce the system to control canonical form by
the following means:

(i) calculate the controllability matrix M., where
M.=[b Ab] is the matrix with columns b
and Ab;

(ii) show that rank (M,) = 2, and calculate M ;';

(iii) write down the vector v" corresponding to
the last row of M ;';

(iv) form the matrix T =[v" v"A]", the matrix
with rows v"and v"A;

(v) calculate T~ and using this matrix T,
show that the transformation z(k) = Tx(k)
produces the system

2k + 1) = TAT 'z(k) + T bu(k)
= Cz(k) + bu(k)

where C is of the form

!

and b, =[0 1]". Calculate o and 3, and
comment on the values obtained in relation
to the transfer function D(z).
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/.1

Introduction

The representation of a function in the form of a series is fairly common practice in
mathematics. Probably the most familiar expansions are power series of the form

fx) =Y anx’

n=0
in which the resolved components or base set comprise the power functions

3 n

2
Lx, x5, x°, ..., x", ...

For example, we recall that the exponential function may be represented by the infinite
series
> 3

e =l+x+i 4L 4
21 31

oo

>

n=0

n

X

x"
A==
n!

n!

There are frequently advantages in expanding a function in such a series, since the first
few terms of a good approximation are easy to deal with. For example, term-by-term inte-
gration or differentiation may be applied or suitable function approximations can be made.

Power functions comprise only one example of a base set for the expansion of func-
tions: a number of other base sets may be used. In particular, a Fourier series is an
expansion of a periodic function f{¢) of period 7'= 2m/w in which the base set is the set
of sine functions, giving an expanded representation of the form

fy=4,+ iAn sin(nwt + @,)

n=1

Although the idea of expanding a function in the form of such a series had been used
by Bernoulli, D’Alembert and Euler (c. 1750) to solve problems associated with the
vibration of strings, it was Joseph Fourier (1768—-1830) who developed the approach to
a stage where it was generally useful. Fourier, a French physicist, was interested in
heat-flow problems: given an initial temperature at all points of a region, he was con-
cerned with determining the change in the temperature distribution over time. When
Fourier postulated in 1807 that an arbitrary function f(x) could be represented by a
trigonometric series of the form
2 (4, cos nkx + B, sin nkx)

n=0

the result was considered so startling that it met considerable opposition from the
leading mathematicians of the time, notably Laplace, Poisson and, more significantly,
Lagrange, who is regarded as one of the greatest mathematicians of all time. They ques-
tioned his work because of its lack of rigour, and it was probably this opposition that
delayed the publication of Fourier’s work, his classic text Théorie Analytique de la
Chaleur (The Analytical Theory of Heat) not appearing until 1822. This text has since
become the source for the modern methods of solving practical problems associated
with partial differential equations subject to prescribed boundary conditions. In addi-
tion to heat flow, this class of problems includes structural vibrations, wave propagation
and diffusion, which are discussed in Chapter 9. The task of giving Fourier’s work a
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1.2

7.2.1

more rigorous mathematical underpinning was undertaken later by Dirichlet (c. 1830)
and subsequently Riemann, his successor at the University of Gdottingen.

In addition to its use in solving boundary-value problems associated with partial
differential equations, Fourier series analysis is central to many other applications in
engineering. In Chapter 5 we saw how the frequency response of a dynamical system,
modelled by a linear differential equation with constant coefficients, is readily determined
and the role that it plays in both system analysis and design. In such cases the frequency
response, being the steady-state response to a sinusoidal input signal 4 sin o, is also a
sinusoid having the same frequency as the input signal. As mentioned in Section 5.5.6,
periodic functions, which are not purely sinusoidal, frequently occur as input signals in
engineering applications, particularly in electrical engineering, since many electrical
sources of practical value, such as electronic rectifiers, generate non-sinusoidal periodic
waveforms. Fourier series provide the ideal framework for analysing the steady-state
response to such periodic input signals, since they enable us to represent the signals as
infinite sums of sinusoids. The steady-state response due to each sinusoid can then be
determined as in Section 5.8, and, because of the linear character of the system, the
desired steady-state response can be determined as the sum of the individual responses.
As the Fourier series expansion will consist of sinusoids having frequencies n@ that are
multiples of the input signal frequency o, the steady-state response will also have com-
ponents having such frequencies. If one of the multiple frequencies n@ happens to be
close in value to the natural oscillating frequency of the system, then it will resonate with
the system, and the component at this frequency will dominate the steady-state response.
Thus a distinction of significant practical interest between a non-sinusoidal periodic input
signal and a sinusoidal input signal is that although the signal may have a frequency
considerably lower than the natural frequency of the system, serious problems can still
arise owing to resonance. A Fourier series analysis helps to identify such a possibility.

In Chapter 8 we shall illustrate how Fourier series analysis may be extended to
aperiodic functions by the use of Fourier transforms. The discrete versions of such
transforms provide one of the most advanced methods for discrete signal analysis,
and are widely used in such fields as communications theory and speech and image
processing. Applications to boundary-value problems are considered in Chapter 9.

Fourier series expansion

In this section we develop the Fourier series expansion of periodic functions and dis-
cuss how closely they approximate the functions. We also indicate how symmetrical
properties of the function may be taken advantage of in order to reduce the amount
of mathematical manipulation involved in determining the Fourier series. First the
properties of periodic functions are briefly reviewed.

Periodic functions

A function f{7) is said to be periodic if its image values are repeated at regular intervals
in its domain. Thus the graph of a periodic function can be divided into ‘vertical strips’
that are replicas of each other, as illustrated in Figure 7.1. The interval between two
successive replicas is called the period of the function. We therefore say that a function
f(#) is periodic with period T if, for all its domain values ¢,
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Figure 7.1 A periodic
function with period T.

7.2.2

[

~«T 1) (¢} o H+T t

i
l(— One period —>——One period—>’

ft+mT) =)

for any integer m.
To provide a measure of the number of repetitions per unit of 7, we define the frequency
of a periodic function to be the reciprocal of its period, so that

-1
period T

frequency =
The term circular frequency is also used in engineering, and is defined by
circular frequency = 27 X frequency = 2—;

and is measured in radians per second. It is common to drop the term ‘circular’ and refer
to this simply as the frequency when the context is clear.

Fourier’s theorem

This theorem states that a periodic function that satisfies certain conditions can be
expressed as the sum of a number of sine functions of different amplitudes, phases and
periods. That is, if f(¢) is a periodic function with period 7 then

f(H)=A,+ A, sin(wt + @) + A, sinot + ¢,) + . ..
+ A, sin(nwt + ¢,) + . .. (7.1

where the 4s and ¢s are constants and @ = 2n/T is the frequency of f(#). The term

A, sin(wt + ¢,) is called the first harmonic or the fundamental mode, and it has the

same frequency @ as the parent function f(¢). The term A4, sin(nwt + ¢,) is called the

nth harmonic, and it has frequency nw, which is n times that of the fundamental. 4,

denotes the amplitude of the nth harmonic and ¢, s its phase angle, measuring the lag

or lead of the nth harmonic with reference to a pure sine wave of the same frequency.
Since

A, sin(nwt + ¢,) = (A4, cos @,)sin nwt + (4, sin @,) cos nwt
= b, sinnwt + a, cos nwt
where
b,=A,cos @, a,=A,sin g, (7.2)

the expansion (7.1) may be written as
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(1) = 3a,+ z a, cos nwt + 2 b, sin not (7.3)

n=1 n=1

where a,= 24, (we shall see later that taking the first term as ! g, rather than q, is a
convenience that enables us to make a fit a general result). The expansion (7.3) is called
the Fourier series expansion of the function f{(7), and the as and bs are called the Fourier
coefficients. In electrical engineering it is common practice to refer to a, and b, respect-
ively as the in-phase and phase quadrature components of the nth harmonic, this
terminology arising from the use of the phasor notation e = cosnwt + jsinnaot.
Clearly, (7.1) is an alternative representation of the Fourier series with the amplitude
and phase of the nth harmonic being determined from (7.2) as

A= @B, g,=tan(%)

with care being taken over choice of quadrant.
The Fourier coefficients are given by

d+T
a”Z%[ f(H)cosnwtdt (n=0,1,2,...) (7.4)
d
2 d+T
bn:}J f(t)ysinnwtdt (n=1,2,3,...) (7.5)
d

which are known as Euler’s formulae.
Before proceeding to verify (7.4) and (7.5), we first state the following integrals, in
which T'=2n/w:

d+T

J cos nwtdt = {0 (n#0) (1.6)
J T (n=0)
d+T

J sinnwtdt=0 (all n) 7.7
d
o . 0 (m#n)

sinmotsinnotdt = 4, (7.8)

J ;T (m=n=#0)

T 0 (m#n)
) cos mwt cos nwt dt = 1T (m=n0) (7.9)

d+T
J cosmmtsinnwtdt =0 (all m and n) (7.10)

d

The results (7.6)—(7.10) constitute the orthogonality relations for sine and cosine
functions, and show that the set of functions

{1, cos wt, cos2wt, . . ., cos nwt, sin Wt, sin2t, . . ., sinnwt}

is an orthogonal set of functions on the interval d < t < d + T. The choice of d is
arbitrary in these results, it only being necessary to integrate over a period of duration 7.
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Integrating the series (7.3) with respect to ¢ over the period t=dtot=d + T, and
using (7.6) and (7.7), we find that each term on the right-hand side is zero except for
the term involving a,; that is, we have

d+T d+T oo d+T d+T
J f(1) dt=%aoj dt+2(anf cos nwtdt-l—b,,j sin na)tdt]
n=1

d d d d

= 1a(T)+ Y [4,(0) + 5,(0)]

—1
_ETaO

Thus

d+T
1
lay= _TJ f(H)dt

d

and we can see that the constant term %ao in the Fourier series expansion represents the
mean value of the function f(¢) over one period. For an electrical signal it represents the
bias level or DC (direct current) component. Hence

ay = ZTJ 1) de (1.11)

d

To obtain this result, we have assumed that term-by-term integration of the series (7.3)
is permissible. This is indeed so because of the convergence properties of the series —
its validity is discussed in detail in more advanced texts.

To obtain the Fourier coefficient a, (n # 0), we multiply (7.3) throughout by cos mwt
and integrate with respect to ¢ over the period r =d to t = d + T, giving

d+T d+T oo d+T
J f(t)cosmwtdtzéaof cosmmtdt + Zanj cos nwt cos mwt dt

d d n=1 d

. d+T
+ z an cos mot sin nowt dt
n=1

d

Assuming term-by-term integration to be possible, and using (7.6), (7.9) and (7.10), we
find that, when m # 0, the only non-zero integral on the right-hand side is the one that
occurs in the first summation when n = m. That is, we have

d+T d+T
J f() cosmwtdt = amf cosmtcosmotdt = 1 a,T
d d

giving

a,= —J f(t) cos nwt dt (7.12)
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The value of g, given in (7.11) may be obtained by taking n = 0 in (7.12), so that we
may write

d+T
a,= —J f(Hcosmwtdt (n=0,1,2,...)

d

which verifies formula (7.4). This explains why the constant term in the Fourier series
expansion was taken as %ao and not a,, since this ensures compatibility of the results
(7.11) and (7.12). Although a, and a, satisfy the same formula, it is usually safer to
work them out separately.

Finally, to obtain the Fourier coefficients b,, we multiply (7.3) throughout by
sinmt and integrate with respect to ¢ over the period t =d to t = d + T, giving

d+T d+T
J f(t)sinmotdt = %aOJ sin met dt
d d

d+T

sin m@¢t sin nwtdtJ

- d+T
+Z[anj sin mwt cos nwtdt+bnj
n=1

d t

Assuming term-by-term integration to be possible, and using (7.7), (7.8) and (7.10), we
find that the only non-zero integral on the right-hand side is the one that occurs in the
second summation when m = n. That is, we have

d+T a+T

J f(H)sinmetdt = bmJ sinmotsinmotdr=1b,T
d d

giving, on replacing m by n,

d+T
b;%J fBysinnotdt (n=1,2,3,...)

d

which verifies formula (7.5).

Summary

In summary, we have shown that if a periodic function f(#) of period 7' = 21/@ can
be expanded as a Fourier series then that series is given by

[ =3a,+ Z a, cos nt + Z b, sin nwt (7.3)
n=1 n=1

where the coefficients are given by the Euler formulae

d+T
a,= %[ fltycosnotdt (n=0,1,2,...) a4

d+T
bnzgj fH)sinnowtdt (n=1,2,3,...) (-5
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7.2.3

The limits of integration in Euler’s formulae may be specified over any period, so that
the choice of d is arbitrary, and may be made in such a way as to help in the calculation of
a,and b,. In practice, it is common to specify f(7) over either the period =3 T<< 7 < 1 Tor
the period 0 < ¢ < T, leading respectively to the limits of integration being —% T and
1T (thatis,d =—1T) or 0 and T (that is, d = 0).

It is also worth noting that an alternative approach may simplify the calculation of
a,and b,. Using the formula

el = cosnwt + j sinnwt

we have

d+T
o+ jb, = % J flHy e di (1.13)

d

Evaluating this integral and equating real and imaginary parts on each side gives the
values of a, and b,. This approach is particularly useful when only the amplitude
|a,+ jb,| of the nth harmonic is required.

Functions of period 2n

If the period T of the periodic function f(¢) is taken to be 21 then @ = 1, and the
series (7.3) becomes

fO=3a,+ 2 a, cos nt + 2 b, sin nt (7.14)
n=1 n=1
with the coefficients given by
1 d+2m
a,= &J f(tycosntdt (n=0,1,2,...) (7.15)
d
1 d+2mn
b, = 1—J f()ysinntdt (n=1,2,...) (7.16)
d

While a unit frequency may rarely be encountered in practice, consideration of this par-
ticular case reduces the amount of mathematical manipulation involved in determining
the coefficients a,and b,. Also, there is no loss of generality in considering this case,
since if we have a function f{f) of period 7, we may write ¢, = 2n#/T, so that

f=f(32)=Fe

where F(t,) is a function of period 27. That is, by a simple change of variable, a periodic
function f{¢) of period 7 may be transformed into a periodic function F(#,) of period 2.
Thus, in order to develop an initial understanding and to discuss some of the properties
of Fourier series, we shall first consider functions of period 2m, returning to functions
of period other than 2w in Section 7.2.7.
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Example 7.1  Obtain the Fourier series expansion of the periodic function f(¢) of period 21t defined by
fH=t (0<t<2m), f(H) =f(t+2m)

Figure 7.2 Sawtooth fin
wave of Example 7.1.

Solution A sketch of the function f(7) over the interval —4w < ¢ < 4m is shown in Figure 7.2.
Since the function is periodic we only need to sketch it over one period, the pattern
being repeated for other periods. Using (7.15) to evaluate the Fourier coefficients a, and

a, gives
1 2n 1 2n 1 tz 2n
== Hdt==| tdt==|z| =2
TJ /@ nJ n[2} T

0 0 0

N
S)

and

N
Il
ai—

J 7rf(t)cosntdt n=1,2,...)

0

2m
J tcos ntdt

0

ai—

which, on integration by parts, gives

1] sinnt 12 1 0

q, = 1| sinnt cosnt =—(—nsin2nn+—c052nn—9-(-)-s—-—)=0
2 2 2

T n n T\ n n n

since sin 2n1 = 0 and cos 2nm = cos 0 = 1. Note the need to work out a, separately from
a, in this case. The formula (7.16) for b, gives

S
Il
ail—

J nf(t)sinntdt n=1,2,...)

0

2n
J tsinnt dt
0

which, on integration by parts, gives

. 2n
|:—£ cosnt+ S nt:|

2
n n 0

ail—

S
Il

ai—

Tlt(—z—n cos 2nn) (since sin2nm = sin 0 = 0)
n

=-= (since cos2nm = 1)
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Hence from (7.14) the Fourier series expansion of f(f) is
=5
H=m—- Y =sinnt
fio=n=3 Cinn
or, in expanded form,

f(f)=n—2(sint+%2t+%3t+__.+Slnnt+“_)
n

Example 7.2 A periodic function f(¢) with period 27 is defined by
f=FP+1 (n<i<m), f)=f(t+2m)

Sketch a graph of the function f{(7) for values of ¢ from # = =3n to # = 3w and obtain a
Fourier series expansion of the function.

Figure 7.3 Graph of JiGY'Y
the function f(f) of
Example 7.2. ' ! |
i . | ,
]
-3n  2=n -n O bl 2n 3p !

Solution A graph of the function f(¢) for —31 < ¢ < 37 is shown in Figure 7.3. From (7.15)

we have
1 § 1 "o 2.2
ay==| fndt==| (F+ndt=:rn
T - T -
and
a":}zj f(tycosntdt (n=1,2,3,...)
=1J (t2+t)cosntdt
T -

which, on integration by parts, gives

~

a, =
n n n n

a |~
S |

2 T
[ sinnt+2—§cosnt—%sinnt+£sinnt+%cosnt}
-7

|5

T
CcoS nT (since sin nt = 0 and {lz cos nt} = O]
n
-

~oa =

=2(-1)" (since cos nwt = (—1)")
n
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From (7.16)

b,=

Q1=

J f(t)sinntdt (n=1,2,3,...)

T
J (t2 +t) sin ntdt
-n

ai—

which, on integration by parts, gives

5 T
b, = 1 ~Lcosnt+ —2-£sin nt+ -2—3cos nt — Lcos nt + —l—zsin nt
Tl n n n n n

= 2cos nm = —z(—l)" (since cos nmt = (—1)")
n n
Hence from (7.14) the Fourier series expansion of f(¢) is
f() = i’ + i A1) cos ni - i Z(_1)"sin nt
n=1 1 n=1 n

or, in expanded form,

fle) =1n’ + 4(_005,[ + cos22t_ cos3r ) + Z(Sint— s1r;2t ,sin3r

2 3? 3

To illustrate the alternative approach, using (7.13) gives

:l(|:f2.+tejnt} _J 2t+1 det]
|| jn . jn

l|f +t Jﬂl 2t+1 Jn/+zejm:|
Tgn G’ G,

Since
e = cosnm + jsinnm = (—1)"
e = cosnm — jsinnm = (=1)"
and

1j=—

a”+'] 2 3 2 3

2 .
b_( 1)( T+ 27t+1+12+j7r —n_1—2n_J_2_)
n n n n n n
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Figure 7.4 Piecewise-
continuous function
over a period.

Example 7.3

Equating real and imaginary parts gives, as before,

a,= 21, b=-2c1y
n n

A periodic function f(#) may be specified in a piecewise fashion over a period, or,
indeed, it may only be piecewise-continuous over a period, as illustrated in Figure 7.4.
In order to calculate the Fourier coefficients in such cases, it is necessary to break up
the range of integration in the Euler formulae to correspond to the various components
of the function. For example, for the function shown in Figure 7.4, f(¢) is defined in the
interval -t < ¢ < 1 by

Si() (m<1<-p)
=140 (p<t<gq)
L) (g<t<m

and is periodic with period 2w. The Euler formulae (7.15) and (7.16) for the Fourier
coefficients become

-p q n
a,,:}t f £i(0) cosntdt+f (1) cosntdt+f J%(f)cosnfdf}
L - 4 7
1] (7 ! ’
b,,:7—t f £i(0) sinntdt+J S2(0) sinntdt+f S3(0) Sinntdf}
| J -p q
0 A
| |
| I
|
i Oyd :
NSO
| L e
o) 14 o
| |
| |
! !
| |
| !

A periodic function f{(¢) of period 2m is defined within the period 0 < ¢ < 27 by
t (0sr<im
flt)y=qin

1
Tt

Grst<m)
(n<t=<2m)

Sketch a graph of f{(f) for —2n < ¢ < 3w and find a Fourier series expansion of it.
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Figure 7.5 Graph of f(n
the function f{7) of
Example 7.3.
T { ] 1% | T +—>
-2n -1 O 3n =n 2n 3n 1

Solution A graph of the function f{(¢) for —21 < ¢ < 31 is shown in Figure 7.5. From (7.15),

2n /2 T 2n
aO:TlCJ f(t)dt:}t J tdt+J %ndt+J (m—indt|=:in
/2

0 T

and
1 2n
a"ZT_cJ f(t)cosntdt (n=1,2,3,...)
0
/2 T 21
-1 J t cos ntdt+J Imcos ntdt+J (n = 11) cos nt dt
T 0 /2 T
| /2 b 2 . 2n
N AT cosznt | Eogin | 4 |2Rotsinnr cosrzzt
n\|n n 2n 2 n 2n
0 /2 T
= l(lsin%nn+lcoslnn—l—lsinlnn—L +Lcosnn)
2 2 2 2 2 2
T \2n n n- 2n 2n° 2n
= 5(2c0s jnm—3 + cos nt)
2mn
that is,
1 n/2
—2[(—1) —1] (even n)
n
a, =
-2 (0dd n)
T
From (7.16),

2n
b,,:TlJ f(tysinntdt (n=1,2,3,...)

1 /2 T 27 1
= J tSinntdt+J %nsinntdt+J (n—it)sinntdt
0 /2

g

1 t 1 /2 n
=—||——cosnt+ —Zsinnt + —lcos nt
b n n 0 2n

/2
t=2m 1. o
+ CcosS nt——251n nt
2n 2n

T
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1 1 . T
==[-L cos %nn+—smlnn—£cosnn+£cos lpm+ —cosnm
2 2 2
T\ 2n n 2n 2n 2n
o
= —sin jnm
f19/]
0 (even n)
={ (L2
Q—Lz (odd n)
nn

Hence from (7.14) the Fourier series expansion of f{(7) is

S0 =5 - g(cos t+ cos23t + 00825t+. . )
T 3 5

: g(coszh + cos26t L cos 120t L )
TN 2 6 10

N (sint— sin 3¢ sin St _ s1n7t+”_)

3? 5° 7

a |~

A major use of the MATLAB Symbolic Math Toolbox and MAPLE, when dealing with
Fourier series, is to avoid the tedious and frequently error prone integration involved in
determining the coefficients a, and b,. It is therefore advisable to use them to check
the accuracy of integration. To illustrate we shall consider Examples 7.2 and 7.3.

In MAPLE n may be declared to be an integer using the command

assume (n, integer) ;

which helps with simplification of answers. There is no comparable command in
MATLAB so, when using the Symbolic Math Toolbox, we shall use the command

maple (‘assume (n,integer)’)
Considering Example 7.2 the MATLAB commands
syms t n
maple (‘assume (n,integer)’);
int ((£”2 + t)*cos(n*t),-pi,pi)/pi
return the value of a, as
4* (-1) " n/n"2
(-1)7

2

Entering the command pretty (ans) gives a, in the form 4 , where n~ indicates

that » is an integer. Likewise the commands
int ((£"2 + t)*sin(n*t),-pi,pi)/pi;
pretty (ans)

return b, as

thus checking with the values given in the solution.
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The corresponding commands in MAPLE are

assume (n, integer) ;
int ((£t”2 + t)*cos(n*t), t = -Pi..Pi)/Pi;

returning the value of a, as
(=1)™
1’1N7

with the further command

4

int ((£”2 + t)*sin(n*t), t = -Pi..Pi)/Pi;

returning the value of b, as
(=1)™
Tl =

-2

again checking with the values given in the solution.
In Example 7.3 we are dealing with a piecewise function, which can be specified
using the piecewise command. In MATLAB the commands

syms t n
maple (‘assume (n,integer)’);
f = (/PIECEWISE([t,t<= 1/2*pil], [1/2*pi,1l/2*pi-t<= 0 and
t-pi< = 0], [pi-1/2t*t,pi<=t])"’);
int (f*cos (n*t),0,2*pi) /pi;
pretty (ans)
return the value of a, as
-3+2 cos(1/2 pi n~) + (-1)"
A’ pi

with the further commands

1/2

int (f*sin(n*t),0,2*pi) /pi;
pretty (ans)

returning the value of b, as
sin(1/2 pi n~)

n~" pi
In MAPLE the commands
f:= simplify (piecewise(t<= Pi/2,t, (t>= Pi/2 and
t<= Pi),Pi/2,t>= Pi,Pi-t/2));
ff:= unapply(f,t);
assume (n, integer) ;
an:= int(ff(t)*cos(n*t), t = 0..P1)/Pi;
bn:= int (f£(t)*sin(n*t), t = 0..P1)/P1i;

return the same values as MATLAB above for a, and b,.
An alternative approach to using the piecewise command is to express the
function in terms of Heavyside functions.

7.2.4 Even and odd functions

Noting that a particular function possesses certain symmetrical properties enables us
both to tell which terms are absent from a Fourier series expansion of the function and
to simplify the expressions determining the remaining coefficients. In this section we
consider even and odd function symmetries.
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10 First we review the properties of even and odd functions that are useful for deter-
mining the Fourier coefficients. If f{¢) is an even function then f{¢t) = f(—¢) for all ¢, and
the graph of the function is symmetrical about the vertical axis as illustrated in Figure
7.6(a). From the definition of integration, it follows that if f{f) is an even function then

a_h___
~Y

(d) a a
0 J fhde=2 JO () dt

If f(¢) is an odd function then f(#) = —f(—¢) for all #, and the graph of the function is
symmetrical about the origin; that is, there is opposite-quadrant symmetry, as illustrated
in Figure 7.6(b). It follows that if f(¢) is an odd function then

PR
L
f Y R——
~Y

J f(Hde=0
Figure 7.6 Graphs of —a
(a) an even function

and (b) an odd The following properties of even and odd functions are also useful for our purposes:
function. (a) the sum of two (or more) odd functions is an odd function;

(b) the product of two even functions is an even function;

(c) the product of two odd functions is an even function;

(d) the product of an odd and an even function is an odd function;

(e) the derivative of an even function is an odd function;

(f) the derivative of an odd function is an even function.

(Noting that °**"is even and °*is odd helps one to remember (a)—(f).)
Using these properties, and taking d =—1 T'in (7.11) and (7.12), we have the following:

(1) Iff(?) is an even periodic function of period 7" then

T2 T2
a,= gJ f(t)cosnwtdt = ‘—‘J f(#) cos nwt dt
T -T2 T 0
using property (b), and
2 T2
b,= }J f(H)sinnwtdt =0
-T7/2

using property (d).

Thus the Fourier series expansion of an even periodic function f{(#) with period
T consists of cosine terms only and, from (7.3), is given by

fly="1a,+ Zan cos nwt (7.17)

n=1
with

T/2
a, = %J f(H)cosnwt (n=0,1,2,...) (7.18)

0
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(1) Iff(¥) is an odd periodic function of period 7" then

T2
a,= %J f(f)cosnwtdt =0

-T2
using property (d), and
T2 T2
b, = 2T J f(6) sinnwt dt = ‘—; J £(0) sinnot dt
0

-T2

using property (c).

Thus the Fourier series expansion of an odd periodic function f(#) with period 7
consists of sine terms only and, from (7.3), is given by

f0=" b,sinnot (7.19)
n=1
with
T2
b, = ‘-;J f(sinnordt (n=1,2,3,...) (7.20)
0

Example 7.4 A periodic function f() with period 27 is defined within the period -t < ¢ < 7 by

-1 (<t<0)
1 (0<t<m)

S = {
Find its Fourier series expansion.

Figure 7.7 Square A
wave of Example 7.4.

S R—

Solution A sketch of the function f(¢) over the interval —4w < ¢ < 47 is shown in Figure 7.7.
Clearly f(¢) is an odd function of ¢, so that its Fourier series expansion consists of sine
terms only. Taking 7 = 2, that is @ =1, in (7.19) and (7.20), the Fourier series expan-
sion is given by

f)="Y b,sinnt

n=1

with
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b,,:?J fHysinnedt (n=1,2,3,...)

=2 lsinntdtzg —lcosnt
T/, T n 0

= 2(1 - cosnm) = =[1- =17
ntm nTm

_ {4/n1t (odd n)

0 (even n)

Thus the Fourier series expansion of f{¢) is

4 . . . _ 4 sin(2n—-1)t
f(t)=T—C(smt+§sm3t+§sm5t+...) = T_tz;%n—_ll (7.21)

Example 7.5 A periodic function f{¢) with period 27 is defined as
fin=r (n<t<mn), ft)=f(t+2n)

Obtain a Fourier series expansion for it.

Solution A sketch of the function f(¢) over the interval —3w < ¢ < 37 is shown in Figure 7.8.
Clearly, f(7) is an even function of #, so that its Fourier series expansion consists of
cosine terms only. Taking 7 = 2w, that is @ =1, in (7.17) and (7.18), the Fourier series
expansion is given by

SO =1ay+ 2 a, cos nt
n=1

with
ay = 2J flrydr= 2J rdr=3m
T T
0 0
Figure 7.8 The fOA
function f(f) of
Example 7.5.
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and

a, =

a i

J f(Hcosntdt (n=1,2,3,...)

0

[N

a i

T g
J £ cosntdt = z{t— sinnt+g—§cosnt——2—3sinnt

0 | n n n 0

= 2(2_7;5005 nn) = iz(—l)"
n\n n

since sinn7 = 0 and cos n7t = (—1)". Thus the Fourier series expansion of f(£) = > is
S =144 S cos e (1.22)
n=1 n

or, writing out the first few terms,

1.2 4
f(H)=3m"—4cost+cos2t—jcos3t+...

7.2.5 Linearity property

The linearity property as applied to Fourier series may be stated in the form of the
following theorem.

Theorem 7.1  If f(¢) = Ig(¢) + mh(t), where g(¢) and h(?) are periodic functions of period T and ! and m

are arbitrary constants, then f(7) has a Fourier series expansion in which the coefficients
are the sums of the coefficients in the Fourier series expansions of g(#) and A(f) multi-
plied by / and m respectively.

Proof Clearly f(¢) is periodic with period 7. If the Fourier series expansions of g(7) and A(f) are

g(t)=1a,+ 2 a, cos nwt + z b, sin nwt

n=1 n=1

h(t)y= 3o, + z o, cos nwt + z B, sinnwt
n=1

n=1 =
then, using (7.4) and (7.5), the Fourier coefficients in the expansion of f(#) are
2 d+T 2 d+T
A, = %J f()cosnwtdt = %J [lg(?) + mh(f)] cosnwt dt
d

d

d+T d+T
= —J g(?) cos nwtdr + 2—;"J h(f)cos nwtdt = la, + ma,
d d
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and
5 d+T 21 d+T 5 d+T
B,= —J f(H)sinnwtdt = —J g(f) sin nwt df + —mJ h(?) sin nowt dt
T J T J T J
=1b,+mp,
confirming that the Fourier series expansion of f(f) is
S0 =2 lay + may) + 2 (la, + ma,) cos nwt + z (Ib, + mp,) sin nowt

n=1 n=1

end of theorem

Example 7.6 Suppose that g(#) and /(f) are periodic functions of period 2w and are defined within the
period -t < t < 1 by

g=t* h)=t

Determine the Fourier series expansions of both g(f) and A(f) and use the linearity
property to confirm the expansion obtained in Example 7.2 for the periodic function £{(?)
defined within the period -1t < ¢ < T by f(f) = t* + 1.

Solution  The Fourier series of g(7) is given by (7.22) as
g(t) =1n’ +4z Q—_lzl cos nt
n=1 n

Recognizing that A(f) = t is an odd function of 7, we find, taking 7= 2n and =1 in
(7.19) and (7.20), that its Fourier series expansion is

h(t) = 2 b, sin nt

where

2 —
T—EJ h(H)sinntdt (n=1,2,3,...)
gj tsmntdt_— I os H_sn12nt
T n p '0
2 n

:__(_1)
n

recognizing again that cos nt = (—1)" and sin nx = 0. Thus the Fourier series expansion
of h(t)y=1t1is

hy=-23 %Zsin nt (1.23)
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Using the linearity property, we find, by combining (7.22) and (7.23), that the Fourier
series expansion of f(£) = g(f) + h(f) = t* + t is

oo _1 n oo _1 n .
f(t) =’ +4 CL cos 23 i
3 ; nZ Z{ n

which conforms to the series obtained in Example 7.2.

7.2.6 Exercises

Check evaluation of the integrals using MATLAB or MAPLE whenever possible.

In each of the following a periodic function f(z) of
period 2m is specified over one period. In each case
sketch a graph of the function for —4n < ¢ < 4w and

obtain a Fourier series representation of the function.

@ f(t)z{—n (-n <t <0)
t (0<t<m

(b)f(t):{t+1'c (—m < t<0)
0 (0<t<m)

(®m=bi@$%M)

o

(
(d) f(=92cost (n<1t<
0 (

(e) fl)=cosit (-m<t<m)

M) fO=11] ((n<t<mn
@ f0 ={ 0 (-n<t<0)
2t-nt (0 <t=m)

) f(t):{—t+e’ (-n<1<0)

t+e' (0=t<m)

Obtain the Fourier series expansion of the periodic
function f{(¢) of period 2r defined over the
period 0 < 7 < 2w by

fiy=(m—1’
Use the Fourier series to show that
L2 [ad :_l 1n+l

ot = 2

2
n

(0 <r<2m

n=1

3

The charge ¢(7) on the plates of a capacitor at time
tis as shown in Figure 7.9. Express ¢(7) as a Fourier
series expansion.

q(1)
Q

Il | |
T

T
2n  -X OI n 2n 3n 4n

-~y

Figure 7.9 Plot of the charge ¢(7) in Exercise 3.

The clipped response of a half-wave rectifier is the
periodic function £{(7) of period 2n defined over
the period 0 < 7 < 21 by

1) :{Ssint
0

O0=tr=

)

b
(n<=t=<2m)
Express f(f) as a Fourier series expansion.

Show that the Fourier series representing the
periodic function £{(7), where

ﬂ0={”2

(t-m)’

S+ 2m) =1(1)

(-t <t<0)
0<t<m)
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Use this result to

) S Loy
@ 2 5=

6 A periodic function f{(f) of period 27 is defined 7
within the domain 0 < 7 < & by

show that Find the Fourier series expansion that represents the
even function for all values of ¢, and use it to show that
L n+1
=D - 1.2
(b) 2 2 =50

2'(2,1—1)

n=1

ool—-

A periodic function f(#) of period 2m is defined
within the period 0 < ¢ < 2rn by

t (0<t<!n) 2—-t/n (0 <t<nm)
ﬂnz{ ’ [0 =
r-t (n=i=n) m (n<i<2m)
Sketch a graph of f(#) for —2n < t < 4m for the two Draw a graph of the function for ~4n < 7 < 47

cases where

and obtain its Fourier series expansion.
By replacing ¢ by ¢t — % T in your answer,

(a) f(f)is an even function show that the periodic function f(r — 1) — 3 is

(b) f(¥) is an odd

2
function represented by a sine series of odd harmonics.

7.2.7

Example 7.7

Figure 7.10
The function £{(7)
of Example 7.7.

Solution

Functions of period T

Although all the results have been related to periodic functions having period 7, all the
examples we have considered so far have involved periodic functions of period 27. This
was done primarily for ease of manipulation in determining the Fourier coefficients
while becoming acquainted with Fourier series. As mentioned in Section 7.2.3, functions
having unit frequency (that is, of period 2m) are rarely encountered in practice, and in
this section we consider examples of periodic functions having periods other than 2.

A periodic function f(¢) of period 4 (that is, f(t + 4) = f(¢)) is defined in the range
-2<t<2by

f(t)z{o (—2<t<0)
I (0<1<2)

Sketch a graph of f(#) for —6 < ¢ < 6 and obtain a Fourier series expansion for the
function.

H
N
Jo B

-
I
1

NG S

A graph of f(¢) for —6 < ¢ =< 6 is shown in Figure 7.10. Taking 7=4 in (7.4) and (7.5),

we have

2 0 2
:%J f(t)dt=%[J 0dt+J1dt]=
-2 -2 0


www.semeng.ir

7.2 FOURIER SERIES EXPANSION 581

2
a,= J f(¢) cos : nntdt n=1,2,3,...)
0 2
[J Odt+J cos %nmdtj =
-2 0

b, = Jf(t)sm inmedt (n=1,2,3,...)

and

-2

0 2
J 0dt+f sin %nmdlj =L 1—cosnm) = L11-(=1)]
. nm nm

0

L (1 cosnmy=—[1 - (=1)"]
nT nrt

_ { 0 (even n)
2/nmt (odd n)

Thus, from (7.3), the Fourier series expansion of f(¢) is

S =1 +T%(sin%nt+§sin%nt+ tsinimi+...)

-
,;Z

sm ‘2n-1)mt

N —

Example 7.8 A periodic function f(7) of period 2 is defined by

3t (0<t<1)
S {3 (1<t<2)

ft+2)=f0)
Sketch a graph of f(#) for —4 < ¢ < 4 and determine a Fourier series expansion for the
function.

Figure 7.11 oA
The function £(7)

of Example 7.8. 1 -3
l ] !
AV v,

1 T

1T 1 T
-4 -3 -2 ] 1 2 3 4

Solution A graph of f(¢) for —4 < ¢ < 4 is shown in Figure 7.11. Taking T=2 in (7.4) and (7.5),

we have
2 1 2
=§f f(t)dt—J 3tdt+J 3dr=1%
0 0 1
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2
anzgf f(t)cos’—l—i-.-c—tdt n=1,2,3,...)

0

1 2 . 1 . 2
=| 3tcosnmtdt+ | 3 cosnmtdt = 3¢sin nm+ 3 cos nzm + 3 sin nm
nw (nm)” |, nm .

0 1
0 (even n)

—6/(nm)*  (odd n)

-3 s(cosnm - 1):{

 (nm)

and

2
. nTt
b,,z%ff(t)sm—-i——dt n=1,2,3,...)
0

1 2
= J 3¢ sin nntdt+J 3 sinnmtdt

0 1

+ =——cos2nm = _3

. 1 2
_|_3cosnmt 3sinnmt| | _3cosnmt| _ _ 3
nmn (nm)’ nm nm

nm

0 1

Thus, from (7.3), the Fourier series expansion of f(7) is

|

f(1) = 3= =(cos Tt + oS 3T + 3508 ST+ .. )

a

—é(sinnt+%sin2nt+§sin3nt+. .)
T

_9_ 6~ cos(2n—1)nt 3 <> sinnmt
_Z__zz P
T n=1 (2n_1) nn:l n

Example 7.9  Obtain the Fourier series expansion of the rectified sine wave

S0y = sint]

Solution A sketch of the wave over the interval -t < # < 27 is shown in Figure 7.12. Clearly,
f(?) is periodic with period mt. Taking 7 = =, that is, w = 2, in (7.3)—(7.5) the Fourier
series expansion is given by

S ="ta,+ z a,cos 2nt

n=1

a0=2‘[ sintdt=‘—‘
T v

Figure 7.12 Rectified f(n
wave f(f) = |sin¢].
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sin¢ cos 2nt dt

[sin2n + 1)t — sin(2n — 1)) dt

_ 1| _cos2(n+ 1)t
T 2n+1

cos2(n—1)t]"
2n—1 0

) 715[(2;4-1_2;11—1)_(_

1 + 1 )=_£ 1
2n+1 2n-1 T 4n® -1

Thus the Fourier series expansion of f(7) is

2 4 1
f=2-2y —

T ma 4n -1
or, writing out the first few terms,

2

cos 2nt

4
f(t)==—==(3cos 21+ {zcos 41+ $-cos 61+ . . . )

T T

7.2.8 Exercises

8  Find a Fourier series expansion of the periodic
function

=t (-1<t<I)
Sfit+21) = ()

9 A periodic function f(7) of period 2/ is defined over
one period by

—[7<(l+t) (-l <t <0)

fn = i
K
Ba-n <1<

Determine its Fourier series expansion and illustrate
graphically for =3/ < ¢ < 31.

10 A periodic function of period 10 is defined within
the period -5 < ¢t < 5 by 13

f(t):{o (-5 <t<0)
3 (0<1<5)

Determine its Fourier series expansion and illustrate
graphically for —12 < ¢ < 12.

11  Passing a sinusoidal voltage 4 sin ot through a
half-wave rectifier produces the clipped sine wave

shown in Figure 7.13. Determine a Fourier series
expansion of the rectified wave.

VAN fﬁﬁ/\\ N

T T 1 T 1
-2t/w -m/w o t/w

~Y

21t/w 3t/w

Figure 7.13 Rectified sine wave of Exercise 11.

Obtain a Fourier series expansion of the periodic
function

f(h=t (-T<t<T)

ft+2T) = ()
and illustrate graphically for -37 < ¢ < 3T.

Determine a Fourier series representation of the
periodic voltage e(f) shown in Figure 7.14.

e(r)
E
| t '
ol / //=
T 2r r ¢

Figure 7.14 Voltage e(f) of Exercise 13.

L

-2T -T
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7.2.9

Theorem 7.2

Example 7.10

Solution

Convergence of the Fourier series

So far we have concentrated our attention on determining the Fourier series expan-
sion corresponding to a given periodic function f(#). In reality, this is an exercise in
integration, since we merely have to compute the coefficients a, and b, using Euler’s
formulae (7.4) and (7.5) and then substitute these values into (7.3). We have not yet
considered the question of whether or not the Fourier series thus obtained is a valid
representation of the periodic function f(¢). It should not be assumed that the existence
of the coefficients a, and b, in itself implies that the associated series converges to the
function 1(f).

A full discussion of the convergence of a Fourier series is beyond the scope of
this book and we shall confine ourselves to simply stating a set of conditions which
ensures that f(¢) has a convergent Fourier series expansion. These conditions, known as
Dirichlet’s conditions, may be stated in the form of Theorem 7.2.

Dirichlet’s conditions

If f(¢) is a bounded periodic function that in any period has
(a) a finite number of isolated maxima and minima, and
(b) a finite number of points of finite discontinuity

then the Fourier series expansion of f(#) converges to f(f) at all points where f(?) is
continuous and to the average of the right- and left-hand limits of f{¢) at points where
f(?) is discontinuous (that is, to the mean of the discontinuity).

end of theorem

Give reasons why the functions
1 . 1
= b =
@ 7= ) sin[ L)

do not satisfy Dirichlet’s conditions in the interval 0 < ¢ < 2.

(a)  The function f{(f) = 1/(3 — ¢) has an infinite discontinuity at # = 3, which is within
the interval, and therefore does not satisfy the condition that f{#) must only have
finite discontinuities within a period (that is, it is bounded).

(b)  The function f(¢) = sin[1/(# — 2)] has an infinite number of maxima and minima
in the neighbourbood of ¢ = 2, which is within the interval, and therefore does not
satisfy the requirement that f(#) must have only a finite number of isolated
maxima and minima within one period.

The conditions of Theorem 7.2 are sufficient to ensure that a representative Fourier
series expansion of f{f) exists. However, they are not necessary conditions for convergence,
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and it does not follow that a representative Fourier series does not exist if they are not
satisfied. Indeed, necessary conditions on f{z) for the existence of a convergent Fourier
series are not yet known. In practice, this does not cause any problems, since for almost
all conceivable practical applications the functions that are encountered satisfy the
conditions of Theorem 7.2 and therefore have representative Fourier series.

Another issue of importance in practical applications is the rate of convergence of
a Fourier series, since this is an indication of how many terms must be taken in the
expansion in order to obtain a realistic approximation to the function f(f) it represents.
Obviously, this is determined by the coefficients @, and b, of the Fourier series and the
manner in which these decrease as 7 increases.

In an example, such as Example 7.1, in which the function f(7) is only piecewise-
continuous, exhibiting jump discontinuities, the Fourier coefficients decrease as 1/n,
and it may be necessary to include a large number of terms to obtain an adequate
approximation to f(¢). In an example, such as Example 7.3, in which the function
is a continuous function but has discontinuous first derivatives (owing to the sharp
corners), the Fourier coefficients decrease as 1/n%, and so one would expect the series
to converge more rapidly. Indeed, this argument applies in general, and we may
summarize as follows:

(a) if f(?) is only piecewise-continuous then the coefficients in its Fourier series
representation decrease as 1/n;

(b) if f(#) is continuous everywhere but has discontinuous first derivatives then the
coefficients in its Fourier series representation decrease as 1/n?;

(c) if f(¢) and all its derivatives up to that of the rth order are continuous but the
(r + D)th derivative is discontinuous then the coefficients in its Fourier series

representation decrease as 1/n"*2.

These observations are not surprising, since they simply tell us that the smoother the
function f{(f), the more rapidly will its Fourier series representation converge.

To illustrate some of these issues related to convergence we return to Example 7.4,
in which the Fourier series (7.21) was obtained as a representation of the square wave
of Figure 7.7.

Since (7.21) is an infinite series, it is clearly not possible to plot a graph of the result.
However, by considering finite partial sums, it is possible to plot graphs of approxima-
tions to the series. Denoting the sum of the first N terms in the infinite series by fy (%),
that is

_ 4 sin(2n - 1)t
Sl —n; P (7.24)

the graphs of f(¢) for N =1, 2, 3 and 20 are as shown in Figure 7.15. It can be seen
that at points where f{(#) is continuous the approximation of f(#) by f,(#) improves as
N increases, confirming that the series converges to f{(¢) at all such points. It can also
be seen that at points of discontinuity of f(#), which occur at t =tnn (n=0, 1,2, ...),
the series converges to the mean value of the discontinuity, which in this particular


www.semeng.ir

586 FOURIER SERIES
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Figure 7.15 Plots of f,(?) for a square wave: (a) N = 1; (b) 2; (c) 3; (d) 20.

~Y

example is %(—1 + 1) = 0. As a consequence, the equality sign in (7.21) needs to be
interpreted carefully. Although such use may be acceptable, in the sense that the series
converges to f(¢) for values of ¢ where f(f) is continuous, this is not so at points of
discontinuity. To overcome this problem, the symbol ~ (read as ‘behaves as’ or ‘repre-
sented by’) rather than = is frequently used in the Fourier series representation of a
function f{(#), so that (7.21) is often written as

f(t)Né_lzstn—l}t
n& 2n-1

In Section 7.7.3 it is shown that the Fourier series converges to f(¢) in the sense that the
integral of the square of the difference between f(#) and f,(¢) is minimized and tends to
zero as N — oo,

We note that convergence of the Fourier series is slowest near a point of discontinu-
ity, such as the one that occurs at # = 0. Although the series does converge to the mean
value of the discontinuity (namely zero) at ¢ = 0, there is, as indicated in Figure 7.15(d),
an undershoot at ¢ = 0~ (that is, just to the left of 7 = 0) and an overshoot at # = 0" (that
is, just to the right of # = 0). This non-smooth convergence of the Fourier series leading
to the occurrence of an undershoot and an overshoot at points of discontinuity of f(?) is
a characteristic of all Fourier series representing discontinuous functions, not only that
of the square wave of Example 7.4, and is known as Gibbs’ phenomenon after the
American physicist J. W. Gibbs (1839—1903). The magnitude of the undershoot/over-
shoot does not diminish as N — o in (7.24), but simply gets ‘sharper’ and ‘sharper’,
tending to a spike. In general, the magnitude of the undershoot and overshoot together
amount to about 18% of the magnitude of the discontinuity (that is, the difference in the
values of the function f(¢) to the left and right of the discontinuity). It is important that
the existence of this phenomenon be recognized, since in certain practical applications
these spikes at discontinuities have to be suppressed by using appropriate smoothing
factors.
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7.3

7.3.1

To reproduce the plots of Figure 7.15 and see how the series converges as N
increases use the following MATLAB commands:

t=pi/100*[300:300];

E=0p

T=[-3*pi -2*pi -2*pi -pi -pi 0 0 pi pi 2*pi 2*pi 3*pil];
y=[-1 -1 1 1 -2 -1 12 1 -1 -1 2 1];

for n=1:20

f=f+4/pi*sin((2*n-1)*t)/(2*n-1);

plot(T,y,t, £, [-3*pi 3*pil, (0,01, k-*,[0,01,[-1.3 1.37,'k-")
axis([-3*pi,3*pi,-inf,inf]) , pause

end

The pause command has been included to give you an opportunity to view the
plots at the end of each step. Press any key to proceed.

Theoretically, we can use the series (7.21) to obtain an approximation to 7. This is
achieved by taking ¢ = %n, when f(f) = 1; (7.21) then gives

4& sini(2n—1)m

1:;52 2n-1

n=1

leading to

I _1 n+1
n=4(1—%+§—%+...)=42%
n=1

For practical purposes, however, this is not a good way of obtaining an approximation
to T, because of the slow rate of convergence of the series.

Functions defined over a finite interval

One of the requirements of Fourier’s theorem is that the function to be expanded be
periodic. Therefore a function f(#) that is not periodic cannot have a Fourier series
representation that converges to it for all values of t. However, we can obtain a Fourier
series expansion that represents a non-periodic function f(¢) that is defined only over
a finite time interval 0 < ¢ < 7. This is a facility that is frequently used to solve
problems in practice, particularly boundary-value problems involving partial dif-
ferential equations, such as the consideration of heat flow along a bar or the vibrations
of a string. Various forms of Fourier series representations of f(f), valid only in the
interval 0 < ¢ < 7, are possible, including series consisting of cosine terms only or
series consisting of sine terms only. To obtain these, various periodic extensions of f(f)
are formulated.

Full-range series

Suppose the given function f(f) is defined only over the finite time interval 0 < ¢ < 7.
Then, to obtain a full-range Fourier series representation of f(¢) (that is, a series
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Figure 7.16 Graphs of
a function defined only
over (a) a finite interval
0=<t= rtand (b)its
periodic extension.

Example 7.11

Solution

Figure 7.17
The functions f(¢) and
¢(f) of Example 7.11.

consisting of both cosine and sine terms), we define the periodic extension ¢(¢) of

f(©) by
p)=f() (0<t<1)
o(t+ 1) =9

The graphs of a possible f(#) and its periodic extension ¢(f) are shown in Figures 7.16(a)
and (b) respectively.

Provided that f(7) satisfies Dirichlet’s conditions in the interval 0 < ¢ < 7, the
new function ¢(¢), of period 7, will have a convergent Fourier series expansion.
Since, within the particular period 0 < ¢ < 7, ¢(¢) is identical with £(¢), it follows
that this Fourier series expansion of ¢(#) will be representative of f(f) within this
interval.

Find a full-range Fourier series expansion of () = ¢ valid in the finite interval 0 < 7 < 4.
Draw graphs of both f{7) and the periodic function represented by the Fourier series
obtained.

Define the periodic function @(¢) by
d=fH=t O0<r<4)
o1 +4)=0()

Then the graphs of f(#) and its periodic extension ¢(f) are as shown in Figures 7.17(a)
and (b) respectively. Since ¢(7) is a periodic function with period 4, it has a convergent
Fourier series expansion. Taking 7 = 4 in (7.4) and (7.5), the Fourier coefficients are
determined as

4 4
aozgf f(t)dtz%J tdt =4

0 0

10 9()

4
1 | i l | { |
| | { | ] | !/
T T "ol f { f T Ll
-12 -8 -4 4 8 12 16

I

@ ()
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4
an:%J f(H)cosinmtdt (n=1,2,3,...)

0

4 4

= %J tcosinmtdr =14 2L sininmt + —— cosgnmt| =0
0 nmw (nm) 0

and
4
b, = %J flysininnedt (n=1,2,3,...)

0
4 4

= %J tsininmrds =1 ~2L cos Inmt + sintnme| = -

2 2

0 nm (nm) nm

Thus, by (7.3), the Fourier series expansion of ¢(z) is

— 4 LS| | l o3 3 1 o3 l a1 3
¢(t)—2—T—c(s1n5nt+ismnt+531n51tt+551n2t+§s1n5m+...)

_ Al
= 2—nn§=‘:nsm5nm
Since ¢(f) =f(¢) for 0 < ¢ < 4, it follows that this Fourier series is representative of f(7)
within this interval, so that
fi=1=2-23 Lintane 0 <i<a) (1.25)
n&pn

n=1

It is important to appreciate that this series converges to ¢ only within the interval
0 < t < 4. For values of ¢ outside this interval it converges to the periodic extended
function ¢(f). Again convergence is to be interpreted in the sense of Theorem 7.2, so
that at the end points # = 0 and ¢ = 4 the series does not converge to ¢ but to the mean
of the discontinuity in @(¢), namely the value 2.

7.3.2 Half-range cosine and sine series

Rather than develop the periodic extension ¢(#) of f(¢) as in Section 7.3.1, it is possible
to formulate periodic extensions that are either even or odd functions, so that the result-
ing Fourier series of the extended periodic functions consist either of cosine terms only
or sine terms only.

For a function f{(¢) defined only over the finite interval 0 < ¢ < 7 its even periodic
extension F(f) is the even periodic function defined by

F(t):{ f) (0<t<71)
fl=t) (-1<t<0)

F(t+27) =1
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Figure 7.18

(a) A function f(?);
(b) its even periodic
extension F(?).

Figure 7.19

(a) A function f(?);
(b) its odd periodic
extension G ().

As an illustration, the even periodic extension F(¢) of the function f(#) shown in
Figure 7.16(a) (redrawn in Figure 4.18(a)) is shown in Figure 4.18(b).

() F@)

| | P
T 1 -

0 Tt —Zlir -2t -t ol T 27 3t !
(a) ®)

Provided that f(f) satisfies Dirichlet’s conditions in the interval 0 < ¢ < 7, since it is
an even function of period 27, it follows from Section 7.2.4 that the even periodic
extension F(¢) will have a convergent Fourier series representation consisting of cosine
terms only and given by

F(r)=1} +m ncosw 7.26
(1) =34a 261 . (7.26)

n=1

where

an=%J f(t)cos’ll;—tdt (n=0,1,2,...) (7.27)

0

Since, within the particular interval 0 < ¢ < 7, F(¢) is identical with £{7), it follows that
the series (7.26) also converges to f(¢) within this interval.

For a function f(#) defined only over the finite interval 0 < ¢ < 7, its odd periodic
extension G(f) is the odd periodic function defined by

G(t):{ iy (0<:<7)
—f(=1) (~1<t<0)

G(t +27) = G(f)

Again, as an illustration, the odd periodic extension G(¢) of the function f{(¢) shown in
Figure 7.16(a) (redrawn in Figure 7.19(a)) is shown in Figure 7.19(b).

f® G

N :\1 i\‘ r »
0 Tt _3N-27—M| rN2r 3r~dr t

(2) (b

Provided that f{¢) satisfies Dirichlet’s conditions in the interval 0 < ¢ < 7, since it is
an odd function of period 27, it follows from Section 7.2.4 that the odd periodic exten-
sion G(f) will have a convergent Fourier series representation consisting of sine terms
only and given by

G(1) =Y b,sin ’—’-’T“—’ (1.28)

n=1
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Example 7.12

Solution

where

b, =

1IN

J (1) sin’%_t—tdt n=1,2,3,...) (7.29)

0

Again, since, within the particular interval 0 < ¢ < 7, G(¢) is identical with f(¢), it
follows that the series (7.28) also converges to f(f) within this interval.

We note that both the even and odd periodic extensions F(f) and G(f) are of period
21, which is twice the length of the interval over which f{¢) is defined. However, the
resulting Fourier series (7.26) and (7.28) are based only on the function f{f), and for this
reason are called the half-range Fourier series expansions of /(7). In particular, the
even half-range expansion F(¢), (7.26), is called the half-range cosine series expan-
sion of f(f), while the odd half-range expansion G(), (7.28), is called the half-range
sine series expansion of /(7).

For the function f(f) = ¢ defined only in the interval 0 < ¢ < 4, and considered in
Example 7.11, obtain

(a) a half-range cosine series expansion

(b) a half-range sine series expansion.

Draw graphs of f{¢) and of the periodic functions represented by the two series obtained
for —20 < ¢ < 20.

(a) Half-range cosine series. Define the periodic function F(¢) by

F(t):{ fiy=t (0<t<4)
fi=)=—t (-4<1<0)

F(t+8)=F(1)

Then, since F(f) is an even periodic function with period 8, it has a convergent
Fourier series expansion given by (7.26). Taking 7= 4 in (7.27), we have

4 4
aosz f(t)dtz%J tdt=4
0

0

4
an=f—1J flt)cosinmedt (n=1,2,3,...)

0

! 41 16 )
1 1 _1 il 1
EJ tcos ;nmtdt =3 { sin ;nmt + 5 COS JnT!

0 nw (nm) 0
0 (even n)
= 2(cosnTt—1)={ )
(nm) —16/(nm)”  (odd n)
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(b)

Then, by (7.26), the Fourier series expansion of F() is
F(t)—2—E(coslnt+icosént+icos§nt+ )
- - 4 3 4 52 4 T

or

16 1
F(t)y=2-—=Y ———cosi(2n-1)nt
22(2;1_1)2 :

n=1

Since F(f) = f(¢) for 0 < ¢ < 4, it follows that this Fourier series is representative
of f(¢) within this interval. Thus the half-range cosine series expansion of f{?) is

16
H=t=2-— l2n-mt 0<t<4 7.30
S 2 Z 2n_1 s cos ;(2n— 1wt ( ) (7.30)

Half-range sine series. Define the periodic function G(f) by

G(t):{ fin=t (0<t<4)
f-ty=t (-4<1<0)

G(t+8)=G(1)

Then, since G(7) is an odd periodic function with period 8, it has a convergent
Fourier series expansion given by (7.28). Taking 7= 4 in (7.29), we have

4
b,,:%f fitysintnmede  (n=1,2,3,...)

0

) 4 16 )
=t tsininmedr=1|-2L costnms + sin inmt

2 1 2 4 2 4

0 nm (nm)

0

=L cosum = —ﬁ(_l)“

Qw nm
Thus, by (7.28), the Fourier series expansion of G(¥) is
G(1) —§(sin gt =Lsinime+ Lsindme—. . .)

- T 4 2 2 3 1 e
or
had n+l

G(t) = 8 2 =D Sin}—‘nTCt

n n=1 n

Since G(t) = f(t) for 0 < ¢ < 4, it follows that this Fourier series is repres-
entative of f(f) within this interval. Thus the half-range sine series expansion of

S is

8 oo _1 n+l )
fin=t= T—EZ g-_nl— sin inm‘ 0<tr<4) (7.31)
n=1
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Figure 7.20
The functions f(?),

Graphs of the given function f{(f) and of the even and odd periodic expansions
F(f) and G(¢) are given in Figures 7.20(a), (b) and (c) respectively.

fo

F(t) and G(¢) of
Example 7.12.

14

15

o~

.

T I T T T
-20 -16 -12 -8 -4 o|
®)

G

(AR

~ 1

-~y

|
-12y /g 4/]0
-4
(©)

It is important to realize that the three different Fourier series representations
(7.25), (7.30) and (7.31) are representative of the function f(¢) = ¢ only within the
defined interval 0 < 7 < 4. Outside this interval the three Fourier series converge
to the three different functions ¢(7), F(¢) and G(¢), illustrated in Figures 7.17(b),

7.20(b) and 7.20(c) respectively.

7.3.3 Exercises

Show that the half-range Fourier sine series
expansion of the function f{(#) = 1, valid for
0<t<m,is

f(t)zé_lzsinﬂn—l!t 0<i<m
T A 2n-1

Sketch the graphs of both f(#) and the periodic
function represented by the series expansion
for 3w <t < 3m.

Determine the half-range cosine series expansion of
the function f(f) = 2¢ — 1, valid for 0 < ¢ < 1. Sketch
the graphs of both f(#) and the periodic function
represented by the series expansion for
2<t<2.

16

17

The function f(£) = 1 — #* is to be represented by
a Fourier series expansion over the finite interval
0 < ¢ < 1. Obtain a suitable

(a) full-range series expansion,
(b) half-range sine series expansion,
(c) half-range cosine series expansion.

Draw graphs of £(#) and of the periodic functions
represented by each of the three series for
-4 <t<4.

A function f(¢) is defined by
f(=nt—1

and is to be represented by either a half-range
Fourier sine series or a half-range Fourier cosine

O<t<nm)
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18

19

series. Find both of these series and sketch the
graphs of the functions represented by them for
21 <1t <2m.

A tightly stretched flexible uniform string has its
ends fixed at the points x = 0 and x = /. The midpoint
of the string is displaced a distance a, as shown in
Figure 7.21. If f(x) denotes the displaced profile of
the string, express f(x) as a Fourier series expansion
consisting only of sine terms.

fx)
a
/[\ _
O 1, / x
2

Figure 7.21 Displaced string of Exercise 18.

Repeat Exercise 18 for the case where the displaced
profile of the string is as shown in Figure 7.22.

1
707

Bl
2

_—1 —+

Figure 7.22 Displaced string of Exercise 19.

20

21

22

23

A function f{¢) is defined on 0 < ¢ < 1 by

(0=<1<im

0 (Gnsi=mn

Find a half-range Fourier series expansion
of f(#) on this interval. Sketch a graph of
the function represented by the series for
—2ns<t<2m

A function £{f) is defined on the interval
—-l=x<lby

f(x)=/7‘(|x|—l)

Obtain a Fourier series expansion of f(x) and sketch
a graph of the function represented by the series for
3l=x<3L

The temperature distribution 7(x) at a distance x,
measured from one end, along a bar of length
L is given by

T(x)=Kx(L-x) (0<x<1L), K=constant

Express T'(x) as a Fourier series expansion
consisting of sine terms only.

Find the Fourier series expansion of the function
f(#) valid for -1 <z < 1, where

1 (-1<1<0)
n<tr<l

f(t)={

Cos Tt

To what value does this series converge when
t=1?

7.4

Differentiation and integration of Fourier series

It is inevitable that the desire to obtain the derivative or the integral of a Fourier series
will arise in some applications. Since the smoothing effects of the integration pro-
cess tend to eliminate discontinuities, whereas the process of differentiation has the
opposite effect, it is not surprising that the integration of a Fourier series is more likely
to be possible than its differentiation. We shall not pursue the theory in depth here;
rather we shall state, without proof, two theorems concerned with the term-by-term
integration and differentiation of Fourier series, and make some observations on their

use.
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7.4.1

Theorem 7.3

Example 7.13

Integration of a Fourier series

A Fourier series expansion of a periodic function f(¢) that satisfies Dirichlet’s con-
ditions may be integrated term by term, and the integrated series converges to the
integral of the function f(¥).

end of theorem

According to this theorem, if f(7) satisfies Dirichlet’s conditions in the interval
—nt < t < 1 and has a Fourier series expansion

[y =3a,+ Z (a,cosnt + b, sin nt)

n=1

then for -t <, <t<m

Jf(t)dt:J %aodt+iJ (a, cos nt+ b, sin nt) dt
=1

t
“ 1 n i

= | b a, , . .
=lag(t—1) + 2 —2 (cos nt, — cos nt) + -2 (sin nt — sin nt,)
~ | n n

Because of the presence of the term 1a, on the right-hand side, this is clearly not a
Fourier series expansion of the integral on the left-hand side. However, the result can
be rearranged to be a Fourier series expansion of the function

g = J fydt = Syt

4

Example 7.13 serves to illustrate this process. Note also that the Fourier coefficients in
the new Fourier series are —b,/n and a,/n, so, from the observations made in Section 7.2.9,
the integrated series converges faster than the original series for f{7). If the given function
f(¢) is piecewise-continuous, rather than continuous, over the interval -t < ¢ < 7w then
care must be taken to ensure that the integration process is carried out properly over the
various subintervals. Again, Example 7.14 serves to illustrate this point.

From Example 7.5, the Fourier series expansion of the function

f(H=t* (-n<t<nmn), f(t+2m) =f(m)
is

> 2 o (=1)" cos nt
£=ln +4Z - (-n<t<m)
n=1 n

Integrating this result between the limits —t and 7 gives

t t t n
J £dt :J %nzdt+42J (z1) cos n! fosmdt
- - n=1 n

-
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Example 7.14

Solution

that is,

(ST

t3=%n2t+42ﬂ§1¢m (-n<r<n)
n=1 n

Because of the term %nzt on the right-hand side, this is clearly not a Fourier series
expansion. However, rearranging, we have

Pl = 1225—1! 2smnt
n

n=1

and now the right-hand side may be taken to be the Fourier series expansion of the
function

gty=*-mt (-n<t<nm

gt +2m) = g(1)

Integrate term by term the Fourier series expansion obtained in Example 7.4 for the
square wave

-1 ((n<t<0)
I (0<t<m)

-]

St +2m) = f(0)

illustrated in Figure 7.7.

From (7.21), the Fourier series expansion for f{(7) is

_4sin(2n-1)t
A ==
n 2n-1

We now need to integrate between the limits —1t and ¢ and, owing to the discontinuity
in f(f) at = 0, we must consider separately values of ¢ in the intervals —t < ¢ < 0 and
0<t<m

Case (i), interval —t < t < 0. Integrating (7.21) term by term, we have

Jl (—1)dt=‘—‘ijl sin@n=1)t 4,
B n Q2n-1)

n=1

that is,
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7.4.2

Theorem 7.4

It can be shown that
i )
o (2n -1y =T

(see Exercise 6), so that the above simplifies to

iy %ﬂ (-t <t < 0) (1.32)
o

n=1

Case (ii), interval 0 < t < . Integrating (7.21) term by term, we have

0 t . . '
J (—l)dt+J ldtz;i;ZJ sin(2n— 1)t 4.
o . ~

i (2n-1)
giving
z cos@n=t (o <4 <) (1.33)
m (2n-1)

Taking (7.32) and (7.33) together, we find that the function

D]t i<
g =l=1", (0 <t<m)

g1 +2m) = g(1)
has a Fourier series expansion

cos(2n—1)t
gty =|t|=im-~= z (211?1)2

n=1

Differentiation of a Fourier series

If /(¢) is a periodic function that satisfies Dirichlet’s conditions then its derivative f'(¢),
wherever it exists, may be found by term-by-term differentiation of the Fourier series
of f(¢) if and only if the function f{7) is continuous everywhere and the function /”(f) has
a Fourier series expansion (that is, /{(¢) satisfies Dirichlet’s conditions).

end of theorem

It follows from Theorem 7.4 that if the Fourier series expansion of {7) is differenti-
able term by term then f(#) must be periodic at the end points of a period (owing to the
condition that f(#) must be continuous everywhere). Thus, for example, if we are deal-
ing with a function f(¢) of period 2r and defined in the range -t < ¢ < & then we must
have f(—m) = f(m). To illustrate this point, consider the Fourier series expansion of
the function
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Example 7.15

Solution

fHh=t ((n<t<m
St +2m) = f(0)
which, from Example 7.7, is given by
S{)=2(sint — Lsin2¢ + Ysin3s— Isindr+...)
Differentiating term by term, we have
f(t)=2(cost—cos2t+cos3t—cosdt+...)

If this differentiation process is valid then f*(f) must be equal to unity for—n < ¢ < 7.
Clearly this is not the case, since the series on the right-hand side does not converge
for any value of z. This follows since the nth term of the series is 2(—=1)"*' cos nt and
does not tend to zero as n — oo.

If f(¢) is continuous everywhere and has a Fourier series expansion

f) = %ao I 2 (a,cosnt + b, sin nt)

n=1

then, from Theorem 7.4, provided that f”(¢) satisfies the required conditions, its Fourier
series expansion is

()= z (nb, cos nt — na, sin nt)
n=1

In this case the Fourier coefficients of the derived expansion are nb, and na,, so, in
contrast to the integrated series, the derived series will converge more slowly than the
original series expansion for f{(¢).

Consider the process of differentiating term by term the Fourier series expansion of the
function

=12 (n<tsmn), ft+20)=£0
From Example 7.5, the Fourier series expansion of f(¢) is

n

2 2 = (—1)"cos nt
r=!n +42£—% (-n<st<nmn)
n=1

Since f() is continuous within and at the end points of the interval - < ¢ < &, we may
apply Theorem 7.4 to obtain

> (—1)"*sin nt
t=2 (=1)" sinnt M<I<T
Z , ( )

which conforms with the Fourier series expansion obtained for the function

fH=t ((n<t<m), ft+2n)=£(0)
in Example 7.7.
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7.4.3

Figure7.23 Piecewise
polynomial periodic
function exhibiting
jump discontinuities.

Coefficients in terms of jumps at discontinuities

For periodic functions that, within a period, are piecewise polynomials and exhibit jump
discontinuities, the Fourier coefficients may be determined in terms of the magnitude of
the jumps and those of derived functions. This method is useful for determining describ-
ing functions (see Section 7.8) for nonlinear characteristics in control engineering,
where only the fundamental component of the Fourier series is important; this applies
particularly to the case of multivalued nonlinearities.

Consider a periodic function f(¢), of period 7, having within the time interval
-3 T <t < ;T afinite number (m + 1) of jump discontinuities d, d,, . . ., d,,
at times f,, ¢, . . . t,, with ¢, = { Tand ¢, = { 7. Furthermore, within the interval
too<t<t (s=1,2,...,m)letf(¢) be represented by polynomial functions P(t)
(s=1,2,...,m), as illustrated in Figure 7.23. If f(¢) is to be represented in terms of
the Fourier series

fH) = %ao + Z a, cos nwt + Z b, sin nwt
n=1 n=1

then, from (7.4),

m

t,

_2 '
a,= T 2{ J P(t) cos nwt dt

5= t

s—1

FiO A
P(s)
P|(S) T_\
d, P 1(s)
\?do dy d
Pi(s) -1
1 L 1 1 l /~ P”;(S) dm )
o 1 5] 50 ) I !

Defining the magnitude of the jump discontinuities as in Section 5.5.11, namely

d;=f(t; +0) = f(£; = 0)

and noting that 7, = —; 7'and #, = 1 T, integration by parts and summation gives

m tg
a, = L {ds sin not, +J PV (¢) sin nwtdt} (7.34)

nTm

5=l fs-1

where P)(f) denotes the piecewise components of the derivative fV(f) = f1(¢) in the
generalized sense of (5.59).
In a similar manner the integral terms of (7.34) may be expressed as

2 t
m s . 1 m 5
ZJ P'Y sin nwtdr = — z {d(;)cos nwt+J P2 (¢) cos na)tdt}
nw

s=1 [ s=1 [
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Example 7.16

where d\ (s=1,2, ...,

derivative £ V().
Continuing in this fashion, integrals involving higher derivatives may be obtained.

However, since all P(¢) (s=1, 2, ..., m) are polynomials, a stage is reached when all

m) denotes the magnitude of the jump discontinuities in the

the integrals vanish. If the degree of P() is less than or equal to Nfors=1,2,...,m
then
m N
- L 2 3 1 nw) *[d " sin nor, + (n)'d ¥ cos nar]
nm s=1 r=0
(n#0) (7.35)

where d denotes the magnitudes of the jump discontinuities in the rth derivative of
f(#) according to (5.59).
Similarly, it may be shown that

m N
= an z (=1 (nw)y™ [d* cos nwt, — (nw)'d**Vsin nwt,]
n

s=1 r=0

(7.36)

and the coefficient g, is found by direct integration of the corresponding Euler formula
T/2
a,= 2
‘T
-T7/2

Using (7.35)—(7.37), obtain the Fourier series expansion of the periodic function f{(¢)
defined by

f(t)dt (7.37)

P (=n<t<0)

(0<t<m

St +2m) = f(0)

f(0) ={ !
)

Solution In this case N =2, and the graphs of f(¢) together with those of its first two derivatives
are shown in Figure 7.24.
£ A FARION
2 FAROY |
ph P2
P T\ + 2 ¢ > ! Lo —
- (0]
d T p(h L ! 2) 2)
l Y & S . e
t — > 1 2 — 1 Lt
- O idl i 1 / -1 (6] péz) T !
-2 -2n +
Py

Figure 7.24 £(¢), fV(¢), f@(f) of Example 7.16.
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Jump discontinuities occur at ¢ = —x, 0 and &, so that m = 2. The piecewise poly-
nomials involved and the corresponding jump discontinuities are

(@ PO=2, P(=-2
di==2, dy=m*+2

®) P(y=2t PY(t)=0
dV =0  d¥=-2n

© PPO=2 PY()=0
dP =2 49 =2

with d{? =d{ =0 for r > 2.
Taking w=1 (since 7' = 2m) in (7.35) gives

2 2 2
a,= 1 (—Z d, sin nt, - 1 Zd(SD cos nt, + 1 Zd(f) sin ntsj
2
nm s=1 ) n =
Since t, =0, t, =, sin 0 = sin nt =0, cos 0 = 1 and cos nw = (—1)", we have

a,=2¢y (1=1,23,...)
n

Likewise, from (7.36),

2 2 2
1 1 . 1 @)
b,,—-——(g dscosntx——g d, smntx—-—zz d’;’cos nt,
nm s=1 ns:1 n

s=1

- i{—z + (P +2)(=1)" - L2 +2(—1)"]}
nim n

_ l{(%—z)u =11 +n2(—1)"} (n=1,2,3,...)
nim n

and, from (7.37),

0 n
aozl[J tzdt+J (—2)dt] =ln"-2
T . 0

—1g?_
=31 2

Thus the Fourier expansion for f(7) is

f(t)y = (in’ - 1)+i%(—1)" cos nt

n=1 1

n=1
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24

25

26

7.4.4 Exercises

Show that the periodic function
S =t
S +2T) = (1)

has a Fourier series expansion

-T<t<T)

_27( .. mt .. 2mt .. 3Tt
ft) = —n—(sm? - Esm—T— +§s1n—T—
—isin@+...)
T

By term-by-term integration of this series, show
that the periodic function

gty =1
g(t+2T)=g()

has a Fourier series expansion

Tr<t<T)

2
g() =§T2—4-€-(coslt——13 cos 2
2 T

+ — COS — — — COoS

1 3mr 1 zlltJr)
3’ T 4 T

(Hint: A constant of integration must be introduced;
it may be evaluated as the mean value over a period.)

The periodic function
h(t)=n*—

h(t + 27) = h(?)

(—r<t<m)

has a Fourier series expansion

h(t) =§1t2+4(<:ost—L2 cos 2t
2
+51—200s3t...)

By term-by-term differentiation of this series,
confirm the series obtained for f(#) in Exercise 24
for the case when 7' = .

(a) Suppose that the derivative /'(¢) of a periodic
function f(#) of period 2w has a Fourier series
expansion

f=14,+ ZA,,cosnt+ Zaninnt

n=1 n=1

Show that

27

28

(b)

(©)

Ay == [f(n") = f(=1")]

S =

A,=(=1)"4,+nb,
B,=-na

n

where a,, a, and b, are the Fourier coefficients
of the function f{(?).

In Example 7.6 we saw that the periodic function
)=+t (n<t<m)
St +2m) = f(0)

has a Fourier series expansion

Sy =1tm+ z ’% (=1)"cos nt
n=1

- z 2 (-1)"sinnt
n=1 n

Differentiate this series term by term, and
explain why it is not a Fourier expansion of the
periodic function

g(t)=2t+1
gt +2m) = g(0)

Use the results of (a) to obtain the Fourier
series expansion of g(#) and confirm your
solution by direct evaluation of the coefficients
using Euler’s formulae.

(—n<t<m

Using (7.35)—(7.37), confirm the following Fourier
series expansions:

(a)
(b)

(©)

(7.21) for the square wave of Example 7.4;
the expansion obtained in Example 7.1 for the
sawtooth wave;

the expansion obtained for the piecewise-
continuous function f(#) of Example 7.3.

Consider the periodic function

0 (-m <t<-im)
n+2t (“lm<t<0)
J) = ’ .
-2t (0<t<'m
0 Gr<t<m)

S+ 2m) =1(1)

(a) Sketch a graph of the function for —4n < ¢ < 4.
(b) Use (7.35)—(7.37) to obtain the Fourier series

expansion
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N 1
fity=1m - ;—t > —lz(cos Inm—1)cos nt 2 (n<t<-m)
=t b) fly=1¢ (-in<t<im)
and write out the first 10 terms of this series.

1
(Note: Although the function f{7) itself has no “2 Gr<i<m

jump discontinuities, the method may be used 1t +2m) = /(1)
since the derivative does have jump
discontinuities.) © fi5)= { t0<t<l)
. . 1-¢t (1<t<?2)
29  Use the method of Section 7.4.3 to obtain the
Fourier series expansions for the following periodic f(t+2)=£(t)
functions: 1 .
s+t — <t<0
@ )= 0 (-m<t<0) ) f(t)={f (= 1 )
£ 0<t<mn) Lot (0<t<)
S+ 2m) = f(0) S+ 1) =f(0)

PR A P CE T DTN frequency response and

oscillating systems

7.5.1 Response to periodic input

In Section 5.7 we showed that the frequency response, defined as the steady-state
response to a sinusoidal input 4 sin @¢, of a stable linear system having a transfer func-
tion G(s) is given by (5.101) as

x(f) = A|1G(jw)| sin [0t + arg G(jw)] (7.38)

By employing a Fourier series expansion, we can use this result to determine the
steady-state response of a stable linear system to a non-sinusoidal periodic input. For a
stable linear system having a transfer function G(s), let the input be a periodic function
P(t) of period 27T (that is, one having frequency @ = 1/T in rads™). P(f) may be
expressed in the form of the Fourier series expansion

P(t) = 1a, + 2 A, sin(not + ¢,) (7.39)

n=1
where 4, and ¢, are defined as in Section 7.2.1. The steady-state response to each term
in the series expansion (7.39) may be obtained using (7.38). Since the system is linear,
the principle of superposition holds, so that the steady-state response to the periodic
input P(f) may be obtained as the sum of the steady-state responses to the individual
sinusoids comprising the sum in (7.39). Thus the steady-state response to the input P(¢) is

5= 2a,G(0) + 3 4,1G(jn@)|sin [nax + 9, + arg G(jnw)] (7.40)

n=1
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Example 7.17

Figure7.25 (a) System
and (b) input for
Example 7.17.

Solution

There are two issues related to this steady-state response that are worthy of note.

(a) For practical systems |G(jw)| — 0 as @ — oo, so that | G(juw)| = 0 as n — oo in
(7.40). As a consequence, the Fourier series representation of the steady-state
response x(f) converges more rapidly than the Fourier series representation of
the periodic input P(¢). From a practical point of view, this is not surprising, since
it is a consequence of the smoothing action of the system (that is, as indicated in

Section 7.4, integration is a ‘smoothing’ operation).

(b) There is a significant difference between the steady-state response (7.40) to a
non-sinusoidal periodic input of frequency w and the steady-state response (7.37)
to a pure sinusoid at the same frequency. As indicated in (7.38), in the case of a
sinusoidal input at frequency @ the steady-state response is also a sinusoid at the
same frequency @. However, for a non-sinusoidal periodic input P() at frequency
o the steady-state response (7.40) is no longer at the same frequency; rather it
comprises an infinite sum of sinusoids having frequencies n® that are integer
multiples of the input frequency @. This clearly has important practical implica-
tions, particularly when considering the responses of oscillating or vibrating sys-
tems. If the frequency nw of one of the harmonics in (7.40) is close to the natural
oscillating frequency of an underdamped system then the phenomenon of reson-

ance will arise.

To someone unfamiliar with the theory, it may seem surprising that a practical
system may resonate at a frequency much higher than that of the input. As indicated
in Example 5.30, the phenomenon of resonance is important in practice, and it is there-
fore important that engineers have some knowledge of the theory associated with
Fourier series, so that the possible dominance of a system response by one of the higher

harmonics, rather than the fundamental, may be properly interpreted.

The mass—spring—damper system of Figure 7.25(a) is initially at rest in a position of
equilibrium. Determine the steady-state response of the system when the mass is sub-
jected to an externally applied periodic force P(f) having the form of the square wave
shown in Figure 7.25(b).

P() A

o
~Y

(b)

From Newton’s law, the displacement x(#) of the mass at time ¢ is given by

d’x dx

MEE Bd— +Kx = P(¢) (7.41)
t

dr
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P(s) | X(s)
—_——— |
Ms2 +Bs+ K

Figure 7.26 Block
diagram for the system
of Figure 7.26.

so that the system may be represented by the block diagram of Figure 7.26. Thus the
system transfer function is

1

G(s)=—F—" (7.42)
Ms™+Bs+K
From Example 7.4, the Fourier series expansion for the square wave P(?) is
P(t):‘—‘Q sin g4 SM3L sinS0, o sin@n= e,
T 3 5 2n—-1
that is,
Pity=u,(t) +u,() + us(H) + ... +u, () +. .. (7.43)
where
un(t) = 4_0 w (7.44)
Tt 2n-1
Substituting the given values for M, B and K, the transfer function (7.42) becomes
1
G)=—F—7""
10s™ 4+ 0.55 4+ 250
Thus
. 1 250 - 1008 _.0.5
G(j0) = ———— - e e
10w +0.5j0 + 250 D D

where D = (250 — 10w*)* + 0.25@?, so that

N 250 - 100 )’ +0.2500
|G(Jw)|—\/[( %2 w]

1 1

= = ) > (7'45)
D J1(250-106) +0.25¢7 |
arg G(jw) = —tan™ (L‘”Z) (7.46)
250 - 1065

Using (7.38), the steady-state response of the system to the nth harmonic u,(¢) given by
(7.44) is

v (= —2% 1G(j@n - 1)|sin[(2n — 1) + arg G(j(2n — 1))] (7.47)
n(2n-1)

where |G(jw)| and arg G(jw) are given by (7.45) and (7.46) respectively. The steady-
state response x(¢) of the system to the square-wave input P(¢) is then determined as
the sum of the steady-state responses due to the individual harmonics in (7.43); that is,

x(0=Y x(0) (7.48)

n=1

where x,(f) is given by (7.47).
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Figure 7.27
Steady-state response
of system of
Figure 7.25.

20 A

My ﬂ

Evaluating the first few terms of the response (7.48), we have

xssl(t) = 4—0 l Sin t— tanﬁl(gi)
T [(250 - 10)%+0.25] 240

— 0.053 sin(¢ - 0.003)
XSs2(t) = i(_) L sin |:3t— tan_l(LS—)}

3T [(250 = 90)% +2.25] 160
=0.027 sin(37 - 0.009)

xss3(t) = ﬂ ; sin| 5t — tan"'(z;s)
51 (6.25) 0

=1.02 sin(5¢ - im)

xss4(t):@ : L - sin 7t—tan"(£)
1T [(250 — 490)” + 12.25] 24

=0.0076 sin(7¢ - 3.127)

Thus a good approximation to the steady-state response (7.48) is
x(f) = 0.053 sin( — 0.003) + 0.027 sin(3¢ — 0.54) + 1.02 sin(5¢ — i)
+0.0076 sin(7¢ — 3.127) (7.49)

The graph of this displacement is shown in Figure 7.27, and it appears from this that
the response has a frequency about five times that of the input. This is because the term
1.02 sin(5¢ — %n) dominates in the response (7.49); this is a consequence of the fact that
the natural frequency of oscillation of the system is (K/M) = Srads™, so that it is in
resonance with this particular harmonic.

In conclusion, it should be noted that it was not essential to introduce transfer func-
tions to solve this problem. Alternatively, by determining the particular integral of the
differential equation (7.41), the steady-state response to an input 4 sin @t is determined as

A sin(wt— ) tan o = B

(K - Ma? ) + B ] K - M}

‘xSS(t) =

giving x,(¢) as in (7.48). The solution then proceeds as before.
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30

31

7.5.2 Exercises

Determine the steady-state current in the circuit of
Figure 7.28(a) as a result of the applied periodic
voltage shown in Figure 7.28(b).

R=3000Q
(]
(@ fio
C=4x10-6F
L=002H
(a)
e(n A
10 . . . —
13 1 ] 1]
» ] 1 1]
[} 1 ] 1 1]
» 1 t 1]
O 1] 1 1 1] :
00l 002 003 004 !

(b)

Figure 7.28 (a) Circuit of Exercise 30;
(b) applied voltage.

Determine the steady-state response of the mass—
spring—damper system of Figure 7.29(a) when the
mass is subjected to the externally applied periodic
force f{(#) shown in Figure 7.29(b).

What frequency dominates the response, and
why?

B=0.5kgs"!

1f(t)

x(t)l
(a)
S A
100 A S e
e T YL i1
_100 1 1 1 1 ] :_
(b)

Figure 7.29 (a) Mass—spring—damper system of
Exercise 31; (b) applied force.

32

EE

Determine the steady-state motion of the mass of
Figure 7.30(a) when it is subjected to the externally
applied force of Figure 7.30(b).

Z
K=80Nm-!
£y I M=20kg
B=0.02kgs"!
7,
(a)

FLON

50 +

N

@}
AN
~Y

-50 +

(b)

Figure 7.30 (a) Mass—spring—damper system of
Exercise 32; (b) applied force.

Determine the steady-state current in the circuit
shown in Figure 7.31(a) when the applied voltage is
of the form shown in Figure 7.31(b).

-5
1000 10°F
L
04H
(a)
e(t)
100 /—\
O 1 T T :
0.02 0.04 006 !

(b)

Figure 7.31 (a) Circuit of Exercise 33; (b) applied
voltage.
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7.6.1

Complex form of Fourier series

An alternative to the trigonometric form of the Fourier series considered so far is the
complex or exponential form. As a result of the properties of the exponential function,
this form is easily manipulated mathematically. It is widely used by engineers in prac-
tice, particularly in work involving signal analysis, and provides a smoother transition
from the consideration of Fourier series for dealing with periodic signals to the con-
sideration of Fourier transforms for dealing with aperiodic signals, which will be dealt
with in Chapter 8.

Complex representation
To develop the complex form of the Fourier series
S0 =1a,+ 2 a, cos nwt + z b, sin not (7.50)
n=1 n=1
representing a periodic function f(#) of period 7, we proceed as follows. Substituting
the results

sinnwt = i (e — ey
2j

_ 1l ajnot —jnot
cosnwt = 5 (e + &)

into (7.50) gives

jnot + e—jnwt oo jnot e—jnwt

) =1ta,+ 3 a,,e + b,,e -
2 nz::f 2 2j

1 = 1 jnot —jnot = 1: jnot —jnot
—5a0+25an(e +e )+2 —1jb, (" =)
n=1 n=1

=lag+ Y [§(a,~jb,) e +1(a, +jb,) e "] (7.51)
n=1
Writing
Co= %a()? Cy = %(an - jbn)’ C,= C:lk = %(an +.]bn) (7‘52)

(7.51) becomes

fH)=cy+ 2 c, e + 2 c e
n=1 n=1
=cy+ 2 c, e + 2 c, el
n=1 n=-1

— jnot : 0 _
= 2 c, e, since c,e’=c,

n=—oco
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Thus the Fourier series (7.50) becomes simply

ft) = i c, e (7.53)

fmeo
which is referred to as the complex or exponential form of the Fourier series expan-
sion of the function f(7).

In order that we can apply this result directly, it is necessary to obtain a formula for

calculating the complex coefficients ¢,. To do this, we incorporate the Euler formulae
(7.4) and (7.5) into the definitions given in (7.52), leading to

co=lay = 1T J JOXT (7.54)

d

d+T

d+T
c,= %(an -jb,) = %{J f(t) cos na)tdt—jJ

d

f(¢) sin not dt}

d

d+T
== J f(#)(cos nwt — j sin nwt) dt

d

d+T
) J fye ™ dr (7.55)

d
d+T

¢ =La,+jb) = lT J f(t)(cos not + j sin neot) dr

d

d+T

_1 J 1) & dt (7.56)

From (7.54)—(7.56), it is readily seen that for all values of n

d+T
¢ =1 J f(ty e de (1.57)
T d
Summary

In summary, the complex form of the Fourier series expansion of a periodic function
(1), of period T, is

fO=73 c,e™ (7.53)
where
d+T
o= 1T J fie™di (n=0,+1,42,...) (1.57)
d
In general the coefficients ¢, (n =0, 1, £2, . .. ) are complex, and may be expressed
in the form

e, =lc,lel”
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where |c,|, the magnitude of ¢, is given from the definitions (7.52) by
el = [(Ga) + (5b,)°1= 3\(a; + b;)

so that 2|¢,| is the amplitude of the nth harmonic. The argument ¢, of ¢, is related to the
phase of the nth harmonic.

Example 7.18  Find the complex form of the Fourier series expansion of the periodic function £{(f)
defined by

fy=cosit (-n<rt<m), f(t+2m)=£()

Fjgure 7.32 Function 0
f(t) of Example 7.18.

-3n - (e} n 3n

t

Solution A graph of the function f{7) over the interval =3w < 7 < 37 is shown in Figure 7.32.
Here the period T is 27, so from (7.57) the complex coefficients ¢, are given by

kg T
c, = L1 cos lre™dt = L (& +eye ™ dr
27 . 4m .

T
_ ZLJ (e—j(n—l/Z)r+e—j(n+|/2)t) dr
T
-

1 _2e—j(2n—l)t/2 2e—j(2n+1)t/2 s
T4n| j2n-1)  jQn+1)

-

_ J_ (e—jnn ejrc/Z N e—jnne—jn/2) _ (ejnne—jn/Z . ejnrc ejn/2)
2|\ 2n—1 2n+1 2n—-1 2n+1

ej1r/2

Now =cosim+jsin in=j, ¢?™ =—jand /" = 7™ = cos n1 = (~1)’, so that

Cn=.l_( .] _ .] + .] _ .] )(_1)"
2n\2n—-1 2n+1 2n-1 2n+1
=(—l)"( 11 ): -2(=1)"
n 2n+1 2n-1 (4n° - D

Note that in this case ¢, is real, which is as expected, since the function f() is an even
function of ¢.
From (7.53), the complex Fourier series expansion for f() is

o 2;_1:;1+1 int
/0= Z_;(4nz— 1)1:e

This may readily be converted back to the trigonometric form, since, from the defini-
tions (7.52),
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ay = 2009 a,=c¢, + c:kza bn :j(cn - Cj)
so that in this particular case

n+l n+l
a0=“" a—2{2(2) }=i(_1) ’ b,=0
T

nani+1| man' -1

Thus the trigonometric form of the Fourier series is

f(t) = Zg—ﬁlcos nt
4n

nl

which corresponds to the solution to Exercise 1(e).

Example 7.19  Obtain the complex form of the Fourier series of the sawtooth function f(f) defined by

2t

f(t)z-]: (0 <tr<<2T), f+2T) =10

Figure 7.33 Function f(7) £

of Example 7.19.

-6T -4T -2T O

L

Solution A graph of the function f(¢) over the interval —67 < ¢ < 67 is shown in Figure 7.33.
Here the period is 27, that is @ = ©/T, so from (7.57) the complex coefficients ¢, are

given by
2T 1 2T2
t —_]n1[t/T 1 Z te—J”m/T ds
(S J fln)e =57 T
B ) ) ) 27
— iz Tt e—]nm/T_ T - e—_]nrct/T (l’l % 0)
7" |-jnm (jnm) .
Now e =¢¥ =1, so

1 [ 2 2 2 2
= 2T n T - T | = 14 (n#0)
" |-jnm  (nm)* (nm)’| nm

In the particular case n =0

2T 2T or
ok [oar= L [Har L=
2T ), 2T ), T 7712 o

Thus from (7.53) the complex form of the Fourier series expansion of f(f) is

-1 . ORI 2
_ 12 jmmut 12 jamur _ 12 jamut
f(t)_2+n;°n7te +Z’nne —2+ngnne

n#0
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Noting that j = e/, this result may also be written in the form

2 w1
HN=2+= 1 e](nnt/T+n/2)
f( ) T z n

n=—co

n#0

As in Example 7.18, the Euler coefficients in the corresponding trigonometric series are

@=20=4  a=q+ei=0, b=jerep=j(HA+A)-_2
nm  nTm nt

so that the corresponding trigonometric Fourier series expansion of f(#) is

41 . nmt
H=2-23 11
f@) nznsm T

n=1

which corresponds to the solution of Example 7.11 when 7' = 2.

7.6.2 The multiplication theorem and Parseval’s theorem

Two useful results, particularly in the application of Fourier series to signal analysis,
are the multiplication theorem and Parseval’s theorem. The multiplication theorem
enables us to write down the mean value of the product of two periodic functions over
a period in terms of the coefficients of their Fourier series expansions, while Parseval’s
theorem enables us to write down the mean square value of a periodic function, which,
as we will see in Section 7.6.4, determines the power spectrum of the function.

Theorem 7.5 The multiplication theorem

If () and g(#) are two periodic functions having the same period 7" then

lTJ f(Dg)di= i c,dy (7.58)

c n=—co

where the ¢, and d, are the coefficients in the complex Fourier series expansions of
f(¢) and g(¢) respectively.

Proof Let f{(¢) and g(¢) have complex Fourier series given by
f(t) = 2 c, e’ (7.59a)
with

c+T
== J f(t)e T qT (7.59b)

c
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and
g(h)= z d, et (7.60a)

with
c+T
d = lT J 2(f) e d (7.60b)
Then
1 c+T 1 e+ )
7 J fing(nde == j (Zo ¢, e“’“’”] g(t)dr using (7.59a)
o 1 c+T ]
= Z el 7 J g(n) "™ ds assuming term-by-term
n=—co c integration is possible
using (7.59b)

oo

= 2 c,d_,

n=—co

Since d_, = d’* the complex conjugate of d,, this reduces to the required result:

ITJ fgdi=Y cd

c n=—co
end of theorem

B, of the corresponding trigonometric

ns

In terms of the real coefficients «,, b, and ¢
Fourier series expansions of f{f) and g(¢),

(1) =1a,+ Z‘ a, cos (n—sz) + nz:} b, sin(n—sz)

- 27t - . (n2mt
g(1) =toy+ Z‘ o, cos("T) + ; B. sm(nT)

and using the definitions (7.52), the multiplication theorem result (7.58) reduces to

c+T -
ITJ fingdi=Y e d,+edy+ Y e,
n=1 n=1

c

= Loy + 1Y 1@, — b,)(e +iB,) + (a, + ib)(@, — )]

giving

c+T
1 oo
}J f(t)g(t)dtz ia0a0+ %Z(anan—‘rbnﬂn)
n=1

c
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Theorem 7.6 Parseval’s theorem

If f(¢) is a periodic function with period 7 then

ITJ FoPdi=Y c,cx= 3 leP (7.61)

c n=—oo n=—co

where the ¢, are the coefficients in the complex Fourier series expansion of f{7).

Proof This result follows from the multiplication theorem, since, taking g(f) = f(¢) in (7.58),

we obtain
l c+T - -
= 2 — % _ 2
TJC ropdr=3 cict= 3

end of theorem

Using (7.60), Parseval’s theorem may be written in terms of the real coefficients a,
and b, of the trigonometric Fourier series expansion of the function f(#) as

! J OPdi=1a} + 13 (@ +5) (7.62)

c n=1

The root mean square (RMS) value f;\s of a periodic function f(¢) of period 7, defined
by

hows = 7. J [AF dr

c

may therefore be expressed in terms of the Fourier coefficients using (7.61) or (7.62).

Example 7.20 By applying Parseval’s theorem to the function

2t

f(t)z—f O<t<T), f@+2T)=1

considered in Example 7.19, show that

Py L
_22
n=1

Ni—

n

Solution  From Example 7.19, the coefficients of the complex Fourier series expansion of f{¢) are

c=2,c 2% (n#0)

> ¥n


www.semeng.ir

7.6 COMPLEX FORM OF FOURIER SERIES 615

7.6.3

Thus, applying the Parseval’s theorem result (7.61), noting that the period in this case
is 2T, we obtain

2T

1 2 — 2 < 2 S 2
2—TJ oPdi=ci+ 3 laf + 3 e

giving

1[4 = (2
— —’dt=4+22(—)
27, T” = \nm

0 n=

which reduces to

Discrete frequency spectra

In expressing a periodic function f(7) by its Fourier series expansion, we are decompos-
ing the function into its harmonic or frequency components. We have seen that if f{(¢)
is of period T then it has frequency components at frequencies

nzz—’;-@:na)o (n=1,2,3,...) (7.63)
where @, is the frequency of the parent function f(¢). (All frequencies here are meas-
ured in rads™.)

A Fourier series may therefore be interpreted as constituting a frequency spectrum
of the periodic function f(#), and provides an alternative representation of the function
to its time-domain waveform. This frequency spectrum is often displayed by plotting
graphs of both the amplitudes and phases of the various harmonic components against
angular frequency ,. A plot of amplitude against angular frequency is called the
amplitude spectrum, while that of phase against angular frequency is called the phase
spectrum. For a periodic function f{(#), of period 7, harmonic components only occur
at discrete frequencies ®,, given by (7.59), so that these spectra are referred to as dis-
crete frequency spectra or line spectra. In Chapter 8 Fourier transforms will be used
to define continuous spectra for aperiodic functions. With the growing ability to process
signals digitally, the representation of signals by their corresponding spectra is an
approach widely used in almost all branches of engineering, especially electrical engin-
eering, when considering topics such as filtering and modulation. An example of the
use of a discrete spectral representation of a periodic function is in distortion measure-
ments on amplifiers, where the harmonic content of the output, measured digitally, to a
sinusoidal input provides a measure of the distortion.
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Figure 7.34 Real
discrete frequency
spectrum.

If the Fourier series expansion of a periodic function f{(¢), with period 7, has been
obtained in the trigonometric form

(1) = 3a, + ; a, cos (zn;t) + ; b, sin (Zn;tt)

then, as indicated in Section 7.2.2, this may be expressed in terms of the various har-
monic components as

()= 4,+ Y 4,sin (2”;” + ¢n) (7.64)

where

Ay=3ap, A,=\(a;+b3)

and the ¢, are determined by

. b, a,
sin ¢, = 1 cos @, = 1
In this case a plot of 4, against angular frequency @, will constitute the amplitude
spectrum and that of ¢, against @, the phase spectrum. These may be incorporated in
the same graph by indicating the various phases on the amplitude spectrum as illus-
trated in Figure 7.34. It can be seen that the amplitude spectrum consists of a series
of equally spaced vertical lines whose lengths are proportional to the amplitudes of the
various harmonic components making up the function f{(#). Clearly the trigonometric
form of the Fourier series does not in general lend itself to the plotting of the discrete
frequency spectrum, and the amplitudes 4, and phases ¢, must first be determined from
the values of a, and b, previously determined.

Amplitude A,,
o =
¢ =
¢3= o
4=
b5 =
O T T

wg 2wy 3wy 4wy Swgy
Frequency w,,

In work on signal analysis it is much more common to use the complex form of the
Fourier series. For a periodic function f{(#), of period 7, this is given by (7.53), with the
complex coefficients being given by

c,=lc,le’ (n=0,%1,%2,...)

in which |c,| and ¢, denote the magnitude and argument of ¢, respectively. Since in
general ¢, is a complex quantity, we need two line spectra to determine the discrete
frequency spectrum; the amplitude spectrum being a plot of |c,| against @, and the
phase spectrum that of ¢, against ®@,. In cases where ¢, is real a single spectrum may be
used to represent the function f(¢). Since |c_,| = |c¥| =]|c,|, the amplitude spectrum will
be symmetrical about the vertical axis, as illustrated in Figure 7.35.
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Figure 7.35 Complex
form of the amplitude
spectrum.

Example 7.21

Solution

e, I A

[}

TC-s )[C-s Coq €3 |C2 |Cq |Co €1 |C2 |€3 |4 ]Cs Tce
T T :

T T T T T T T T T T

—60)0—5(,00—4(1)0—3&)0—2&)0 - Wg 0 g 2600 3&)0 4(1)0 5(1)0 66&)0

Frequency w,

Note that in the complex form of the discrete frequency spectrum we have com-
ponents at the discrete frequencies 0, t@,, £2@,, 13w, . . . ; that is, both positive and
negative discrete frequencies are involved. Clearly signals having negative frequencies
are not physically realizable, and have been introduced for mathematical convenience.
At frequency nw, we have the component e, which in itself is not a physical signal;
to obtain a physical signal, we must consider this alongside the corresponding com-
ponent e3¢ at the frequency —nw,, since then we have

eI 4 e = 2 cos nw (7.65)

Plot the discrete amplitude and phase spectra for the periodic function

2t

f=2 (0<1<2D).  fu+21)=10)

of Example 7.19. Consider both complex and real forms.

In Example 7.19 the complex coefficients were determined as
=2 =412 (n=41,42,43,...)
nt
Thus

o] = 2inm (n=1,2,3,...)
o2 n=-1,-2,-3,...)

In (n=1,2,3,...)

-ln (n=-1,-2,-3,...)

The corresponding amplitude and phase spectra are shown in Figures 7.36(a) and (b)
respectively.

In Example 7.19 we saw that the coefficients in the trigonometric form of the Fourier
series expansion of f(7) are
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lenl A O A
29
# tn 1
11
)f T T i T T T —4wg—3wg 2wy —wg

L. | | L { -
s T >

0 T T T

~4w0—3w0—2w0 g o wo 2(00 3(,1)() 4(1}0 Wy 2(1)0 3w0 4(1)0

Frequency w, Frequency w,,

M=
a

(a) (b)

Figure 7.36 Complex discrete frequency spectra for Example 7.21, with o, = nt/T: (a) amplitude spectrum;
(b) phase spectrum.

Figure 7.37 Real Amplitude A, A
discrete frequency
spectrum for 2 -0
Example 7.21 L 0 =
(corresponding to
sinusoidal expansion). 6;=0

2/ - ¢3=0

Y 94=0
1 I L1 1y
O T T L T T T Etll

wo 2&)0 3(1)0 4&)0 5w0 66()0
Frequency w,

so that the amplitude coefficients in (7.63) are

4=2, A= (n=1,2,3,...)
nT

leading to the real discrete frequency spectrum of Figure 7.37.

Since |¢,| = 1(a) + b)) = 14,, the amplitude spectrum lines in the complex form
(Figure 7.36) are, as expected, halved in amplitude relative to those in the real repre-
sentation (Figure 7.37), the other half-value being allocated to the corresponding
negative frequency. In the complex representation the phases at negative frequencies
(Figure 7.36b) are the negatives of those at the corresponding positive frequencies. In
our particular representation (7.64) of the real form the phases at positive frequencies
differ by 7 between the real and complex form. Again this is not surprising, since from
(7.65) we see that combining positive and negative frequencies in the complex form
leads to a cosinusoid at that frequency rather than a sinusoid. In order to maintain equal-
ity of the phases at positive frequencies between the complex and real representations,
a cosinusoidal expansion

f(1) = 4y + iAn cos (’l}t + ¢,,) (7.66)

n=1
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Figure 7.38 Real
discrete frequency
spectrum for
Example 7.21
(corresponding

to cosinusoidal
expansion).

Example 7.22

Figure 7.39
Infinite train of
rectangular pulses
of Example 7.22.

Solution

Amplitude A, A
2

N|_

4/

in
2= 3T

2/ + y=in ,
"1 ] Tz qf)_if

(o]

wo 2wy 3wy 4wy Swg
Frequency w,

of the real Fourier series is frequently adopted as an alternative to the sinusoidal series
expansion (7.64). Taking (7.66), the amplitude spectrum will remain the same as for
(7.68), but the phase spectrum will be determined by

n

. b
=—-1_ cos¢,=—"*
sing, =3¢, cosg,=
showing a phase shift of ;7 from that of (7.64). Adopting the real representation (7.66),
the corresponding real discrete frequency spectrum for the function f(¢) of Example
7.21 is as illustrated in Figure 7.38.

Determine the complex form of the Fourier series expansion of the periodic (period 27)
infinite train of identical rectangular pulses of magnitude 4 and duration 2d illustrated
in Figure 7.39. Draw the discrete frequency spectrum in the particular case when d = -
and 7= 1.

2

1@ T
2d
>

4T 3T 21 -T —40d 7 2T 3T 4T

Over one period —7" < ¢t < T the function f{(¢) representing the train is expressed as
0 (-T<t<-d)
(=94 (-d<t<d)
0 (d<t<T)

From (7.57), the complex coefficients ¢, are given by

T d d
1 —inm/T 1 —inmt/T A | =T vt
=— t dt =— A dt = —= | — #0
“ 2TJ_Tf()e 2de ¢ 2T[jnne L (n#0)

jnnd/T —jnmd/T :
_Ad e :Asm(’ﬂ):ﬁJ—Hm nrdIT) (41,42, )
nw j2 nw T T nnd/T
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In the particular case when n =0

T d
1 1 Ad
=— Hdt=—| Adt=22
“ ZTJTf() 2TJd T
so that
c,,:ﬁsinc(’i”—d) (n=0,+1,42,...)
T T

where the sinc function is defined by

, SINE (1 20)
sinct =14
1 (t=0)
Thus from (7.53) the complex Fourier series expansion for the infinite train of pulses
fo)is
— Ad . nnd jnmt/T
H=Yy = —-—
1) T smc( T )e

Nn=—o0

As expected, since f(f) is an even function, c, is real, so we need only plot the discrete
amplitude spectrum to represent f(f). Since the amplitude spectrum is a plot of |c,]|
against frequency nw,, with @, =1/, it will only take values at the discrete frequency
values

0, +1 +2% 43T

TS
In the particular case d = =, T =

m @, = 27 the amplitude spectrum will only exist at
frequency values

1
2 9
0, 2w, H4m, . . .
Since in this case
c,=tdAsincinn (n=0,%1,42,...)
noting that sinc { n = 0 when {nm=mmn or n=5m (m==£1, %2, ...), the spectrum is
as shown in Figure 7.40.

Figm_‘e 7.40 Discrete Amplitude I¢,
amplitude spectrum Iy
for an infinite train of P
pulses when d = -+ and . N
T=] ‘ *
=1
AT AT AT
A\
il I [ [ L ] ] T Iy >
-15wg  -10wyq —5wy —woo wy Swy 10wq 15wq  Frequency w,

-30n -20mn -i0n -2rn 2m 10n 20n 30n
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Figure 7.41
Graph of sinc z.

7.6.4

Sinc t A
1
"P A%Tc 21“/\ AAIN -
S~ \jn Y rlc\/ ~ t

As we will see in Chapter 8, the sinc function sinc ¢ = (sin #)/¢ plays an important role
in signal analysis, and it is sometimes referred to as the sampling function. A graph of
sinc ¢ is shown in Figure 7.41, and it is clear that the function oscillates over intervals
of length 21 and decreases in amplitude with increasing ¢. Note also that the function
has zeros at t=tnn (n=1,2,3,...).

Power spectrum

The average power P associated with a periodic signal f{(f), of period 7, is defined as
the mean square value; that is,

P=1 J AP dr (7.67)

For example, if f{f) represents a voltage waveform applied to a resistor then P represents
the average power, measured in watts, dissipated by a 1 Q resistor.
By Parseval’s theorem (Theorem 7.6),

P=la+}y (@ +5) (7.68)

n=1

1 d+T > 2
= a, cos (n_nt) dr = lal,
T T

d

Since

I—

d+T 2
b, sin(zn—m) dr = 1]
T T

d
the power in the nth harmonic is
P,=3(a;+b}) (7.69)

and it follows from (7.68) that the power of the periodic function f{(¢) is the sum of the
power of the individual harmonic components contained in £{(¢).
In terms of the complex Fourier coefficients, Parseval’s theorem gives

P=3 e (7.70)

As discussed in Section 7.6.3, the component e at frequency @, = nw,, ®, = 21/T,
must be considered alongside the component ¢3¢’ at the corresponding negative fre-
quency —®, in order to form the actual nth harmonic component of the function f(7).
Since |c_,|* = |c*|* =|c,[% it follows that the power associated with the nth harmonic is
the sum of the power associated with e’ and e3"¢; that is,
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Example 7.23

Solution

P,=2lc,P (7.71)

which, since |¢,| = §|(a; + b3), corresponds to (7.69). Thus in the complex form half
the power of the nth harmonic is associated with the positive frequency and half with
the negative frequency.

Since the total power of a periodic signal is the sum of the power associated with
each of the harmonics of which the signal is composed, it is again useful to consider a
spectral representation, and a plot of |c,|* against angular frequency w, is called the
power spectrum of the function f(¢). Clearly such a spectrum is readily deduced from
the discrete amplitude spectrum of |¢,| against angular frequency w,.

For the spectrum of the infinite train of rectangular pulses shown in Figure 7.39, deter-
mine the percentage of the total power contained within the frequency band up to the
first zero value (called the zero crossing of the spectrum) at 10w rads™.

From (7.67), the total power associated with the infinite train of rectangular pulses f(7) is

T d
-1 2q;= L 2
P—ZTJT[f(t)] dt ZTJdA dr

which in the particular case when d = -+ and 7= becomes
1/10
P= J Adt=14
-1/10
The power contained in the frequency band up to the first zero crossing at 10w rads™ is
P=c+2ci+cd+cd+cd)
where
¢, = tAsinc inm
That is,
P = 14" + 247 (sinc’ tn + sinc” 2n + sinc” In + sinc” )
=5- A [1 4+ 2(0.875 + 0.756 + 0.255 + 0.055)] = ; 4°(0.976)

Thus P, = 0.976P, so that approximately 97.6% of the total power associated with f{(¢)
is contained in the frequency band up to the first zero crossing at 10mrads™.

Suppose that a periodic voltage v(f), of period T, applied to a linear circuit, results
in a corresponding current i(¢), having the same period 7. Then, given the Fourier series
representation of both the voltage and current at a pair of terminals, we can use the
multiplication theorem (Theorem 7.5) to obtain an expression for the average power P
at the terminals. Thus, given

U(t)= z CnejZnnt/T’ l(t)= Z dnejan/T
n=—oo n=—co
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the instantaneous power at the terminals is vi and the average power is

d+T
1 . -
P== A=Y c,d
Jd %) c,a,

n=—co

or, in terms of the corresponding trigonometric Fourier series coefficients a,, b, and
a”l’ ﬁf’l’

=3 aOﬁO i (anan + ann)

n=1

7.6.5 Exercises

34 Show that the complex form of the Fourier series 2 (—m<1t<0)
expansion of the periodic function (c) fln)=
1 (0<t<m)
f(f)zlz (r<t<m) St +2m) = f(f)
Jle+2m) =1(1) @) f()=|sint] (- <t<m
is fe+2m) = (1)
— 2 )’l n
f) = % 2 = e 37 A periodic function f{(f), of period 2, is defined
n=0 a within the period -t < ¢ < 7 by
Using (7.52), obtain the corresponding 0 (-m<t<0)
trigonometric series and check with the S = | (0<t<m

series obtained in Example 7.5.
Using the Fourier coefficients of f(¢), together with
35  Obtain the complex form of the Fourier series Parseval’s theorem, show that
expansion of the square wave

N -
f(t):{o (-2<1<0) z::‘(zn—l) "
1 (0<t<2) , ,
(Note: The Fourier coefficients may be deduced
Si+4)=/@) from Example 7.7 or Exercise 35.)

Using (7.52), obtain the corresponding
trigonometric series and check with the
series obtained in Example 7.7.

38 (a) Show that the Fourier series expansion of the
periodic function

f()=500m (0<1< %)
36  Obtain the complex form of the Fourier 1
series expansion of the following periodic Sa+5)=/1)

functions. may be expressed as

T (-t <t<0)

(a) f(t)={t 0<1<m f(t):51t—102£sin100n1tt
n=1

Je+2m) = (1) _ .
(b) Using (7.62), estimate the RMS value of /(7) by
(b) f(t)= {a sinof (0 <1< 3T) (i) using the first four terms of the Fourier

T T ) ser}es; . .
G ) (i1) using the first eight terms of the Fourier

ft+T)=f), T=2mw series.
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(c) Obtain the true RMS value of £(¢), and hence (a) Obtain expressions for the coefficients ¢, of the
determine the percentage errors in the complex Fourier series representation of v(7),
estimated values obtained in (b). and write down the values of the first five

non-zero terms.
39 A periodic voltage v(¢) (in V) of period 5 ms and (b) Calculate the power associated with each of
specified by the first five non-zero terms of the Fourier
expansion.
v(t) = {60 (0 <7< 125ms) (c) Calculate the total power delivered to the
0 (1.25ms <t < 5ms) 15 Q resistor.

(d) What is the percentage of the total power
delivered to the resistor by the first five
is applied across the terminals of a 15 Q resistor. non-zero terms of the Fourier series?

v(t+ 5Sms) =v(t)

Orthogonal functions

As was noted in Section 7.2.2, the fact that the set of functions {1, cos w¢, sin wt,
..., cosnmt, sinnwt, . .. } is an orthogonal set of functions on the interval d < ¢ < d
+ T was crucial in the evaluation of the coefficients in the Fourier series expansion of a
function f(#). It is natural to ask whether it is possible to express the function f(¢) as a
series expansion in other sets of functions. In the case of periodic functions f{¢) there
is no natural alternative, but if we are concerned with representing a function f(7) only
in a finite interval ¢, < ¢ < t, then a variety of other possibilities exist. These possibil-
ities are drawn from a class of functions called orthogonal functions, of which the
trigonometric set {1, cos @t, sin t, . . . , cos nwt, sinn®t} is a particular example.

7.7.1 Definitions

Two real functions f{(¢) and g(¢) that are piecewise-continuous in the interval #, < ¢ < ¢,
are said to be orthogonal in this interval if

J fng(ndt=0

lal

A set of real functions ¢,(?), ¢,(¢), . . . = {9,(¢)}, each of which is piecewise-continuous
ont, <t < t, is said to be an orthogonal set on this interval if ¢,(f) and ¢,(¢) are
orthogonal for each pair of distinct indices #n, m; that is, if

f 2 0,(09,()dt =0 (n #m) (7.72)

lal

We shall also assume that no member of the set {¢,()} is identically zero except at a
finite number of points, so that

JZ $u(ndt=y, (m=1,2,3...) (7.73)

lal

where 7, (m=1, 2, ... ) are all non-zero constants.
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An orthogonal set {@,(#)} is said to be orthonormal if each of its components is also
normalized; that is, ¥, =1 (m =1, 2, 3, ... ). We note that any orthogonal set {¢,(¢)}
can be converted into an orthonormal set by dividing each member ¢,,(7) of the set by \/7,,.

Example 7.24  Since (7.6)—(7.10) hold,
{1, cost, sint, cos2t, sin2t, . . ., cosnt, sinnt}

is an orthogonal set on the interval d < ¢ < d + 2, while the set

1 cost sint cos nt sin nt
i b | b I AR ] 9 I
V@) ymo m VT m

forms an orthonormal set on the same interval.
The latter follows since

d+2m 1 2
j N T
. e
d+2m 5 d+2m 2
J (co§nt) dt:J (s1pnt) dt=1 (n=1,2,3,...)
Nes VT

d d

The definition of orthogonality considered so far applies to real functions, and has
to be amended somewhat if members of the set {@,(¢)} are complex functions of the real
variable ¢. In such a case the set {¢,(f)} is said to be an orthogonal set on the interval
HL<t<stif

‘r@@m@w=$ (2 m) (7.74)
2 Y (n:m)

where ¢%(¢) denotes the complex conjugate of ¢,,(?).

Example 7.25  Verify that the set of complex exponential functions
{e" M (n=0,%1,42,43,...)

used in the complex representation of the Fourier series is an orthogonal set on the
interval 0 < ¢ < 2T.

Solution First,

27 T 27
J e_innt/Tl dr= |:'_____e_]f’l7[l/7':| =0 (n + 0)
0

. jnm

since e”™ = ¢’ = 1. Secondly,

2T 2T 2T
ejmtr/T (ejmm/T)* dt = ej(n—m)m/]‘dt — T_________Z________ej(n—m)m/T =0 (n % m)
J(n—=m)m .

0 0
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7.7.2

and, when n = m,

2T 2T
J ejmt//T (ejnm/T)* dl — J 1 df =27

0

2T
f ™ 1dt=0 (n#0)

27
eIIT (T f = 0 (n#m)
0 2T (n=m)

and, from (7.74), the set is an orthogonal set on the interval 0 < ¢ < 2T.

The trigonometric and exponential sets are examples of orthogonal sets that we have
already used in developing the work on Fourier series. Examples of other sets of ortho-
gonal functions that are widely used in practice are Legendre polynomials, Bessel func-
tions, Hermite polynomials, Laguerre polynomials, Jacobi polynomials, Tchebyshev
(sometimes written as Chebyshev) polynomials and Walsh functions. Over recent years
wavelets are another set of orthogonal functions that have been widely used, particularly
in applications such as signal processing and data compression.

Generalized Fourier series

Let {¢,(f)} be an orthogonal set on the interval ¢, < ¢ < t, and suppose that we wish to
represent the piecewise-continuous function f(¢) in terms of this set within this interval.
Following the Fourier series development, suppose that it is possible to express f{f) as
a series expansion of the form

oo

f0 =7 .0 (1.75)

n=1

We now wish to determine the coefficients c,, and to do so we again follow the Fourier
series development. Multiplying (7.75) throughout by ¢,,(f) and integrating term by
term, we obtain

f f09,0di=Y e, J 8,06, (1) dr

[ n=1 4

which, on using (7.72) and (7.73), reduces to

J f0e,(dt=c,y,

gl

giving

= J%sz(mp,,(r) dt (n=1,2,3,...) (1.76)

gl
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7.7.3

Summary

Summarizing, if f(¢) is a piecewise-continuous function on the interval t, < ¢ < ¢,
and {¢,(7)} is an orthogonal set on this interval then the series

S0 = ¢,0,(0

is called the generalized Fourier series of f(#) with respect to the basis set {¢,(1)},
and the coefficients c,, given by (7.76), are called the generalized Fourier coeffi-
cients with respect to the same basis set.

A parallel can be drawn between a generalized Fourier series expansion of a function
f(¢) with respect to an orthogonal basis set of functions {¢,(r)} and the representation
of a vector f'in terms of an orthogonal basis set of vectors v, v,, . .., v, as

f=av +...+ o,

where

[ [

vievi ol

There is clearly a similarity between this pair of results and the pair (7.75)—(7.76).

Convergence of generalized Fourier series

As in the case of a Fourier series expansion, partial sums of the form
N
FN(t) = Z cn(Pn(t) (7'77)
n=1

can be considered, and we wish this representation to be, in some sense, a ‘close
approximation’ to the parent function f(¢). The question arises when considering such
a partial sum as to whether choosing the coefficients ¢, as the generalized Fourier
coefficients (7.76) leads to the ‘best’ approximation. Defining the mean square error
E between the actual value of f(¢) and the approximation F)(¢) as

Ey=—1 f[f(t)—FNa)]Zdr

h-t],

it can be shown that £} is minimized, for all N, when the coefficients ¢, are chosen
according to (7.76). Thus in this sense the finite generalized Fourier series gives the best
approximation.

To verify this result, assume, for convenience, that the set {¢,(f)} is orthonormal,
and consider the Nth partial sum

FN(t) = 2 5n¢n(t)

n=1
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where the ¢, are to be chosen in order to minimize the mean square error E,. Now

(L=t)Ey :J |‘f(t)_25n¢n(t)] dr

gl
t

fo,(ndr+Y ¢, f 0,(1) dt

2
ty n=1 t

- szz(t)dt—ZiénJ
t n=1
5} N N
=J fz(t)dt—225ncn+2c~§
n=1

1 n=1

since {¢,(#)} is an orthonormal set. That is,

) N N
(t,=1)E, = J f0di=Y e+ Y (@,-c)’ (7.78)

which is clearly minimized when ¢, = c,.
Taking ¢, = ¢, in (7.78), the mean square error E, in approximating f(f) by F(z) of
(7.73) is given by

1 ) N
Ey=—— J findi=Y e,
h

n=1

if the set {¢,(7)} is orthonormal, and is given by

1 . 2 al 2
Ey = - J S dt—z;ncn (7.79)
ll n=

if the set {¢,(¢)} is orthogonal.
Since, by definition, £, is non-negative, it follows from (7.79) that

J2 () de = D ¥,C (7.80)

t n=1
a result known as Bessel’s inequality. The question that arises in practice is whether or
not £, — 0 as N — oo, indicating that the sum

N

Z cn¢n(t)

n=1

converges to the function f{(f). If this were the case then, from (7.79),

sz (1 de = i V4o (7.81)

lal

which is the generalized form of Parseval’s theorem, and the set {¢,(¢)} is said to
be complete. Strictly speaking, the fact that Parseval’s theorem holds ensures that the
partial sum Fj(¢) converges in the mean to the parent function f(z) as N — oo, and
this does not necessarily guarantee convergence at any particular point. In engineer-
ing applications, however, this distinction may be overlooked, since for the functions
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Example 7.26

met in practice convergence in the mean also ensures pointwise convergence at points
where f(¢) is convergent, and convergence to the mean of the discontinuity at points
where f(¢) is discontinuous.

The set {1, cost, sint, . .., cosnt, sinnt} is a complete orthogonal set in the interval
d < t =< d + 2m. Following the same argument as above, it is readily shown that for a
function f{(7) that is piecewise-continuous on d < t < d + 2w the mean square error
between f(¢) and the finite Fourier series

N N
d+y a,cos nt+25n sin nt

n=1 n=1

Fy(t) =

1
2

is minimized when d,, 4, and 5, (n=1, 2, 3, . . . ) are equal to the corresponding Fourier
coefficients a,, @, and b, (n =1, 2, 3, . . . ) determined using (7.4) and (7.5). In this case
the mean square error £, is given by

d+2m N
Ey=-L J F(Hdi-=n %a§+2(ai+bi)

2TC d n=1

Bessel’s inequality (7.80) becomes
d+2m N
J A(ndi=n §a§+2(ai+bi)
d n=1

and Parseval’s theorem (7.81) reduces to

d+2m oo
- J L0 =tai+1Y (@ + b))
n=1

2nd

which conforms with (7.62). Since, in this case, the basis set is complete, Parseval’s
theorem holds, and the Fourier series converges to f{f) in the sense discussed above.

7.7.4 Exercises

40  The Fourier series expansion for the periodic square Determine the mean square error corresponding to
wave approximations to f(¢) based on the use of one term,
two terms and three terms respectively in the series
- m<t<0 expansion.
fioy= { ( )
(0<t<m .
41  The Legendre polynomials P,(¢) are generated by
f(t+2m) = £(0) the formula

is

=y 1?(2—:11— sin(2n— 1)z
n=1

Piy=——-L 1y m=012 )
2"l di"

and satisfy the recurrence relationship

) nBy(t) = (21 — DB, (1) — (n = 1)B(0)
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(a) Deduce that
P(t=1, P(()=t
Py()=1@* = 1), Py(1)=1(5¢ -31)

(b) Show that the polynomials form an orthogonal
set on the interval (-1, 1) and, in particular, that

1
J F(OF(0) dt

B {0 (n#m)
2/2n+1) (n=m;m=0,1,2,...)
(c) Given that the function

-1 (-1<t<0)
=70 =0
1 (0<t<1)

is expressed as a Fourier—Legendre series
expansion

f=7 P

r=0
determine the values of ¢, ¢, ¢, and c;.

(d) Plot graphs to illustrate convergence of the
series obtained in (c), and compare the mean
square error with that of the corresponding
Fourier series expansion.

42  Repeat parts (¢) and (d) of Exercise 41 for the
function

0 (-1<x<0)
x (0<x<1)

Jx) = {

43  Laguerre polynomials L,(f) are generated by the
formula

L= "¢y (n=0,1,2,...)
dr

and satisfy the recurrence relation
L(t)=Q2n—1=0L,\(t) = (n = 1)L, (1)
n=2,3,...)

These polynomials are orthogonal on the
interval 0 < ¢ < o with respect to the weighting
function e, so that

J e 'L, (L, (1) dt = {0
0 (n!)’

(n#m)

(n=m)

44

(a) Deduce that
Lh=1, L(=1-1¢
L(H=2—-4t+1
L(t=6-18t+9* -1

(b) Confirm the above orthogonality result in the
case of Ly, Ly, L, and L.

(c) Given that the function f{) is to be
approximated over the interval 0 < ¢ < o by

0= Lo

show that

oo

¢ =—= J f(t)e L, (1) dt
2y 0

r=0,1,2,...)

(Note: Laguerre polynomials are of particular
importance to engineers, since they can
be generated as the impulse responses of
relatively simple networks.)

Hermite polynomials H,(f) are generated by the
formula

Hn(l) — (_l)n ezz/z d_ e—tz/z
dr"

(n=0,1,2,...)
and satisfy the recurrence relationship
H,(1) = tH, ,(t) = (n = DH, (1)
n=2,3,...)

The polynomials are orthogonal on the interval
—oo < t < oo With respect to the weighting
function e™”?, so that

J e_’z/an(t)H”,(t)dtz{ 0
. J2m)n!

(n#m)
(n=m)
(a) Deduce that
Hy)=1, H(t)=t
H()=t-1, H(t)=¢1 -3¢
H()=t'-6*+3

(b) Confirm the above orthogonality result for
H,, H,, H, and H;.
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45

(c) Given that the function () is to be
approximated over the interval —eo < ¢ < oo by

=Y cH(0)
r=0
show that
¢ =—— J ¢ PROH, (1) dt
rlym N

r=0,1,...)

Tchebyshev polynomials 7,(7) are generated by the
formula

T(f)=cos(ncos'f) (n=0,1,2,...)

or
[n/2] . al o
T = ; (=1 M(l — )t
n=0,1,2,...)
where
(/2] = { n/2 (even n)
(n—1)/2 (odd n)

They also satisfy the recurrence relationship
Tn(t) = 2t]’n—l(l‘) - 7"172(11) (n = 25 33 see )

and are orthogonal on the interval -1 < ¢ <1
with respect to the weighting function 1//(1 — %),
so that

1 0 (m#n)
J LOLW 4 _lin (m=n=0)
- =0 (m=n=0)
(a) Deduce that
T(=1, T\(t)=t
T,(t) =2t -1,
T,(H)=8t" - 82+ 1
Ty(f) = 16£° = 20¢° + 5¢

Ty(¢) = 4t - 3¢

(b) Confirm the above orthogonality result for
Ty, Ty, T, and T;.

46

(c) Given that the function f{7) is to be
approximated over the interval -1 < ¢ < 1 by

f0=3 T
r=0
show that

_l Jl AT,

‘;C -1 \““‘(l_tz)
Cr:gf f(t)Tt(t)dt (r:],z,...)
n 71\5(1_t2)

With developments in digital techniques, Walsh
functions W,(¢) have become of considerable
importance in practice, since they are so easily
generated by digital logic circuitry. The first four
Walsh functions may be defined on the interval
0<t=<Thby

W=-L+ ©0=i=T)
T
T (0<t<1iT)
Wl(t):{ ' . :
-IJT (T<t<T)

T (0<t<iTiT<t<T
Wz(r>={ OSt= )
-1INT GT<t<3T)

wi(t) =

{1/\T (O<t<iriT<i<irlT<i<T)
—INT (T<t<iTiT<t<1T)

(a) Plot graphs of the functions W(t), W,(t), Wy(t)
and W;(t), and show that they are orthonormal
on the interval 0 < ¢ < T. Write down an
expression for W,(t).

(b) The Walsh functions may be used to obtain
a Fourier—Walsh series expansion for a
function f(#), over the interval 0 < ¢t < T,
in the form

J0=3 ¢ (0)

[lustrate this for the square wave of
Exercise 40. What is the corresponding mean
square error? Comment on your answer.
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/.8

Figure7.42 Nonlinear
control system.

AT CE T Ll describing functions

Many control systems containing a nonlinear element may be represented by the block
diagram of Figure 7.42. In practice, describing function techniques are used to analyse
and design such control systems. Essentially the method involves replacing the non-
linearity by an equivalent gain N and then using the techniques developed for linear
systems, such as the frequency response methods of Section 5.8. If the nonlinear ele-
ment is subjected to a sinusoidal input e(#) = X sin wt then its output z(#) may be repre-
sented by the Fourier series expansion

Nonlinear element

Linear
element

R R

+ e Output

Input

z(1) = tay+ Z a, cos nwt + 2 b, sin not

n=1 n=1

=lay+ 2 A, sin(nwt + ¢,)
n=1
with 4, = (a? + b2) and ¢, = tan"'(a,/b,,).
The describing function N(X) of the nonlinear element is then defined to be the
complex ratio of the fundamental component of the output to the input; that is,

A, e
— ¢

NX) =22

with N(X) being independent of the input frequency o if the nonlinear element is
memory-free.

Having determined the describing function, the behaviour of the closed-loop system
is then determined by the characteristic equation

1+ NX)G(jw)=0

If a combination of X and @ can be found to satisfy this equation then the system is
capable of sustained oscillations at that frequency and magnitude; that is, the system
exhibits limit-cycle behaviour. In general, more than one combination can be found,
and the resulting oscillations can be a stable or unstable limit cycle.

Normally the characteristic equation is investigated graphically by plotting G(jw)
and —1/N(X), for all values of X, on the same polar diagram. Limit cycles then occur at
frequencies and amplitudes corresponding to points of intersection of the curves. Some-
times plotting can be avoided by calculating the maximum value of N(X) and hence the
value of the gain associated with G(s) that will just cause limit cycling to occur.

Using this background information, the following investigation is left as an exercise
for the reader to develop.
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Figure 7.43 (a)Relay; Output A Output A
(b) relay with dead
zone. L +——— L+ —
- —h M
0 Input Y B Input
-1 pro— - 1.

Figure7.44 Nonlinear
system of exercise.

(a)

(b)

10
s(s+ 1)s+2)

Y

Show that the describing functions N,(X') and N,(X) corresponding respectively
to the relay (on—off nonlinearity) of Figure 7.43(a) and the relay with dead zone
of Figure 7.43(b) are

2
M =2£ o - {1 —()ﬁ()}

For the system of Figure 7.44 show that a limit cycle exists when the nonlinearity
is the relay of Figure 7.43(a) with L = 1. Determine the amplitude and frequency
of this limit cycle.

In an attempt to eliminate the limit-cycle oscillation, the relay is replaced by
the relay with dead zone illustrated in Figure 7.43(b), again with L = 1. Show that
this allows our objective to be achieved provided that # > 10/3m.

7.9 Review exercises (1-20)

1 A periodic function f(¢) is defined by 2  Determine the full-range Fourier series expansion
of the even function f(#) of period 2w defined by
| os=st<n
S = 2 (0=<t<ln
0 (m<t=2n) finy=4"> 2
n-t) (Grn<t<mn)

St +2m) = £(0)

To what value does the series converge at = % m?

Obtain a Fourier series expansion of f{¢) and

deduce that

lﬂ;zzil
6

r=1 4

)

3 A function f{(¢) is defined for 0 < ¢ < 1 T'by
t (0<t<1:iT)
f)= i r << T
= QS o= )
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Sketch odd and even functions that have a period
T and are equal to f(¢) for 0 < ¢ < iT.

(a) Find the half-range Fourier sine series of f(#).

(b) To what value will the series converge for
t=—;T?

(c) What is the sum of the following series?

zupn

=]

Prove that if g(x) is an odd function and f{x) an even
function of x, the product g(x)[c + f(x)] is an odd
function if ¢ is a constant.
A periodic function with period 2 is defined by
F(6) =% 6(n° - &)

in the interval -t < 6 < 1. Show that the Fourier
series representation of the function is

oo n+1
ﬂ@:Zti%qmw
n=1 n

A repeating waveform of period 27 is described by

T+t (—n<t€—%n)
S =1 -t (-in <t <;3m

t—7 (En\tsn)

Sketch the waveform over the range ¢ = —27 to
t = 2n and find the Fourier series representation
of f(#), making use of any properties of the
waveform that you can identify before any
integration is performed.

A function f{(x) is defined in the interval
-lsx<1lby
(—e<x<ye

0 -lsx<-ge<x=s1)
Sketch a graph of f(x) and show that a Fourier

series expansion of f(x) valid in the interval
—1 = x =< 1 is given by

fx) = ;+i

sin nE

COS nTx

Show that the half-range Fourier sine series for the
function

f(t):(l—T—tt)2 O<t=mn

10

11

is

n

}sin nt

Find a half-range Fourier sine and Fourier cosine
series for f(x) valid in the interval 0 <x < 1
when f{(x) is defined by

f(r)=i—2—{1—

n=1 nm

(0 <x<im

X
f(X)={
m—-Xx

Gn<x<m

Sketch the graph of the Fourier series obtained
for -2m < x < 2m.

A function f{(x) is periodic of period 2w and is
defined by f(x) = e* (-t < x < m). Sketch the
graph of f(x) from x = 27 to x = 27 and prove
that

5% (cos nx —n sin nx)
1+n°

fix) = 2s1nh1t 1+z

A function f{¢) is defined on 0 < ¢ < 1 by

fy=mn—t
Find
(a) a half-range Fourier sine series, and

(b) a half-range Fourier cosine series for f(7)
valid for 0 < ¢ < 7.

Sketch the graphs of the functions represented
by each series for 21 < ¢ < 2.

Show that the Fourier series

iicosﬂn—l)t
T 2n-1)°

n=1

represents the function £{(¢), of period 2T,
given by

ﬂo={’
—1

Deduce that, apart from a transient component
(that is, a complementary function that dies away
as t — o), the differential equation

X rx=f)


www.semeng.ir

7.9 REVIEW EXERCISES (1-20) 635

has the solution

175_&2 cos(2n—1)t+2(2n—1)sin(22n—1)t
2n-1)[1+@2n—1)]

n=1

12 Show that if f(¢) is a periodic function of period
21 and

t/m
A= {(275—1)/1‘5

0<t<m)
(r <t <2m

then

4~ cos(2n+ 1)t
fin=1-2 'y cos@nr i
e 2n+1)

Show also that, when @ is not an integer,
1
y:—z(l — COS Wt)
20

4 cos(2n + 1)t — cos wt
_—zz 2 2 2
A Cn+ 1) (o - (2n+1)7]

satisfies the differential equation
&y oy =
Y +wy = fl1)

subject to the initial conditions y = dy/df = 0 at
t=0.

13 (a) A periodic function f(), of period 27, is
defined in -t < ¢ < m by

f(r)z{"
t

Obtain a Fourier series expansion for f(#), and
from it, using Parseval’s theorem, deduce that

1 .4 1
=7 = —
96 ;(2}1— 1)4

(b) By formally differentiating the series obtained
in (a), obtain the Fourier series expansion of
the periodic square wave

-1 (-n<1t<0)
g)=1 0 (1=0)
1 (0<t<m)

gt +2m) = g(0)

14

15

16

17

Check the validity of your result by
determining directly the Fourier series
expansion of g(7).

A periodic function f(¢), of period 2m, is defined
in the range —t < ¢ < 1 by

S(1) = sin it

Show that the complex form of the Fourier series
expansion for f{(7) is

JOE ZM_L

n=—o0

(a) Find the Fourier series expansion of the
voltage v(?) represented by the half-wave
rectified sine wave

(0<t<im)

o(t) = { 10 sin(2mt/T)

GT<t<T)
v(t+T)=v(r)

(b) If the voltage v(¥) in (a) is applied to a
10 Q resistor, what is the total average power
delivered to the resistor? What percentage
of the total power is carried by the second-
harmonic component of the voltage?

The periodic waveform f(#) shown in Figure 7.45
may be written as

JiOY Y

— — — 2-—

-5t -4n -3n -2n -mw

Figure 7.45 Waveform f(7) of Review
exercise 16.

JO=1+g@
where g(7) represents an odd function.
(a) Sketch the graph of g(7).
(b) Obtain the Fourier series expansion for g(#),

and hence write down the Fourier series
expansion for (7).

~Y

O

n 2n 3n 4nm

Show that the complex Fourier series expansion
for the periodic function

fih=t (0<t<2m
St +2m) = f(2)
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18

19

f(t)=1t+i J‘;—“

N=—co

n#0

(a) A square-wave voltage v(f) of period 7' is
defined by
(1T<1t<0)

-1
v(t) = {
1 (0<r<!T)
v(t+T)=uv(f)
Show that its Fourier series expansion is

given by

4 o sin[(4n=2)7t/T ]
==
v(®) RZ‘ 2n—1

(b) Find the steady-state response of the circuit
shown in Figure 7.46 to the sinusoidal input
voltage

v,(t) = sin @t

and hence write down the Fourier series
expansion of the circuit’s steady-state response
to the square-wave voltage v(f) in (a).

(1) m) 1Q

IH

Figure 7.46 Circuit of Review exercise 18.

(a) Defining the nth Tchebyshev polynomial by
T(f) = cos(ncos™' 7)

use Euler’s formula cos 8 = % (e? +¢e7%)
to obtain the expansions of /% and ¢***!
in Tchebyshev polynomials, where £ is a
positive integer.

(b) Establish the recurrence relation
Tn(t) = 21Tnfl(t) - Tn72(t)

(c) Write down the values of 7,(¢) and 7(¢) from
the definition, and then use (b) to find 7,(¢) and
T5(2).

(d) Express ¢° — 5t* + 7t* + 6¢ — 8 in Tchebyshev
polynomials.

20

(e) Find the cubic polynomial that approximates
to

P—5t"+7+ 618

over the interval (-1, 1) with the smallest
maximum error. Give an upper bound for
this error. Is there a value of ¢ for which this
upper bound is attained?

The relationship between the input and output of
a relay with a dead zone A and no hysteresis is

shown in Figure 7.47. Show that the describing
function is

2(1/2
N(x)) = 4_1‘/[{1 _ (_A_)J
X, 2x;
for an input amplitude x;.

Output M [--------+

f

1A IA— Input

--------- -M

Figure 7.47 Relay with dead zone of Review
exercise 20.

If this relay is used in the forward path of
the on—off positional control system shown in
Figure 7.48, where the transfer function

N S
s(Tys+ 1) (Tos+ 1)

characterizes the time constant of the servo-motor,
and the inertia and viscous damping of the load,
show that a limit-cycle oscillation will not occur
provided that the dead zone in the relay is such
that

4MK T,T,
o T

A >

K Xo($)
s(Tys + D)(Ths + 1)

Figure 7.48 Positional control system of Review
exercise 20.
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Introduction

8.2

8.2.1

In Chapter 7 we saw how Fourier series provided an ideal framework for analysing the
steady-state response of systems to a periodic input signal. In this chapter we extend
the ideas of Fourier analysis to deal with non-periodic functions. We do this through
the introduction of the Fourier transform. As the theory develops, we shall see how the
complex exponential form of the Fourier series representation of a periodic function
emerges as a special case of the Fourier transform. Similarities between the transform
and the Laplace transform, discussed in Chapter 5, will also be highlighted.

While Fourier transforms first found most application in the solution of partial
differential equations, it is probably true to say that today Fourier transform methods
are most heavily used in the analysis of signals and systems. This chapter is therefore
developed with such applications in mind, and its main aim is to develop an understand-
ing of the underlying mathematics as a preparation for a specialist study of application
areas in various branches of engineering.

Throughout this book we draw attention to the impact of digital computers on engin-
eering and thus on the mathematics required to understand engineering concepts. While
much of the early work on signal analysis was implemented using analogue devices, the
bulk of modern equipment exploits digital technology. In Chapter 5 we developed the
Laplace transform as an aid to the analysis and design of continuous-time systems
while in Chapter 6 we introduced the z and 9 transforms to assist with the analysis and
design of discrete-time systems. In this chapter the frequency-domain analysis intro-
duced in Chapter 5 for continuous-time systems is consolidated and then extended to
provide a framework for the frequency-domain description of discrete-time systems
through the introduction of discrete Fourier transforms. These discrete transforms pro-
vide one of the most advanced methods for discrete signal analysis, and are widely used
in such fields as communications theory and speech and image processing. In practice,
the computational aspects of the work assume great importance, and the use of appro-
priate computational algorithms for the calculation of the discrete Fourier transform is
essential. For this reason we have included an introduction to the fast Fourier transform
algorithm, based on the pioneering work of J. W. Cooley and J. W. Tukey published
in 1965, which it is hoped will serve the reader with the necessary understanding for
progression to the understanding of specialist engineering applications.

An additional engineering application section has been included in this new edition.
In this we discuss the discrete-time Fourier transform to provide the means of describ-
ing the so-called direct design method for digital filters which is based on the use of the
desired frequency response, without using an analogue prototype design. This naturally
leads to considering ‘windowing’ and a brief introduction to this topic is included.

The Fourier transform

The Fourier integral

In Chapter 7 we saw how Fourier series methods provided a technique for the
frequency-domain representation of periodic functions. As indicated in Section 7.6.3,
in expressing a function as its Fourier series expansion we are decomposing the function
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Figure 8.1 The view of f(#) through a window of Figure 8.2 The periodic function g(f) based on the

length 7.

‘windowed’ view of (7).

into its harmonic or frequency components. Thus a periodic function f{(¢), of period 7",
has frequency components at discrete frequencies

a),,zzl,n =nw, (n=0,1,2,3,...)
T

where o, is the fundamental frequency, that is the frequency of the parent function f{¢).
Consequently we were able to interpret a Fourier series as constituting a discrete fre-
quency spectrum of the periodic function f(#), thus providing an alternative frequency-
domain representation of the function to its time-domain waveform. However, not all
functions are periodic and so we need to develop an approach that will give a similar
representation for non-periodic functions, defined on —ee < ¢ < co. One way of achiev-
ing this is to look at a portion of a non-periodic function f(¢) over an interval 7, by
imagining that we are looking at a graph of f(#) through a ‘window’ of length T, and
then to consider what happens as T gets larger.

Figure 8.1 depicts this situation, with the window placed symmetrically about the
origin. We could now concentrate only on the ‘view through the window’ and carry out
a Fourier series development based on that portion of f(7) alone. Whatever the beha-
viour of f{(f) outside the window, the Fourier series thus generated would represent the
periodic function defined by

ﬂﬂ:{ﬂﬂ (Ir] < 37)
f(t—nT) (C@n-DT<|t|<i@n+1)T)

Figure 8.2 illustrates g(¢), and we can see that the graphs of f{¢) and g(7) agree on the
interval (-1 7, 1 7). Note that this approach corresponds to the one adopted in Section
7.3 to obtain the Fourier series expansion of functions defined over a finite interval.

Using the complex or exponential form of the Fourier series expansion, we have
from (7.53) and (7.57) that

g =Y G, @.1)

n=—oo

with

T/2 ]
G, == J g(t)y e dr 8.2)

-7/2
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and where
w,=2n/T 8.3)

Equation (8.2) in effect transforms the time-domain function g(#) into the associated
frequency-domain components G,, where # is any integer (positive, negative or zero).
Equation (8.1) can also be viewed as transforming the discrete components G, in the
frequency-domain representation to the time-domain form g(#). Substituting for G, in
(8.1), using (8.2), we obtain

- 72
_ 1 —jno,t jnoyt

t) = = " dr e 8.4

g(1) Z‘L[TJ g(n)e ’L} 8.4
n =772
The frequency of the general term in the expansion (8.4) is
2 _ e, = o,
T

and so the difference in frequency between successive terms is

2m_ .
T

%’%[(nﬂ)—n]: o

Since Aw = w,, we can express (8.4) as

o T/2 )
gy =73y E—J 2(7) " d% e"Aw (8.5)
neen | T -7/2
Defining G(jw) as
T/2
G(jo) = J g(7) e’ dr (8.6)
-T/2
we have
1 - —jw, .
g(t) = 5 Z e "G(jw,)Aw 8.7)

n=—oco

As T — oo, our window widens, so that g(¢) = f(¢) everywhere and Aw — 0. Since we
also have

Aw—0 27'C

lim inz;ejw”tG(ja),,)Aa)z %IJ ¢”"G(jo)dw

it follows from (8.7) and (8.6) that

S0 = J_m lzln ej“”jmf (7)e " dr} dw (8.8)

The result (8.8) is known as the Fourier integral representation of f(¢). A set of
conditions that are sufficient for the existence of the Fourier integral is a revised form
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Theorem 8.1

of Dirichlet’s conditions for Fourier series, contained in Theorem 7.2. These conditions
may be stated in the form of Theorem 8.1.

Dirichlet’s conditions for the Fourier integral

If the function f{¢) is such that
(a) it is absolutely integrable, so that

J [ (1) ]dt < oo

(that is, the integral is finite), and

(b) it has at most a finite number of maxima and minima and a finite number of
discontinuities in any finite interval

then the Fourier integral representation of f(¢), given in (8.8), converges to f(¢) at all
points where f(f) is continuous and to the average of the right- and left-hand limits of
f(#) where f(7) is discontinuous (that is, to the mean of the discontinuity).

end of theorem

As was indicated in Section 7.2.9 for Fourier series, the use of the equality sign in
(8.8) must be interpreted carefully because of the non-convergence to f{¢) at points of
discontinuity. Again the symbol ~ (read as ‘behaves as’ or ‘represented by’) rather than
= is frequently used.

The absolute integrable condition (a) of Theorem 8.1 implies that the absolute area
under the graph of y = f(¢) is finite. Clearly this is so if f(¢) decays sufficiently fast with
time. However, in general the condition seems to imply a very tight constraint on
the nature of f(#), since clearly functions of the form f(¢) = constant, () = e, f(¢) = ™,
f(#) = sin @t, and so on, defined for —o < ¢ < oo, do not meet the requirement. In
practice, however, signals are usually causal and do not last for ever (that is, they only
exist for a finite time). Also, in practice no signal amplitude goes to infinity, so con-
sequently no practical signal f(¢) can have an infinite area under its graph y = f(¢). Thus
for practical signals the integral in (8.8) exists.

To obtain the trigonometric (or real) form of the Fourier integral, we substitute

e 10 = cos (T — £) — j sin (T — 1)

in (8.8) to give

f(t):é-I;J J F(T)[cos @(7 — 1) — jsin (7 — £)] dt de

Since sin w(7 — ¢) is an odd function of w, this reduces to

f(t):—l—J J £(1) cos o(7 — 1) dr do
27 )

which, on noting that the integrand is an even function of @, reduces further to

S =

ai—

J de f(7)cos w(t—¢t)dr (8.9)
0 —oo
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The representation (8.9) is then the required trigonometric form of the Fourier
integral.

If £(#) is either an odd function or an even function then further simplifications of (8.9)
are possible. Detailed calculations are left as an exercise for the reader, and we shall
simply quote the results.

(a) If f(¢) is an even function then (8.9) reduces to

1) = i J J £(z) cos @7 cos ot dr do (8.10)

which is referred to as the Fourier cosine integral.

(b) If f(¢) is an odd function then (8.9) reduces to

£ty = 7% J J £(z) sin @7 sin ot dz do 8.11)
0 0

which is referred to as the Fourier sine integral.

ok In the case of the Fourier series representation of a periodic function it was a matter
of some interest to determine how well the first few terms of the expansion represented
the function. The corresponding problem in the non-periodic case is to investigate how
well the Fourier integral represents a function when only the components in the lower
» part of the (continuous) frequency range are taken into account. To illustrate, consider
" the rectangular pulse of Figure 8.3 given by

o 0 ]

Figure 8.3 Rectangular
pulse

Lo (Jrf < 1)

fm:{o TERS

Lo(ltf=1)

fmz{o (el > 1)

This is clearly an even function, so from (8.10) its Fourier integral is

. }
f(t)=g 1 cos 0T cos wf dr dw = 2| oS QIsin® 4.,
n 0Jo T o w

An elementary evaluation of this integral is not possible, so we consider frequencies
o < @,, when

2 wucos Wt sin @
1) = = e = dw
S0 RL w

T

@, @,
=lj SIHw!t+l!da)—lJ smw!t—l}dw
T w w

0

oy(t+1) on(1=1)
s g _ 1 siu g,
u T u

0 0

0

Q11—


www.semeng.ir

8.2 THE FOURIER TRANSFORM 643

The integral

Si(x)zJ SN e )
u

0

occurs frequently, and it can be shown that

. B & (_1)nx2n+1
Si(x) = 25 @n+ D@2n+ 1)l

Its values have been tabulated (see for example L. Rade and B. Westergren, Beta
Mathematics Handbook, Chartwell-Bratt Ltd, Bromley, Kent, 1990). Thus

J(t) = Si(wy(t + 1)) = Si(w(t - 1)) (8.12)

This has been plotted for w, =4, 8 and 16, and the responses are shown in Figures 8.4(a),
(b) and (c) respectively. Physically, these responses describe the output of an ideal
low-pass filter, cutting out all frequencies ® > ®,, when the input signal is the rectan-
gular pulse of Figure 8.3. The reader will no doubt note the similarities with the
Fourier series discussion of Section 7.2.9 and the continuing existence of the Gibbs
phenomenon.

Figure 8.4

Plot of (8.12):

(a) 0, = 4; (b) @, =8;
(c) w, = 16.

fA
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8.2.2 The Fourier transform pair

We note from (8.6) and (8.7) that the Fourier integral (8.8) may be written in the form
of the pair of equations

F(ja)):j f(t)e " dr (8.13)
f(t)=2i7J F(jo)e™ dw (8.14)

F(jw) as defined by (8.13) is called the Fourier transform of f{(¢), and it provides
a frequency-domain representation of the non-periodic function f(f), whenever the
integral in (8.13) exists. Note that we have used the notation F(jw) for the Fourier trans-
form of /() rather than the alternative F/(w), which is also in common use. The reason
for this choice is a consequence of the relationship between the Fourier and Laplace
transforms, which will emerge later in Section 8.4.1. We stress that this is a choice that
we have made, but the reader should have no difficulty in using either form, provided
that once the choice has been made it is then adhered to. Equation (8.14) then provides
us with a way of reconstructing f(7) if we know its Fourier transform F(jo).

A word of caution is in order here regarding the scaling factor 1/2m in (8.14).
Although the convention that we have adopted here is fairly standard, some authors
associate the factor 1/2m with (8.13) rather than (8.14), while others associate a factor
of (2m)"? with each of (8.13) and (8.14). In all cases the pair combine to give the
Fourier integral (8.8). We could overcome this possible confusion by measuring the
frequency in cycles per second or hertz rather than in radians per second, this being
achieved using the substitution /= @/2w, where f'is in hertz and o is in radians per
second. We have not adopted this approach, since @ is so widely used by engineers.

In line with our notation for Laplace transforms in Chapter 5, we introduce the
symbol %to denote the Fourier transform operator. Then from (8.13) the Fourier transform
F{f(t)} of a function £{(¢) is defined by

FLf()} = F(jw) = J f(t)e?™ dt (8.15)

whenever the integral exists. Similarly, using (8.14), we define the inverse Fourier
transform of G(jw) as

F G (jo)} = g(t) = 511—4 G(jw)e'” dw (8.16)

whenever the integral exists. The relations (8.15) and (8.16) together constitute the
Fourier transform pair, and they provide a pathway between the time- and frequency-
domain representations of a function. Equation (8.15) expresses f(¢) in the frequency
domain, and is analogous to resolving it into harmonic components with a continuously
varying frequency @. This contrasts with a Fourier series representation of a periodic
function, where the resolved frequencies take discrete values.
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Example 8.1

Solution

Example 8.2

Solution

The conditions for the existence of the Fourier transform F(jw) of the function f(f)
are Dirichlet’s conditions (Theorem 8.1). Corresponding trigonometric forms of the
Fourier transform pair may be readily written down from (8.9), (8.10) and (8.11).

Does the function
fH)=1 (-0 <t < oo)

have a Fourier transform representation?

Since the area under the curve of y = f(f) (—eo < t < <o) is infinite, it follows that
JZ.1 f(©)|dt is unbounded, so the conditions of Theorem 8.1 are not satisfied. We can
confirm that the Fourier transform does not exist from the definition (8.15). We have

ol o
J 1e7”dt = lim J e dt
. Oo—>o0 o

= lim [—L(e_jwa - ejwa)}

o—>oo Ja)

= lim 2 sin oo
o—o0 )

Since this last limit does not exist, we conclude that f(#) = 1 (—eo < ¢ < o) does not
have a Fourier transform representation.

It is clear, using integration by parts, that f(f) = ¢ (—ec < ¢ < o0) does not have a
Fourier transform, nor indeed does f(#) = t" (n > 1, an integer; —eo < { < o0). While
neither e” nor ¢ (a > 0) has a Fourier transform, when we consider the causal signal
f(©)=H(t)e™ (a > 0), we do obtain a transform.

Find the Fourier transform of the one-sided exponential function
f=H@He™ (a>0)

where f(¢) is the Heaviside unit step function.

The graph of f(¢) is shown in Figure 8.5, and we can show that the area under the graph
is bounded. Hence, by Theorem 8.1, a Fourier transform exists. Using the definition
(8.15), we have

F{f()} =J H(e e’ dt (a>0)

ZJ ef(a+jw)tdt — {_CMH'(D)}
0 a+ jo 0
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Figure 8.5 f
The ‘one-sided’
exponential function
f(t) = H(t) e ™

(a > 0).

1

-

(6]

so that

FH(D)e ™"} = - :jw (8.17)

Example 8.3  Calculate the Fourier transform of the rectangular pulse

(4 qu=n
ﬂ”_{O(n|>T>

Solution  The graph of f(7) is shown in Figure 8.6, and since the area under it is finite, a Fourier
transform exists. From the definition (8.15), we have

s 4 )
%UUH=JTAMMM= P%eWL~w¢O
- - 24 =0

T O r =2AT sinc T

Figure 8.6 The

where sincx is defined, as in Example 7.22, by
rectangular pulse

f(t):{A (11| <T) . MY (x#20)
0 ([t|>T)- sincx =< X
1 (x=0)
Figure 8.7
A Dbrief table of =
Fourier transforms. 0 FLI)} = J f(tye i@ dt

eTH(N) (a>0) !

a+jo
te®H(®) (a> 0) L
(a +jow)
4 (=1 2AT sinc T
0 (111>T1)
el (@a>0) 2a

 + o
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By direct use of the definition (8.15), we can, as in Examples 8.2 and 8.3, determine
the Fourier transforms of some standard functions. A brief table of transforms is given
in Figure 8.7.

In MATLAB, incorporating the Symbolic Math Toolbox, the Fourier transform F( jw)
of f(#) is obtained using the commands

syms w t
F=fourier (f(t),t,w)

whilst the inverse Fourier transform f(#) of F(jw) is obtained using the command
f=ifourier (F(jw) ,w,t)
Corresponding commands in MAPLE are
with (inttrans) :
F=fourier (f(t),t,w);
f=invfourier (F (jw) ,w,t);
Returning to Example 8.2, and considering the particular case of a = 2, the
commands
syms w t
H=sym(‘Heaviside(t) ') ;
F=fourier (H*exp (-2*t))
in MATLAB return
F=1/(2+1i*w)
as expected. In MATLAB there is an assume command (as in MAPLE) to enable
us to specify that a > 0. However, since abs(a) = a for a > 0, the following commands
in MATLAB can be used to deal with the general case

syms w t a
H=sym(‘Heaviside(t) ') ;
F=fourier (H*exp (-abs(a) *t),t,w)

As another illustration, consider the function f(f) = e™!, a > 0, given in the
table of Figure 8.7. Considering the particular case @ = 2 then the MATLAB
commands

syms w t
F=fourier (exp(-2*abs(t),t,w)

return
F=4/ (4+w"2)

as specified in the table. It is left as an exercise to consider the general case of a. To
illustrate the use, in MATLAB, of the ifourier command this transform can be
inverted using the commands

syms w t
f=ifourier (4/ (4+w"2) ,w,t)

which return
f=Heaviside (t) *exp (-2*t)+exp (2*t) *Heaviside (-t)

which corresponds to the expected answer f'= exp(—2*abs(¢)).
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8.2.3

Example 8.4

Solution

As another illustration consider the Fourier transform F(w) = 1/(a + jw)* given in
the second entry of the table in Figure 8.7. The MATLAB commands

syms w t a
f=ifourier (1l/ (a+1*w)"2,w,t)

return
f=t*exp(-a*t) *Heaviside (t)
as given in the table.

Considering the rectangular pulse f(¢) of Example 8.3, we first express the pulse
in terms of Heaviside functions as

SO =AH(+T) - H(—-T))
and then use the MATLAB commands
syms w t T A
H=sym(‘Heaviside (t+T)-Heaviside (t-T) ') ;
F=fourier (A*H,t,w) ;
F=simple (F)
which return
F=2*A*sin (T*w) /w

The continuous Fourier spectra

From Figure 8.7, it is clear that Fourier transforms are generally complex-valued func-
tions of the real frequency variable . If F{f(#)} = F(jw) is the Fourier transform of
the signal f(#) then F(jw) is also known as the (complex) frequency spectrum of /(7).
Writing F(jw) in the exponential form

F(j@) = |F(jo)| ei*F i

plots of | F(jw)| and arg F(jw), which are both real-valued functions of @, are called the
amplitude and phase spectra respectively of the signal (7). These two spectra repres-
ent the frequency-domain portrait of the signal f(7). In contrast to the situation when
f(#) was periodic, where (as shown in Section 7.6.3) the amplitude and phase spectra
were defined only at discrete values of @, we now see that both spectra are defined for
all values of the continuous variable ®.

Determine the amplitude and phase spectra of the causal signal
fH=e"H{) (a>0)
and plot their graphs.

From (8.17),

1
a+jo

FHO)} = Fjo) =

Thus the amplitude and argument of F'(jw) are
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Figure 8.8

(a) Amplitude and

(b) phase spectra of the
one-sided exponential
function f(¢) = e “H(t)
(a>0).

. 1
| Fjo)| = —5—

(8.18)
V(@ + o)

arg F(jow) = tan™'(1) — tan"(%)) = —tan’l(%)) (8.19)

These are the amplitude and phase spectra of f(¢), and are plotted in Figure 8.8.

|y
l/a
0 ‘w
(a)
arg F(jw) A
0 ‘w
(b)

Generally, as we have observed, the Fourier transform and thus the frequency spec-
trum are complex-valued quantities. In some cases, as for instance in Example 8.3, the
spectrum is purely real. In Example 8.3 we found that the transform of the pulse illus-
trated in Figure 8.6 was

F(jw) =2AT sinc oT
where
sin o7

sinc w7 = oT
1 (w=0)

(w#0)

is an even function of w, taking both positive and negative values. In this case the
amplitude and phase spectra are given by

|F(jw)| = 2AT |sinc oT| (8.20)

arg F(jo) = 0 (sincwT =0) 8.21)
n  (sinc w7 < 0)

with corresponding graphs shown in Figure 8.9.
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Figure 8.9
(a) Amplitude and
(b) spectra of the pulse

A =T
= tn=n

0 (|t|>T1).
Figure 8.10

Frequency spectrum
(real-valued) of the pulse

A
0

(lt] =T)

1) =
/o { (lt] >T)-

FF(jun !
2AIT
-3n/T -2r/T -n/T O /T 2n/T In/T @
(a)
arg F(jw)
_| T |_
0 Z)
(b)
F(je) A
2AIT
‘/-\ /'\N -
N N M
T T T T T T

In fact, when the Fourier transform is a purely real-valued function, we can plot all
the information on a single frequency spectrum of F(jw) versus @. For the rectangular
pulse of Figure 8.6 the resulting graph is shown in Figure 8.10.

From Figure 8.7, we can see that the Fourier transforms discussed so far have
two properties in common. First, the amplitude spectra are even functions of the
frequency variable w. This is always the case when the time signal f(7) is real; that
is, loosely speaking, a consequence of the fact that we have decomposed, or analysed
f(1), relative to complex exponentials rather than real-valued sines and cosines. The
second common feature is that all the amplitude spectra decrease rapidly as w increases.
This means that most of the information concerning the ‘shape’ of the signal £{(¢)
is contained in a fairly small interval of the frequency axis around @ = 0. From another
point of view, we see that a device capable of passing signals of frequencies up to
about w = 31t/T would pass a reasonably accurate version of the rectangular pulse of
Example 8.3.
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8.2.4 Exercises

Whenever possible check your answers using MATLAB or MAPLE.

Calculate the Fourier transform of the two-sided
exponential pulse given by

at (t$0)

€
= 0
S0 {eg, > 0) (a>0)

Determine the Fourier transform of the ‘on—off”’
pulse shown in Figure 8.11.

S A

-y

7 O

-A

Figure 8.11 The ‘on—off” pulse.

A triangular pulse is defined by

) = {(A/T)t +4
=AY+ 4

(-T<t<0)
0<t<T)

Sketch f(¢) and determine its Fourier transform.
What is the relationship between this pulse and
that of Exercise 2?

Determine the Fourier transforms of
2K (|t < 2)
0 (|t] > 2)

<) Z{K (It <1
0 (tl>1)

f(t)={

Sketch the function A(f) = f(f) — g(¢) and determine
its Fourier transform.

Calculate the Fourier transform of the ‘off—on—off”’
pulse f(¢) defined by

0 (t<-2)
1 (=2=<t<-1)
=11 (-1<t=<1)

6

Show that the Fourier transform of

sinat (|t] < n/a)

S(1) ={
0 (|t] > w/a)

12asin(nw/a)

2 2
o —a

Calculate the Fourier transform of

S(0) = e sin oyt H(?)

Based on (8.10) and (8.11), define the Fourier sine
transform as

F(x) =J f(¢)sin xt dt
0

and the Fourier cosine transform as

F(x) = J f(¢) cos xt dt
0

Show that
0 (t<0)
f(t)y=1cosat (0 <t<a)
0 (t > a)

has Fourier cosine transform

{sin(l + x)a . sin(1 —x)aJ

2 1+x 1 —x

Show that the Fourier sine and cosine transforms of

0 (<0
f) =41 (0<t<a)
0 (t>a)
are
1 —cosxa sinxa
X ’ X
respectively.

Find the sine and cosine transforms of
f(H)y=e"H(t) (a > 0).
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Properties of the Fourier transform

In this section we establish some of the properties of the Fourier transform that allow
its use as a practical tool in system analysis and design.

8.3.1 The linearity property

Linearity is a fundamental property of the Fourier transform, and may be stated
as follows.

If f(¢) and g(?) are functions having Fourier transforms F(jw) and G(jw) respect-
ively, and if o and 3 are constants, then

Fof(0) + fg(n)} = aF{ f()} + BFg(D)} = aF(jw) + BG(jo) (8.22)

As a consequence of this, we say that the Fourier transform operator & is a linear
operator. The proof of this property follows readily from the definition (8.15), since

%{af(t) + [)’g(l)} = J [af(t) + ﬂg(t)]e_jwtdl

oo

=o¢j f(t)ejw’dt+ﬁj g(t)e dr

= aF(jo) + BG(jo)

Clearly the linearity property also applies to the inverse transform operator F .

8.3.2 Time-differentiation property
If the function f(¢) has a Fourier transform F(jw) then, by (8.16),

_ L : : jot
f() = 2“J_m F(jo)e™ do

Differentiating with respect to ¢ gives
dl 1 - (9 . jot 1 : : . jot
= = [F do = — F d
s ZTJ_M (9t[ (jw)ye™ 1dw 21J_m(]a)) (jw)e™ dw

implying that the time signal df/df is the inverse Fourier transform of (jow)F(jw). In
other words

Slarl _ . .
J’{dt} = (jo)F(jo)

Repeating the argument #n times, it follows that
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Example 8.5

Solution

8.3.3

9{‘(‘1{} = (joyF(jo) (8.23)

The result (8.23) is referred to as the time-differentiation property, and may be used
to obtain frequency-domain representations of differential equations.

Show that if the time signals y(f) and u(f) have Fourier transforms Y(jw) and U(jw)
respectively, and if

2
4o 4 30 | 9y = 3980 4 o) (8.24)
dt dt dt

then Y(jw) = G(jow)U(jw) for some function G(jw).

Taking Fourier transforms throughout in (8.24), we have
2
9?{‘1—2’{’-2 + 3@, 7y(t)} - 9?{3‘1—?‘19 " 2u(t)}
dt dt dt
which, on using the linearity property (8.22), reduces to

g{%m} * 39{‘1{%} +IF()} = 3@{‘%@} + 2Fu(n)}
t t t

Then, from (8.23),
(joyY(jo) + 3(jo) Y(jo) + TY(jo) = 3(jo)U(jo) + 2U(jo)
that is,
(@ +j3w+ 7)Y (jw) = (j3w + 2)U(jw)
giving
Y(jo) = G(jo)U(jw)
where

. 2 +13
G(Jw)=—21(f’—
7-w +j3w

The reader may at this stage be fearing that we are about to propose yet another
method for solving differential equations. This is not the idea! Rather, we shall show
that the Fourier transform provides an essential tool for the analysis (and synthesis) of
linear systems from the viewpoint of the frequency domain.

Time-shift property

If a function f(#) has Fourier transform F(jw) then what is the Fourier transform of the
shifted version g(¢) = f(t — T), where 7 is a constant? From the definition (8.15),
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Example 8.6

Figure 8.12
Rectangular pulse
of Example 8.6.

Solution

8.34

oo

Flen} = J g(ne’dt = J f(t— e dt

—oo

Making the substitution x = ¢ — 7, we have

oo

Fle(n} = J fx)e " dx = e“’”f fx)e™dx = ¢ F(jo)

—oo

that is,
F{f(t— 1)} =e " F(jw) 8.25)
The result (8.25) is known as the time-shift property, and implies that delaying a signal

by a time 7 causes its Fourier transform to be multiplied by e™*".
Since

|e®T| =|cos @T—jsinwT|= |j(coszwr+ sinfw71)| =1

we have
le* F(jo)| = | F(jw)]

indicating that the amplitude spectrum of /(¢ — 7) is identical with that of £(7). However,
arg[e 7' F(jw)] = arg F(jw) — arge!”" = arg F(jo) — o7

indicating that each frequency component is shifted by an amount proportional to its
frequency o.

Determine the Fourier transform of the rectangular pulse f(#) shown in Figure 8.12.

fA

i |

This is just the pulse of Example 8.3 (shown in Figure 8.6), delayed by 7. The pulse of
Example 8.3 had a Fourier transform 247 sinc w7, and so, using the shift property
(8.25) with 7= T, we have

F{f(H)} = F(jow) = 3T 24T sinc oT = 24T e7*" sinc oT

Frequency-shift property

Suppose that a function f{) has Fourier transform F'(jw). Then, from the definition
(8.15), the Fourier transform of the related function g(¢) = €'’ f(¢) is
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Example 8.7

Solution

8.3.5

oo

Fle(n} = J &' f(ne ™ dr = J F()e " ds

—oo

= J f(1)e ™ dr, where @ = 0 — o,

=F(j®), by definition
Thus

F(' (1)) = F(j(0 - @) (8.26)

The result (8.26) is known as the frequency-shift property, and indicates that multi-
plication by e'“* simply shifts the spectrum of f(¢) so that it is centred on the point
o = 0, in the frequency domain. This phenomenon is the mathematical foundation
for the process of modulation in communication theory, illustrated in Example 8.7.

Determine the frequency spectrum of the signal g(¢) = f(¢) cos @, t.
Since cos @t = %(ej O 4 e it follows, using the linearity property (8.22), that
Flg)} = FLLOE™ + 7))
= JFSO Y +F fn e
If #{ f(1)} = F(jw) then, using (8.26),
FLf(1) cos 0.} = Fig(t)} = LF(j(0— 0)) + L F(j(0+ @)

The effect of multiplying the signal f(f) by the carrier signal cos . is thus to produce
a signal whose spectrum consists of two (scaled) versions of F(jw), the spectrum of
f(#): one centred on @ = w, and the other on @ = —®,. The carrier signal cos o, ¢ is said
to be modulated by the signal f(¥).

Demodulation is considered in Exercise 5, Section 8.10, and the ideas of modulation
and demodulation are developed in Section 8.8.

The symmetry property

From the definition of the transform pair (8.15) and (8.16) it is apparent that there is
some symmetry of structure in relation to the variables # and m. We can establish the
exact form of this symmetry as follows. From (8.16),

1) = if F(jw)e” do
2n)
or, equivalently, by changing the ‘dummy’ variable in the integration,

2nf(1) = J F(jy)e” dy
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Example 8.8

Solution

so that
2mf(-1) = J F(jy)ye™ dy
or, on replacing ¢ b;a),
2nf(-w) = J F(jy)e ™ dy (8.27)

The right-hand side of (8.27) is simply the definition (8.15) of the Fourier transform
of F(jt), with the integration variable 7 replaced by y. We therefore conclude that

FE(D} =21/(-) (8.28a)
given that
FW} =F(jo) (8.28b)

What (8.28) tells us is that if /() and F'(jw) form a Fourier transform pair then £ (j¢)
and 2nf(—w) also form a Fourier transform pair. This property is referred to as the
symmetry property of Fourier transforms. It is also sometimes referred to as the
duality property.

Determine the Fourier transform of the signal

. Csinat (t #0)
g(t) = Csincat = at (8.29)
C (r=0)
From Example 8.3, we know that if
A (Jt]=T)
(1) = 8.30
/ {0 (el >T) ®30

then
F{f()} = F(jw) = 24T sinc oT

Thus, by the symmetry property (8.28), F'(j¢) and 2nf( —w) are also a Fourier transform
pair. In this case

F(jf)=2AT sinc tT
and so, choosing 7'=a and 4 = C/2a to correspond to (8.29), we see that
F(jt) = Csinc at = g(f)

has Fourier transform 2t f(—®). Rewriting (8.30), we find that, since|w| = |-o]|,

2nCR2a  (|o| < a) {nC/a (o] < a)

F(C si — —
HCsinean { 0 (lo] > a) 0 (ol>a)
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Figure 8.13

The Fourier
transform pair
2(f) and G(jw) of
Example 8.8.

11

12

13

A graph of g(¢) and its Fourier transform G(jw) = 2nf(—®) is shown in Figure 8.13.

G(ju) A

nCla

—a (¢}

syms w t a C

Using the MATLAB commands

F=fourier (C*sin(a*t)/(a*t),t,w);

F=simple (F)

returns

F=C*pi* (-Heaviside (w-a)+Heaviside (w+a)) /a

which is the answer given in the solution expressed in terms of Heaviside functions.

8.3.6 Exercises

Whenever possible check your answers using MATLAB or MAPLE.

Use the linearity property to verify the result in
Exercise 4.

If y(¢) and u(?) are signals with Fourier transforms
Y(jw) and U(jw) respectively, and

2
(0 30 4 ) = uir)
dt dr

show that Y(jw) = H(jow)U(jw) for some function
H(jw). What is H(jw)?

Use the time-shift property to calculate the Fourier
transform of the double pulse defined by

0 ={1 (1<|=<2)

0 (otherwise)

14

15

16

Calculate the Fourier transform of the windowed
cosine function

Sf(t)=cosot[H(t+ 3 T)— H(t — 3 T)]
Find the Fourier transform of the shifted form of
the windowed cosine function
g(t)y=coswt[H({t)— H(t—T)]
Calculate the Fourier transform of the windowed
sine function

F(t) = sin 2 [H(t + 1) — H(t — 1)]
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m The frequency response

84.1

In this section we first consider the relationship between the Fourier and Laplace transforms,
and then proceed to consider the frequency response in terms of the Fourier transform.

Relationship between Fourier and Laplace transforms

The differences between the Fourier and Laplace transforms are quite subtle. At first
glance it appears that to obtain the Fourier transform from the Laplace transform we
merely write jo for s, and that the difference ends there. This is true in some cases, but
not in all. Strictly, the Fourier and Laplace transforms are distinct, and neither is a
generalization of the other.

Writing down the defining integrals, we have

The Fourier transform

FLf()} = J (e de (8.31)

The bilateral Laplace transform

Lol (0} = J frye ™ de (8.32)

The unilateral Laplace transform

oo

L)} = J @ e dr (8.33)

0

There is an obvious structural similarity between (8.31) and (8.32), while the connec-
tion with (8.33) is not so clear in view of the lower limit of integration. In the Laplace
transform definitions recall that s is a complex variable, and may be written as

s=0+jw (8.34)

where o and o are real variables. We can then interpret (8.31), the Fourier transform of
(1), as a special case of (8.32), when o = 0, provided that the Laplace transform exists
when ¢ = 0, or equivalently when s = jw (that is, s describes the imaginary axis in the
s plane). If we restrict our attention to causal functions, that is functions (or signals) that
are zero whenever ¢ < 0, the bilateral Laplace transform (8.32) is identical with the
unilateral Laplace transform (8.33). The Fourier transform can thus be regarded as a
special case of the unilateral Laplace transform for causal functions, provided again that
the unilateral Laplace transform exists on the imaginary axis s = jo.

The next part of the story is concerned with a class of time signals f(#) whose
Laplace transforms do exist on the imaginary axis s = jo. Recall from (5.71) that a
causal linear time-invariant system with Laplace transfer function G(s) has an impulse
response /A(?) given by
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Figure 8.14

Pole locations for
G(s) and the region
of existence of
G(s).

Example 8.9

Im(s) A
-*| O Re(j)
ho) = £(G)} =gOH@), say (8.35)

Furthermore, if the system is stable then all the poles of G(s) are in the left half-plane,
implying that g(7) H(f) — 0 as t — oo. Let the pole locations of G(s) be

PisPrs--vs Da

where
Pi= —ai +jby

in which a,, b, are real and @, # 0 for k = 1, 2,..., n. Examples of such poles are
illustrated in Figure 8.14, where we have assumed that G(s) is the transfer function of
a real system so that poles that do not lie on the real axis occur in conjugate pairs. As
indicated in Section 5.2.3, the Laplace transfer function G(s) will exist in the shaded
region of Figure 8.14 defined by

Re(s) > —c?
where —c? is the abscissa of convergence and is such that
0 <c?<mina?

The important conclusion is that for such systems G(s) always exists on the imaginary
axis s = jow, and so h(f) = g(t) H(¢) always has a Fourier transform. In other words, we
have demonstrated that the impulse response function A(f) of a stable causal, linear
time-invariant system always has a Fourier transform. Moreover, we have shown that
this can be found by evaluating the Laplace transform on the imaginary axis; that is,
by putting s = jo in the Laplace transform. We have thus established that Fourier
transforms exist for a significant class of useful signals; this knowledge will be used
in Section 8.4.2.

Which of the following causal time-invariant systems have impulse responses that
possess Fourier transforms? Find the latter when they exist.

(a) ‘fﬂ}) + 39 o0y = u(
dr dr

(b) ‘ifﬁ + dy(t) = u(t)

© ‘fﬁzﬂ + 2@ L) = 2w + 94
i de dt
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Solution

8.4.2

Assuming that the systems are initially in a quiescent state when ¢ < 0, taking Laplace
transforms gives

(a) ¥(s) = =—2——Uls) = Gy(s)U(s)
s +3s+2

(b) ¥(s) = =——U(s) = Go(s)U(s)
s + W

(© ¥s) = =2E2U(s) = Gy(s)Us)
s +s+1

In case (a) the poles of G(s) are at s = —1 and s = -2, so the system is stable and the
impulse response has a Fourier transform given by

1 1
2

G\(jw) = ——| =—5——
ST+ 35+ 2] 2-w0 +j3m

=jo

_2-d-j3w _(2-d)-j30
2-0) +9%0 @ +50 +4

In case (b) we find that the poles of G,(s) are at s = jow and s = —jw; that is, on the
imaginary axis. The system is not stable (notice that the impulse response does not
decay to zero), and the impulse response does not possess a Fourier transform.

In case (c) the poles of G;(s) are ats = —1 + j13 and s = — — j3|3 . Since these are
in the left half-plane, Re(s) < 0, we conclude that the system is stable. The Fourier
transform of the impulse response is then

. 2+
Gy(jo) = —=12—
l-w+jo

The frequency response

For a linear time-invariant system, initially in a quiescent state, having a Laplace transfer
function G(s), the response y(f) to an input u(f) is given in (5.66) as

Y(s) = G(s)U(s) (8.36)

where Y(s) and U(s) are the Laplace transforms of y(#) and u(#) respectively. In
Section 5.8 we saw that, subject to the system being stable, the steady-state response
y(f) to a sinusoidal input u(¢) = 4 sin @t is given by (5.101) as

V() = A|G(jw)| sin[wt + arg G(jw)] 8.37)

That is, the steady-state response is also sinusoidal, with the same frequency as the
input signal but having an amplitude gain |G(jw)| and a phase shift arg G(jw).
More generally, we could have taken the input to be the complex sinusoidal signal

u(t) = Ae
and, subject to the stability requirement, showed that the steady-state response is

yo(H) = AG(jw) e (8.38)
or

V() = A|G(jaw)| e/l (8.39)
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Example 8.10

Solution

As before, |G(jw)| and argG(jw) are called the amplitude gain and phase shift
respectively. Both are functions of the real frequency variable @, and their plots versus
o constitute the system frequency response, which, as we saw in Section 5.8, charac-
terizes the behaviour of the system. Note that taking imaginary parts throughout in (8.39)
leads to the sinusoidal response (8.37).

We note that the steady-state response (8.38) is simply the input signal 4 e’ multi-
plied by the Fourier transform G(jw) of the system’s impulse response. Consequently
G(jw) is called the frequency transfer function of the system. Therefore if the system
represented in (8.36) is stable, so that G(jw) exists as the Fourier transform of its
impulse response, and the input u(f) = £ '{U(s)} has a Fourier transform U(jw), then
we may represent the system in terms of the frequency transfer function as

Y(jo) = G(jo)U(jw) (8.40)

Equation (8.40) thus determines the Fourier transform of the system output, and can
be used to determine the frequency spectrum of the output from that of the input. This
means that both the amplitude and phase spectra of the output are available, since

[Y(jo)l =16(jo)| |U(jw) (8.41a)
arg Y(jw) = arg G(jw) + arg U(jw) (8.41b)

We shall now consider an example that will draw together both these and some earlier ideas
which serve to illustrate the relevance of this material in the communications industry.

A signal f(f) consists of two components:

(a) asymmetric rectangular pulse of duration 27 (see Example 8.3) and

(b) asecond pulse, also of duration 2 (that is, a copy of (a)), modulating a signal with
carrier frequency @, =3 (the process of modulation was introduced in Section 8.3.4).

Write down an expression for f(¢) and illustrate its amplitude spectrum. Describe the
amplitude spectrum of the output signal if £(7) is applied to a stable causal system with
a Laplace transfer function

1

G(s) = 5—
s+ 25 + 1

Denoting the pulse of Example 8.3, with 7 = &, by P,(f), and noting the use of the term
‘carrier signal’ in Example 8.7, we have

J(0) = Pi(t) + (cos 3t) (1)
From Example 8.3,
F{P.(t)} =21 sinc T
so, using the result of Example 8.7, we have
F{f(H} = F(jw) = 21 sinc o + % [27 sinc(w — 3)m + 27 sinc(@ + 3)x]

The corresponding amplitude spectrum obtained by plotting |F(jw)| versus o is illus-
trated in Figure 8.15.
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Figure 8.15

Amplitude spectrum

of the signal

P_(1) + (cos 3t)P,(1).

Il {

1GGun | A

2n T

A
/—-- ::0.7071

6-5-43210 71 234 5% ©

Since the system with transfer function

1

G(s) = 5—
ST+ 25 + 1

is stable and causal, it has a frequency transfer function

1

Gjw) = ——=——+
l-w+ j2w

so that its amplitude gain is

G (j@)| = —1—
(& + 1)

The amplitude spectrum of the output signal |Y(jw)| when the input is f(7) is then
obtained from (8.41a) as the product of | F(jw)| and | G(jw)|. Plots of both the amplitude
gain spectrum |G(jw)| and the output amplitude spectrum | Y(jw)| are shown in Figures
8.16(a) and (b) respectively. Note from Figure 8.16(b) that we have a reasonably good
copy of the amplitude spectrum of P,(f) (see Figure 8.9 with 4 =, 7= 1). However,
the second element of f{(7) has effectively vanished. Our system has ‘filtered out’ this
latter component while ‘passing’ an almost intact version of the first. Examination of
the time-domain response would show that the first component does in fact experience
some ‘smoothing’, which, roughly speaking, consists of rounding of the sharp edges.
The system considered here is a second-order ‘low-pass’ Butterworth filter (introduced
in Section 6.10.1).

6-5-4-32-19 1 23 4 5 6

(a)

l o
T y »
w

6-5-4-32-10 1 23456 ¢
(b)

Figure 8.16 (a) Amplitude gain spectrum of the system with G(s) = 1/(s* + {2 s + 1); (b) amplitude spectrum of the output
signal | Y(jw)| of Example 8.10.
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17

18

19

8.4.3 Exercises

Find the impulse response of systems (a) and (c)
of Example 8.9. Calculate the Fourier transform

of each using the definition (8.15), and verify the
results given in Example 8.9.

Use the time-shift property to calculate the Fourier
transform of the double rectangular pulse f(7)
illustrated in Figure 8.17.

§iG)
A

Il Il

P
T T Lol
7

-1-T -1 —t+T O -T 7

Figure 8.17 The double rectangular pulse of
Exercise 18.

The system with transfer function

1
G(s) = 5
ST+ 25 + 1

was discussed in Example 8.10. Make a
transformation

20

21

ik
s

and write down G(s”). Examine the frequency

response of a system with transfer function G(s")

and in particular find the amplitude response

when @ =0 and as @ — . How would you

describe such a system?

Use the symmetry property, and the result of
Exercise 1, to calculate the Fourier transform of

1
f) =
a+1
Sketch f(¢) and its transform (which is real).

Using the results of Examples 8.3 and 8.7, calculate
the Fourier transform of the pulse-modulated signal

f(H) =P (t)cos @t

where

Pr(t):{l (1] < T)
0 (1]>T1)

is the pulse of duration 27.

8.5

Transforms of the step and impulse functions

In this section we consider the application of Fourier transforms to the concepts of
energy, power and convolution. In so doing, we shall introduce the Fourier transform
of the Heaviside unit step function H(¢) and the impulse function (7).

8.5.1 Energy and power

In Section 7.6.4 we introduced the concept of the power spectrum of a periodic signal

and found that it enabled us to deduce useful information relating to the latter. In this

section we define two quantities associated with time signals £{(£), defined for —eo <t << oo,

namely signal energy and signal power. Not only are these important quantities in them-

selves, but, as we shall see, they play an important role in characterizing signal types.
The total energy associated with the signal f(¢) is defined as

E= f [ /(1)) dt

(8.42)
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Example 8.11

Solution

If £(¢) has a Fourier transform F'(jw), so that, from (8.16),
1 - . jot
t)=— F(jo dw
/() o J - (jw)e

then (8.42) may be expressed as

E = J [ f(t)dt = ‘[ f(t{ﬁ‘[ F(jw)ej“”dw] dt

—oo

On changing the order of integration, this becomes

E = 51;5 J B F(jw)U_ §0) ejwtdtJ do (8.43)

From the defining integral (8.15) for F(jw), we recognize the part of the integrand
within the square brackets as F(—jw), which, if f(¢) is real, is such that F(—jw) =
F*(jw), where F*(jw) is the complex conjugate of F'(jw). Thus (8.43) becomes

E-= E%JN F(jo)F*(jo)do
so that
E-= J AT d = 2%4 |F(jo)  do (8.44)

Equation (8.44) relates the total energy of the signal f{f) to the integral over all fre-
quencies of |F(jw)|>. For this reason, |F(jw)|* is called the energy spectral density,
and a plot of |F(jw)|* versus  is called the energy spectrum of the signal (). The
result (8.44) is called Parseval’s theorem, and is an extension of the result contained
in Theorem 7.6 for periodic signals.

Determine the energy spectral densities of

(a) the one-sided exponential function f(¢) = e H(¢) (a > 0),
(b) the rectangular pulse of Figure 8.6.

(a)  From (8.17), the Fourier transform of f{¢) is
F(jo) = =%
a + o
The energy spectral density of the function is therefore
|F(jo)|’ = F(jo)F*(jo) = £=12 4+ 10
a +owa +o0

that is,
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1

2 2
a + o

|F(jw)|” =

(b)  From Example 8.3, the Fourier transform F(jw) of the rectangular pulse is
F(jw) =2A4T sinc oT
Thus the energy spectral density of the pulse is

|F(jo)|? = 44°T? sinc@wT

There are important signals f(#), defined in general for —eo << ¢ < oo, for which the
integral [~ [ f(H)]*dt in (8.42) either is unbounded (that is, it becomes infinite) or does
not converge to a finite limit; for example, sin ¢. For such signals, instead of considering
energy, we consider the average power P, frequently referred to as the power of the
signal. This is defined by

T/2
P = lim lT J [AD)T dt (8.45)

=T/2

Note that for signals that satisfy the Dirichlet conditions (Theorem 8.1) the integral
in (8.42) exists and, since in (8.45) we divide by the signal duration, it follows that
such signals have zero power associated with them.

We now pose the question: ‘Are there other signals which possess Fourier transforms?”’
As you may expect, the answer is ‘Yes’, although the manner of obtaining the transforms
will be different from our procedure so far. We shall see that the transforms so obtained,
on using the inversion integral (8.16), yield some very ‘ordinary’ signals so far excluded
from our discussion.

We begin by considering the Fourier transform of the generalized function 6(¢), the
Dirac delta function introduced in Section 5.5.8. Recall from (5.49) that 8(¢) satisfies
the sifting property; that is, for a continuous function g(f),

r g(H)o(t - c)dt = {g(C’) (a <c<b)

0 otherwise

a

Using the defining integral (8.15), we readily obtain the following two Fourier
transforms:

FL8(1)} =j S(Hedr=1 (8.46)

FL{6(t - t,)} =j 5(t — ty) e dt = 70 (8.47)

These two transforms are, by now, unremarkable, and, noting that | e V% | = 1, weillustrate
the signals and their spectra in Figure 8.18.
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Figure 8.18

(a) 6(¢) and its
amplitude spectrum;
(b) 8(t — t,) and its
amplitude spectrum.

o(1) IF(je) A
1
—_— _
_
(6] i O w
(a)
ot —ty) IF(j)l A
1
—» _____
—»
o ! (6] w
(b)

These results may be confirmed in MATLAB. Using the commands

syms w t
D=sym(‘Dirac(t)’);
F=fourier (D, t,w)

returns
E=1
in agreement with (8.46); whilst the commands

syms w t T
Dl=sym(‘Dirac(t-T) ") ;
Fl=fourier (D1, t,w)

return
Fl=exp (-1*T*w)

which confirms (8.47), with T replacing ¢,.
Likewise in MAPLE the commands

with(inttrans) :
fourier (Dirac(t),t,w);

return the answer 1.

We now depart from the definition of the Fourier transform given in (8.15) and seek
new transform pairs based on (8.46) and (8.47). Using the symmetry (duality) property
of Section 8.3.5, we deduce from (8.46) that

1 and 2mé(-w)=2md(w) (8.48)
is another Fourier transform pair. Likewise, from (8.47), we deduce that

e’ and 2n0(—w — t,)
is also a Fourier transform pair. Substituting 7, = —®@, into the latter, we have

¢ and 2n8(w, - ®) = 218w — ) (8.49)

as another Fourier transform pair. .

We are thus claiming that in (8.48) and (8.49) that £,(#) = 1 and fy(f) = ¢'“"’, which
do not have ‘ordinary’ Fourier transforms as defined by (8.15), actually do have
‘generalized’ Fourier transforms given by

F\(jo) = 215(w) (8.50)
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Fy(jo) = 218(0 — ) (8.51)

respectively.

The term ‘generalized’ has been used because the two transforms contain the gener-
alized functions 6(w) and 8(® — @,). Let us now test our conjecture that (8.50) and (8.51)
are Fourier transforms of f,(7) and £,(¢) respectively. If (8.50) and (8.51) really are Fourier
transforms then their time-domain images f,(¢) and £,(¢) respectively should reappear via
the inverse transform (8.16). Substituting F,(jw) from (8.50) into (8.16), we have

FF (jo)} = zlnj Fi(jo)e’™ do = ZLTJ 2n8(w)e dow = 1

so f1(f) = 1 is recovered.
Similarly, using (8.51), we have

FUFE (jo)} = ZLRJ 2n8(w — w)e dw = e’

so that f3(f) = ¢’ “0" is also recovered.

Our approach has therefore been successful, and we do indeed have a way of gener-
ating new pairs of transforms. We shall therefore use the approach to find generalized
Fourier transforms for the signals

f3(t) = cos wf, f4(t) = sin ¢
Since

fi(t) = cos wyt = %(ejwot + e
the linearity property (8.22) gives

FO) = 1F{MY + 1)

which, on using (8.49), leads to the generalized Fourier transform pair

F{cos wt} =n[o(0w— 0y) + (W + @,)] (8.52)
Likewise, we deduce the generalized Fourier transform pair

F{sin ot} =jn[é(0+ ®,) — (W — ®,)] (8.53)

The development of (8.53) and the verification that both (8.52) and (8.53) invert
correctly using the inverse transform (8.16) is left as an exercise for the reader.

It is worth noting at this stage that defining the Fourier transform F{ f(¢)} of f(¢)
in (8.15) as

%U@}=J (e dt

whenever the integral exists does not preclude the existence of other Fourier transforms,
such as the generalized one just introduced, defined by other means.
It is clear that the total energy

E= J cos’ @, dt
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Example 8.12

Solution

Example 8.13

Solution

associated with the signal f;(f) = cos wf is unbounded. However, from (8.45), we can
calculate the power associated with the signal as

1 T/2 1 | /2
P = lim —J cosza)ot dt = lim = {t + — sin Zwot} = %
T—c0 T—eo 20)0

-7/2 -7/2

Thus, while the signal f;(f) = cos w,¢ has unbounded energy associated with it, its
power content is }. Signals whose associated energy is finite, for example f(f) = ¢™“H(7)
(a > 0), are sometimes called energy signals, while those whose associated energy is
unbounded but whose total power is finite are known as power signals. The concepts
of power signals and power spectral density are important in the analysis of random
signals, and the interested reader should consult specialized texts.

Suppose that a periodic function f(7), defined on —eo < t < o0, may be expanded in a
Fourier series having exponential form

iy =Y Fe"

What is the (generalized) Fourier transform of f(#)?

From the definition,
FLADY = 9?{ 2 F, ej”“’of} = Z F,F{" ™"}

which, on using (8.49), gives

FLfny = Y F2nd(w - nay)

That is,

FUW} =21y F8(0 - noy)

n=—oco

where F}, (—eo < n < o) are the coefficients of the exponential form of the Fourier series
representation of f{f).

Use the result of Example 8.12 to verify the Fourier transform of /(7) = cos @ given in (8.52).

Since

ft)y=coswt = %ej‘”of n %e—jwot
the F, of Example 8.12 are

El = Fl = %

F,=0 (n#+l)
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Example 8.14

Solution

Thus, using the result

FD) = 2mY B0 - o)

we have
Fl{cos wt} = 2nF 0(w + @) + 2T F,0(w — @)
=T[o(w+ wy) + 6(w— )]

in agreement with (8.52).

Confirm this answer using the MATLAB commands

syms w t a
F=fourier (cos(a*t),t,w)

where a has been used to represent @,

Determine the (generalized) Fourier transform of the periodic ‘sawtooth’ function,
defined by

2t

f== (0<r<2T)

S +2T) =f(1)

In Example 7.19 we saw that the exponential form of the Fourier series representation

of f(?) is
fy=3 Fe

with

|N
e
<18

(l)o = 2
Fy=2
F,=12 (120
nw
It follows from Example 8.12 that the Fourier transform J{ ()} is

F0}=Fjo) = 4180) + 3 j26(0 - noy)

n#0

= 4nS(w) + j4 i %6(&) - ’17’7‘)

n#0
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Example 8.15

Figure 8.19
Unit impulse train

Jy =%, 8-

Solution

Thus we see that the amplitude spectrum simply consists of pulses located at integer
multiples of the fundamental frequency @, = 1/T. The discrete line spectra obtained via
the exponential form of the Fourier series for this periodic function is thus reproduced,
now with a scaling factor of 2.

Determine the (generalized) Fourier transform of the unit impulse train f(7) = X.,-—.. 8(t —nT)
shown symbolically in Figure 8.19.

S

LN

(6] 2T 3T 4T 5

Although f(#) is a generalized function, and not a function in the ordinary sense, it
follows that since

f(t+kT) = i O(t+ (k—n)T) (k aninteger)

n=—oco

25(t—mT) (m=n-k)

=—co

=/

it is periodic, with period 7. Moreover, we can formally expand f(¢) as a Fourier series

1) = i F " (wo - 27")

with

172 T2 )
—inw —jnwqyt
F,,=—J f(t)e” “’dt=—;J s(ne’ °dt=—; for all n

T -T2 =72

It follows from Example 8.12 that

FLf()} = 211:2 1T5(co— nw,) = w025((o— nw,)

Thus we have shown that

9«7{ i S(t — nT)} - woi S(w — nwy) (8.54)

n=—oco n=—oco

where @, = 2n/T. That is, the time-domain impulse train has another impulse train as
its transform. We shall see in Section 8.6.4 that this result is of particular importance in
dealing with sampled time signals.
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Following our successful hunt for generalized Fourier transforms, we are led to con-
sider the possibility that the Heaviside unit step function H(#) defined in Section 5.5.1
may have a transform in this sense. Recall from (5.56) that if

S0 =H(1)
then
df(e)
dr o)

From the time-differentiation property (8.23), we might expect that if
FH(D)} = H(jo)
then
(jo)H(jw) = F{6(n)} =1 (8.55)

Equation (8.55) suggests that a candidate for H(jw) might be 1/jw, but this is not the
case, since inversion using (8.16) does not give H(f) back. Using (8.16) and complex
variable techniques, it can be shown that

. L (t>0)

a1 _ 1 e o= _1

F _]—Z) =5 ]—5 W=y 0 (t=0) =;sgn(?)
- -l <o)

where sgn(?) is the signum function, defined by

1 (t>0)
sgn(t)=< 0 (t=0)
-1 (<0

(Note: This last result may be obtained in terms of Heaviside functions using the
MATLAB commands

syms w t
f=ifourier (1/ (i*w))

or using the MAPLE commands

with (inttrans) :
invfourier (1 (I*w) ,w,t);

However, we note that (8.55) is also satisfied by

AGjo) = L + c8(w) (8.56)
jo
where ¢ is a constant. This follows from the equivalence property (see Definition 5.2,
Section 5.5.11) f(w)6(w) = f(0)6(w) with f(w) = jo, which gives

(oH(w) =1+ (jo)cd(w) =1
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Inverting (8.56) using (8.16), we have

a(f) = 9?1{,1— + c5(a))} — if {i + cé'(w)J e do
jo 21 o
c2n+31 (t>0)
=1em (t=0)
cham -t (1<0)

and, choosing ¢ =, we have

1 (t>0)
g =11 (t=0)
0 (t<0)

Thus we have (almost) recovered the step function H(f). Here g(f) takes the value % at
t = 0, but this is not surprising in view of the convergence of the Fourier integral at
points of discontinuity as given in Theorem 8.1. With this proviso, we have shown that

A(jo) = FLH(H)} = J%) + 18(w) (8.57)

We must confess to having made an informed guess as to what additional term to add in
(8.56) to produce the Fourier transform (8.57). We could instead have chosen ¢(kw)
with & a constant as an additional term. While it is possible to show that this would not lead
to a different result, proving uniqueness is not trivial and is beyond the scope of this book.

Using the MATLAB commands

syms w t
H=sym(‘Heaviside(t) ) ;
F=fourier (h, t,w)
returns
F=pi*Dirac (w)-1i/w
which, noting that —i = 1/, confirms result (8.57).
The same result is obtained in MAPLE using the commands.

with(inttrans) :
fourier (Heaviside (t),t,w) ;

Likewise the MATLAB commands

syms w t T
H=sym(‘Heaviside (t-T) ") ;
F=fourier (H, t,w)

return
F=exp (-1*T*w) * (pi*Dirac (w)-1/w)

which gives us another Fourier transform
F{H(t—T)} = e(nd(w) + 1/jw)
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8.5.2

Convolution

In Section 5.6.6 we saw that the convolution integral, in conjunction with the Laplace
transform, provided a useful tool for discussing the nature of the solution of a differ-
ential equation, although it was not perhaps the most efficient way of evaluating the
solution to a particular problem. As the reader may now have come to expect, in view
of the duality between time and frequency domains, there are two convolution results
involving the Fourier transform.

Convolution in time

Suppose that

Flu(t)} = U(jo) =J u(t) e’ dt

Flv()}=V(jo) =J v(t)e ' de

then the Fourier transform of the convolution

y(t) = J u(t)v(t — t)dt = u(t) = v(t) (8.58)
is

Flyt)}=Y(jw) = J e {J u(t)ov(t - T)dr} dt

:J u(r){J e'j“”u(t—r)dt}dr

Introducing the change of variables z — ¢ — 7, T — 7 and following the procedure for
change of variable from Section 5.6.6, the transform can be expressed as

Y(ja))zj u(t) { J u(z)e_jw(”ﬂdz}d‘r

= J u(r)e?” er v(z)e ' dz

so that

Y(jo) = U(jo)V(jw) (8.59)
That is,

Flu(t) =v(®)} = Fo@)*u(t)} = U(jo)V(jw) (8.60)

indicating that a convolution in the time domain is transformed into a product in the
frequency domain.
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Convolution in frequency

If

Flu()} = UGo),  with u(t)=2LTJ U(iye do

F(u(1)} = W(jw),  with Mﬂzinvﬁmedw
then the inverse transform of the convolution
U(jo) *V(jw) = f UGyn)V(j(o = y))dy
is given by
FHUGo)*V(jo)} = ZLRJN eij"“ U(pnv(j(o = y)) dy} do
= ZLRJM U(jy)Um V(j(@—y)e” dw} dy

A change of variable z > @ —y, ® — ® leads to

%%wmwwm»=ﬁjzmwuvawwwﬁw

IJ U(jy)ejy’dyf V(jz)e™ dz

o
=21 u(t)v()
That is,
9wmm=$MM*m@ (8.61)

and thus multiplication in the time domain corresponds to convolution in the frequency
domain (subject to the scaling factor 1/(2mw)).

Example 8.16  Suppose that f(¢) has a Fourier transform F(jw). Find an expression for the Fourier
transform of g(f), where

ﬂ0=J f()dr
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24

25

Solution Since

H(t—T)={

we can write

1 (v=1)
0 (t>1)

g(n) = J S(O)H (1 = 7)d7 = f(1) * H(2)

the convolution of g(¢) and H(¢). Then, using (8.60),

Flg0)} = G(jo) = F(jo)H(jw)

which, on using the expression for H(jw) from (8.57), gives

G(jw) = ﬂJJw@ + nF(j0)8(@)

so that

G(jw) = ﬂJJw@ + TF(0)8(w) (8.62)

8.5.3 Exercises

Verify that F ' {[S(0 — wy) + S(w+ w,)]}
= COS W

Show that F{sin @t} =jn[d(®+ ©,) — 6(®— ®,)].

Use (8.16) to verify that

FGR[S(0+ 0o) — 8(0 — ©,)]} = sin @

Suppose that f(7) and g(7) have Fourier transforms
F(jw) and G(jw) respectively, defined in the
‘ordinary” sense (that is, using (8.15)), and

show that

J SHG(ndr = J F(jng(r) di
This result is known as Parseval’s formula.

Use the results of Exercise 24 and the symmetry
property to show that

J f(Dg(r) dr = EIFJ F(jo)G(-j) do

26  Use the convolution result in the frequency domain
to obtain F{H(f) sinw,t}.

27  Calculate the exponential form of the Fourier series
for the periodic pulse train shown in Figure 8.20.
Hence show that

FLI(D)} = 2—“;1—-512 sinc('l%’)a(w — noy)

n=—co

(wy=2m/T), and A4 is the height of the pulse.

f@)

«—d—>

o
H

-3r 27 -T 6] T 2T T

Figure 8.20 Periodic pulse train of Exercise 27.
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m The Fourier transform in discrete time

8.6.1

8.6.2

Introduction

The earlier sections of this chapter have discussed the Fourier transform of signals
defined as functions of the continuous-time variable 7. We have seen that a major area
of application is in the analysis of signals in the frequency domain, leading to the con-
cept of the frequency response of a linear system. In Chapter 7 we considered signals
defined at discrete-time instants, together with linear systems modelled by difference
equations. There we found that in system analysis the z transform plays a role similar
to that of the Laplace transform for continuous-time systems. We now attempt to
develop a theory of Fourier analysis to complement that for continuous-time systems,
and then consider the problem of estimating the continuous-time Fourier transform in
a form suitable for computer execution.

A Fourier transform for sequences

First we return to our work on Fourier series and write down the exponential form of
the Fourier series representation for the periodic function F(e'?) of period 2. Writing
0= wt, we infer from (7.57) and (7.61) that

F(e'%) = S foe (8.63)
where
= 2L7J F(e®)e ™ do (8.64)

Thus the operation has generated a sequence of numbers { f,} from the periodic func-
tion F(e') of the continuous variable 6. Let us reverse the process and imagine that we
start with a sequence {g,} and use (8.63) to define a periodic function G’(e!) such that

G =Y g (8.65)

We have thus defined a transformation from the sequence {g;} to G’(e’®). This trans-
formation can be inverted, since, from (8.64),

g = Elr—c J G e do (8.66)

-7

and we recover the terms of the sequence {g,} from G’(e').
It is convenient for our later work if we modify the definition slightly, defining the
Fourier transform of the sequence {g,} as

Fg) = G(*) = i g.e " (8.67)
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Example 8.17

Solution

Figure 8.21
Transform of
the sequence of
Example 8.17.

whenever the series converges. The inverse transform is then given from (8.66), by

o 2%4 G(e®) e’ do (8.68)

The results (8.67) and (8.68) thus constitute the Fourier transform pair for the sequence
{g,}. Note that G(e'’) is a function of the continuous variable 6, and since it is a func-
tion of €/ it is periodic (with a period of at most 21), irrespective of whether or not the
sequence {g,} is periodic.

Note that we have adopted the notation G(e'?) rather than G(9) for the Fourier transform,
similar to our use of F(jw) rather than F(®) in the case of continuous-time signals. In
the present case we shall be concerned with the relationship with the z transform of
Chapter 6, where