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Preface

Throughout the course of history, engineering and mathematics have developed in
parallel. All branches of engineering depend on mathematics for their description and
there has been a steady flow of ideas and problems from engineering that has stimulated
and sometimes initiated branches of mathematics. Thus it is vital that engineering stu-
dents receive a thorough grounding in mathematics, with the treatment related to their
interests and problems. As with the previous editions, this has been the motivation for
the production of this fourth edition – a companion text to the fourth edition of Modern
Engineering Mathematics, this being designed to provide a first-level core studies
course in mathematics for undergraduate programmes in all engineering disciplines.
Building on the foundations laid in the companion text, this book gives an extensive
treatment of some of the more advanced areas of mathematics that have applications in
various fields of engineering, particularly as tools for computer-based system model-
ling, analysis and design. Feedback, from users of the previous editions, on subject
content has been highly positive indicating that it is sufficiently broad to provide the
necessary second-level, or optional, studies for most engineering programmes, where
in each case a selection of the material may be made. Whilst designed primarily for use
by engineering students, it is believed that the book is also suitable for use by students
of applied mathematics and the physical sciences.

Although the pace of the book is at a somewhat more advanced level than the com-
panion text, the philosophy of learning by doing is retained with continuing emphasis
on the development of students’ ability to use mathematics with understanding to solve
engineering problems. Recognizing the increasing importance of mathematical model-
ling in engineering practice, many of the worked examples and exercises incorporate
mathematical models that are designed both to provide relevance and to reinforce the
role of mathematics in various branches of engineering. In addition, each chapter con-
tains specific sections on engineering applications, and these form an ideal framework
for individual, or group, study assignments, thereby helping to reinforce the skills of
mathematical modelling, which are seen as essential if engineers are to tackle the
increasingly complex systems they are being called upon to analyse and design. The
importance of numerical methods in problem solving is also recognized, and its treat-
ment is integrated with the analytical work throughout the book.

Much of the feedback from users relates to the role and use of software packages,
particularly symbolic algebra packages. Without making it an essential requirement the
authors have attempted to highlight throughout the text situations where the user could
make effective use of software. This also applies to exercises and, indeed, a limited
number have been introduced for which the use of such a package is essential. Whilst
any appropriate piece of software can be used, the authors recommend the use of
MATLAB and/or MAPLE. In this new edition more copious reference to the use of these
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xx PREFACE

two packages is made throughout the text, with commands or codes introduced and
illustrated. When indicated, students are strongly recommended to use these packages
to check their solutions to exercises. This is not only to help develop proficiency in their
use, but also to enable students to appreciate the necessity of having a sound knowledge
of the underpinning mathematics if such packages are to be used effectively. Throughout
the book two icons are used:

• An open screen  indicates that the use of a software package would be useful

(e.g. for checking solutions) but not essential.

• A closed screen  indicates that the use of a software package is essential or

highly desirable.

As indicated earlier, feedback on content from users of previous editions has been
favourable, and consequently no new chapter has been introduced. However, in
response to feedback the order of presentation of chapters has been changed, with a
view to making it more logical and appealing to users. This re-ordering has necessitated
some redistribution of material both within and across some of the chapters. Another
new feature is the introduction of the use of colour. It is hoped that this will make the text
more accessible and student-friendly. Also, in response to feedback individual chapters
have been reviewed and updated accordingly. The most significant changes are:

• Chapter 1 Matrix Analysis: Inclusion of new sections on ‘Singular value decom-
position’ and ‘Lyapunov stability analysis’.

• Chapter 5 Laplace transform: Following re-ordering of chapters a more unified
and extended treatment of transfer functions/transfer matrices for continuous-
time state-space models has been included.

• Chapter 6 Z-transforms: Inclusion of a new section on ‘Discretization of
continuous-time state-space models’.

• Chapter 8 Fourier transform: Inclusion of a new section on ‘Direct design of
digital filters and windows’.

• Chapter 9 Partial differential equations: The treatment of first order equations
has been extended and a new section on ‘Integral solution’ included.

• Chapter 10 Optimization: Inclusion of a new section on ‘Least squares’.

A comprehensive Solutions Manual is available free of charge to lecturers adopting this
textbook. It will also be available for download via the Web at: www.pearsoned.co.ck/james.

Acknowledgements
The authoring team is extremely grateful to all the reviewers and users of the text who
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258 FUNCTIONS OF A COMPLEX VARIABLE

Introduction
In the theory of alternating currents, the application of quantities such as the complex
impedance involves functions having complex numbers as independent variables. There
are many other areas in engineering where this is the case; for example, the motion of
fluids, the transfer of heat or the processing of signals. Some of these applications are
discussed later in this book.

Traditionally, complex variable techniques have been important, and extensively used,
in a wide variety of engineering situations. This has been especially the case in areas
such as electromagnetic and electrostatic field theory, fluid dynamics, aerodynamics
and elasticity. With the development of computer technology and the consequential
use of sophisticated algorithms for analysis and design in engineering there has, over
the last two decades or so, been less emphasis on the use of complex variable tech-
niques and a shift towards numerical techniques applied directly to the underlying full
partial differential equations model of the situation being investigated. However, even
when this is the case there is still considerable merit in having an analytical solution,
possibly for an idealized model, in order both to develop better understanding of
the behaviour of the solution and to give confidence in the numerical estimates for the
solution of enhanced models. Many sophisticated software packages now exist, many
of which are available as freeware, downloadable from various internet sites. The older
packages such as FLUENT and CFX are still available and still in use by engineering
companies to solve problems such as fluid flow and heat transfer in real situations. The
finite element package TELEMAC is modular in style and is useful for larger-scale
environmental problems; these types of software programs use a core plus optional
add-ons tailored for specific applications. The best use of all such software still requires
knowledge of mappings and use of complex variables. One should also mention the
computer entertainment industry which makes use of such mathematics to enable
accurate simulation of real life. The kind of mappings that used to be used extensively
in aerodynamics are now used in the computer games industry. In particular the ability
to analyse complicated flow patterns by mapping from a simple geometry to a complex
one and back again remains very important. Examples at the end of the chapter illus-
trate the techniques that have been introduced. Many engineering mathematics texts
have introduced programming segments that help the reader to use packages such as
MATLAB or MAPLE to carry out the technicalities. This has not been done in this
chapter since, in the latest version of MAPLE, the user simply opens the program
and uses the menu to click on the application required (in this chapter a derivative or
an integral), types in the problem and presses return to get the answer. Students are
encouraged to use such software to solve any of the problems; the understanding of
what the solutions mean is always more important than any tricks used to solve what
are idealized problems.

Throughout engineering, transforms in one form or another play a major role in anal-
ysis and design. An area of continuing importance is the use of Laplace, z, Fourier and
other transforms in areas such as control, communication and signal processing. Such
transforms are considered later in the book where it will be seen that complex variables
play a key role. This chapter is devoted to developing understanding of the standard
techniques of complex variables so as to enable the reader to apply them with confidence
in application areas.

4.1
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4.2  COMPLEX FUNCTIONS AND MAPPINGS 259

Complex functions and mappings 
The concept of a function involves two sets X and Y and a rule that assigns to each
element x in the set X (written x ∈ X ) precisely one element y ∈ Y. Whenever this
situation arises, we say that there is a function f that maps the set X to the set Y, and
represent this symbolically by 

y = f (x) (x ∈ X )

Schematically we illustrate a function as in Figure 4.1. While x can take any value in
the set X, the variable y = f(x) depends on the particular element chosen for x. We therefore
refer to x as the independent variable and y as the dependent variable. The set X is
called the domain of the function, and the set of all images y = f(x) (x ∈ X ) is called
the image set or range of f. Previously we were concerned with real functions, so that
x and y were real numbers. If the independent variable is a complex variable z = x + jy,
where x and y are real and j = � (−1), then the function f(z) of z will in general also be
complex. For example, if f (z) = z2 then, replacing z by x + jy and expanding, we have

f (z) = (x + jy)2 = (x2 − y2) + j2xy = u + jv (say)

where u and v are real. Such a function f (z) is called a complex function, and we write 

w = f (z)

where, in general, the dependent variable w = u + jv is also complex.
The reader will recall that a complex number z = x + jy can be represented on a plane

called the Argand diagram, as illustrated in Figure 4.2(a). However, we cannot plot
the values of x, y and f (z) on one set of axes, as we were able to do for real functions
y = f (x). We therefore represent the values of

w = f (z) = u + jv

on a second plane as illustrated in Figure 4.2(b). The plane containing the independent
variable z is called the z plane and the plane containing the dependent variable w is
called the w plane. Thus the complex function w = f (z) may be regarded as a mapping
or transformation of points P within a region in the z plane (called the domain) to
corresponding image points P′ within a region in the w plane (called the range).

It is this facility for mapping that gives the theory of complex functions much of its
application in engineering. In most useful mappings the entire z plane is mapped onto
the entire w plane, except perhaps for isolated points. Throughout this chapter the
domain will be taken to be the entire z plane (that is, the set of all complex numbers,
denoted by �). This is analogous, for real functions, to the domain being the entire real

4.2

Figure 4.1 Real 
mapping y = f(x).

Figure 4.2 Complex 
mapping w = f(z).
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line (that is, the set of all real numbers �). If this is not the case then the complex
function is termed ‘not well defined’. In contrast, as for real functions, the range of the
complex function may well be a proper subset of �.

Find the image in the w plane of the straight line y = 2x + 4 in the z plane, z = x + jy,
under the mapping

w = 2z + 6

Solution Writing w = u + jv, where u and v are real, the mapping becomes

w = u + jv = 2(x + jy) + 6

or

u + jv = (2x + 6) + j2y

Equating real and imaginary parts then gives

u = 2x + 6, v = 2y (4.1)

which, on solving for x and y, leads to

x = (u − 6), y = v

Thus the image of the straight line

y = 2x + 4

in the z plane is represented by

v = 2 × (u − 6) + 4

or

v = 2u − 4

which corresponds to a straight line in the w plane. The given line in the z plane and the
mapped image line in the w plane are illustrated in Figures 4.3(a) and (b) respectively.

Note from (1.1) that, in particular, the point P1(−2 + j0) in the z plane is mapped to
the point P ′1(2 + j0) in the w plane, and that the point P2(0 + j4) in the z plane is mapped
to the point P ′2(6 + j8) in the w plane. Thus, as the point P moves from P1 to P2 along

Example 4.1

1
2
---- 1

2
----

1
2
---- 1

2
----

Figure 4.3
The mapping of 
Example 4.1.
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the line y = 2x + 4 in the z plane, the mapped point P′ moves from P ′1 to P ′2 along the
line v = 2u − 4 in the w plane. It is usual to indicate this with the arrowheads as
illustrated in Figure 4.3.

4.2.1 Linear mappings

The mapping w = 2z + 6 in Example 4.1 is a particular example of a mapping cor-
responding to the general complex linear function

w = αz + β (4.2)

where w and z are complex-valued variables, and α and β are complex constants. In this
section we shall investigate mappings of the z plane onto the w plane corresponding to
(4.2) for different choices of the constants α and β. In so doing we shall also introduce
some general properties of mappings.

Case (a) ααα === 0

Letting α = 0 (or α = 0 + j0) in (4.2) gives

w = β
which implies that w = β, no matter what the value of z. This is quite obviously a
degenerate mapping, with the entire z plane being mapped onto the one point w = β
in the w plane. If nothing else, this illustrates the point made earlier in this section,
that the image set may only be part of the entire w plane. In this particular case the
image set is a single point. Since the whole of the z plane maps onto w = β, it follows
that, in particular, z = β maps to w = β. The point β is thus a fixed point in this
mapping, which is a useful concept in helping us to understand a particular mapping.
A further question of interest when considering mappings is that of whether, given a
point in the w plane, we can tell from which point in the z plane it came under the
mapping. If it is possible to get back to a unique point in the z plane then it is said to
have an inverse mapping. Clearly, for an inverse mapping z = g(w) to exist, the point
in the w plane has to be in the image set of the original mapping w = f (z). Also, from
the definition of a mapping, each point w in the w plane image set must lead to a single
point z in the z plane under the inverse mapping z = g(w). (Note the similarity to the
requirements for the existence of an inverse function f −1(x) of a real function f (x).) For
the particular mapping w = β considered here the image set is the single point w = β in
the w plane, and it is clear from Figure 4.4 that there is no way of getting back to just
a single point in the z plane. Thus the mapping w = β has no inverse.

Figure 4.4
The degenerate 
mapping w = β.
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Case (b) βββ === 0, ααα ≠≠≠ 0

With such a choice for the constants α and β, the mapping corresponding to (4.2) becomes

w = αz

Under this mapping, the origin is the only fixed point, there being no other fixed points
that are finite. Also, in this case there exists an inverse mapping

z = w

that enables us to return from the w plane to the z plane to the very same point
from which we started under w = αz. To illustrate this mapping at work, let us choose
α = 1 + j, so that

w = (1 + j)z (4.3)

and consider what happens to a general point z0 in the z plane under this mapping. In
general, there are two ways of doing this. We can proceed as in Example 4.1 and split
both z and w into real and imaginary parts, equate real and imaginary parts and hence
find the image curves in the w plane to specific curves (usually the lines Re(z) = con-
stant, Im(z) = constant) in the z plane. Alternatively, we can rearrange the expression
for w and deduce the properties of the mapping directly. The former course of action,
as we shall see in this chapter, is the one most frequently used. Here, however, we shall
take the latter approach and write α = 1 + j in polar form as 

1 + j = �2e jπ /4

Then, if

z = re jθ

in polar form it follows from (4.3) that

w = r�2e j(θ+π /4) (4.4)

We can then readily deduce from (4.4) what the mapping does. The general point in the
z plane with modulus r and argument θ is mapped onto an image point w, with modulus
r�2 and argument θ + π in the w plane as illustrated in Figure 4.5.

It follows that in general the mapping

w = αz

maps the origin in the z plane to the origin in the w plane (fixed point), but effects an expan-
sion by |α | and an anticlockwise rotation by arg α. Of course, arg α need not be positive,
and indeed it could even be zero (corresponding to α being real). The mapping can be loosely
summed up in the phrase ‘magnification and rotation, but no translation’. Certain geometrical

1
α
---

1
4
----

Figure 4.5
The mapping 
w = (1 + j)z.
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properties are also preserved, the most important being that straight lines in the z plane
will be transformed to straight lines in the w plane. This is readily confirmed by noting
that the equation of any straight line in the z plane can always be written in the form

| z − a | = | z − b |
where a and b are complex constants (this being the equation of the perpendicular
bisector of the join of the two points representing a and b on the Argand diagram).
Under the mapping w = αz, the equation maps to

(α ≠ 0)

or

| w − aα | = | w − bα |
in the w plane, which is clearly another straight line.

We now return to the general linear mapping (4.2) and rewrite it in the form

w − β = αz

This can be looked upon as two successive mappings: first,

ζ = αz

identical to w = αz considered earlier, but this time mapping points from the z plane to
points in the ζ plane; secondly,

w = ζ + β (4.5)

mapping points in the ζ plane to points in the w plane. Elimination of ζ regains equation
(4.2). The mapping (4.5) represents a translation in which the origin in the ζ plane is
mapped to the point w = β in the w plane, and the mapping of any other point in the
ζ plane is obtained by adding β to the coordinates to obtain the equivalent point in the
w plane. Geometrically, the mapping (4.5) is as if the ζ plane is picked up and, without
rotation, the origin placed over the point β. The original axes then represent the w plane
as illustrated in Figure 4.6. Obviously all curves, in particular straight lines, are pre-
served under this translation.

We are now in a position to interpret (4.2), the general linear mapping, geometrically
as a combination of mappings that can be regarded as fundamental, namely

• translation

• rotation, and

• magnification

that is,

w
α
----- − a w

α
----- − b=

Figure 4.6
The mapping 
w = ζ + β.

z ⎯⎯→ e jθ z ⎯⎯⎯→ α e jθ z ⎯⎯→ α e jθ z + β αz + β = w=
rotation magnification translation
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It clearly follows that a straight line in the z plane is mapped onto a corresponding
straight line in the w plane under the linear mapping w = αz + β. A second useful
property of the linear mapping is that circles are mapped onto circles. To confirm this,
consider the general circle

| z − z0 | = r

in the z plane, having the complex number z0 as its centre and the real number r as its
radius. Rearranging the mapping equation w = αz + β gives

(α ≠ 0)

so that

where w0 = αz0 + β. Hence

| z − z0 | = r

implies

| w − w0 | = |α |r

which is a circle, with centre w0 given by the image of z0 in the w plane and with radius
|α |r given by the radius of the z plane circle magnified by |α |.

We conclude this section by considering examples of linear mappings.

Examine the mapping

w = (1 + j)z + 1 − j

as a succession of fundamental mappings: translation, rotation and magnification.

Solution The linear mapping can be regarded as the following sequence of simple mappings:

Figure 4.7 illustrates this process diagrammatically. The shading in Figure 4.7 helps to
identify how the z plane moves, turns and expands under this mapping. For example,
the line joining the points 0 + j2 and 1 + j0 in the z plane has the cartesian equation

y + x = 1

Taking w = u + jv and z = x + jy, the mapping

w = (1 + j)z + 1 − j

becomes

u + jv = (1 + j)(x + jy) + 1 − j = (x − y + 1) + j(x + y − 1)

z w
α
----- − β

α
---=

z − z0 = w
α
----- − β

α
---  − z0 = 1

α
--- w − w0( )

Example 4.2

z ⎯⎯⎯→ ejπ /4z ⎯⎯⎯→ �2ejπ /4z ⎯⎯⎯→ �2ejπ /4z + 1 − j = w
rotation

anticlockwise

by 1
4
----π

magnification
by �2

translation
0→1− j or

0,0( )→ 1,−1( )

1
2
----
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Equating real and imaginary parts then gives

u = x − y + 1, v = x + y − 1

which on solving for x and y gives

2x = u + v, 2y = v − u + 2

Substituting for x and y into the equation y + x = 1 then gives the image of this line in
the w plane as the line

3v + u = 2

which crosses the real axis in the w plane at 2 and the imaginary axis at . Both lines
are shown dashed, in the z and w planes respectively, in Figure 4.7.

The mapping w = αz + β (α, β constant complex numbers) maps the point z = 1 + j
to the point w = j, and the point z = 1 − j to the point w = −1.

(a) Determine α and β.

(b) Find the region in the w plane corresponding to the right half-plane Re(z) � 0
in the z plane.

(c) Find the region in the w plane corresponding to the interior of the unit circle
| z | � 1 in the z plane.

(d) Find the fixed point(s) of the mapping.

In (b)− (d) use the values of α and β determined in (a).

Figure 4.7
The mapping 
w = (1 + j)z + 1 − j.

1
2
----

2
3
----

Example 4.3
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Solution (a) The two values of z and w given as corresponding under the given linear mapping
provide two equations for α and β as follows: z = 1 + j mapping to w = j
implies

j = α(1 + j) + β

while z = 1 − j mapping to w = −1 implies

−1 = α(1 − j) + β

Subtracting these two equations in α and β gives

j + 1 = α(1 + j) − α(1 − j)

so that 

Substituting back for β then gives

β = j − (1 + j)α = j − (1 − j2) = j − 1

so that

w = (1 − j)z + j − 1 = (1 − j)( z − 1)

(b) The best way to find specific image curves in the w plane is first to express
z (= x + jy) in terms of w (= u + jv) and then, by equating real and imaginary parts,
to express x and y in terms of u and v. We have

w = (1 − j)( z − 1)

which, on dividing by 1 − j, gives

Taking w = u + jv and z = x + jy and then rationalizing the left-hand side, we have 

(u + jv)(1 + j) = (x + jy) − 1

Equating real and imaginary parts then gives

u − v = x − 2, u + v = y (4.6)

The first of these can be used to find the image of x � 0. It is u − v � −2, which
is also a region bordered by the straight line u − v = −2 and shown in Figure 4.8.
Pick one point in the right half of the z plane, say z = 2, and the mapping gives
w = 0 as the image of this point. This allays any doubts about which side of
u − v = −2 corresponds to the right half of the z plane, x � 0. The two correspond-
ing regions are shown ‘hatched’ in Figure 4.8. 

α = 1 + j
j2

-------------  = 1
2
---- 1 − j( )

1
2
----

1
2
---- 1

2
----

1
2
----

w
1 − j
------------- 1

2
---- z − 1=

1
2
---- 1

2
----

Note that the following is always true, although we shall not prove it here. If a
curve cuts the z plane in two then the corresponding curve in the w plane also cuts
the w plane in two, and, further, points in one of the two distinct sets of the z plane
partitioned by the curve correspond to points in just one of the similarly partitioned
sets in the w plane.
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(c) In cartesian form, with z = x + jy, the equation of the unit circle | z | = 1 is 

x2 + y2 = 1

Substituting for x and y from the mapping relationships (4.6) gives the image of
this circle as

(u − v + 2)2 + (u + v)2 = 1

or

u2 + v2 + 2u − 2v +  = 0

which, on completing the squares, leads to

(u + 1)2 + (v − 1)2 = 

As expected, this is a circle, having in this particular case centre (−1, 1) and
radius � . If x 2 + y 2 � 1 then (u + 1)2 + (v − 1)2 � , so the region inside the
circle | z | = 1 in the z plane corresponds to the region inside its image circle in
the w plane. Corresponding regions are shown shaded in Figure 4.8.

(d) The fixed point(s) of the mapping are obtained by putting w = z in w = αz + β,
leading to

z = ( z − 1)(1 − j)

that is,

z = z − jz − 1 + j

so that

is the only fixed point.

One final point is in order before we leave this example. In Figure 4.8 the images of
x = 0 and x2 + y2 = 1 can also be seen in the context of translation, rotation (the line in
Figure 4.8 rotates about z = 2j) and magnification (in fact, shrinkage, as can be seen by
the decrease in diameter of the circle compared with its image in the w plane).

Figure 4.8
The mappings of 
Example 4.3.

3
2
----

1
2
----

1
2
---- 1

2
----

1
2
----

1
2
---- 1

2
----

z −1 + j
1
2
---- + 1

2
---- j

----------------- j2= =
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4.2.3 Inversion

The inversion mapping is of the form

(4.7)

and in this subsection we shall consider the image of circles and straight lines in the
z plane under such a mapping. Clearly, under this mapping the image in the w plane of
the general circle

| z − z0 | = r

in the z plane, with centre at z0 and radius r, is given by

(4.8)

but it is not immediately obvious what shaped curve this represents in the w plane. To
investigate, we take w = u + jv and z0 = x 0 + jy0 in (4.8), giving

w 1
z
----=

1
w
----- − z0  = r

Find in the cartesian form y = mx + c (m and c real 
constants) the equations of the following straight 
lines in the z plane, z = x + jy:

(a) | z − 2 + j | = | z − j + 3 |

(b) z + z* + 4j(z − z*) = 6

where * denotes the complex conjugate.

Find the point of intersection and the angle of 
intersection of the straight lines

| z − 1 − j | = | z − 3 + j |

| z − 1 + j | = | z − 3 − j |

The function w = jz + 4 − 3j is a combination of 
translation and rotation. Show this diagrammatically, 
following the procedure used in Example 4.2. Find 
the image of the line 6x + y = 22 (z = x + jy) in the 
w plane under this mapping.

Show that the mapping w = (1 − j)z, where 
w = u + jv and z = x + jy, maps the region y � 1 
in the z plane onto the region u + v � 2 in the 
w plane. Illustrate the regions in a diagram.

Under the mapping w = jz + j, where w = u + jv
and z = x + jy, show that the half-plane x � 0 
in the z plane maps onto the half-plane v � 1 in the 
w plane.

For z = x + jy find the image region in the w plane 
corresponding to the semi-infinite strip x � 0, 
0 � y � 2 in the z plane under the mapping 
w = jz + 1. Illustrate the regions in both planes.

Find the images of the following curves under 
the mapping

w = ( j + �3)z + j�3 − 1

(a) y = 0 (b) x = 0

(c) x2 + y2 = 1 (d) x2 + y2 + 2y = 1

where z = x + jy.

The mapping w = αz + β (a, β both constant 
complex numbers) maps the point z = 1 + j to 
the point w = j and the point z = −1 to the point 
w = 1 + j.

(a) Determine α and β.
(b) Find the region in the w plane 

corresponding to the upper half-plane 
Im(z) � 0 and illustrate diagrammatically.

(c) Find the region in the w plane corresponding to 
the disc | z | � 2 and illustrate diagrammatically.

(d) Find the fixed point(s) of the mapping.

In (b)−(d) use the values of α and β determined 
in (a).

4.2.2 Exercises

1

2

3

4

5

6

7

8
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Squaring we have

which on expanding leads to

or

= r 2 − x 2
0 − y 2

0 

so that

(u2 + v 2)(r 2 − x 2
0 − y 2

0) + 2ux0 − 2vy0 = 1 (4.9)

The expression is a quadratic in u and v, with the coefficients of u2 and v 2 equal and no
term in uv. It therefore represents a circle, unless the coefficient of u2 + v2 is itself zero,
which occurs when

x 2
0 + y 2

0 = r 2, or | z0 | = r

and we have

2ux0 − 2vy0 = 1

which represents a straight line in the w plane.

When | z0 | ≠ r, we can divide the equation of the circle (4.9) in the w plane by the
factor r 2 − x 2

0 − y 2
0 to give

which can be written in the form

(u − u0)
2 + (v − v0)

2 = R2

where (u0, v0) are the coordinates of the centre and R the radius of the w plane circle. It
is left as an exercise for the reader to show that

Next we consider the general straight line

| z − a1 | = | z − a2 |

u − jv

u2 v2+
-----------------  − x0 − jy0  = r

u

u2 v2+
-----------------  − x0⎝ ⎠

⎛ ⎞ 2

 + v

u2 v2+
-----------------  + y0⎝ ⎠

⎛ ⎞ 2

 =  r2

u2

u2 v2+( )2
----------------------  − 

2ux0

u2 v2+
----------------- x0

2 v2

u2 v2+( )2
----------------------  + 

2vy0

u2 v2+( )
-------------------- y0

2+ + +  = r2

u2 v2+
u2 v2+( )2

----------------------  + 
2vy0 − 2ux0

u2 v2+
-------------------------------

Summarizing, the inversion mapping w = 1/z maps the circle | z − z0 | = r in the z
plane onto another circle in the w plane unless | z0 | = r, in which case the circle is
mapped onto a straight line in the w plane that does not pass through the origin.

u2 v2 2x0u

r2 − x0
2 − y0

2
------------------------------

2y0v

r2 − x0
2 − y0

2
------------------------------–+ + 1

r2 − x0
2 − y0

2
------------------------------=

u0, v0( ) − x0

r2 z0
2–

---------------------- ,
y0

r2 z0
2–

----------------------⎝ ⎠
⎛ ⎞ , R r

r2 z0
2–

----------------------= =
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in the z plane, where a1 and a2 are constant complex numbers with a1 ≠ a2. Under the
mapping (4.7), this becomes the curve in the w plane represented by the equation

(4.10)

Again, it is not easy to identify this curve, so we proceed as before and take

w = u + jv, a1 = p + jq, a2 = r + js

where p, q, r and s are real constants. Substituting in (4.10) and squaring both sides, we
have

Expanding out each term, the squares of u /(u2 + v 2) and v/(u2 + v2) cancel, giving

which on rearrangement becomes

(u2 + v2) ( p2 + q2 − r2 − s2) + 2u(r − p) + 2v(q − s) = 0 (4.11)

Again this represents a circle through the origin in the w plane, unless

p2 + q2 = r2 + s2

which implies | a1 | = | a2 |, when it represents a straight line, also through the origin, in
the w plane. The algebraic form of the coordinates of the centre of the circle and its
radius can be deduced from (4.11).

To see why this is the case, we first note that the fixed points of the mapping, deter-
mined by putting w = z, are

z = , or z2 = 1

so that z = ±1.
We also note that z = 0 is mapped to infinity in the w plane and w = 0 is mapped to

infinity in the z plane and vice versa in both cases. Further, if we apply the mapping a
second time, we get the identity mapping. That is, if 

w = , and ζ = 

1
w
----- − a1  = 1

w
----- − a2

u

u2 + v2
-----------------  − p⎝ ⎠

⎛ ⎞ 2

 + v

u2 + v2
-----------------  + q⎝ ⎠

⎛ ⎞ 2 u

u2 + v2
-----------------  − r⎝ ⎠

⎛ ⎞ 2

 + v

u2 + v2
-----------------  + s⎝ ⎠

⎛ ⎞ 2

=

− 2up

u2 + v2
-----------------  + p2 2vq

u2 + v2
-----------------  + q2+ − 2ur

u2 + v2
-----------------  + r2 2vs

u2 + v2
-----------------  + s2+=

We can therefore make the important conclusion that the inversion mapping
w = 1/z takes circles or straight lines in the z plane onto circles or straight lines in
the w plane. Further, since we have carried out the algebra, we can be more
specific. If the circle in the z plane passes through the origin (that is, | z0 | = r in (4.9) )
then it is mapped onto a straight line that does not pass through the origin in the w
plane. If the straight line in the z plane passes through the origin ( | a1 | = | a2 | in
(4.11)) then it is mapped onto a straight line through the origin in the w plane.
Figure 4.9 summarizes these conclusions.

1
z
----

1
z
---- 1

w
-----
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then

ζ =  = z

which is the identity mapping.
The inside of the unit circle in the z plane, | z | � 1, is mapped onto | 1/w | � 1 or

| w | � 1, the outside of the unit circle in the w plane. By the same token, therefore,
the outside of the unit circle in the z plane | z | � 1 is mapped onto | 1/w | � 1 or
| w | � 1, the inside of the unit circle in the w plane. Points actually on | z | = 1 in the
z plane are mapped to points on | w | = 1 in the w plane, with ±1 staying fixed, as
already shown. Figure 4.10 summarizes this property.

It is left as an exercise for the reader to show that the top half-boundary of | z | = 1 is
mapped onto the bottom half-boundary of | w | = 1.

For any point z0 in the z plane the point 1/z0 is called the inverse of z0 with respect
to the circle | z | = 1; this is the reason for the name of the mapping. (Note the double
meaning of inverse; here it means the reciprocal function and not the ‘reverse’

Figure 4.9
The inversion 
mapping w = 1/z.

1
1/z
-------
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mapping.) The more general definition of inverse is that for any point z0 in the z plane
the point r 2/z0 is the inverse of z0 with respect to the circle | z | = r, where r is a real
constant.

Determine the image path in the w plane corresponding to the circle | z − 3 | = 2 in the
z plane under the mapping w = 1/z. Sketch the paths in both the z and w planes and
shade the region in the w plane corresponding to the region inside the circle in the
z plane.

Solution The image in the w plane of the circle | z − 3 | = 2 in the z plane under the mapping
w = 1/z is given by

which, on taking w = u + jv, gives

Squaring both sides, we then have

or

which reduces to

1 − 6u + 5(u2 + v2) = 0

or

(u − )2 + v 2 = 

Thus the image in the w plane is a circle with centre ( , 0) and radius . The cor-
responding circles in the z and w planes are shown in Figure 4.11.

Figure 4.10 Mapping 
of the unit circle under 
w = 1/z.

Example 4.4

1
w
----- − 3  = 2

u − jv

u2 + v2
-----------------  − 3  = 2

u

u2 + v2
-----------------  − 3⎝ ⎠

⎛ ⎞ 2

 + −v

u2 + v2
-----------------⎝ ⎠

⎛ ⎞ 2

 = 4

u2 + v2

u2 + v2( )2
-------------------------  − 6u

u2 + v2
-----------------  + 5 = 0

3
5
---- 4

25
-------

3
5
---- 2

5
----
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Taking z = x + jy, the mapping w = 1/z becomes

which, on equating real and imaginary parts, gives

We can now use these two relationships to determine the images of particular points
under the mapping. In particular, the centre (3, 0) of the circle in the z plane is mapped
onto the point u = , v = 0 in the w plane, which is inside the mapped circle. Thus, under
the mapping, the region inside the circle in the z plane is mapped onto the region inside
the circle in the w plane.

Further, considering three sample points A(1 + j0), B(3 − j2) and C(5 + j0) on the
circle in the z plane, we find that the corresponding image points on the circle in the w
plane are A′(1, 0), B′( ) and C′( , 0). Thus, as the point z traverses the circle in the
z plane in an anticlockwise direction, the corresponding point w in the w plane will also
traverse the mapped circle in an anticlockwise direction as indicated in Figure 4.11.

4.2.4 Bilinear mappings  

where a, b, c and d are prescribed complex constants. It is called the bilinear mapping
in z and w since it can be written in the form Awz + Bw + Cz + D = 0, which is linear
in both z and w.

Clearly the bilinear mapping (4.12) is more complicated than the linear mapping
given by (4.2). In fact, the general linear mapping is a special case of the bilinear
mapping, since setting c = 0 and d = 1 in (4.12) gives (4.2). In order to investigate the
bilinear mapping, we rewrite the right-hand side of (4.12) as follows:

u + jv = 1

x + jy
---------------  = x − jy

x2 + y2
------------------

u = x

x2 + y2
------------------ , v = −y

x2 + y2
------------------

1
3
----

Figure 4.11
The mapping of 
Example 4.4.

3
13
-------, 2

13
------- 1

5
----

A bilinear mapping is a mapping of the form

(4.12)w az + b
cz + d
-----------------=

w az + b
cz + d
-----------------

a
c
---- cz + d( ) − ad

c
-------  + b

cz + d
-------------------------------------------------= =
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so that

(4.13)

This mapping clearly degenerates to w = a/c unless we demand that bc − ad ≠ 0. We
therefore say that (4.12) represents a bilinear mapping provided the determinant

= ad − bc

is non-zero. This is sometimes referred to as the determinant of the mapping. When
the condition holds, the inverse mapping

obtained by rearranging (4.12), is also bilinear, since

= da − cb ≠ 0

Renaming the constants so that λ = a/c, μ = bc − ad, α = c2 and β = cd, (4.13)
becomes

w = λ + 

and we can break the mapping down into three steps as follows:

z1 = αz + β

z2 = 

w = λ + μz2

The first and third of these steps are linear mappings as considered in Section 4.2.1,
while the second is the inversion mapping considered in Section 4.2.3. The bilinear
mapping (4.12) can thus be generated from the following elementary mappings:

We saw in Section 4.2.1 that the general linear transformation w = αz + β does not
change the shape of the curve being mapped from the z plane onto the w plane. Also,
in Section 4.2.3 we saw that the inversion mapping w = 1/z maps circles or straight lines
in the z plane onto circles or straight lines in the w plane. It follows that the bilinear
mapping also exhibits this important property, in that it also will map circles or straight
lines in the z plane onto circles or straight lines in the w plane.

w a
c
---- + bc − ad

c cz + d( )
-----------------------=

a b

c d

z −dw + b
cw − a

---------------------=

−d b

c −a

μ
αz β+
-----------------

1
z1

-----

z ⎯⎯⎯→ αz ⎯⎯⎯→ αz β ⎯⎯⎯→ 1
αz β+
-----------------+

rotation
and

magnification

translation inversion

  ⎯⎯⎯→ μ
αz β+
-----------------  ⎯⎯⎯→ λ μ

αz β+
-----------------+ w=

magnification
and

rotation

translation
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Investigate the mapping

by finding the images in the w plane of the lines Re(z) = constant and Im(z) = constant.
Find the fixed points of the mapping.

Solution Since we are seeking specific image curves in the w plane, we first express z in terms
of w and then express x and y in terms of u and v, where z = x + jy and w = u + jv.
Rearranging

gives

Taking z = x + jy and w = u + jv, we have

x + jy = 

=

which reduces to

Equating real and imaginary parts then gives

(4.14a)

(4.14b)

It follows from (4.14a) that the lines Re(z) = x = c1, which are parallel to the imaginary
axis in the z plane, correspond to the curves

where c1 is a constant, in the w plane. Rearranging this leads to

c1(1 − 2u + u2 + v2) = 1 − u2 − v2

or, assuming that 1 + c1 ≠ 0,

u2 + v 2 −  = 0

Example 4.5

w z 1–
z 1+
-----------=

w z 1–
z 1+
-----------=

z 1 w+
1 w–
--------------=

1 u jv+ +
1 u– jv–
------------------------

1 u jv+ +
1 u– jv–
------------------------ 1 u– jv+

1 u– jv+
------------------------

x + jy = 1 − u2 v2–

1 u–( )2 v2+
-----------------------------  + j 2v

1 u–( )2 v2+
-----------------------------

x = 1 − u2 v2–

1 u–( )2 v2+
-----------------------------

y = 2v

1 u–( )2 v2+
-----------------------------

c1 = 1 − u2 v2–

1 u–( )2 v2+
-----------------------------

2c1u
1 + c1

----------------  + 
c1 1–
c1 + 1
----------------
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which, on completing squares, gives

It is now clear that the corresponding curve in the w plane is a circle, centre (u =
c1/(1 + c1), v = 0) and radius (1 + c1)

−1.
In the algebraic manipulation we assumed that c1 ≠ −1, in order to divide by 1 + c1.

In the exceptional case c1 = −1, we have u = 1, and the mapped curve is a straight line
in the w plane parallel to the imaginary axis.

Similarly, it follows from (4.14b) that the lines Im(z) = y = c2, which are parallel to
the imaginary axis in the z plane, correspond to the curves 

where c2 is a constant, in the w plane. Again, this usually represents a circle in the w
plane, but exceptionally will represent a straight line. Rearranging the equation we have

(1 − u)2 + v2 = 

provided that c2 ≠ 0. Completing the square then leads to

which represents a circle in the w plane, centre (u = 1, v = 1/c2) and radius 1/c2.
In the exceptional case c2 = 0, v = 0 and we see that the real axis y = 0 in the z plane

maps onto the real axis v = 0 in the w plane.
Putting a sequence of values to c1 and then to c2, say −10 to +10 in steps of +1,

enables us to sketch the mappings shown in Figure 4.12. The fixed points of the map-
ping are given by 

u
c1

1 c1+
---------------–⎝ ⎠

⎛ ⎞ 2

v2+ 1
1 c1+
---------------⎝ ⎠

⎛ ⎞ 2

=

c2 = 2v

1 u–( )2 v2+
-----------------------------

2v
c2

-------

u 1–( )2 v 1

c2

----–⎝ ⎠
⎛ ⎞ 2

+  = 1

c2
2

----

Figure 4.12
The mapping 
w = (z − 1)/(z + 1).

z = z − 1
z + 1
--------------
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that is,

z2 = −1, or z = ± j

In general, all bilinear mappings will have two fixed points. However, although there
are mathematically interesting properties associated with particular mappings having
coincident fixed points, they do not impinge on engineering applications, so they only
deserve passing reference here.

Find the image in the w plane of the circle | z | = 2 in the z plane under the bilinear
mapping

Sketch the curves in both the z and w planes and shade the region in the w plane cor-
responding to the region inside the circle in the z plane.

Solution Rearranging the transformation, we have

so that the image in the w plane of the circle | z | = 2 in the z plane is determined by

(4.15)

One possible way of proceeding now is to put w = u + jv and proceed as in Example 4.4,
but the algebra becomes a little messy. An alternative approach is to use the property
of complex numbers that | z1/z2 | = | z1 | / | z2 |, so that (4.15) becomes

| jw + j | = 2 | 1 − w |

Taking w = u + jv then gives

| −v + j(u + 1) | = 2 | (1 − u) − jv |

which on squaring both sides leads to

v2 + (1 + u)2 = 4[(1 − u)2 + v2] 

or

u2 + v2 − u + 1 = 0

Completing the square of the u term then gives

(u − )2 + v2 = 

indicating that the image curve in the w plane is a circle centre (u = , v = 0) and radius
. The corresponding circles in the z and w planes are illustrated in Figure 4.13. To

identify corresponding regions, we consider the mapping of the point z = 0 + j0
inside the circle in the z plane. Under the given mapping, this maps to the point

Example 4.6

w = z − j
z + j
-----------

z = 
jw + j
1 − w
----------------

jw + j
1 − w
----------------  = 2

10
3
-------

5
3
---- 16

9
-------

5
3
----

4
3
----
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w =  = −1 + j0

in the w plane. It then follows that the region inside the circle | z | = 2 in the z plane maps
onto the region outside the mapped circle in the w plane.

An interesting property of (4.12) is that there is just one bilinear transformation that
maps three given distinct points z1, z2 and z3 in the z plane onto three specified distinct
points w1, w2 and w3 respectively in the w plane. It is left as an exercise for the reader
to show that the bilinear transformation is given by

(4.16)

The right-hand side of (4.16) is called the cross-ratio of z1, z2, z3 and z. We shall illus-
trate with an example.

Find the bilinear transformation that maps the three points z = 0, − j and −1 onto the
three points w = j, 1, 0 respectively in the w plane.

Solution Taking the transformation to be

on using the given information on the three pairs of corresponding points we have

j = (4.17a)

1 = (4.17b)

0 = (4.17c)

From (4.17c) a = b; then from (4.17a)

d =  = − jb = − ja

0 − j
0 + j
-------------

Figure 4.13
The mapping 
w = (z − j)/(z + j).

w − w1( ) w2 − w3( )
w − w3( ) w2 − w1( )

-----------------------------------------------  = 
z − z1( ) z2 − z3( )
z − z3( ) z2 − z1( )

----------------------------------------

Example 4.7

w = az + b
cz + d
-----------------

a 0( ) + b
c 0( ) + d
---------------------  = b

d
----

a −j( ) + b
c −j( ) + d
-------------------------

a −1( ) + b
c −1( ) + d
-------------------------

b
j
----
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and from (4.17b) c = ja. Thus

Alternatively, using (4.16) we can obtain

or

as before.

w = az + a
jaz − ja
---------------------  = 1

j
---- z + 1

z − 1
-------------- = − j z + 1

z − 1
--------------

w − j( ) 1 − 0( )
w − 0( ) 1 − j( )

--------------------------------------  = z − 0( ) −j + 1( )
z + 1( ) −j − 0( )

----------------------------------------

w = − j z + 1
z − 1
--------------

Show that if z = x + jy, the image of the half-plane 
y � c (c constant) under the mapping w = 1/z is the 
interior of a circle, provided that c � 0. What is 
the image when c = 0 and when c � 0? Illustrate 
with sketches in the w plane.

Determine the image in the w plane of the circle

under the inversion mapping w = 1/z.

Show that the mapping w = 1/z maps the circle 
| z − a | = a, with a being a positive real constant, 
onto a straight line in the w plane. Sketch the 
corresponding curves in the z and w planes, 
indicating the region onto which the interior 
of the circle in the z plane is mapped.

Find a bilinear mapping that maps z = 0 to w = j, 
z = −j to w = 1 and z = −1 to w = 0. Hence sketch 
the mapping by finding the images in the w plane 
of the lines Re(z) = constant and Im(z) = constant in 
the z plane. Verify that z = ( j − 1)(−1 ± �3) are 
fixed points of the mapping.

The two complex variables w and z are related 
through the inverse mapping

(a) Find the images of the points z = 1, 1 − j and 
0 in the w plane.

(b) Find the region of the w plane corresponding 
to the interior of the unit circle | z | � 1 in the 
z plane.

(c) Find the curves in the w plane corresponding 
to the straight lines x = y and x + y = 1 in the 
z plane.

(d) Find the fixed points of the mapping.

Given the complex mapping

where w = u + jv and z = x + j y, determine the 
image curve in the w plane corresponding to the 
semicircular arc x2 + y2 = 1 (x � 0) described from 
the point (0, −1) to the point (0, 1).

(a) Map the region in the z plane (z = x + jy) that 
lies between the lines x = y and y = 0, with x � 0, 
onto the w plane under the bilinear mapping

(Hint: Consider the point w =  to help identify 
corresponding regions.)

(b) Show that, under the same mapping as in (a), 
the straight line 3x + y = 4 in the z plane 
corresponds to the unit circle | w | = 1 in the 
w plane and that the point w = 1 does not 
correspond to a finite value of z.

If w = (z − j)/(z + j), find and sketch the image in 
the w plane corresponding to the circle | z | = 2 in the 
z plane.

Show that the bilinear mapping

4.2.5 Exercises

9

10

z + 3
4
---- + j  = 7

4
----

11

12

1
2
----

13

w = 
1 + j

z
-------------

14

w = 
z + 1
z − 1
--------------

15

w = 
z + j
z − 3
--------------

2
3
----

16

17

w e
jθ 0 z − z0

z − z 0*
-----------------=

www.20file.org

www.semeng.ir


280 FUNCTIONS OF A COMPLEX VARIABLE

4.2.6 The mapping w = z2

There are a number of other mappings that are used by engineers. For example, in
dealing with Laplace and z transforms, the subjects of Chapters 5 and 6 respectively,
we are concerned with the polynomial mapping

w = a0 + a1z + . . . + anzn

where a0, a1, . . . , an are complex constants, the rational function

where P and Q are polynomials in z, and the exponential mapping

w = a ebz

where e = 2.718 28 . . . , the base of natural logarithms. As is clear from the bilinear
mapping in Section 4.2.4, even elementary mappings can be cumbersome to analyse.
Fortunately, we have two factors on our side. First, very detailed tracing of specific
curves and their images is not required, only images of points. Secondly, by using com-
plex differentiation, the subject of Section 4.3, various facets of these more complicated
mappings can be understood without lengthy algebra. As a prelude, in this subsection
we analyse the mapping w = z2, which is the simplest polynomial mapping.

Investigate the mapping w = z2 by plotting the images on the w plane of the lines
x = constant and y = constant in the z plane.

Solution There is some difficulty in inverting this mapping to get z as a function of w, since
square roots lead to problems of uniqueness. However, there is no need to invert here,
for taking w = u + jv and z = x + jy, the mapping becomes 

w = u + jv = (x + jy)2 = (x2 − y2) + j2xy

which, on taking real and imaginary parts, gives

u = x2 − y2

v = 2xy
(4.18)

w = P z( )
Q z( )
-----------

Example 4.8

where θ 0 is a real constant 0 � θ0 � 2π, z0 a fixed 
complex number and z*0 its conjugate, maps the 
upper half of the z plane (Im(z) � 0) onto the inside 
of the unit circle in the w plane ( | w | � 1). Find the 
values of z0 and θ0 if w = 0 corresponds to z = j and 
w = −1 corresponds to z = ∞.

Show that, under the mapping

circular arcs or the straight line through z = 0 and 
z = j in the z plane are mapped onto circular arcs 
or the straight line through w = 0 and w = j in the 
w plane. Find the images of the regions | z − | �
and | z | � | z − j | in the w plane.

Find the most general bilinear mapping that maps 
the unit circle | z | = 1 in the z plane onto the unit 
circle | w | = 1 in the w plane and the point z = z0 in 
the z plane to the origin w = 0 in the w plane.

18

w = 2jz
z + j
-----------

1
2
---- 1

2
----

19

www.20file.org

www.semeng.ir


4.2  COMPLEX FUNCTIONS AND MAPPINGS 281

If x = α, a real constant, then (4.18) becomes

u = α2 − y 2, v = 2αy

which, on eliminating y, gives

u = α2 −

or

4α2u = 4α4 − v2

so that

v2 = 4α4 − 4α2u = 4α2(α2 − u)

This represents a parabola in the w plane, and, since the right-hand side must be
positive, α2 � u so the ‘nose’ of the parabola is at u = α2 on the positive real axis in
the w plane.

If y = β, a real constant, then (4.18) becomes

u = x2 − β2, v = 2xβ

which, on eliminating x, gives

or

4β2 = v2 − 4β4

so that

v2 = 4β2u + 4β4 = 4β2(u + β2)

This is also a parabola, but pointing in the opposite direction. The right-hand side, as
before, must be positive, so that u � −β2 and the ‘nose’ of the parabola is on the
negative real axis. These curves are drawn in Figure 4.14.

v2

4α2
----------

u = v2

4β2
--------  − β2

Figure 4.14
The mapping w = z2.
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We shall not dwell further on the finer points of the mapping w = z2. Instead, we note
that in general it is extremely difficult to plot images of curves in the z plane, even the
straight lines parallel to the axes, under polynomial mappings. We also note that we do
not often need to do so, and that we have done it only as an aid to understanding.

The exercises that follow should also help in understanding this topic. We shall then
return to examine polynomial, rational and exponential mappings in Section 4.3.4, after
introducing complex differentiation.

Find the image region in the w plane corresponding 
to the region inside the triangle in the z plane having 
vertices at 0 + j0, 2 + j0 and 0 + j2 under the 
mapping w = z2. Illustrate with sketches.

Find the images of the lines y = x and y = −x under 
the mapping w = z 2. Also find the image of the 
general line through the origin y = mx. By putting 
m = tanθ 0, deduce that straight lines intersecting at 
the origin in the z plane map onto lines intersecting 
at the origin in the w plane, but that the angle 
between these image lines is double that between 
the original lines.

Consider the mapping w = zn, where n is an integer 
(a generalization of the mapping w = z2). Use the 
polar representation of complex numbers to show 
that 

(a) Circles centred at the origin in the z plane are 
mapped onto circles centred at the origin in the 
w plane.

(b) Straight lines passing through the origin 
intersecting with angle θ0 in the z plane are 
mapped onto straight lines passing through the 
origin in the w plane but intersecting at an 
angle nθ0.

If the complex function

is represented by a mapping from the z plane onto 
the w plane, find u in terms of x and y, and v in terms 
of x and y, where z = x + jy, w = u + jv. Find the 
image of the unit circle | z | = 1 in the w plane. Show 
that the circle centred at the origin, of radius r, in 
the z plane ( | z | = r) is mapped onto the curve

(r ≠ 1)

in the w plane. What kind of curves are these? What 
happens for very large r?

4.2.7 Exercises

20

21

22

23

w = 1 + z2

z
----------------

r2u

r2 + 1
----------------⎝ ⎠

⎛ ⎞
2 r2v

r2 − 1
----------------⎝ ⎠

⎛ ⎞
2

+  =  r2

Complex differentiation
The derivative of a real function f (x) of a single real variable x at x = x0 is given by the
limit

f ′(x0) = 

Here, of course, x0 is a real number and so can be represented by a single point on the
real line. The point representing x can then approach the fixed x0 either from the left or
from the right along this line. Let us now turn to complex variables and functions
depending on them. We know that a plane is required to represent complex numbers,
so z0 is now a fixed point in the Argand diagram, somewhere in the plane. The definition
of the derivative of the function f (z) of the complex variable z at the point z0 will thus be

4.3

lim
x→x0

f x( ) − f x0( )
x − x0

----------------------------
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f ′(z0) = 

It may appear that if we merely exchange z for x, the rest of this section will follow
similar lines to the differentiation of functions of real variables. For real variables
taking the limit could only be done from the left or from the right, and the existence of
a unique limit was not difficult to establish. For complex variables, however, the point
that represents the fixed complex number z0 can be approached along an infinite num-
ber of curves in the z plane. The existence of a unique limit is thus a very stringent
requirement. That most complex functions can be differentiated in the usual way is a
remarkable property of the complex variable. Since z = x + jy, and x and y can vary
independently, there are some connections with the calculus of functions of two real
variables, but we shall not pursue this connection here.

Rather than use the word ‘differentiable’ to describe complex functions for which a
derivative exists, if the function f (z) has a derivative f ′(z) that exists at all points of a
region R of the z plane then f (z) is called analytic in R. Other terms such as regular or
holomorphic are also used as alternatives to analytic. (Strictly, functions that have a
power series expansion – see Section 4.4.1 – are called analytic functions. Since dif-
ferentiable functions have a power series expansion they are referred to as analytic
functions. However, there are examples of analytic functions that are not differentiable.)

4.3.1 Cauchy–Riemann equations

The following result is an important property of the analytic function.

It is instructive to prove this result. Since f ′(z) exists at any point z0 in R,

f ′(z0) = 

where z can tend to z0 along any path within R. Examination of (4.19) suggests that
we might choose paths parallel to the x direction and parallel to the y direction, since
these will lead to partial derivatives with respect to x and y. Thus, choosing z − z0 = Δx,
a real path, we see that

f ′(z0) = 

Since f (z) = u + jv, this means that

f ′(z0) = 

lim
z→z0

f z( ) − f z0( )
z − z0

-----------------------------

If z = x + jy and f(z) = u(x, y) + jv(x, y), and f(z) is analytic in some region R of the
z plane, then the two equations

(4.19)

known as the Cauchy–Riemann equations, hold throughout R.

∂u
∂x
-------  = ∂v

∂y
-------, ∂u

∂y
-------  = − ∂v

∂x
-------

lim
z→z0

f z( ) − f z0( )
z − z0

-----------------------------

lim
Δx→0

f z0 + Δx( ) − f z0( )
Δx

--------------------------------------------

lim
Δx→0

u x0 + Δx, y0( ) + jv x0 + Δx, y0( ) u x0, y0( ) − jv x0, y0( )–
Δx

--------------------------------------------------------------------------------------------------------------------------------------------

www.20file.org

www.semeng.ir


284 FUNCTIONS OF A COMPLEX VARIABLE

or, on splitting into real and imaginary parts,

f ′(z0) = 

giving

f ′(z0) = (4.20)

Starting again from the definition of f ′(z0), but this time choosing z − z0 = jΔy for the
path parallel to the y axis, we obtain

f ′(z0) = 

Once again, using f (z) = u + jv and splitting into real and imaginary parts, we see that

f ′(z0) = 

= 

giving

f ′(z0) = (4.21)

Since f ′(z0) must be the same no matter what path is followed, the two values obtained
in (4.20) and (4.21) must be equal. Hence

Equating real and imaginary parts then gives the required Cauchy–Riemann equations

at the point z = z0. However, z0 is an arbitrarily chosen point in the region R; hence the
Cauchy–Riemann equations hold throughout R, and we have thus proved the required
result.

It is tempting to think that should we choose more paths along which to let z − z0

tend to zero, we could derive more relationships along the same lines as the Cauchy–
Riemann equations. It turns out, however, that we merely reproduce them or expressions
derivable from them, and it is possible to prove that satisfaction of the Cauchy–Riemann
equations (4.19) is a necessary condition for a function f(z) = u(x, y) + jv(x, y), z = x + jy,
to be analytic in a specified region. At points where f ′(z) exists it may be obtained from
either (4.20) or (4.21) as

f ′(z) = 

lim
Δx→0

u x0 + Δx, y0( ) u x0, y0( )–
Δx

----------------------------------------------------------------  + j
v x0 + Δx, y0( ) v x0, y0( )–

Δx
--------------------------------------------------------------

∂u
∂x
-------  + j∂v

∂x
-------

x=x0, y=y0

lim
jΔy→0

f z0 + jΔy( ) − f z0( )
jΔy

----------------------------------------------

lim
jΔy→0

u x0, y0 + Δy( ) + jv x0, y0 + Δy( ) u x0, y0( ) − jv x0, y0( )–
jΔy

--------------------------------------------------------------------------------------------------------------------------------------------

lim
Δy→0

1
j
----

u x0, y0 + Δy( ) − u x0, y0( )
Δy

----------------------------------------------------------------  + 
v x0, y0 + Δy( ) − v x0, y0( )

Δy
-----------------------------------------------------------------

1
j
---- ∂u

∂y
-------  + ∂v

∂y
-------

x=x0, y=y0

∂u
∂x
-------  + j∂v

∂x
------- 1

j
---- ∂u

∂y
-------  + ∂v

∂y
------- −j∂u

∂y
-------  + ∂v

∂y
-------= =

∂u
∂x
-------  = ∂v

∂y
-------, ∂v

∂x
------- = −∂u

∂y
-------

∂u
∂x
-------  + j∂v

∂x
-------
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or

f ′(z) = 

If z is given in the polar form z = r e jθ  then

f (z) = u(r, θ ) + jv(r, θ )

and the corresponding polar forms of the Cauchy–Riemann equations are

(4.22)

At points where f ′(z) exists it may be obtained from either of

f ′(z) = e−jθ (4.23a)

or

f ′(z) = e−jθ (4.23b)

Verify that the function f (z) = z2 satisfies the Cauchy–Riemann equations, and deter-
mine the derivative f ′(z).

Solution Since z = x + jy, we have

f (z) = z2 = (x + jy)2 = (x2 − y2) + j2xy

so if f(z) = u(x, y) + jv(x, y) then

u = x2 − y2, v = 2xy

giving the partial derivatives as

= 2x,  = −2y

= 2y,  = 2x

It is readily seen that the Cauchy–Riemann equations

are satisfied.
The derivative f ′(z) is then given by

f ′(z) =  = 2x + j2y = 2z

as expected.

∂v
∂y
------- − j∂u

∂y
-------

∂u
∂r
-------  = 1

r
----∂v

∂θ
------- , ∂v

∂r
------- = − 1

r
---- ∂u

∂θ
-------

∂u-------  + j∂v
∂r ∂r

-------⎝ ⎠
⎛ ⎞

1
r
---- ∂v

∂θ
-------  − 

j
r
--- ∂u

∂θ
-------⎝ ⎠

⎛ ⎞

Example 4.9

∂u
∂x
------- ∂u

∂y
-------

∂v
∂x
------- ∂v

∂y
-------

∂u
∂x
------- ∂v

∂y
-------, ∂u

∂y
------- − ∂v

∂x
-------= =

∂u
∂x
-------  + j∂v

∂x
-------
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Verify that the exponential function f (z) = eαz, where α is a constant, satisfies the
Cauchy–Riemann equations, and show that f ′(z) = α eαz.

Solution f (z) = u + jv = eαz = eα(x+jy ) = eαx e jαy = eαx (cos αy + j sin αy)

so, equating real and imaginary parts,

u = eα x cos αy, v = eα x sin αy

The partial derivatives are

= α eα x cos αy,  = α eα x sin αy

= −α eα x sin αy,  = α eα x cos αy

confirming that the Cauchy–Riemann equations are satisfied. The derivative f ′(z) is
then given by

f ′(z) =  = α eα x (cos αy + j sin αy) = α eαz

so that

eα z = α eα z (4.24)

As in the real variable case, we have (see Section 4.3.1)

e jz = cos z + j sin z (4.25)

so that cos z and sin z may be expressed as

(4.26a)

Using result (4.24) from Example 4.10, it is then readily shown that

(sin z) = cos z

(cos z) = −sin z

Similarly, we define the hyperbolic functions sinh z and cosh z by

(4.26b) 

Example 4.10

∂u
∂x
------- ∂v

∂x
-------

∂u
∂y
------- ∂v

∂y
-------

∂u
∂x
-------  + j∂v

∂x
-------

d
dz
-----

z cos = e
jz + e−jz

----------------------
2

zsin  = e
jz − e−jz

2j
----------------------

⎭
⎪
⎪
⎬
⎪
⎪
⎫

d
dz
-----

d
dz
-----

sinh z = e
z  − e−z

2
------------------ − j jzsin=

cosh z = e
z + e−z

2
------------------ jzcos=

⎭
⎪
⎪
⎬
⎪
⎪
⎫
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from which, using (4.24), it is readily deduced that

(sinh z) = cosh z

(cosh z) = sinh z

We note from above that ez has the following real and imaginary parts:

Re(ez) = ex cos y

Im(ez) = ex sin y

In real variables the exponential and circular functions are contrasted, one being mono-
tonic, the other oscillatory. In complex variables, however, the real and imaginary parts
of ez are (two-variable) combinations of exponential and circular functions, which
might seem surprising for an exponential function. Similarly, the circular functions of
a complex variable have unfamiliar properties. For example, it is easy to see that | cos z |
and | sin z | are unbounded for complex z by using the above relationships between
circular and hyperbolic functions of complex variables. Contrast this with | cos x | � 1
and | sin x | � 1 for a real variable x.

In a similar way to the method adopted in Examples 4.9 and 4.10 it can be shown
that the derivatives of the majority of functions f (x) of a real variable x carry over to the
complex variable case f (z) at points where f (z) is analytic. Thus, for example,

zn = nzn−1

for all z in the z plane, and

ln z = 

for all z in the z plane except for points on the non-positive real axis, where ln z is
non-analytic.

It can also be shown that the rules associated with derivatives of a function of a real
variable, such as the sum, product, quotient and chain rules, carry over to the complex
variable case. Thus,

d
dz
-----

d
dz
-----

d
dz
-----

d
dz
----- 1

z
----

d
dz
----- f z( ) + g z( )[ ] d f z( )

dz
------------  + dg z( )

dz
-------------=

d
dz
----- f z( ) g z( )[ ] f z( )dg z( )

dz
-------------  + 

d f z( )
dz

------------g z( )=

d
dz
-----  f g z( )( ) d f

dg
-------  

dg
dz
-------=

d
dz
----- f z( )

g z( )
---------- g z( ) f ′ z( ) − f z( ) g ′ z( )

g z( )[ ]2
------------------------------------------------------  =
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4.3.2 Conjugate and harmonic functions

A pair of functions u(x, y) and v(x, y) of the real variables x and y that satisfy the
Cauchy–Riemann equations (4.19) are said to be conjugate functions. (Note here
the different use of the word ‘conjugate’ to that used in complex number work, where
z* = x − jy is the complex conjugate of z = x + jy.) Conjugate functions satisfy the
orthogonality property in that the curves in the (x, y) plane defined by u(x, y) = constant
and v(x, y) = constant are orthogonal curves. This follows since the gradient at any point
on the curve u(x, y) = constant is given by

and the gradient at any point on the curve v(x, y) = constant is given by

It follows from the Cauchy–Riemann equations (4.19) that

so the curves are orthogonal.
A function that satisfies the Laplace equation in two dimensions is said to be

harmonic; that is, u(x, y) is a harmonic function if

It is readily shown (see Example 4.12) that if f (z) = u(x, y) + jv(x, y) is analytic, so that
the Cauchy–Riemann equations are satisfied, then both u and v are harmonic functions.
Therefore u and v are conjugate harmonic functions. Harmonic functions have applica-
tions in such areas as stress analysis in plates, inviscid two-dimensional fluid flow and
electrostatics.

Given u(x, y) = x2 − y2 + 2x, find the conjugate function v(x, y) such that f (z) =
u(x, y) + jv(x, y) is an analytic function of z throughout the z plane.

Solution We are given u(x, y) = x2 − y2 + 2x, and, since f (z) = u + jv is to be analytic, the Cauchy–
Riemann equations must hold. Thus, from (4.19),

Integrating this with respect to y gives

v = 2xy + 2y + F(x)

where F(x) is an arbitrary function of x, since the integration was performed holding
x constant. Differentiating v partially with respect to x gives

dy
dx
-------

u

= −∂u
∂y
------- ∂u

∂x
-------

dy
dx
-------

v

= −∂v
∂y
------- ∂v

∂x
-------

dy
dx
-------

u

dy
dx
-------

v

−1=

∂2u

∂x2
---------  + ∂

2u

∂y2
--------- 0=

Example 4.11

∂v
∂y
------- = ∂u

∂x
-------  = 2x 2+
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but this equals −∂u /∂y by the second of the Cauchy–Riemann equations (4.19). Hence

But since u = x2 − y2 + 2x, ∂u /∂y = −2y, and comparison yields F(x) = constant. This
constant is set equal to zero, since no conditions have been given by which it can be
determined. Hence

u(x, y) + jv(x, y) = x2 − y2 + 2x + j(2xy + 2y)

To confirm that this is a function of z, note that f (z) is f(x + jy), and becomes just f (x)
if we set y = 0. Therefore we set y = 0 to obtain

f (x + j0) = f (x) = u(x, 0) + jv(x, 0) = x2 + 2x

and it follows that

f (z) = z2 + 2z

which can be easily checked by separation into real and imaginary parts.

Show that the real and imaginary parts u(x, y) and v(x, y) of a complex analytic function
f (z) are harmonic.

Solution Since

f (z) = u(x, y) + jv(x, y)

is analytic, the Cauchy–Riemann equations

are satisfied. Differentiating the first with respect to x gives

which is −∂2v/∂y2, by the second Cauchy–Riemann equation. Hence

, or

and v is a harmonic function.
Similarly,

so that

∂v
∂x
------- 2y dF

dx
--------+=

∂u
∂y
------- −2y − d F

dx
--------=

Example 4.12

∂v
∂x
------- −∂u

∂y
------- , ∂u

∂x
------- ∂v

∂y
-------==

∂2v

∂x2
--------- − ∂2u

∂x∂y
------------- − ∂2u

∂y∂x
------------- − ∂

∂y
----- ∂u

∂x
-------⎝ ⎠

⎛ ⎞= = =

∂2v

∂x2
--------- −∂2v

∂y2
---------= ∂2v

∂x2
---------  + ∂

2v

∂y2
--------- 0=

∂2u

∂y2
--------- − ∂2v

∂y∂x
------------- − ∂

∂x
----- ∂v

∂y
-------⎝ ⎠

⎛ ⎞ −∂2u

∂x2
---------= = =
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and u is also a harmonic function. We have assumed that both u and v have continuous
second-order partial derivatives, so that

∂2v

∂x2
---------  + ∂

2v

∂y2
--------- 0=

∂2u
∂x∂y
------------- ∂2u

∂y∂x
------------- , ∂2v

∂x∂y
------------- ∂2v

∂y∂x
-------------==

Determine whether the following functions are 
analytic, and find the derivative where appropriate:

(a) z ez (b) sin 4z

(c) zz* (d) cos 2z

Determine the constants a and b in order that 

w = x2 + ay2 − 2xy + j(bx2 − y2 + 2xy)

be analytic. For these values of a and b find the 
derivative of w, and express both w and dw/dz as 
functions of z = x + jy.

Find a function v(x, y) such that, given u = 2x(1 − y), 
f(z) = u + jv is analytic in z.

Show that φ (x, y) = ex(x cos y − y sin y) is a harmonic 
function, and find the conjugate harmonic function 
ψ(x, y). Write φ (x, y) + jψ(x, y) as a function of 
z = x + jy only.

Show that u(x, y) = sin x cosh y is harmonic. Find 
the harmonic conjugate v(x, y) and express w = u + jv
as a function of z = x + jy.

Find the orthogonal trajectories of the following 
families of curves:

(a) x3y − xy3 = α (constant α)

(b) e−x cos y + xy = α (constant α)

Find the real and imaginary parts of the functions

(a) z2 e2z

(b) sin 2z

Verify that they are analytic and find their 
derivatives.

Give a definition of the inverse sine function 
sin−1 z for complex z. Find the real and imaginary 
parts of sin−1 z. (Hint: put z = sin w, split into 
real and imaginary parts, and with w = u + jv
and z = x + jy solve for u and v in terms of x 
and y.) Is sin−1 z analytic? If so, what is its 
derivative?

Establish that if z = x + jy, 
| sinh y | � | sin z | � cosh y.

4.3.3 Exercises

24

25

26

27

28

29

30

31

32

4.3.4 Mappings revisited

In Section 4.2 we examined mappings from the z plane to the w plane, where in the
main the relationship between w and z, w = f (z) was linear or bilinear. There is an
important property of mappings, hinted at in Example 4.8 when considering the map-
ping w = z 2. A mapping w = f (z) that preserves angles is called conformal. Under such
a mapping, the angle between two intersecting curves in the z plane is the same as the
angle between the corresponding intersecting curves in the w plane. The sense of the
angle is also preserved. That is, if θ is the angle between curves 1 and 2 taken in the anti-
clockwise sense in the z plane then θ is also the angle between the image of curve 1
and the image of curve 2 in the w plane, and it too is taken in the anticlockwise sense.
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Figure 4.15 should make the idea of a conformal mapping clearer. If f (z) is analytic
then w = f (z) defines a conformal mapping except at points where the derivative f ′(z)
is zero.

Clearly the linear mappings

w = αz + β (α ≠ 0)

are conformal everywhere, since dw/dz = α and is not zero for any point in the z plane.
Bilinear mappings given by (4.12) are not so straightforward to check. However, as we
saw in Section 4.2.4, (4.12) can be rearranged as

w = λ + (α, μ ≠ 0)

Thus

which again is never zero for any point in the z plane. In fact, the only mapping we have
considered so far that has a point at which it is not conformal everywhere is w = z2

(cf. Example 4.8), which is not conformal at z = 0.

Determine the points at which the mapping w = z + 1/z is not conformal and demon-
strate this by considering the image in the w plane of the real axis in the z plane.

Solution Taking z = x + jy and w = u + jv, we have

w = u + jv = x + jy + 

which, on equating real and imaginary parts, gives

u = x + 

v = y − 

Figure 4.15
Conformal mappings.

μ
αz β+
-----------------

dw
dz
-------- − μα

αz β+( )2
----------------------=

Example 4.13

x − jy

x2 + y2
------------------

x

x2 + y2
------------------

y

x2 + y2
------------------
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The real axis, y = 0, in the z plane corresponds to v = 0, the real axis in the w plane.
Note, however, that the fixed point of the mapping is given by

z = z + 

or z = ∞. From the Cauchy–Riemann equations it is readily shown that w is analytic
everywhere except at z = 0. Also, dw/dz = 0 when

, that is z = ±1

which are both on the real axis. Thus the mapping fails to be conformal at z = 0 and
z = ±1. The image of z = 1 is w = 2, and the image of z = −1 is w = −2. Consideration
of the image of the real axis is therefore perfectly adequate, since this is a curve passing
through each point where w = z + 1/z fails to be conformal. It would be satisfying if we
could analyse this mapping in the same manner as we did with w = z2 in Example 4.8.
Unfortunately, we cannot do this, because the algebra gets unwieldy (and, indeed, our
knowledge of algebraic curves is also too scanty). Instead, let us look at the image of
the point z = 1 + ε, where ε is a small real number. ε � 0 corresponds to the point Q
just to the right of z = 1 on the real axis in the z plane, and the point P just to the
left of z = 1 corresponds to ε � 0 (Figure 4.16).

If z = 1 + ε then

w = 1 + ε + 

= 1 + ε + (1 + ε)−1

= 1 + ε + 1 − ε + ε2 − ε3 + . . . 

� 2 + ε2

if | ε | is much smaller than 1 (we shall discuss the validity of the power series expansion
in Section 4.4). Whether ε is positive or negative, the point w = 2 + ε2 is to the right of
w = 2 in the w plane as indicated by the point R in Figure 4.16. Therefore, as ε → 0, a
curve (the real axis) that passes through z = 1 in the z plane making an angle θ = π
corresponds to a curve (again the real axis) that approaches w = 2 in the w plane along
the real axis from the right making an angle θ = 0. Non-conformality has thus been
confirmed. The treatment of z = −1 follows in an identical fashion, so the details
are omitted. Note that when y = 0 (v = 0), u = x + 1/x so, as the real axis in the z plane
is traversed from x = −∞ to x = 0, the real axis in the w plane is traversed from

1
z
----

1 1

z2
-----–  = 0

Figure 4.16 Image 
of z = 1 + ε of 
Example 4.13.

1
1 + ε
-----------
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u = −∞ to −2 and back to u = −∞ again (when x = −1, u reaches −2). As the real
axis in the z plane is traversed from x = 0 through x = 1 to x = +∞, so the real axis in
the w plane is traversed from u = +∞ to u = +2 (x = 1) back to u = ∞ again. Hence the
points on the real axis in the w plane in the range −2 � u � 2 do not correspond to real
values of z. Solving u = x + 1/x for x gives

x = [u ± � (u2 − 4)]

which makes this point obvious. Figure 4.17 shows the image in the w plane of the real
axis in the z plane. This mapping is very rich in interesting properties, but we shall not
pursue it further here. Aeronautical engineers may well meet it again if they study the
flow around an aerofoil in two dimensions, for this mapping takes circles centred at the
origin in the z plane onto meniscus (lens-shaped) regions in the w plane, and only a
slight alteration is required before these images become aerofoil-shaped.

Examine the mapping

w = ez

by (a) finding the images in the w plane of the lines x = constant and y = constant in
the z plane, and (b) finding the image in the w plane of the left half-plane (x � 0) in the
z plane.

Solution Taking z = x + jy and w = u + jv, for w = ez we have

u = ex cos y

v = ex sin y

Squaring and adding these two equations, we obtain

u2 + v2 = e2x

On the other hand, dividing the two equations gives

 = tan y

We can now tackle the questions.

(a) Since u2 + v2 = e2x, putting x = constant shows that the lines parallel to the imagin-
ary axis in the z plane correspond to circles centred at the origin in the w plane.
The equation

= tan y

shows that the lines parallel to the real axis in the z plane correspond to straight
lines through the origin in the w plane (v = u tan α if y = α, a constant).
Figure 4.18 shows the general picture.

1
2
----

Figure 4.17 Image 
in w plane of the real 
axis in the z plane for 
Example 4.13.

Example 4.14

v
u
----

v
u
----
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(b) Since u2 + v2 = e2x, if x = 0 then u2 + v2 = 1, so the imaginary axis in the z plane
corresponds to the unit circle in the w plane. If x � 0 then e2x � 1, and as x → −∞,
e2x → 0, so the left half of the z plane corresponds to the interior of the unit circle
in the w plane, as illustrated in Figure 4.19. 

Figure 4.18 Mapping 
of lines under w = ez.

Figure 4.19 Mapping 
of half-plane under 
w = ez.

Determine the points at which the following 
mappings are not conformal:

(a) w = z2 − 1 (b) w = 2z3 − 21z2 + 72z + 6

(c) w = 8z + 

Follow Example 4.13 for the mapping w = z − 1/z. 
Again determine the points at which the mapping is 
not conformal, but this time demonstrate this by 
looking at the image of the imaginary axis.

Find the region of the w plane corresponding to 
the following regions of the z plane under the 
exponential mapping w = ez:

(a) 0 � x � ∞ (b) 0 � x � 1, 0 � y � 1

(c) π � y � π, 0 � x � ∞

Consider the mapping w = sin z. Determine the 
points at which the mapping is not conformal. 
By finding the images in the w plane of the 
lines x = constant and y = constant in the z plane 
(z = x + jy), draw the mapping along similar lines to 
Figures 4.14 and 4.18.

Show that the transformation

z = ζ + 

where z = x + jy and ζ = R e jθ  maps a circle, with 
centre at the origin and radius a, in the ζ plane, onto 
a straight line segment in the z plane. What is the 
length of the line? What happens if the circle in the 
ζ plane is centred at the origin but is of radius b, 
where b ≠ a?

4.3.5 Exercises

33

1

2z2
-------

34

35

1
2
----

36

37

a2

ζ
------
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Complex series
In Modern Engineering Mathematics we saw that there were distinct advantages in being
able to express a function f (x), such as the exponential, trigonometric and logarithmic
functions, of a real variable x in terms of its power series expansion

f (x) =  = a0 + a1x + a2x 2 + . . . + ar x r + . . . (4.27)

Power series are also very important in dealing with complex functions. In fact, any real
function f (x) which has a power series of the form in (4.27) has a corresponding com-
plex function f (z) having the same power series expansion, that is

f (z) =  = a0 + a1z + a2z 2 + . . . + ar z r + . . . (4.28)

This property enables us to extend real functions to the complex case, so that methods
based on power series expansions have a key role to play in formulating the theory of
complex functions. In this section we shall consider some of the properties of the power
series expansion of a complex function by drawing, wherever possible, an analogy with
the power series expansion of the corresponding real function.

4.4.1 Power series

A series having the form

(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + . . . + ar(z − z0)
r + . . . (4.29)

in which the coefficients ar are real or complex and z0 is a fixed point in the complex
z plane is called a power series about z0 or a power series centred on z0. Where z0 = 0,
the series (4.29) reduces to the series (4.28), which is a power series centred at the
origin. In fact, on making the change of variable z ′ = z − z0, (4.29) takes the form (4.28),
so there is no loss of generality in considering the latter below.

Tests for the convergence or divergence of complex power series are similar to those
used for power series of a real variable. However, in complex series it is essential that
the modulus | an | be used. For example, the geometric series

has a sum to N terms

and converges, if | z | � 1, to the limit 1/(1 − z) as N → ∞. If | z | � 1, the series diverges.
These results appear to be identical with the requirement that | x | � 1 to ensure con-
vergence of the real power series

4.4

anxn

n=0

∞

∑

an zn

n=0

∞

∑

an

n=0

∞

∑

zn

n=0

∞

∑

SN zn

n=0

N−1

∑ 1 − zN

1 − z
---------------= =
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However, in the complex case the geometrical interpretation is different in that the
condition | z | � 1 implies that z lies inside the circle centred at the origin and radius 1
in the z plane. Thus the series ∑∞

n=0 zn converges if z lies inside this circle and diverges
if z lies on or outside it. The situation is illustrated in Figure 4.20.

The existence of such a circle leads to an important concept in that in general there
exists a circle centred at the origin and of radius R such that the series

The radius R is called the radius of convergence of the power series; what happens
when | z | = R is normally investigated as a special case.

We have introduced the radius of convergence based on a circle centred at the
origin, while the concept obviously does not depend on the location of the centre of
the circle. If the series is centred on z0 as in (4.29) then the convergence circle would
be centred on z0. Indeed it could even be centred at infinity, when the power series
becomes

which we shall consider further in Section 4.4.5.
In order to determine the radius of convergence R for a given series, various tests for

convergence, such as those introduced in Modern Engineering Mathematics for real
series, may be applied. In particular, using d’Alembert’s ratio test, it can be shown that
the radius of convergence R of the complex series ∑∞

n=0 anzn is given by

R = (4.30)

provided that the limit exists. Then the series is convergent within the disc | z | � R.
In general, of course, the limit may not exist, and in such cases an alternative method
must be used.

1
1 − x
-------------- xn

n=0

∞

∑=

Figure 4.20
Region of 
convergence 
of ∑∞

n=0 zn.

an zn

n=0

∞

∑ converges if z  � R

diverges if z  � R⎩
⎨
⎧

an z−n

n=0

∞

∑ a0 + 
a1

z
------ + 

a2

z2
------ + . . . + 

ar

zr
----  + . . .=

lim
n→∞

an

an+1

----------
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Find the power series, in the form indicated, representing the function 1/(z − 3) in the
following three regions:

(a) | z | � 3; anzn

(b) | z − 2 | � 1; an(z − 2)n

(c) | z | � 3;

and sketch these regions on an Argand diagram.

Solution We know that the binomial series expansion

is valid for | z | � 1. To solve the problem, we exploit this result by expanding the
function 1/(z − 3) in three different ways:

(a)

for | z | � 1, that is | z | � 3, giving the power series

( | z | � 3)

(b) = [(z − 2) − 1]−1

= −[1 + (z − 2) + (z − 2)2 + . . . ] ( | z − 2 | � 1)

giving the power series

= −1 − (z − 2) − (z − 2)2 − . . . ( | z − 2 |  � 1)

(c)

giving the power series

( | z | � 3)

The three regions are sketched in Figure 4.21. Note that none of the regions includes
the point z = 3, which is termed a singularity of the function, a concept we shall discuss
in Section 4.5.1.

Example 4.15

n=0

∞

∑

n=0

∞

∑

an

zn
------

n=0

∞

∑

1 z+( )n = 1 + nz + n n 1–( )
2!

---------------------z2 + . . . + n n 1–( ) n 2–( ) . . . n − r + 1( )
r!

----------------------------------------------------------------------------- zr + . . .

1
z 3
------------

−1
3
----

– 1 1
3
----z–

------------- −1
3
---- 1 1

3
----z–( )−1

 =  −1
3
---- 1 1

3
---- z 1

3
---- z( )2

. . . 1
3
---- z( )n

. . .+ + + + +[ ]= =

1
3
----

1
z 3–
------------ −1

3
---- − 1

9
----z − 1

27
-------z2 . . .–=

1
z 3
------------  = 1

– z 2–( ) 1–
--------------------------

1
z 3–
------------

1
z 3–
------------  = 1/z

1 3/z–
----------------  = 1

z
---- 1 3

z
---- 3

z
----⎝ ⎠

⎛ ⎞ 2

. . .  + + +

1

z 3–
-----------  = 1

z
---- 3

z2
----- 9

z3
----- . . .+ + +
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298 FUNCTIONS OF A COMPLEX VARIABLE

In Example 4.15 the whole of the circle | z | = 3 was excluded from the three regions
where the power series converge. In fact, it is possible to include any selected point in
the z plane as a centre of the circle in which to define a power series that converges
to 1/(z − 3) everywhere inside the circle, with the exception of the point z = 3. For
example, the point z = 4j would lead to the expansion of

in a binomial series in powers of (z − 4j)/(4j − 3), which converges to 1/(z − 3) inside
the circle

| z − 4j | = | 4j − 3 | = � (16 + 9) = 5

We should not expect the point z = 3 to be included in any of the circles, since the
function 1/(z − 3) is infinite there and hence not defined.

Prove that both the power series ∑∞
n=0 an zn and the corresponding series of derivatives

∑∞
n=0 nanzn−1 have the same radius of convergence.

Solution Let R be the radius of convergence of the power series ∑∞
n=0 an zn. Since limn→∞ (anzn

0) = 0
(otherwise the series has no chance of convergence), if | z0 | � R for some complex number
z0 then it is always possible to choose

| an | � | z0 |−n

for n � N, with N a fixed integer. We now use d’Alembert’s ratio test, namely 

if

if

Figure 4.21 Regions 
of convergence for the 
series in Example 4.15.

1
z − 4j + 4j − 3
--------------------------------------  = 1

4j − 3
--------------- 1

z − 4j
4j − 3
---------------  + 1
--------------------------

Example 4.16

lim
n→∞

an+1----------  � 1 then an zn

an n=0

∞

∑ converges

lim
n→∞

an+1----------  � 1 then an zn

an n=0

∞

∑ diverges
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4.4  COMPLEX SERIES 299

The differentiated series ∑∞
n=0 nanzn−1 satisfies

which, by the ratio test, converges if 0 � | z0 | � R, since | z | � | z0 | and | z0 | can be as
close to R as we choose. If, however, | z | � R then limn→∞ (anzn) ≠ 0 and thus
limn→∞ (nanzn−1) ≠ 0 too. Hence R is also the radius of convergence of the differentiated
series ∑∞

n=1 nanzn−1.

The result obtained in Example 4.16 is important, since if the complex function 

f (z) = 

converges in | z | � R then the derivative

f ′(z) = 

also converges in | z | � R. We can go on differentiating f (z) through its power series
and be sure that the differentiated function and the differentiated power series are equal
inside the circle of convergence.

nanzn−1

n=1

∞

∑  � n an z n−1

n=1

∞

∑  � n
z n−1

z0
n

--------------
n=1

∞

∑

anzn

n=0

∞

∑

nanzn−1

n=1

∞

∑

Find the power series representation for the 
function 1/(z − j) in the regions

(a) | z | � 1

(b) | z | � 1

(c) | z − 1 − j | � �2

Deduce that the radius of convergence of the 
power series representation of this function is 
| z0 − j |, where z = z0 is the centre of the circle of 
convergence (z0 ≠ j).

Find the power series representation of the function 

in the disc | z | � 1. Use Example 4.16 to deduce the 
power series for

(a) (b)  

valid in this same disc.

4.4.2 Exercises

38 39

f z( ) 1

z2 + 1
----------------=

1

z2 + 1( )2
----------------------- 1

z2 + 1( )3
-----------------------

4.4.3 Taylor series

In Modern Engineering Mathematics we introduced the Taylor series expansion 

f (x + a) = f (a) + f (1)(a) + f (2)(a) + . . . = f (n)(a) (4.31)

of a function f (x) of a real variable x about x = a and valid within the interval of con-
vergence of the power series. For the engineer the ability to express a function in such
a power series expansion is seen to be particularly useful in the development of numer-
ical methods and the assessment of errors. The ability to express a complex function as

x
1!
------ x2

2!
------ xn

n!
------

n=0

∞

∑
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a Taylor series is also important to engineers in many fields of applications, such as
control and communications theory. The form of the Taylor series in the complex case
is identical with that of (4.31).

If f (z) is a complex function analytic inside and on a simple closed curve C (usually
a circle) in the z plane then it follows from Example 4.16 that the higher derivatives of
f (z) also exist inside C. If z0 and z0 + h are two fixed points inside C then

f (z0 + h) = f (z0) + hf (1)(z0) + f (2)(z0) + . . . + f (n)(z0) + . . . 

where f (k)(z0) is the k th derivative of f (z) evaluated at z = z0. Normally, z = z0 + h is
introduced so that h = z − z0, and the series expansion then becomes 

The power series expansion (4.32) is called the Taylor series expansion of the com-
plex function f (z) about z0. The region of convergence of this series is |z − z0 | � R,
a disc centred on z = z0 and of radius R, the radius of convergence. Figure 4.22
illustrates the region of convergence. When z0 = 0, as in real variables, the series expan-
sion about the origin is often called a Maclaurin series expansion.

Since the proof of the Taylor series expansion does not add to our understanding
of how to apply the result to the solution of engineering problems, we omit it at this
stage.

Determine the Taylor series expansion of the function

about the point z = j:

(a) directly up to the term (z − j)4,

(b) using the binomial expansion.

Determine the radius of convergence.

Solution (a) The disadvantage with functions other than the most straightforward is that
obtaining their derivatives is prohibitively complicated in terms of algebra.
It is easier in this particular case to resolve the given function into partial
fractions as 

f (z) = f (z0) + (z − z0) f (1)(z0) + f (2)(z0) + . . .

+ f (n)(z0) + . . . = f (n)(z0) (4.32)

h2

2!
------ hn

n!
------

z z0–( )2

2!
-------------------

z z0–( )n

n!
-------------------

z z0–( )n

n!
-------------------

n=0

∞

∑

Figure 4.22 Region 
of convergence of the 
Taylor series.

Example 4.17

f z( ) 1
z z − 2j( )
----------------------=

f z( ) 1
z z − 2j( )
---------------------- 1

2j
------ 1

z − 2j
----------------  − 1

z
----⎝ ⎠

⎛ ⎞= =
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The right-hand side is now far easier to differentiate repeatedly. Proceeding to
determine f (k)( j), we have

f (z) = , so that f ( j) = 1

f (1)(z) = , so that f (1)( j) = 0

f (2)(z) = , so that f (2)( j) = −2

f (3)(z) = , so that f (3)( j) = 0

f (4)(z) = , so that f (4)( j) = 24

leading from (4.32) to the Taylor series expansion

= 1 − (z − j)2 + (z − j)4 + . . . 

(b) To use the binomial expansion, we first express z(z − 2j) as (z − j + j)(z − j − j),
which, being the difference of two squares ((z − j)2 − j2), leads to

f (z) = = [1 + (z − j)2]−1

Use of the binomial expansion then gives

f (z) = 1 − (z − j)2 + (z − j)4 − (z − j)6 + . . . 

valid for | z − j | � 1, so the radius of convergence is 1.

The points where f (z) is infinite (its singularities) are precisely at distance 1 away
from z = j, so this value for the radius of convergence comes as no surprise.

Suggest a function to represent the power series

and determine its radius of convergence.

Solution Set

f (z) = 1 + z + 

1
2j
------ 1

z − 2j
----------------  − 1

z
----⎝ ⎠

⎛ ⎞

1
2j
------ − 1

z − 2j( )2
---------------------  + 

1

z2
-----

1
2j
------

2

z − 2j( )3
---------------------  − 

2

z3
-----

1
2j
------ − 6

z − 2j( )4
---------------------  + 

6

z4
-----

1
2j
------

24

z − 2j( )5
---------------------  − 

24

z5
-------

1
z z − 2j( )
----------------------  = 1 − 2

2!
------ z − j( )2 + 24

4!
------- z − j( )4 + . . .

1

z z − 2j(
---------------------- 1

) z − j( )2 + 1
------------------------------=

Example 4.18

1 z + z2

2!
------ z3

3!
------ . . . zn

n!
------ . . .+ + + + +

z2

2!
------ + z3

3!
------ . . .+ zn

n!
------

n=0

∞

∑=
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Assuming we can differentiate the series for f (z) term by term, we obtain

f ′(z) = 

Hence f (z) is its own derivative. Since ex is its own derivative in real variables, and is
the only such function, it seems sensible to propose that

(4.33)

the complex exponential function. Indeed the complex exponential ez is defined by
the power series (4.33). According to d’Alembert’s ratio test the series ∑∞

n=0 an is
convergent if | an+1/an | → L � 1 as n → ∞, where L is a real constant. If an = z n/n! then
| an+1/an | = | z |/(n + 1) which is less than unity for sufficiently large n, no matter how
big | z | is. Hence ∑∞

n=0 zn/n! is convergent for all z and so has an infinite radius of con-
vergence. Note that this is confirmed from (4.30). Such functions are called entire.

In the same way as we define the exponential function ez by the power series expan-
sion (4.31), we can define the circular functions sin z and cos z by the power series
expansions

both of which are valid for all z. Using these power series definitions, we can readily
prove the result (4.25), namely

e jz = cos z + j sin z

nzn−1

n!
-------------

n=1

∞

∑ zn−1

n − 1( )!
--------------------

n=1

∞

∑ f z( )= =

f z( ) zn

n!
------

n=0

∞

∑= ez=

zsin z − z3

3!
------ + z5

5!
------ − z7

7!
------ + . . . + −1( )n z2n+1

2n + 1( )!
-----------------------  + . . .=

zcos 1 − z2

2!
------ + z4

4!
------ − z6

6!
------ + . . . + −1( )n z2n

2n( )!
--------------  + . . .=

Find the first four non-zero terms of the Taylor 
series expansions of the following functions about 
the points indicated, and determine the radius of 
convergence in each case:

(a)  (z = 1) (b)  (z = 2j)

(c)  (z = 1 + j)

Find the Maclaurin series expansion of the function

up to and including the term in z3.

Without explicitly finding each Taylor series 
expansion, find the radius of convergence of 
the function

about the three points z = 0, z = 1 + j and z = 2 + 2j.
Why is there no Taylor series expansion of this 
function about z = j?

Determine a Maclaurin series expansion 
of f(z) = tan z. What is its radius of 
convergence?

4.4.4 Exercises

40

1
1 + z
-------------- 1

z z − 4j( )
----------------------

1

z2
-----

41

f z( ) 1

1 + z + z2
--------------------------=

42

f z( ) 1

z4 − 1
----------------=

43
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4.4.5 Laurent series

Let us now examine more closely the solution of Example 4.15(c), where the power
series obtained was 

valid for | z | � 3. In the context of the definition, this is a power series about ‘z = ∞’,
the ‘point at infinity’. Some readers, quite justifiably, may not be convinced that there
is a single unique point at infinity. Figure 4.23 shows what is termed the Riemann
sphere. A sphere lies on the complex z plane, with the contact point at the origin O. Let
O′ be the top of the sphere, at the diametrically opposite point to O. Now, for any
arbitrarily chosen point P in the z plane, by joining O′ and P we determine a unique
point P′ where the line O′P intersects the sphere. There is thus exactly one point P′ on
the sphere corresponding to each P in the z plane. The point O′ itself is the only point
on the sphere that does not have a corresponding point on the (finite) z plane; we there-
fore say it corresponds to the point at infinity on the z plane.

Returning to consider power series, we know that, inside the radius of convergence,
a given function and its Taylor series expansion are identically equal. Points at which
a function fails to be analytic are called singularities, which we shall discuss in
Section 4.5.1. No Taylor series expansion is possible about a singularity. Indeed, a
Taylor series expansion about a point z0 at which a function is analytic is only valid
within a circle, centre z0, up to the nearest singularity. Thus all singularities must be
excluded in any Taylor series consideration. The Laurent series representation includes
(or at least takes note of) the behaviour of the function in the vicinity of a singularity.

If f (z) is a complex function analytic on concentric circles C1 and C2 of radii r1 and
r2 (with r2 � r1), centred at z0, and also analytic throughout the region between the
circles (that is, an annular region), then for each point z within the annulus (Figure 4.24)
f (z) may be represented by the Laurent series

1

z 3–
------------ 1

z
---- + 3

z2
-----  + 9

z3
-----  + . . .=

Figure 4.23
The Riemann sphere.

Figure 4.24 Region of
validity of the Laurent 
series.
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where in general the coefficients cr are complex. The annular shape of the region is
necessary in order to exclude the point z = z0, which may be a singularity of f (z), from
consideration. If f (z) is analytic at z = z0 then cn = 0 for n = −1, −2, . . . , −∞, and the
Laurent series reduces to the Taylor series.

The Laurent series (4.34) for f (z) may be written as

and the first sum on the right-hand side, the ‘non-Taylor’ part, is called the principal
part of the Laurent series.

Of course, we can seldom actually sum a series to infinity. There is therefore often more
than theoretical interest in the so-called ‘remainder terms’, these being the difference
between the first n terms of a power series and the exact value of the function. For
both Taylor and Laurent series these remainder terms are expressed, as in the case of
real variables, in terms of the (n + 1)th derivative of the function itself. For Laurent series
in complex variables these derivatives can be expressed in terms of contour integrals
(Section 4.6), which may be amenable to simple computation. Many of the details are
outside the scope of this book, but there is some introductory material in Section 4.6.

For f (z) = 1/z2(z + 1) find the Laurent series expansion about (a) z = 0 and (b) z = −1.
Determine the region of validity in each case.

Solution As with Example 4.15, problems such as this are tackled by making use of the binomial
series expansion

provided that | z | � 1.

(a) In this case z0 = 0, so we need a series in powers of z. Thus

= (1 − z + z2 − z3 + z4 − . . . ) (0 � | z | � 1)

Thus the required Laurent series expansion is

f (z) = 

= . . . + 

+ c1(z − z0) + . . . + cr(z − z0)
r + . . .

(4.34)

cn z z0–( )n

n=−∞

∞

∑
c−r

z z0–( )r
--------------------  + 

c−r+1

z z0–( )r−1
-----------------------  + . . . + 

c−1

z z0–
------------  + c0

f z( ) cn z − z0( )n + cn z − z0( )n

n=0

∞

∑
n=−∞

−1

∑=

Example 4.19

1 z+( )n = 1 nz n n 1–( )
2!

---------------------z2 . . . n n 1–( ) n 2–( ) . . . n r– 1+( )
r!

--------------------------------------------------------------------------- zr . . .+ + + + +

1

z2 1 z+( )
---------------------- 1

z2
----- 1 z+( )−1=

1

z2
-----

1

z2 z 1+( )
---------------------- 1

z2
----- 1

z
----– 1 z– z2 . . .+ +=
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valid for 0 � | z | � 1. The value z = 0 must be excluded because of the first two
terms of the series. The region 0 � | z | � 1 is an example of a punctured disc, a
common occurrence in this branch of mathematics.

(b) In this case z0 = −1, so we need a series in powers of (z + 1). Thus

(z + 1 − 1)−2

= [1 − (z + 1)]−2

= [1 + 2(z + 1) + 3(z + 1)2 + . . . ]

=  + 2 + 3(z + 1) + 4(z + 1)2 + . . . 

valid for 0 � | z + 1 | � 1. Note that in a meniscus-shaped region (that is, the
region of overlap between the two circular regions | z | � 1 and | z + 1 | � 1) both
Laurent series are simultaneously valid. This is quite typical, and not a cause for
concern.

Determine the Laurent series expansions of

valid for

(a) 1 � | z | � 3

(b) | z | � 3

(c) 0 � | z + 1 | � 2

(d) | z | � 1

Solution (a) Resolving into partial functions,

Since | z | � 1 and | z | � 3, we express this as

f (z) = 

= 

= 

= 

1

z2 z 1+( )
---------------------- 1

z 1+( )
------------------=

1
z 1+( )

-----------------

1
z 1+( )

-----------------

1
z 1+
-----------

Example 4.20

f z( ) 1
z 1+( ) z 3+( )

----------------------------------=

f z( ) 1
2
----

1
z 1+
-----------⎝ ⎠

⎛ ⎞  − 1
2
----

1
z 3+
-----------⎝ ⎠

⎛ ⎞=

1
2z
----- 1

1 1/z+
------------------⎝ ⎠

⎛ ⎞  − 1
6
----

1
1 1

3
----z+

-------------⎝ ⎠
⎛ ⎞

1
2z
----- 1 1

z
----+⎝ ⎠

⎛ ⎞ −1

 − 1
6
---- 1 1

3
----z+( )−1

1

2z
------- 1 − 1

z
---- + 1

z2
-----  − 1

z3
-----  + . . . ⎝ ⎠

⎛ ⎞  − 1
6
---- 1 − 1

3
----z + 1

9
----z2 − 1

27
-------z3 + . . . ( )

. . . − 1

2z4
-------  + 1

2z3
-------  − 1

2z2
-------  + 1

2z
-------  − 1

6
---- + 1

18
------- z − 1

54
------- z2 + 1

162
---------- z3 . . .–
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(b)

Since | z | � 3, we express this as

f (z) = 

= 

= 

= 

(c) We can proceed as in Example 4.18. Alternatively, we can take z + 1 = u; then
0 � | u | � 2 and

f (u) = 

= 

giving

(d)

Since | z | � 1, we express this as

f (z) = 

= 

= 

= 

Determine the Laurent series expansion of the function f (z) = z3e1/z about 

(a) z = 0

(b) z = a, a finite, non-zero complex number

(c) z = ∞

Solution (a) From (4.33),

ez = 1 + z +  + . . . (0 � | z | � ∞)

f z( ) 1
2
----

1
z + 1
--------------⎝ ⎠

⎛ ⎞  − 1
2
----

1
z + 3
--------------⎝ ⎠

⎛ ⎞=

1
2z
----- 1

1 1/z+
------------------⎝ ⎠

⎛ ⎞  − 1----- 1
2z 1 3/z+

------------------⎝ ⎠
⎛ ⎞

1
2z
----- 1 + 1

z
----⎝ ⎠

⎛ ⎞ −1

 − 1
2z
----- 1 + 3

z
----⎝ ⎠

⎛ ⎞ −1

1

2z
------- 1 − 1

z
---- + 1

z2
-----  − 1

z3
-----  + . . . ⎝ ⎠

⎛ ⎞  − 1

2z
------- 1 − 3

z
---- + 9

z2
-----  − 27

z3
------- + . . . ⎝ ⎠

⎛ ⎞

1

z2
-----  − 4

z3
-----  + 13

z4
------- − 40

z5
------- + . . .

1
u u 2+( )
-------------------- 1

2u 1 1
2
----u+( )

---------------------------=

1
2u
------- 1 1

2
----u– 1

4
----u2 1

8
----u3– . . .+ +( )

f z( ) 1
2 z 1+( )
------------------- 1

4
----– 1

8
---- z 1+( ) 1

16
------- z 1+( )2 . . .+–+=

f z( ) 1
2 z 1+( )
-------------------  − 

1
2 z 3+( )
-------------------=

1
2 1 z+( )
------------------- 1

6 1 1
3
----z+( )

-----------------------–

1
2
---- 1 z+( )−1 1

6
---- 1 1

3
----z+( )−1–

1
2
---- 1( z– z2 z3– . . . ) + + 1

6
---- 1( 1

3
----z– 1

9
----z2 1

27
-------z3– . . . )+ +–

1
3
---- 4

9
----z– 13

27
-------z2 40

81
-------z3– . . .+ +

Example 4.21

z2

2!
------
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Substituting 1/z for z, we obtain

e1/z = 1 +  + . . . (0 � | z | � ∞)

so that

z3 e1/z = z3 + z2 +  + . . . (0 � | z | � ∞)

This series has infinitely many terms in its principal part, but stops at z3 (it is
written back to front). Series with never-ending principal parts are a problem, and
fortunately are uncommon in engineering. Note also that the series is valid in an
infinite punctured disc.

(b) The value of f (a) must be a3 e1/a, which is not infinite since a ≠ 0. Therefore f (z)
has a Taylor series expansion

f (z) = f (a) + (z − a) f (1)(a) + f (2)(a) + . . . 

about z = a. We have

f (1)(z) = (z 3 e1/z) = 3z2 e1/z − z e1/z

f (2)(z) = (3z2 e1/z − z e1/z) = 6z e1/z − 4 e1/z + e1/z

giving the series as

z3 e1/z = a3 e1/a + (z − a)(3a2 e1/a − a e1/a )

+  + . . . 

which is valid in the region | z − a | � R, where R is the distance between the
origin, where f (z) is not defined, and the point a; hence R = | a |. Thus the region
of validity for this Taylor series is the disc | z − a | � | a |.

(c) To expand about z = ∞, let w = 1/z, so that 

Expanding about w = 0 then gives

= (0 � | w | � ∞)

Note that this time there are only three terms in the principal part of f (z)(= f (1/w)).

1

z
---- + 

1---------
2!z2

z

2!
------ 1

3!
------ 1

4!z
------- 1

5!z2
---------+ + +

z a–( )2

2!
-------------------

d
dz
-----

d
dz
----- 1

z2
-----

1
2!
------ z a–( )2 6a e1/a 4e1/a– 1

a2
------ e1/a+⎝ ⎠

⎛ ⎞

f z( ) 1

w3
------- ew=

f 1

w
-----⎝ ⎠

⎛ ⎞ 1

w3
------- 1 w w2

2!
------- w3

3!
------- . . . + + + +⎝ ⎠

⎛ ⎞=

1

w3
------- 1

w2
------- 1

2!w
---------- 1

3!
------ w

4!
------ . . .+ + + + +
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Singularities, zeros and residues 

4.5.1 Singularities and zeros

As indicated in Section 4.4.5 a singularity of a complex function f (z) is a point of
the z plane where f (z) ceases to be analytic. Normally, this means f (z) is infinite at such
a point, but it can also mean that there is a choice of values, and it is not possible to
pick a particular one. In this chapter we shall be mainly concerned with singularities
at which f (z) has an infinite value. A zero of f(z) is a point in the z plane at which
f (z) = 0.

Singularities can be classified in terms of the Laurent series expansion of f (z) about
the point in question. If f (z) has a Taylor series expansion, that is a Laurent series
expansion with zero principal part, about the point z = z0, then z0 is a regular point of
f (z). If f (z) has a Laurent series expansion with only a finite number of terms in its
principal part, for example

f (z) =  + . . . +  + a0 + a1(z − z0) + . . . + am(z − z0)
m + . . . 

then f (z) has a singularity at z = z0 called a pole. If there are m terms in the principal
part, as in this example, then the pole is said to be of order m. Another way of defining
this is to say that z0 is a pole of order m if

(z − z0)
m f (z) = a−m (4.35)

where a−m is finite and non-zero. If the principal part of the Laurent series for f (z) at
z = z0 has infinitely many terms, which means that the above limit does not exist for any
m, then z = z0 is called an essential singularity of f (z). (Note that in Example 4.20 the
expansions given as representations of the function f (z) = 1/[(z + 1)(z + 3)] in parts (a)
and (b) are not valid at z = 0. Hence, despite appearances, they do not represent a

4.5

a−m

z z0–( )m
---------------------

a−1

z z0–( )
-----------------

z→z0

lim

Determine the Laurent series expansion of

about (a) z = 0 and (b) z = 1, and specify the region 
of validity for each.

Determine the Laurent series expansion of the 
function

f(z) = z2 sin

about the points

(a) z = 0 (b) z = ∞

(c) z = a, a finite non-zero complex number

(For (c), do not calculate the coefficients explicitly.)

Expand

f(z) = 

in a Laurent series expansion valid for

(a) | z | � 1 (b) 1 � | z | � 2 (c) | z | � 2

(d) | z − 1 | � 1 (e) 0 � | z − 2 | � 1

4.4.6 Exercises

44

f z( ) 1

z z 1–( )2
--------------------=

45

1
z
----

46

z
z 1–( ) 2 z–( )

--------------------------------
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function which possesses an essential singularity at z = 0. In this case f (z) is regular at
z = 0 with a value .)

If f (z) appears to be singular at z = z0, but it turns out to be possible to define a Taylor
series expansion there, then z = z0 is called a removable singularity. The following
examples illustrate these cases.

(a) f (z) = z−1 has a pole of order one, called a simple pole, at z = 0.

(b) f (z) = (z − 1)−3 has a pole of order three at z = 1.

(c) f (z) = e1/(z−j) has an essential singularity at z = j.

(d) The function

has a zero at z = 1, a simple pole at z = −2 and a pole of order two at z = 3. 

(e) The function

is not defined at z = 0, and appears to be singular there. However, defining

sinc z = 

gives a function having a Taylor series expansion

sinc z = 1 − 

that is regular at z = 0. Therefore the (apparent) singularity at z = 0 has been
removed, and thus f (z) = (sin z)/z has a removable singularity at z = 0.

Functions whose only singularities are poles are called meromorphic and, by and
large, in engineering applications of complex variables most functions are meromorphic.
To help familiarize the reader with these definitions, the following example should
prove instructive.

Find the singularities and zeros of the following complex functions:

(a) (b) 

(c) (d) 

Solution (a) For

f (z) = 

1
3
----

f z( ) z 1–

z 2+( ) z 3–( )2
------------------------------------=

f z( ) zsin
z

------------=

zsin( )/z z ≠ 0( )
1 z = 0( )⎩

⎨
⎧

z2

3!
------ + z4

5!
------ − . . .

Example 4.22

1

z4 z2 1 j+( )– j+
-------------------------------------- z 1–

z4 z2 1 j+( )– j+
--------------------------------------

z 1–( )sin

z4 z2 1 j+( )– j+
-------------------------------------- 1

z4 z2 1 j+( )– j+[ ]3
---------------------------------------------

1

z4 z2 1 j+( )– j+
--------------------------------------
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the numerator is never zero, and the denominator is only infinite when z is
infinite. Thus f (z) has no zeros in the finite z plane. The denominator is zero
when

z4 − z2(1 + j) + j = 0

which factorizes to give

(z2 − 1)(z2 − j) = 0

leading to

z2 = 1 or j

so that the singularities are at

z = +1, −1, (1 + j)/�2, (−1 − j)/�2 (4.36)

all of which are simple poles since none of the roots are repeated.

(b) The function

f (z) = 

is similar to f (z) in (a), except that it has the additional term z − 1 in the numer-
ator. Therefore, at first glance, it seems that the singularities are as in (4.36).
However, a closer look indicates that f (z) can be rewritten as

and the factor z − 1 cancels, rendering z = 1 a removable singularity, and reducing
f (z) to

which has no (finite) zeros and z = −1, (1 + j) and (−1 − j) as simple poles.

(c) In the case of 

f (z) = 

the function may be rewritten as

f (z) = 

Now

 → 1 as z → 1

so once again z = 1 is a removable singularity. Also, as in (b), z = −1, (1 + j)
and (−1 − j) are simple poles and the only singularities. However,

sin(z − 1) = 0

z 1–

z4 z2 1 j+( )– j+
--------------------------------------

f z( ) z 1–
z 1–( ) z 1+( ) z �1

2
---- 1 j+( )+[ ] z �1

2
---- 1 j+( )–[ ]

-------------------------------------------------------------------------------------------------------=

f z( ) 1
z 1+( ) z �1

2
---- 1 j+( )+[ ] z �1

2
---- 1 j+( )–[ ]

----------------------------------------------------------------------------------------=

�1
2
---- �1

2
----

z 1–( )sin

z4 z2 1 j+( )– j+
--------------------------------------

z 1–( )sin
z 1–

----------------------- 1
z 1+( ) z �1

2
---- 1 j+( )+[ ] z �1

2
---- 1 j+( )–[ ]

----------------------------------------------------------------------------------------

z 1–( )sin
z 1–

-----------------------

�1
2
----

�1
2
----
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has the general solution z = 1 + Nπ (N = 0, ±1, ±2, . . . ). Thus, apart from N = 0,
all of these are zeros of f (z).

(d) For

f (z) = 

factorizing as in (b), we have

f (z) = 

so −1, +1, (1 + j) and (−1 − j) are still singularities, but this time they are
triply repeated. Hence they are all poles of order three. There are no zeros.

1

z4 z2 1 j+( )– j+[ ]3
---------------------------------------------

1

z 1–( )3 z 1+( )3
z �1

2
---- 1 j+( )+[ ]3

z �1
2
---- 1 j+( )–[ ]3

---------------------------------------------------------------------------------------------------------------

�1
2
---- �1

2
----

Determine the location of, and classify, the 
singularities and zeros of the following functions. 
Specify also any zeros that may exist.

(a) (b) (c) 

(d) coth z (e) (f ) ez/(1−z)

(g) (h) 

(i)

Expand each of the following functions in a Laurent 
series about z = 0, and give the type of singularity 
(if any) in each case:

(a)

(b)

(c) z−1 cosh z−1

(d) tan−1(z2 + 2z + 2)

Show that if f(z) is the ratio of two polynomials 
then it cannot have an essential singularity.

4.5.2 Exercises

47

zcos

z2
------------- 1

z j+( )2 z j–( )
-------------------------------- z

z4 1
--------------

–

zsin

z2 π2+
-----------------

z 1–

z2 1+
------------- z j+

z 2+( )3 z 3–( )
------------------------------------

1

z2 z2 4z– 5+( )
------------------------------------

48

1 zcos–----------------------
z

ez 2

z3
-----

49

4.5.3 Residues

If a complex function f (z) has a pole at the point z = z0 then the coefficient a−1 of the
term 1/(z − z0) in the Laurent series expansion of f (z) about z = z0 is called the residue
of f (z) at the point z = z0. The importance of residues will become apparent when
we discuss integration in Section 4.6. Here we shall concentrate on efficient ways
of calculating them, usually without finding the Laurent series expansion explicitly.
However, experience and judgement are sometimes the only help in finding the easiest
way of calculating residues. First let us consider the case when f (z) has a simple pole
at z = z0. This implies, from the definition of a simple pole, that

f (z) =  + a0 + a1(z − z0) + . . . 

in an appropriate annulus S � |z − z0 | � R. Multiplying by z − z0 gives 

(z − z0) f (z) = a−1 + a0(z − z0) + . . . 

a−1

z z0–
------------
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which is a Taylor series expansion of (z − z0) f (z). If we let z approach z0, we then obtain
the result 

Hence evaluating this limit gives a way of calculating the residue at a simple pole.

Determine the residues of

f (z) = 

at each of its poles in the finite z plane.

Solution Factorizing the denominator, we have

so that f (z) has simple poles at z = j, − j and . Using (4.37) then gives

residue
= 

at z = j

= 

residue
= 

at z = −j
 

= 

residue
= 

at z = 

= 

Note in this last case the importance of expressing 2z − 1 as 2(z − ).

Determine the residues of the function 1/(1 + z4) at each of its poles in the finite z plane.

Solution The function 1/(1 + z4) has poles where

1 + z4 = 0

that is, at the points where

z4 = −1 = eπj+2πnj

residue at a = [(z − z0) f (z)] = a−1simple pole z0 
(4.37)lim

z→z0

Example 4.23

2z

z2 1+( ) 2z 1–( )
---------------------------------------

f z( ) = 2z
z j–( ) z j+( ) 2z 1–( )

---------------------------------------------------

1
2
----

lim z j–( ) 2z
z j–( ) z j+( ) 2z 1–( )

---------------------------------------------------
z→j

2j
2j 2j 1–( )
------------------------- −1 2j+

5
---------------=

lim z j+( ) 2z
z j–( ) z j+( ) 2z 1–( )

---------------------------------------------------
z→−j

−2j
−2j −2j 1–( )
------------------------------- −1 2j–

5
---------------=

lim z 1
2
----–( ) z

z j–( ) z j+( ) z 1
2
----–( )

---------------------------------------------
z→1

2
----

1
2
----

1
2
----

1
2
---- j–( ) 1

2
---- j+( )

----------------------------- 2
5
----=

1
2
----

Example 4.24
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with n an integer. Recalling how to determine the roots of a complex number, these
points are

z = eπj/4+πjn/2 (n = 0, 1, 2, 3)

that is

z = eπj/4, e3πj/4, e5πj/4, e7πj/4

or

z = (1 + j)/�2, (−1 + j)/�2, (−1 − j)/�2, (1 − j)/�2

To find the residue at the point z0, we use (4.37), giving

residue
 =

at z0

where z0 is one of the above roots of z4 = −1. It pays to use L’Hôpital’s rule before
substituting for a particular z0. This is justified since (z − z0)/(1 + z4) is of the indeter-
minate form 0/0 at each of the four simple poles. Differentiating numerator and
denominator gives

= 

= 

since 4z 3 is not zero at any of the poles; 1/4z 3
0 is thus the value of each residue at z = z0.

Substituting for the four values (±1 ±  j)/�2 gives the following:

residue
= 

at z = (1 + j)/�2

residue
= 

at z = (1 − j)/�2

residue
= 

at z = (−1 + j)/�2

residue
= 

at z = (−1 − j)/�2

Finding each Laurent series for the four poles explicitly would involve far more
difficult manipulation. However, the enthusiastic reader may like to check at least one
of the above residues.

Next suppose that we have a pole of order two at z = z0. The function f (z) then has
a Laurent series expansion of the form

f (z) =  + a0 + a1(z − z0) + . . .

lim
z z0–

1 z4+
-------------

⎝ ⎠
⎛ ⎞

z→z0

lim
z z0–

1 z4+
-------------

⎝ ⎠
⎛ ⎞

z→z0

lim 1

4z3
-------⎝ ⎠

⎛ ⎞
z→z0

1

4z0
3

-------

1

4 � 1
2
----( )3

1 j+( )3
---------------------------------- − 1 j+( )/4�2=

1

4 � 1
2
----( )3

1 j–( )3
---------------------------------- −1 j+( )/4�2=

1

4 � 1
2
----( )3 −1 j+( )3

-------------------------------------- 1 j–( )/4�2=

1

4 � 1
2
----( )3 −1 j–( )3

------------------------------------ 1 j+( )/4�2=

a−2

z z0–( )2
-------------------  + 

a−1

z z0–
------------
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Again, we are only interested in isolating the residue a−1. This time we cannot use
(4.37). Instead, we multiply f (z) by (z − z0)

2 to obtain

(z − z0)
2 f (z) = a−2 + a−1(z − z0) + a0(z − z0)

2 + . . . 

and we differentiate to eliminate the unwanted a−2:

[(z − z0)
2f (z)] = a−1 + 2a0(z − z0) + . . . 

Letting z tend to z0 then gives

the required residue.

Determine the residues of

at each of its poles in the finite z plane.

Solution Factorizing the denominator gives

so that f(z) has simple poles at z = 2j and z = −2j and a pole of order two at z = −1.
Using (4.37),

d
dz
-----

lim
z→z0

d
dz
----- z z0–( )2f z( ) = a−1

We now have the essence of finding residues, so let us recapitulate and generalize.
If f (z) has a pole of order m at z − z0, we first multiply f (z) by (z − z0)

m. If m � 2, we
then need to differentiate as many times as it takes (that is, m − 1 times) to make
a−1 the leading term, without the multiplying factor z − z0. The general formula for
the residue at a pole of order m is thus 

(4.38)

where the factor (m − 1)! arises when the term a−1(z − z0)
m−1 is differentiated m − 1

times. This formula looks as difficult to apply as finding the Laurent series expansion
directly. This indeed is often so; and hence experience and judgement are required.
A few examples will help to decide on which way to calculate residues. A word
of warning is in order here: a common source of error is confusion between the
derivative in the formula for the residue, and the employment of L’Hôpital’s rule to
find the resulting limit.

1
m 1–( )!

--------------------- lim
z→z0

dm−1

dzm−1
------------ z z0–( )mf z( )[ ]

⎩ ⎭
⎨ ⎬
⎧ ⎫

Example 4.25

f z( ) = z2 2z–

z 1+( )2 z2 4+( )
--------------------------------------

f z( ) = z2 2z–

z 1+( )2 z 2j–( ) z 2j+( )
-------------------------------------------------------
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residue
= 

at z = 2j

= 

residue
= 

at z = −2j 

= 

Using (4.38) with m = 2 we know that

residue = 
at z = −1 

=  = 

Determine the residues of the following functions at the points indicated:

(a) (z = j) (b) (z = 0) (c) (z = −1)

Solution (a) Since

and ez is regular at z = j, it follows that z = j is a pole of order two. Thus, from (4.38),

residue = 

=  = 

= 

Since e j = cos1 + j sin1, we calculate the residue at z = j as 0.075 − j0.345.

(b) The function [(sin z)/z2]3 has a pole at z = 0, and, since (sin z/z) → 1 as z → 0,
(sin2z)/z2 may also be defined as 1 at z = 0. Therefore, since

the singularity at z = 0 must be a pole of order three. We could use (4.38) to obtain
the residue, which would involve determining the second derivative, but it is easier
in this case to derive the coefficient of 1/z from the Laurent series expansion 

lim
z→2j

z 2j–( ) z2 2z–

z 1+( )2 z 2j–( ) z 2j+( )
-------------------------------------------------------

−4 4j–

2j 1+( )2 4j( )
-------------------------------- 1

25
------- 7 j+( )=

lim
z→ −2j

z 2j+( ) z2 2z–

z 1+( )2 z 2j–( ) z 2j+( )
-------------------------------------------------------

−4 4j+

−2j 1+( )2 −4j( )
-------------------------------------- 1

25
------- 7 j–( )=

1
1!
------ lim

z→ −1

d
dz
----- z 1+( )2 z2 2z–

z 1+( )2 z2 4+( )
--------------------------------------

lim
z→ −1

z2 4+( ) 2z 2–( ) z2 2z–( ) 2z( )–

z2 4+( )2
----------------------------------------------------------------------------- 5( ) −4( ) 3( ) −2( )–

25
---------------------------------------------- −14

25
-------=

Example 4.26

ez

1 z2+( )2
-------------------- zsin

z2
------------⎝ ⎠

⎛ ⎞ 3 z4

z 1+( )3
------------------

ez

z2 1+( )2
-------------------- ez

z j+( )2 z j–( )2
-----------------------------------=

lim
z→j

d
dz
----- z j–( )2 ez

z j+( )2 z j–( )2
------------------------------------

lim
z→j

d
dz
----- ez

z j+( )2
-------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

lim
z→j

z j+( )2ez 2 z j+( )ez–

z j+( )4
----------------------------------------------------

2j( )2e j 2 2j( )e j–

2j( )4
--------------------------------------- −1

4
---- 1 j+( )ej=

zsin

z2
------------⎝ ⎠

⎛ ⎞ 3
 = z3sin

z3
----------- 1

z3
-----
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giving

Taking the cube of this series, we have

Hence the residue at z = 0 is − .

(c) The function z4/(z + 1)3 has a triple pole at z = −1, so, using (4.38), 

residue =  = 

= 

Residues are sometimes difficult to calculate using (4.38), especially if circular func-
tions are involved and the pole is of order three or more. In such cases direct calculation
of the Laurent series expansion using the standard series for sin z and cos z together with
the binomial series, as in Example 4.26(b), is the best procedure.

zsin
z

------------ 1 − z2

3!
------ + z4

5!
------ − . . .=

zsin

z2
------------ 1

z
---- − 1

6
---- z + 1

120
---------- z3 − . . .=

zsin

z2
------------⎝ ⎠

⎛ ⎞ 3
 =  1

z
---- − 1

6
---- z + 1

120
---------- z3 − . . .⎝ ⎠

⎛ ⎞ 3 1

z3
-----  − 3 1

z2
----- z

6
---  + . . . 1

z3
-----  − 1

2z
-------  + . . .= =

1
2
----

lim
z→−1

1
2
----

d2

dz2
------- z 1+( )3 z4

z 1+( )3
------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

lim
z→−1

1
2
----

d2

dz2
------- z4( )

lim
z→−1

1
2
---- 4 3z2×× 6 −1( )2 6= =

Determine the residues of the following rational 
functions at each pole in the finite z plane:

(a) (b) 

(c) (d) 

(e) (f ) 

(g) (h)

Calculate the residues at the simple poles indicated 
of the following functions:

(a) (z = 0) (b) (z = eπj/3)

(c) (z = eπj/4) (d) (z = π)

(e) (z = j)

The following functions have poles at the points 
indicated. Determine the order of the pole and the 
residue there.

(a) (z = 0)

(b) (z = −1)

(c) (z = nπ, n an integer)

(Hint: use lim u→0(sin u)/u = 1 (u = z − nπ), after 
differentiating, to replace sin u by u under the limit.)

4.5.4 Exercises

50

2z 1+
z2 z– 2–
--------------------- 1

z2 1 z–( )
--------------------

3z2 2+
z 1–( ) z2 9+( )

------------------------------------ z3 z2 z 1–+–

z3 4z+
---------------------------------

z6 4z4 z3 1+ + +
z 1–( )5

--------------------------------------- z 1+
z 1–
-----------⎝ ⎠

⎛ ⎞ 2

z 1+
z 1–( )2 z 3+( )

------------------------------------ 3 4z+

z3 3z2 2z+ +
------------------------------

51

zcos
z

------------- zsin

z4 z2 1+ +
------------------------

z4 1–

z4 1+
------------- z

zsin
------------

1

z2 1+( )2
--------------------

52

zcos

z3
-------------

z2 2z–

z 1+( )2 z2 4+( )
-------------------------------------

ez

z2sin
------------
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Contour integration
Consider the definite integral

of the function f (z) of a complex variable z, in which z1 and z2 are a pair of complex
numbers. This implies that we evaluate the integral as z takes values, in the z plane,
from the point z1 to the point z2. Since these are two points in a plane, it follows that to
evaluate the definite integral we require that some path from z1 to z2 be defined. It is
therefore clear that a definite integral of a complex function f (z) is in fact a line integral.

Line integrals were considered in Section 3.4.1. Briefly, for now, a line integral in
the (x, y) plane, of the real variables x and y, is an integral of the form

(4.39)

where C denotes the path of integration between two points A and B in the plane. In the
particular case when

(4.40)

the integrand P(x, y) dx + Q(x, y) dy is a total differential, and the line integral is
independent of the path C joining A and B.

In this section we introduce contour integration, which is the term used for evaluat-
ing line integrals in the complex plane.

4.6.1 Contour integrals

Let f (z) be a complex function that is continuous at all points of a simple curve C in the
z plane that is of finite length and joins two points a and b. (We have not gone into great
detail regarding the question of continuity for complex variables. Suffice it to say that
the intuitive concepts described in Chapter 9 of Modern Engineering Mathematics for
real variables carry over to the case of complex variables.) Subdivide the curve into n
parts by the points z1, z2, . . . , zn−1, taking z0 = a and zn = b (Figure 4.25). On each arc
joining zk−1 to zk (k = 1, . . . , n) choose a point Tk. Form the sum

4.6

�
z1

z2

f z( ) dz

�
C

P x y,( ) dx Q x y,( ) dy+[ ]

∂P------ ∂Q
∂y ∂x

-------=

Figure 4.25 
Partitioning of 
the curve C.
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Sn = f (T1)(z1 − z0) + f (T2)(z2 − z1) + . . . + f (Tn)(zn − zn−1)

Then, writing zk − zk−1 = Δzk, Sn becomes

If we let n increase in such a way that the largest of the chord lengths |Δzk | approaches
zero then the sum Sn approaches a limit that does not depend on the mode of subdivision
of the curve. We call this limit the contour integral of f (z) along the curve C:

Evaluate the contour integral �C z 2dz along the path C from −1 + j to 5 + j3 and com-
posed of two straight line segments, the first from −1 + j to 5 + j and the second from
5 + j to 5 + j3.

Solution The path of integration C is shown in Figure 4.26. Since

z2 = (x + jy)2 = (x2 − y2) + j2xy

= (4.41)

If we take z = x + jy and express f (z) as

f (z) = u(x, y) + jv(x, y)

then it can be shown from (4.41) that

or

(4.42)

Both of the integrals on the right-hand side of (4.42) are real line integrals of the
form (4.39), and can therefore be evaluated using the methods developed for such
integrals.

Sn =  f Tk( ) Δzk

k=1

n

∑

�
C

f z( ) dz lim
Δzk →0

   f Tk( ) Δzk

k=1

n

∑

�
C

f z( ) dz �
C

u x y,( ) jv x y,( )+[ ] dx j dy+( )=

�
C

f z( ) dz �
C

u x y,( ) dx − v x y,( ) dy[ ]=

+ j�
C

v x y,( ) dx u x y,( ) dy+[ ]

Example 4.27

Figure 4.26
Path of integration 
for Example 4.27.
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it follows from (4.42) that

Along AB, y = 1 and dy = 0, so that

IAB = 

= [ x3 − x]5
−1 + j[x2]5

−1 = 36 + j24

Along BD, x = 5 and dx = 0, so that

IBD = 

= [−5y2]3
1 + j[25y − y3]3

1

= −40 + j

Thus

Show that �C (z + 1) dz = 0, where C is the boundary of the square with vertices at z = 0,
z = 1 + j0, z = 1 + j1 and z = 0 + j1.

Solution The path of integration C is shown in Figure 4.27.
Since z + 1 = (x + 1) + jy, it follows from (4.42) that

Along OA, y = 0 and dy = 0, so that

Along AB, x = 1 and dx = 0, so that

Along BD, y = 1 and dy = 0, so that

Along DO, x = 0 and dx = 0, so that

I = �
C

z2 dz = �
C

x2 y2–( ) dx 2xy dy–[ ] j�
C

2xy dx x2 y2–( ) dy+[ ]+

�
−1

5

x2 1–( ) dx j�
−1

5

2x dx+

1
3
----

�
1

3

−10y dy j�
1

3

25 y2–( ) dy+

1
3
----

124
3

----------

�
C

z2 dz IAB IBD+ 36 j24+( ) −40 j124
3

----------+( )+ −4 j196
3

----------+= = =

Example 4.28

Figure 4.27 Path 
of integration for 
Example 4.28.

I = �
C

z 1+( ) dz �
C

x 1+( ) dx y dy–[ ] j�
C

y dx x 1+( ) dy+[ ]+=

IOA = �
0

1

x 1+( ) dx 3
2
----=

IAB �
0

1

y– dy j�
0

1

2 dy+ −1
2
---- j2+= =

IBD �
1

0

x 1+( ) dx j�
1

0

dx+ −3
2
---- − j= =

www.20file.org

www.semeng.ir


320 FUNCTIONS OF A COMPLEX VARIABLE

Thus

4.6.2 Cauchy’s theorem

The most important result in the whole of complex variable theory is called Cauchy’s
theorem and it provides the foundation on which the theory of integration with respect
to a complex variable is based. The theorem may be stated as follows.

Cauchy’s theorem

(Note the use of the symbol �C to denote integration around a closed curve, with the
convention being that the integral is evaluated travelling round C in the positive or
anticlockwise direction.)

Proof To prove the theorem, we make use of Green’s theorem in a plane, which was intro-
duced in Section 3.4.5. At this stage a statement of the theorem is sufficient.

If C is a simple closed curve enclosing a region A in a plane, and P(x, y) and Q(x, y) are
continuous functions with continuous partial derivatives, then

(4.43)

Returning to the contour integral and taking

f (z) = u(x, y) + jv(x, y), z = x + jy

we have from (4.42)

(4.44)

Since f (z) is analytic, the Cauchy–Riemann equations

are satisfied on C and within the region R enclosed by C.

IDO = �
1

0

y– dy j�
1

0

dx+ 1
2
---- − j=

�
C

z 1+( ) dz IOA IAB IBD IDO+ + +  = 0=

If f (z) is an analytic function with derivative f ′(z) that is continuous at all points
inside and on a simple closed curve C then

Theorem 4.1

�
C

f z( ) dz = 0

�
C

Pdx + Q dy( ) = ��
A

∂Q-------  − ∂P
∂x ∂y

------⎝ ⎠
⎛ ⎞ dx dy

�
C

f z( ) dz = �
C

u dx v dy–( ) + j�
C

v dx u dy+( )

∂u
∂x
------- ∂v

∂y
-------, ∂v

∂x
------- ∂u

∂y
-------–= =
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Since u(x, y) and v(x, y) satisfy the conditions imposed on P(x, y) and Q(x, y) in
Green’s theorem, we can apply (4.43) to both integrals on the right-hand side of (4.44)
to give

= 0 + j0

by the Cauchy–Riemann equations. Thus

as required.

In fact, the restriction in Cauchy’s theorem that f ′(z) has to be continuous on C can
be removed and so make the theorem applicable to a wider class of functions. A revised
form of Theorem 4.1, with the restriction removed, is referred to as the fundamental
theorem of complex integration. Since the proof that f ′(z) need not be continuous on
C was first proposed by Goursat, the fundamental theorem is also sometimes referred
to as the Cauchy–Goursat theorem. We shall not pursue the consequences of relaxa-
tion of this restriction any further in this book.

In practice, we frequently need to evaluate contour integrals involving functions such as

that have singularities associated with them. Since the function ceases to be analytic
at such points, how do we accommodate for a singularity if it is inside the contour of
integration? To resolve the problem the singularity is removed by deforming the contour.

First let us consider the case when the complex function f (z) has a single isolated
singularity at z = z0 inside a closed curve C. To remove the singularity, we surround it
by a circle γ , of radius ρ, and then cut the region between the circle and the outer
contour C by a straight line AB. This leads to the deformed contour indicated by the
arrows in Figure 4.28. In the figure the line linking the circle γ  to the contour C is
shown as a narrow channel in order to enable us to distinguish between the path A to
B and the path B to A. The region inside this deformed contour is shown shaded in the
figure (recall that the region inside a closed contour is the region on the left as we travel
round it). Since this contains no singularities, we can apply Cauchy’s theorem and write

�
C

f z( ) dz = ��
R

− ∂v
∂x
------- − ∂u

∂y
-------⎝ ⎠

⎛ ⎞ dx dy  + j��
R

∂u
∂x
-------  − ∂v

∂y
-------⎝ ⎠

⎛ ⎞ dx dy

�
C

f z( ) dz = 0

end of theorem

f1 z( ) = 1

z 2–
----------- , f2 z( ) = z

z 3–( )2 z 2+( )
------------------------------------

Figure 4.28
Deformed contour for 
an isolated singularity.
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Since

this reduces to

(4.45)

with the + indicating the change of sense from clockwise to anticlockwise around the
circle γ .

Evaluate the integral �C dz/z around

(a) any contour containing the origin;

(b) any contour not containing the origin.

Solution (a) f (z) = 1/z has a singularity (a simple pole) at z = 0. Hence, using (4.45), the
integral around any contour enclosing the origin is the same as the integral around
a circle γ , centred at the origin and of radius ρ0. We thus need to evaluate

As can be seen from Figure 4.29, on the circle γ

z = ρ0 e jθ  (0 � θ � 2π)

so 

dz = jρ0 e jθ dθ

leading to

Hence if C encloses the origin then

(b) If C does not enclose the origin then, by Cauchy’s theorem,

since 1/z is analytic inside and on any curve that does not enclose the origin.

�
C

f z( ) dz + �
AB

f z( ) dz + 1
γ

f z( ) dz + �
BA

f z( ) dz = 0

�
BA

−�
AB

, and  �
γ

−1
γ

= =

�
C

f z( ) dz = �
γ +

f z( ) dz

Example 4.29

�
γ

1
z
---- dz

Figure 4.29 A circle 
of radius ρ0 centred 
at the origin.

�
γ

1
z
---- dz �

0

2π
jρ0 ejθ

ρ0 ejθ
--------------dθ �

0

2π

j dθ 2πj= = =

�
C

dz
z

----- 2πj=

�
C

dz
z

----- 0=
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Generalize the result of Example 4.29 by evaluating

where n is an integer, around any contour containing the origin.

Solution If n � 0, we can apply Cauchy’s theorem straight away (or evaluate the integral directly)
to show the integral is zero. If n � 1, we proceed as in Example 4.29 and evaluate the
integral around a circle, centred at the origin. Taking z = ρ0 e jθ  as in Example 4.29, we have

where ρ0 is once more the radius of the circle. If n ≠ 1,

since e2π jN = 1 for any integer N. Hence

(n ≠ 1)

Evaluate the integral

around any contour C containing the point z = 2 + j.

Solution The function

has a singularity (simple pole) at z = 2 + j. Hence, using (4.45), the integral around any
contour C enclosing the point z = 2 + j is the same as the integral around a circle γ
centred at z = 2 + j and of radius ρ . Thus we need to evaluate

Example 4.30

�
C

dz

zn
-----

�
C

dz

zn
----- �

0

2π
jρ0 ejθ

ρ0
n enjθ

-------------- dθ=

�
C

dz

zn
----- j�

0

2π
dθ

ρ0
n−1 e n−1( ) jθ

------------------------- jρ0
1−n e 1−n( )jθ

1

                   

n–( )j
------------------

0

2π ρ0
1−n

1 n–
------------- e 1−n( )2π j 1–( )= 0= = =

�
C

dz

zn
----- 0=

In Examples 4.29 and 4.30 we have thus established the perhaps surprising result
that if C is a contour containing the origin then

If C does not contain the origin, the integral is of course zero by Cauchy’s theorem.

�
C

dz

zn
-----

2πj n = 1( )
0 n any other integer( )⎩

⎨
⎧

=

Example 4.31

�
C

dz
z 2– j–
--------------------

f z( ) 1
z 2– j–
--------------------=

�
γ

dz
z 2– j–
--------------------
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As can be seen from Figure 4.30, on the circle γ

z = (2 + j) + ρ e jθ (0 � θ � 2π)

dz = jρ e jθ dθ

leading to

Hence if C encloses the point z = 2 + j then

Compare this with the answer to Example 4.29.

So far we have only considered functions having a single singularity inside the
closed contour C. The method can be extended to accommodate any finite number of
singularities. If the function f (z) has a finite number of singularities at z = z1, z2, . . . , zn,
inside a closed contour C, then we can deform the latter by introducing n circles γ1, γ2,
. . . , γn to surround each of the singularities as shown in Figure 4.31. It is then readily
shown that

(4.46)

Evaluate the contour integral

where C is

(a) any contour enclosing both the points z = 1 and z = −2j;

(b) any contour enclosing z = −2j but excluding the point z = 1.

Solution The function

has singularities at both z = 1 and z = −2j.

(a) Since the contour encloses both singularities, we need to evaluate the integrals
around circles γ 1 and γ 2 of radii ρ1 and ρ2 surrounding the points z = 1 and z = −2j
respectively. Alternatively, we can resolve f (z) into partial fractions as

Figure 4.30 A circle 
of radius ρ centred at 
2 + j.

�
γ

dz
z 2– j–
-------------------- �

0

2π
jρ ejθ

ρ ejθ
------------ dθ �

0

2π

jdθ 2πj= = =

�
C

dz
z 2– j–
-------------------- 2πj=

�
C

f z( ) dz = �
γ 1

f z( ) dz + �
γ 2

f z( ) dz + . . . + �
γ n

f z( ) dz

Example 4.32

Figure 4.31
Deformed contour 
for n singularities.

�
C

z dz
z 1–( ) z 2j+( )

------------------------------------

f z( ) z
z 1–( ) z 2j+( )

------------------------------------=

f z( )
1
3
---- 1 j2–( )

z 1–
----------------------  + 

1
5
---- 4 2j+( )

z 2j+
----------------------=
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and consider

The integrand of I1 has a single singularity at z = 1, and we simply need to
evaluate it around the circle γ 1 of radius ρ1 about z = 1 to give

I1 = 2πj

Similarly, I2 has a single singularity at z = −2j, and we evaluate it around the circle
γ 2 to give

I2 = 2πj

Then

I = (1 − j2)2πj + (4 + j2)2πj = 2πj( )

Thus if the contour C contains both the singularities then

(b) If the contour C only contains the singularity z = −2j then

In Examples 4.29–4.32 we can note some similarity in the answers, with the common
occurrence of the term 2πj. It therefore appears that it may be possible to obtain some
general results to assist in the evaluation of contour integrals. Indeed, this is the case,
and such general results are contained in the Cauchy integral theorem.

Cauchy integral theorem

Note that (4.48) implies that if f ′(z) exists at z = z0 so does f (n)(z) for all n, as predicted
earlier in the observations following Example 4.16.

Let f (z) be an analytic function within and on a simple closed contour C. If z0 is any
point in C then

(4.47)

If we differentiate repeatedly n times with respect to z under the integral sign then it
also follows that

(4.48)

I �
C

z dz
z 1–( ) 2 2j–( )

------------------------------------ 1
3
---- 1 2j–( ) �

C

dz
z 1–
------------ 1

5
---- 4 2j+( )�

C

dz
z 2j+
-------------+ I1 + I2= = =

1
3
---- 1

5
---- 17

15
------- − j 4

15
-------

�
C

z dz
z 1–( ) z j2+( )

---------------------------------- 2πj 17
15
------- − j 4

15
-------( )=

�
C

z dz
z 1–( ) z 2j+( )

------------------------------------ I2 2πj 4
5
---- j2

5
----+( )= =

Theorem 4.2

�
C

f z( )
z z0–
------------ dz 2πj f z0( )=

�
C

f z( )
z z0–( )n+1

----------------------- dz 2πj
n!

--------  f n( ) z0( )=

end of theorem
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Evalute the contour integral

where C is a contour that includes the three points z = 1, z = −2 and z = − j.

Solution Since

has singularities at the points z = 1, z = −2 and z = − j inside the contour, it follows from
(4.46) that

(4.49)

where γ 1, γ 2 and γ 3 are circles centred at the singularities z = 1, z = −2 and z = − j
respectively. In order to make use of the Cauchy integral theorem, (4.49) is written as

+ 

Since f1(z), f2(z) and f3(z) are analytic within and on the circles γ 1, γ 2 and γ 3 respectively,
it follows from (4.47) that

= 

so that

Evaluate the contour integral

where the contour C encloses the point z = 1.

Solution Since f (z) = z4/(z − 1)3 has a pole of order three at z = 1, it follows that

Example 4.33

�
C

2z
z 1–( ) z 2+( ) z j+( )

------------------------------------------------ dz

f z( ) = 2z
z 1–( ) z 2+( ) z j+( )

------------------------------------------------

�
C

f z( ) dz = �
γ 1

f z( ) dz + �
γ 2

f z( ) dz + �
γ 3

f z( ) dz

�
C

f z( ) dz = �
γ 1

2z/ z 2+( ) z j+( )[ ]{ }
z 1–

--------------------------------------------------- dz + �
γ 2

2z/ z 1–( ) z j+( )[ ]{ }
z 2+

---------------------------------------------------- dz

�
γ 3

2z/ z 1–( ) z 2+( )[ ]{ }
z j+

---------------------------------------------------- dz

= �
γ 1

f1 z( )
z 1–
------------ dz + �

γ 2

f2 z( )
z 2+
----------- dz + �

γ 3

f3 z( )
z j+
------------ dz

�
C

f z( ) dz = 2πj f1(1) + f2 −2( ) + f3 − j( )[ ]

2πj 3
2 1 j+( )
--------------------  + 

−4
−3( ) −2 j+( )

--------------------------------  + 
−2j

−j 1–( ) −j 2+( )
----------------------------------------

�
C

2z dz
z 1–( ) z 2+( ) z j+( )

------------------------------------------------ 0=

Example 4.34

�
C

z4

z 1–( )3
------------------- dz

�
C

f z( ) dz = �
γ

z4

z 1–( )3
----------------- dz
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where γ  is a circle centred at z = 1. Writing f1(z) = z4, then

and, since f1(z) is analytic within and on the circle γ , it follows from (4.48) that

so that

�
C

f z( ) dz = �
γ

f1 z( )
z 1–( )3

----------------- dz

�
C

f z( ) dz = 2πj 1
2!
------ d2

dz2
-------  f1 z( )

z=1

= πj 12z2( )z=1

�
C

z4

z 1–( )3
------------------- dz = 12πj

Evaluate �C (z2 + 3z) dz along the following contours 
C in the complex z plane:

(a) the straight line joining 2 + j0 to 0 + j2;
(b) the straight lines from 2 + j0 to 2 + j2 and then 

to 0 + j2;
(c) the circle | z | = 2 from 2 + j0 to 0 + j2 in an 

anticlockwise direction.

Evaluate �C (5z4 − z3 + 2) dz around the following 
closed contours C in the z plane:

(a) the circle | z | = 1;
(b) the square with vertices at 0 + j0, 1 + j0, 

1 + j1 and 0 + j1;
(c) the curve consisting of the parabolas y = x2 from 

0 + j0 to 1 + j1 and y2 = x from 1 + j to 0 + j0.

Generalize the result of Example 4.30, and show that

where C is a simple closed contour surrounding 
the point z = z0.

Evaluate the contour integral

where C is any simple closed curve and z = 4 is 

(a) outside C (b) inside C

Using the Cauchy integral theorem, evaluate the 
contour integral

where C is

(a) the circle | z | = 1
(b) the circle | z | = 3

Using the Cauchy integral theorem, evaluate the 
contour integral

where C is

(a) the circle | z | = 3
(b) the circle | z | = 5

Using the Cauchy integral theorem, evaluate the 
following contour integrals:

(a)

where C is the unit circle | z | = 1;

(b)

where C is the circle | z | = 3.

4.6.3 Exercises

53

54

55

�
C

dz

z z0–( )n
-------------------  = 

j2π n = 1( )
0 n ≠ 1( )⎩

⎨
⎧

56

�
C

dz
z 4–
------------

57

�
C

2z dz
2z 1–( ) z 2+( )

-------------------------------------

58

�
C

5z dz
z 1+( ) z 2–( ) z 4j+( )

---------------------------------------------------

59

�
C

z3 z+
2z 1+( )3

--------------------- dz

�
C

4z

z 1–( ) z 2+( )2
------------------------------------ dz
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4.6.4 The residue theorem
This theorem draws together the theories of differentiation and integration of a complex
function. It is concerned with the evaluation of the contour integral

where the complex function f (z) has a finite number n of isolated singularities at z1,
z2, . . . , zn inside the closed contour C. Defining the contour C as in Figure 4.31, we
have as in (4.46) that

(4.46)

If we assume that f (z) has a pole of order m at z = zi then it can be represented by the
Laurent series expansion

valid in the annulus ri � | z − zi | � Ri. If the curve C lies entirely within this annulus
then, by Cauchy’s theorem, (4.46) becomes

Substituting the Laurent series expansion of f (z), which we can certainly do since we
are within the annulus of convergence, we obtain

Using the result from Exercise 55, all of these integrals are zero, except the one
multiplying a (i)

−1, the residue, which has the value 2πj. We have therefore shown that

= 2πja (i)
−1 = 2πj × residue at z = zi

This clearly generalizes, so that (4.46) becomes

= 2πj × (sum of residues inside C )

Thus we have the following general result.

I �
C

f z( ) dz=

I �
C

f z( ) dz = �
γ 1

f z( ) dz + �
γ 2

f z( ) dz . . . + �
γ n

f z( ) dz+=

f z( ) a−m
i( )

z zi–( )m
-------------------  + . . . + 

a−1
i( )

z zi–
-----------  + a0

i( ) + a1
i( ) z zi–( ) + . . . + a m

i( ) z zi–( )m + . . . =

I �
C

f z( ) dz = �
γ i

f z( ) dz=

�
γ i

f z( ) dz �
γ i

a−m
i( )

z zi–( )m
-------------------  + . . . + 

a−1
i( )

z zi–
-----------  + a0

i( ) + a1
i( ) z zi–( ) + . . .=

+ am
i( ) z zi–( )m + . . . dz

a−m
i( )  �

γ i

dz

z zi–( )m
-------------------  + . . . + a−1

i( ) �
γ i

dz
z zi–
-----------  + a 0

i( ) �
γ i

dz=

+ a1
i( ) � z zi–( ) dz + . . .

�
γ i

f z( ) dz

I �
C

f z( ) dz 2πj residue at z = zi( )
i=1

n

∑= =
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The residue theorem 

This is quite a remarkable result in that it enables us to evaluate the contour integral
�c f (z) dz by simply evaluating one coefficient of the Laurent series expansion of f (z) at
each of its singularities inside C.

Evaluate the contour integral �c dz / [z (1 + z)] if C is

(a) the circle | z | = ; (b) the circle | z | = 2.

Solution The singularities of 1/[z (1 + z)] are at z = 0 and −1. Evaluating the residues using (4.37),
we have

residue
= 

at z = 0

residue
= 

at z = −1

(a) If C is | z | =  then it contains the pole at z = 0, but not the pole at z = −1. Hence,
by the residue theorem,

= 2πj × (residue at z = 0) = 2πj

(b) If C is | z | = 2 then both poles are inside C. Hence, by the residue theorem,

= 2πj(1 − 1) = 0

Evaluate the contour integral  where C is

(a) | z | = 1 (b) | z | = 3

Solution The rational function

Theorem 4.3

If f (z) is an analytic function within and on a simple closed curve C, apart from
a finite number of poles, then

= 2πj × [sum of residues of f (z) at the poles inside C ]�
C

f z( ) dz

end of theorem

Example 4.35
1
2
----

lim
z→0

z 1
z 1 z+( )
-------------------- 1=

lim
z→−1

 z 1+( ) 1
z 1 z+( )
-------------------- 1–=

1
2
----

�
C

dz
z z 1+( )
-------------------

�
C

dz
z z 1+( )
-------------------

Example 4.36 �
C

z3 z2– z 1–+
z3 4z+

--------------------------------- dz

z3 z2– z 1–+
z3 4z+

---------------------------------
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has poles at z = 0 and ± 2j. Evaluating the residues using (4.37) gives

residue
= 

at z = 0

residue
= 

at z = 2j

residue
= 

at z = −2j

(Note that these have been evaluated in Exercise 50(d).)

(a) If C is | z | = 1 then only the pole at z = 0 is inside the contour, so only the residue
there is taken into account in the residue theorem, and

(b) If C is | z | = 3 then all the poles are inside the contour. Hence, by the residue
theorem,

Evaluate the contour integral

where C is the circle | z | = 3.

Solution The poles of 1/z3(z2 + 2z + 2) are as follows: a pole of order three at z = 0, and two
simple poles where z2 + 2z + 2 = 0, that is at z = −1 ± j. All of these poles lie inside the
contour C.

From (4.38), the residue at z = 0 is given by

=  = 

= 

From (4.37), the residue at z = −1 − j is

lim
z→0

z z3 z2– z 1–+( )
z z2 4+( )

--------------------------------------- 1
4
----–=

lim
z→2j

 z − 2j( ) z3 z2– z 1–+( )
z z − 2j( ) z + 2j( )

--------------------------------------------------------- −3
8
---- + 3

4
---- j=

lim
z→−2j

 z + 2j( ) z3 z2– z 1–+( )
z z − 2j( ) z + 2j( )

--------------------------------------------------------- −3
8
---- − 3

4
---- j=

�
C

z3 z2– z 1–+
z3 4z+

--------------------------------- dz 2πj −1
4
----( ) − 1

2
----πj= =

�
C

z3 z2– z 1–+
z3 4z+

--------------------------------- dz 2πj −1
4
---- − 3

8
---- + 3

4
---- j − 3

8
---- − 3

4
---- j( ) −2πj= =

Example 4.37

�
C

dz

z3 z2 2z 2+ +( )
------------------------------------

lim
z→0

1
2!
------ d2

dz2
-------

1

z2 2z 2+ +
------------------------- lim

z→0

1
2
----

d
dz
-----

− 2z 2+( )
z2 2z 2+ +( )2

-------------------------------- lim
z→0

d
dz
-----

− z 1+( )
z2 2z 2+ +( )2

--------------------------------

lim
z→0

− z2 2z 2+ +( )2 z 1+( )2 z2 2z 2+ +( ) 2z 2+( )+
z2 2z 2+ +( )4

------------------------------------------------------------------------------------------------------------------ 1
4
----=

z 1 j+ +( ) 1

z3 z 1 j+ +( ) z 1 j–+( )
-----------------------------------------------------

z →−1− j
lim 1

z3 z 1 j–+( )
----------------------------

z →−1− j
lim=

1

−1 j–( )3 2j–( )
---------------------------------- 1

1 j+( )32j
------------------------ 1

2 2j+–( )2j
---------------------------= ==
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using (1 + j)3 = 1 + 3j + 3j2 + j3 = −2 + 2j. Hence

residue
= 

at z = −1 − j

Also, using (4.37),

residue = 
at z = −1 + j

which is precisely the complex conjugate of the residue at z = −1 − j. Hence we can take
a short cut with the algebra and state the residue as (−1 − j).

The sum of the residues is

so, by the residue theorem,

= 2πj(0) = 0

4.6.5 Evaluation of definite real integrals

The evaluation of definite integrals is often achieved by using the residue theorem
together with a suitable complex function f (z) and a suitable closed contour C. In this
section we shall briefly consider two of the most common types of real integrals that
can be evaluated in this way.

Type 1: Infinite real integrals of the form ∫∫∫∞∞∞
−−− ∞∞∞ f(x) dx where f (x) is a 

rational function of the real variable x

To evaluate such integrals we consider the contour integral

where C is the closed contour illustrated in Figure 4.32, consisting of the real axis from
−R to +R and the semicircle Γ, of radius R, in the upper half z plane. Since z = x on the
real axis,

Then, provided that limR→∞ �Γ f (z) dz = 0, taking R → ∞ gives

On the semicircular path Γ, z = R e jθ  (0 � θ � π), giving

dz = jR e jθ dθ

1
4
----

1
−1 j–
--------------- 1

4
----

1 j–
2

----------– 1
8
---- −1 j+( )= =

z 1 j–+( ) 1

z3 z 1 j+ +( ) z 1 j–+( )
-----------------------------------------------------

z →−1+ j
lim

1
8
----

1
4
---- 1

8
---- −1 j+( ) 1

8
---- −1 j–( )+ + 0=

�
C

dz

z3 z2 2z 2+ +( )
------------------------------------

�
C

f z( ) dz

Figure 4.32
The closed contour for 
evaluating � ∞

− ∞ f(x) dx. �
C

f z( ) dz �
−R

R

f x( ) dx + �
Γ

f z( ) dz=

�
C

f z( ) dz �
−∞

∞

f x( ) dx=

1
2
----
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and

For this to tend to zero as R → ∞, | f (R e jθ ) | must decrease at least as rapidly as R−2,
implying that the degree of the denominator of the rational function f (x) must be at least
two more than the degree of the numerator. Thus, provided that this condition is
satisfied, this approach may be used to calculate the infinite real integral �∞

−∞ f(x) dx.
Note that if f (x) is an even function of x then the same approach can also be used to
evaluate �∞

0 f (x) dx, since if f (x) is even, it follows that 

Using contour integration, show that

Solution Consider the contour integral

where C is the closed semicircular contour shown in Figure 4.32. The integrand
1/(z 2 + 4)2 has poles of order two at z = ±2j. However, the only singularity inside the
contour C is the double pole at z = 2j. From (4.38),

residue =
at z = 2j

= 

so, by the residue theorem,

Since

letting R → ∞, and noting that the second integral becomes zero, gives

�
Γ

f z( ) dz �
0

π/2

f R ejθ( ) jR ejθ dθ=

�
−∞

∞

f x( ) dx 2 �
0

∞

f x( ) dx=

Example 4.38

�
−∞

∞

dx

x2 4+( )2
-------------------- 1

16
------- π=

I �
C

dz

z2 4+( )2
--------------------=

1
1!
------ d

dz
----- z 2j–( )2 1

z 2j–( )2 z 2j+( )2
------------------------------------------

z →2 j
lim

2–

z 2j+( )3
----------------------

z →2 j
lim 2–

4j( )3
----------- 1

32
-------– j= =

�
C

dz

z2 4+( )2
-------------------- 2πj − 1

32
------- j( ) 1

16
------- π= =

�
C

dz

z2 4+( )2
-------------------- �

−R

R

dx

x2 4+( )2
--------------------  + �

Γ

dz

z2 4+( )2
--------------------=

�
C

dz

z2 4+( )2
-------------------- �

−∞

∞

dx

x2 4+( )2
-------------------- 1

16
------- π= =
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Note that in this particular case we could have evaluated the integral without using
contour integration. Making the substitution x = 2tanθ, dx = 2sec2θ dθ gives

Type 2: Real integrals of the form I === ∫∫∫ 222πππ
0 G(sinθθθ, cosθθθ) dθθθ where G is 

a rational function of sinθθθ and cosθθθ

We take z = e jθ , so that

sin θ = , cos θ = 

and

dz = j e jθ dθ, or dθ = 

On substituting back, the integral I becomes

where C is the unit circle | z | = 1 shown in Figure 4.33.

Using contour integration, evaluate

Solution Take z = e jθ , so that

cos θ = , dθ = 

On substituting, the integral becomes

where C is the unit circle | z | = 1 shown in Figure 4.33. The integrand has singularities at

z2 + 4z + 1 = 0

that is, at z = −2 ± �3. The only singularity inside the contour C is the simple pole at 
z = −2 + �3. From (4.37),

residue at z = −2 + �3

�
−∞

∞

dx

x2 4+( )2
-------------------- �

π/2–

π/2

2 2θ dθsec

4 2θsec( )2
-----------------------  1

8
----�

π/2–

π/2

2θ dθcos 1
16
------- 1

2
---- 2θsin θ+[ ] π/2–

π/2 1
16
------- π====

1
2j
------ z 1

z
----–⎝ ⎠

⎛ ⎞ 1
2
---- z 1

z
----+⎝ ⎠

⎛ ⎞

dz
jz
-----

I �
C

f z( ) dz=
Figure 4.33 The 
unit-circle contour 
for evaluating 

∫ 2π
0 G(sin θ, cos θ) dθ.

Example 4.39

I �
0

2π
dθ

2 θcos+
-----------------------=

1
2
---- z 1

z
----+⎝ ⎠

⎛ ⎞ dz
jz
-----

I �
C

dz
jz 2 1

2
---- z 1/z+( )+[ ]

-------------------------------------------- 2
j
---- �

C

dz

z2 4z 1+ +
-------------------------= =

= 
z →−2+�3

lim 2
j
---- z 2 �3–+( ) 1

z 2 �3–+( ) z 2 �3+ +( )
--------------------------------------------------------- 2

j
---- 1

2�3
---------- 1

j�3
---------= =
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so, by the residue theorem,

I = 2πj

Thus

1
j�3
---------⎝ ⎠

⎛ ⎞ 2π
�3
------=

�
0

2π
dθ

2 θcos+
----------------------- 2π

�3
------=

Evaluate the integral

where C is

(a) the circle | z | = (b) the circle | z | = 2

Evaluate the integral

where C is

(a) the circle | z | = 1 (b) the circle | z | = 4

Calculate the residues at all the poles of the function

Hence calculate the integral

where C is

(a) the circle | z | = 2 (b) the circle |z − j | = 1
(c) the circle | z | = 4

Evaluate the integral

where C is

(a) the circle | z | = (b) the circle | z | = 2

Using the residue theorem, evaluate the following 
contour integrals:

(a)

where C is 

(b)

where C is 

(c)

where C is 

(d)

where C is 

4.6.6 Exercises

60

�
C

z dz

z2 1+
-------------

1
2
----

61

�
C

z2 3jz 2–+
z3 9z+

---------------------------- dz

62

f z( ) z2 2+( ) z2 4+( )
z2 1+( ) z2 6+( )

--------------------------------------=

�
C

f z( ) dz

63

�
C

dz

z2 1 z2+( )2
--------------------------

1
2
----

64

�
C

3z2 2+( ) dz

z 1–( ) z2 4+( )
------------------------------------

i( ) the circle z 2– 2=  

ii( ) the circle z 4=⎩
⎨
⎧

�
C

z2 2z–( ) dz

z 1+( )2 z2 4+( )
--------------------------------------

i( ) the circle z 3=  

ii( ) the circle z j+ 2=⎩
⎨
⎧

�
C

dz

z 1+( )3 z 1–( ) z 2–( )
---------------------------------------------------

i( ) the circle z 1
2
----=  

ii( ) the circle z 1+ 1=
iii( ) the rectangle with vertices

at j,±  3 j±⎩
⎪
⎪
⎨
⎪
⎪
⎧

�
C

z 1–( ) dz

z2 4–( ) z 1+( )4
--------------------------------------

i( ) the circle z 1
2
----=  

ii( ) the circle z 3
2
----+ 2=

iii( ) the triangle with vertices

at  3
2
----– j,+  3

2
----– j,–  3 j0+⎩

⎪
⎪
⎨
⎪
⎪
⎧
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Using a suitable contour integral, evaluate the 
following real integrals:

(a) (b)

(c)

(d) (e)

(f )

(g) (h)

(i )

( j ) 

65

�
∞–

∞

dx

x2 x 1+ +
---------------------- �

∞–

∞

dx

x2 1+( )2
--------------------

�
0

∞

dx

x2 1+( ) x2 4+( )2
-----------------------------------------

�
0

2π
3θcos

5 4 θcos–
--------------------------- dθ �

0

2π
4 dθ

5 4 θsin+
------------------------

�
∞–

∞

x2 dx

x2 1+( )2 x2 2x 2+ +( )
----------------------------------------------------

�
0

2π
dθ

3 2 θcos– θsin+
------------------------------------------- �

0

∞

dx

x4 1+
---------------

�
∞–

∞

dx

x2 4x 5+ +( )2
----------------------------------

�
0

2π
θcos

3 2 θcos+
-------------------------- dθ

Engineering application: analysing AC circuits
In the circuit shown in Figure 4.34 we wish to find the variation in impedance Z and
admittance Y as the capacitance C of the capacitor varies from 0 to ∞. Here

Writing

we clearly have

(4.50)

Equation (4.50) can be interpreted as a bilinear mapping with Z and C as the two vari-
ables. We examine what happens to the real axis in the C plane (C varies from 0 to ∞
and, of course, is real) under the inverse of the mapping given by (4.50). Rearranging
(4.50), we have

(4.51)

Taking Z = x + jy

(4.52)

Equating imaginary parts, and remembering that C is real, gives

0 = x2 + y2 − Rx (4.53)

which represents a circle, with centre at ( R, 0) and of radius R. Thus the real axis in
the C plane is mapped onto the circle given by (4.53) in the Z plane. Of course, C is
positive. If C = 0, (4.53) indicates that Z = R. The circuit of Figure 4.34 confirms

4.7 Engineering application:

1
Z
---- 1

R
--- jω C Y,+ 1

Z
----= =

Figure 4.34
AC circuit of 
Section 4.7.

1
Z
---- 1 jω CR+

R
-----------------------=

Z R
1 jω CR+
-----------------------=

C R Z–
jωRZ
-------------=

C R x– jy–
jωR x jy+( )
------------------------------ x jy R–+

ωR y jx–( )
--------------------------- x jy R–+( ) y jx+( )

ωR x2 y2+( )
------------------------------------------------= = =

1
2
---- 1

2
----
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that the impedance is R in this case. If C → ∞ then Z → 0, so the positive real axis in
the plane is mapped onto either the upper or lower half of the circle. Equating real parts
in (4.52) gives

so C � 0 gives y � 0, implying that the lower half of the circle is the image in the
Z plane of the positive real axis in the C plane, as indicated in Figure 4.35. A diagram
such as Figure 4.35 gives an immediate visual impression of how the impedance
Z varies as C varies.

The admittance Y = 1/Z is given by

which represents a linear mapping as shown in Figure 4.36.

Engineering application: use of harmonic functions
In this section we discuss two engineering applications where use is made of the
properties of harmonic functions.

4.8.1 A heat transfer problem

We saw in Section 4.3.2 that every analytic function generates a pair of harmonic
functions. The problem of finding a function that is harmonic in a specified region
and satisfies prescribed boundary conditions is one of the oldest and most important
problems in science-based engineering. Sometimes the solution can be found by means

C −y

ω x2 y2+( )
--------------------------=

Figure 4.35 Mapping 
for the impedance Z.

Y 1
R
--- jωC+=

Figure 4.36 Mapping 
for the admittance Y.

4.8 Engineering application:
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of a conformal mapping defined by an analytic function. This, essentially, is a con-
sequence of the ‘function of a function’ rule of calculus, which implies that every
harmonic function of x and y transforms into a harmonic function of u and v under the
mapping

w = u + jv = f (x + jy) = f (z)

where f (z) is analytic. Furthermore, the level curves of the harmonic function in the
z plane are mapped onto corresponding level curves in the w plane, so that a harmonic
function that has a constant value along part of the boundary of a region or has a zero
normal derivative along part of the boundary is mapped onto a harmonic function with
the same property in the w plane.

For heat transfer problems the level curves of the harmonic function correspond to
isotherms, and a zero normal derivative corresponds to thermal insulation. To illustrate
these ideas, consider the simple steady-state heat transfer problem shown schematic-
ally in Figure 4.37. There is a cylindrical pipe with an offset cylindrical cavity through
which steam passes at 100 °C. The outer temperature of the pipe is 0 °C. The radius of
the inner circle is  of that of the outer circle, so by choosing the outer radius as the
unit of length the problem can be stated as that of finding a harmonic function T(x, y)
such that

in the region between the circles | z | = 1 and | z − 0.3 | = 0.3, and T = 0 on | z | = 1 and
T = 100 on | z − 0.3 | = 0.3.

The mapping

transforms the circle | z | = 1 onto the circle | w | = 1 and the circle |z − 0.3 | = 0.3 onto
the circle | w | = 3 as shown in Figure 4.38. Thus the problem is transformed into the
axially symmetric problem in the w plane of finding a harmonic function T(u, v) such
that T(u, v) = 100 on | w | = 1 and T(u, v) = 0 on | w | = 3. Harmonic functions with such
axial symmetry have the general form

T(u, v) = A ln (u2 + v2) + B

where A and B are constants.

Figure 4.37 
Schematic diagram of 
heat transfer problem.

3
10
-------

∂2T

∂x2
-------- ∂2T

∂y2
--------+ 0=

w z 3–
3z 1–
--------------=

Figure 4.38
The mapping 
w = (z − 3)/(3z − 1).
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Here we require, in addition to the axial symmetry, that T(u, v) = 100 on u2 + v2 = 1
and T(u, v) = 0 on u2 + v2 = 9. Thus B = 100 and A = −100 ln 9, and the solution on the
w plane is

T(u, v) = 

We need the solution on the z plane, which means in general we have to obtain u and
v in terms of x and y. Here, however, it is a little easier, since u2 + v2 = | w |2 and

| w |2 = 

Thus

T(x, y) = {1 − ln [(x − 3)2 + y2] − ln [(3x − 1)2 + 9y2]}

4.8.2 Current in a field-effect transistor

The fields (Ex, Ey ) in an insulated-gate field-effect transistor are harmonic conjugates
that satisfy a nonlinear boundary condition. For the transistor shown schematically in
Figure 4.39 we have

with conditions

Ex = 0 on the electrodes

on the channel

Ey → as x → −∞ (0 � y � h)

Ey → as x → ∞ (0 � y � h)

where V0 is a constant with dimensions of potential, h is the insulator thickness, I is the
current in the channel, which is to be found, μ, ε0 and εr have their usual meanings, and
the gate potential Vg and the drain potential Vd are taken with respect to the source
potential.

100 1 u2 v2+( )ln–[ ]
9

--------------------------------------------------
ln

z 3–
3z 1–
--------------

2 z 3– 2

3z 1– 2
---------------------- x 3–( )2 y2+

3x 1–( )2 9y2+
-------------------------------------= =

100
9ln

----------

Figure 4.39
(a) Schematic diagram 
for an insulated-gate 
field-effect transistor; 
(b) an appropriate 
coordinate system for 
the application.

∂Ey

∂x
--------

∂Ex

∂y
-------- ,

∂Ey--------
−∂Ex

∂y ∂x
-------------==

Ex Ey
V0

h
-----+⎝ ⎠

⎛ ⎞ I
2με0ε r

-----------------–=

−Vg-----
h

Vd Vg–
h

------------------
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The key to the solution of this problem is the observation that the nonlinear boundary
condition

contains the harmonic function (now of Ex and Ey)

H(Ex, Ey) = 2Ex

A harmonic conjugate of H is the function

G(Ex, Ey) =  − E 2
x

Since Ex and Ey are harmonic conjugates with respect to x and y, so are G and H. Thus
the problem may be restated as that of finding harmonic conjugates G and H such that

H = 0 on the electrodes

H = on the channel

G → as x → ∞ (0 � y � h)

G → as x → −∞ (0 � y � h)

Using the sequence of mappings shown in Figure 4.40, which may be composed into
the single formula

where a = ebL/2 and b = π/h, the problem is transformed into finding harmonic-conjugate
functions G and H (on the w plane) such that

H = 0 on v = 0 (u � 0) (4.54)

H = on v = 0 (u � 0) (4.55)

G = at w = ebL (4.56)

G = at w = 1 (4.57)

The conditions (4.54), (4.55) and (4.57) are sufficient to determine H and G completely 

2Ex Ey
V0

h
-----+⎝ ⎠

⎛ ⎞ I
με0ε r

------------–=

Ey
V0

h
-----+⎝ ⎠

⎛ ⎞

Ey
V0

h
-----+⎝ ⎠

⎛ ⎞
2

− I
με0ε r

------------

V0 Vg–
h

------------------⎝ ⎠
⎛ ⎞

2

V0 Vd Vg–+
h

------------------------------⎝ ⎠
⎛ ⎞

2

w a ebz a2–

a ebz 1–
---------------------=

− I
με0 ε r

--------------

V0 Vg–
h

------------------⎝ ⎠
⎛ ⎞

2

V0 Vd Vg–+
h

------------------------------⎝ ⎠
⎛ ⎞

2

H −I arg w( )
πμε0ε r

--------------------=

G I wln
πμε0ε r

-----------------
V0 Vd Vg–+

h
------------------------------⎝ ⎠

⎛ ⎞
2

+=
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while the condition (4.56) determines the values of I

I = (2V0 − 2Vg + Vd)Vd

This example shows the power of complex variable methods for solving difficult
problems arising in engineering mathematics. The following exercises give some
simpler examples for the reader to investigate.

Figure 4.40
Sequence of mappings 
to simplify the 
problem.

με0ε r

Lh
------------
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Show that the transformation w = 1/z, w = u + jv, 
z = x + jy, transforms the circle x2 + y2 = 2ax in the 
z plane into the straight line u = 1/2a in the w plane. 
Two long conducting wires of radius a are placed 
adjacent and parallel to each other, so that their 
cross-section appears as in Figure 4.41. The 
wires are separated at O by an insulating gap of 
negligible dimensions, and carry potentials ±V0 
as indicated. Find an expression for the potential 
at a general point (x, y) in the plane of the cross-
section and sketch the equipotentials. 

Find the images under the mapping

z = x + jy, of

(a) the points A(−1, 0), B(0, 1), C( ) and 
D( , 0) in the z plane,

(b) the straight line y = 0,
(c) the circle x2 + y2 = 1.

Illustrate your answer with a diagram showing the 
z and w planes and shade on the w plane the region 
corresponding to x2 + y2 � 1.

A semicircular disc of unit radius, [(x, y):
x2 + y2 � 1, y � 0], has its straight boundary at 
temperature 0 °C and its curved boundary at 100 °C. 
Prove that the temperature at the point (x, y) is

(a) Show that the function

G(x, y) = 2x(1 − y)

satisfies the Laplace equation and construct 
its harmonic conjugate H(x, y) that satisfies 
H(0, 0) = 0. Hence obtain, in terms of z, where 
z = x + jy, the function F such that W = F(z) 
where W = G + jH. 

(b) Show that under the mapping w = ln z, the 
harmonic function G(x, y) defined in (a) is 
mapped into the function

G(u, v) = 2eucos v − e2u sin 2v

Verify that G(u, v) is harmonic.

(c) Generalize the result (b) to prove that under 
the mapping w = f(z), where f ′(z) exists, a 
harmonic function of (x, y) is transformed 
into a harmonic function of (u, v).

Show that if w = (z + 3)/(z − 3), w = u + jv, 
z = x + jy, the circle u2 + v2 = k 2 in the w plane 
is the image of the circle

x2 + y2 + 6 x + 9 = 0 (k 2 ≠ 1)

in the z plane.
Two long cylindrical wires, each of radius 

4 mm, are placed parallel to each other with their 
axes 10 mm apart, so that their cross-section 
appears as in Figure 4.42. The wires carry potentials 
±V0 as shown. Show that the potential V(x, y) at the 
point (x, y) is given by

V = {ln [(x + 3)2 + y2] − ln [(x − 3)2 + y2]}

Find the image under the mapping

z = x + jy, w = u + jv, of

(a) the points A(1, 0), B(0, 1), C(0, −1) in the 
z plane,

(b) the straight line y = 0,
(c) the circle x2 + y2 = 1.

A circular plate of unit radius, [(x, y): x2 + y2 � 1], 
has one half (with y � 0) of its rim, x2 + y2 = 1, at 
temperature 0 °C and the other half (with y � 0) at 
temperature 100 °C. Using the above mapping, prove 
that the steady-state temperature at the point (x, y) is

4.8.3 Exercises

66

Figure 4.41 Conducting wires of Exercise 66.

67

w z 1+
1 z–
-----------=

24
25
-------, 7

25
-------

3
4
--

T 200

π
---------- 2y

1 x2– y2–
-------------------------⎝ ⎠

⎛ ⎞−1tan=

68

69

1 k2+
1 k2–
---------------

V0

4ln
----------

Figure 4.42 Cylindrical wires of Exercise 69.

70

w j 1 z–( )
1 z+

-------------------=
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π
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2y
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⎛ ⎞−1

tan=
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The problem shown schematically in 
Figure 4.43 arose during a steady-state heat 
transfer investigation. T is the temperature. 
By applying the successive mappings

, w = ln z1

show that the temperature at the point (x, y) in the 
shaded region in the figure is given by

T(x, y) = 

The functions

w = z + , w = 

perform the mappings shown in Figure 4.44. A long 
bar of semicircular cross-section has the temperature 
of the part of its curved surface corresponding to 
the arc PQ in Figure 4.45 kept at 100 °C while the 
rest of the surface is kept at 0 °C. Show that the 
temperature T at the point (x, y) is given by

T = [arg(z2 + z + 1) − arg(z2 − z + 1)]

71

Figure 4.43 Schematic representation of 
Exercise 71.

z1
z j4+
z j4–
-------------=

50

3ln
---------- x2 4 y+( )2+

x2 4 y–( )2+
-----------------------------ln

72

1
z
---- z 1+

z 1–
-----------

100
π

----------

Figure 4.44 Mappings of Exercise 72.

Figure 4.45 Cross-section of bar of Exercise 72.

Find the images of the following points under the 
mappings given:

(a) z = 1 + j under w = (1 + j)z + j

(b) z = 1 − j2 under w = j3z + j + 1

(c) z = 1 under w = (1 − j)z + (1 + j)

(d) z = j2 under w = (1 − j)z + (1 + j)

Under each of the mappings given in Review 
exercise 1, find the images in the w plane of the 
two straight lines 

(a) y = 2x

(b) x + y = 1

in the z plane, z = x + jy.

4.9 Review exercises (1–24)

1

1
2
---- 1

2
----

1
2
---- 1

2
----

2
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The linear mapping w = αz + β, where α and β are 
complex constants, maps the point z = 2 − j in the 
z plane to the point w = 1 in the w plane, and the 
point z = 0 to the point w = 3 + j.

(a) Determine α and β.
(b) Find the region in the w plane corresponding to 

the left half-plane Re(z) � 0 in the z plane.
(c) Find the region in the w plane corresponding to 

the circular region 5| z | � 1 in the z plane.
(d) Find the fixed point of the mapping.

Map the following straight lines from the 
z plane, z = x + jy, to the w plane under the 
inverse mapping w = j/z:

(a) x = y + 1
(b) y = 3x
(c) the line joining A(1 + j) to B(2 + j3) in the 

z plane 
(d) y = 4

In each case sketch the image curve.

Two complex variables w and z are related by the 
mapping

Sketch this mapping by finding the images 
in the w plane of the lines Re(z) = constant and 
Im(z) = constant. Find the fixed points of the 
mapping.

The mapping

takes points from the z plane to the w plane. Find 
the fixed points of the mapping, and show that the 
circle of radius r with centre at the origin in the 
z plane is transformed to the ellipse

in the w plane, where w = u + jv. Investigate what 
happens when r = 1.

Find the real and imaginary parts of the complex 
function w = z3, and verify the Cauchy–Riemann 
equations.

Find a function v(x, y) such that, given 

u(x, y) = x sin x cosh y − y cos x sinh y

f(z) = u + jv is an analytic function of z,  f(0) = 0.

Find the bilinear transformation that maps the three 
points z = 0, j and (1 + j) in the z plane to the 
three points w = ∞, −j and 1 − j respectively in the 
w plane. Check that the transformation will map 

(a) the lower half of the z plane onto the upper 
half of the w plane

(b) the interior of the circle with centre z = j  
and radius  in the z plane onto the half-plane 
Im(w) � −1 in the w plane.

Show that the mapping

z = ζ + 

where z = x + jy and ζ = R e jθ  maps the circle 
R = constant in the ζ plane onto an ellipse in the 
z plane. Suggest a possible use for this mapping.

Find the power series representation of the 
function

in the disc | z | � 1. Deduce the power series for

valid in the same disc.

Find the first four non-zero terms of the Taylor 
series expansion of the following functions about 
the point indicated, and determine the radius of 
convergence of each:

(a) (z = 0) (b) (z = 1)

(c) (z = j)

Find the radius of convergence of each Taylor 
series expansion of the following function about the 
points indicated, without finding the series itself:

at the points z = 1, −1, 1 + j, 1 + j  and 2 + j3.

3

4

5

w z 1+
z 1–
-----------=

6

w 1 z2–
z

--------------=

ur2

r2 1–
--------------⎝ ⎠

⎛ ⎞
2 vr2

r2 1+
-------------⎝ ⎠

⎛ ⎞
2

+ r2=

7

8

9
1
2
----

1
2
----

1
2
----

10

a2

4ζ
-------

11

1

1 z3+
-------------

1

1 z3+( )2
--------------------

12

1 z–
1 z+
----------- 1

z2 1+
-------------

z
z 1+
-----------

13

f z( ) 1

z z2 1+( )
----------------------=

1
2
----
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Determine the Laurent series expansion of the 
function

about the points (a) z = 0 and (b) z = 1, and 
determine the region of validity of each.

Find the Laurent series expansion of the function

f(z) = ez sin

about (a) z = 0, (b) z = 1 and (c) z = ∞, indicating 
the range of validity in each case. (Do not find terms 
explicitly; indicate only the form of the principal 
part.)

Find the real and imaginary parts of the functions

(a)  ez sinh z (b) cos 2z

(c) (d) tan z

Determine whether the following mappings are 
conformal, and, if not, find the non-conformal points:

(a) w = 

(b) w = 2z3 + 3z2 + 6(1 − j)z + 1

(c) w = 64z + 

Consider the mapping w = cos z. Determine the points 
where the mapping is not conformal. By finding the 
images in the w plane of the lines x = constant and 
y = constant in the z plane (z = x + jy), draw the 
mapping similarly to Figures 4.14 and 4.18.

Determine the location of and classify the 
singularities of the following functions:

(a) (b)

(c) (d) sech z

(e) sinh z (f ) sin (g) z z

Find the residues of the following functions at the 
points indicated:

(a) (z = −1) (b) (z = π)

(c) (d) (z = −8)

Find the poles and zeros, and determine all the 
residues, of the rational function

Determine the residue of the rational function

Evaluate the following contour integrals along 
the circular paths indicated:

(a) where C is | z | = 2

(b) where C is | z | = 4

(c)

(d)

where 

(e)  where C is | z − j | = 

(f )

Using a suitable contour integral, evaluate the 
following real integrals:

(a)

(b) (c)

(d)

14

f z( ) 1

z2 1+( )z
----------------------=

15

1
1 z–
------------⎝ ⎠

⎛ ⎞

16

zsin
z

------------
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18
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------------ 1

z3 8–( )2
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z 1+
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1
z
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⎛ ⎞

20
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2z π–
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2
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2z π–
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2
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21
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Introduction

Laplace transform methods have a key role to play in the modern approach to the
analysis and design of engineering systems. The stimulus for developing these methods
was the pioneering work of the English electrical engineer Oliver Heaviside (1850–
1925) in developing a method for the systematic solution of ordinary differential
equations with constant coefficients. Heaviside was concerned with solving prac-
tical problems, and his method was based mainly on intuition, lacking mathematical
rigour: consequently it was frowned upon by theoreticians at the time. However,
Heaviside himself was not concerned with rigorous proofs, and was satisfied that his
method gave the correct results. Using his ideas, he was able to solve important
practical problems that could not be dealt with using classical methods. This led to
many new results in fields such as the propagation of currents and voltages along
transmission lines.

Because it worked in practice, Heaviside’s method was widely accepted by engineers.
As its power for problem-solving became more and more apparent, the method attracted
the attention of mathematicians, who set out to justify it. This provided the stimulus for
rapid developments in many branches of mathematics including improper integrals,
asymptotic series and transform theory. Research on the problem continued for many
years before it was eventually recognized that an integral transform developed by the
French mathematician Pierre Simon de Laplace (1749–1827) almost a century before
provided a theoretical foundation for Heaviside’s work. It was also recognized that the
use of this integral transform provided a more systematic alternative for investigating
differential equations than the method proposed by Heaviside. It is this alternative
approach that is the basis of the Laplace transform method.

We have already come across instances where a mathematical transformation has
been used to simplify the solution of a problem. For example, the logarithm is used to
simplify multiplication and division problems. To multiply or divide two numbers, we
transform them into their logarithms, add or subtract these, and then perform the
inverse transformation (that is, the antilogarithm) to obtain the product or quotient of
the original numbers. The purpose of using a transformation is to create a new domain
in which it is easier to handle the problem being investigated. Once results have been
obtained in the new domain, they can be inverse-transformed to give the desired results
in the original domain.

The Laplace transform is an example of a class called integral transforms, and it
takes a function f (t) of one variable t (which we shall refer to as time) into a function
F(s) of another variable s (the complex frequency). Another integral transform widely
used by engineers is the Fourier transform, which is dealt with in Chapter 8. The
attraction of the Laplace transform is that it transforms differential equations in the t
(time) domain into algebraic equations in the s (frequency) domain. Solving differ-
ential equations in the t domain therefore reduces to solving algebraic equations
in the s domain. Having done the latter for the desired unknowns, their values as
functions of time may be found by taking inverse transforms. Another advantage of
using the Laplace transform for solving differential equations is that initial conditions
play an essential role in the transformation process, so they are automatically

5.1
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incorporated into the solution. This constrasts with the classical approach con-
sidered in Chapter 10 of the companion text Modern Engineering Mathematics,
where the initial conditions are only introduced when the unknown constants of
integration are determined. The Laplace transform is therefore an ideal tool for solving
initial-value problems such as those occurring in the investigation of electrical circuits
and mechanical vibrations.

The Laplace transform finds particular application in the field of signals and linear
systems analysis. A distinguishing feature of a system is that when it is subjected to
an excitation (input), it produces a response (output). When the input u(t) and output
x(t) are functions of a single variable t, representing time, it is normal to refer to them
as signals. Schematically, a system may be represented as in Figure 5.1. The problem
facing the engineer is that of determining the system output x(t) when it is subjected to
an input u(t) applied at some instant of time, which we can take to be t = 0. The relation-
ship between output and input is determined by the laws governing the behaviour of
the system. If the system is linear and time-invariant then the output is related to the
input by a linear differential equation with constant coefficients, and we have a standard
initial-value problem, which is amenable to solution using the Laplace transform.

While many of the problems considered in this chapter can be solved by the classical
approach, the Laplace transform leads to a more unified approach and provides the
engineer with greater insight into system behaviour. In practice, the input signal u(t)
may be a discontinuous or periodic function, or even a pulse, and in such cases the
use of the Laplace transform has distinct advantages over the classical approach. Also,
more often than not, an engineer is interested not only in system analysis but also in
system synthesis or design. Consequently, an engineer’s objective in studying a sys-
tem’s response to specific inputs is frequently to learn more about the system with a
view to improving or controlling it so that it satisfies certain specifications. It is in this
area that the use of the Laplace transform is attractive, since by considering the system
response to particular inputs, such as a sinusoid, it provides the engineer with powerful
graphical methods for system design that are relatively easy to apply and widely used
in practice.

In modelling the system by a differential equation, it has been assumed that both
the input and output signals can vary at any instant of time; that is, they are functions
of a continuous time variable (note that this does not mean that the signals themselves
have to be continuous functions of time). Such systems are called continuous-time
systems, and it is for investigating these that the Laplace transform is best suited.
With the introduction of computer control into system design, signals associated with
a system may only change at discrete instants of time. In such cases the system is said
to be a discrete-time system, and is modelled by a difference equation rather than a
differential equation. Such systems are dealt with using the z transform considered in
Chapter 6.

Figure 5.1 Schematic 
representation of a 
system.
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The Laplace transform

5.2.1 Definition and notation

We define the Laplace transform of a function f (t) by the expression

(5.1)

where s is a complex variable and e−st is called the kernel of the transformation.
It is usual to represent the Laplace transform of a function by the corresponding

capital letter, so that we write

An alternative notation in common use is to denote �{ f (t)} by g (s) or simply g .
Before proceeding, there are a few observations relating to the definition (5.2) worthy

of comment.

(a) The symbol � denotes the Laplace transform operator; when it operates on a
function f(t), it transforms it into a function F(s) of the complex variable s. We
say the operator transforms the function f (t) in the t domain (usually called the
time domain) into the function F(s) in the s domain (usually called the complex
frequency domain, or simply the frequency domain). This relationship is
depicted graphically in Figure 5.2, and it is usual to refer to f (t) and F(s) as a
Laplace transform pair, written as { f (t), F(s)}.

(b) Because the upper limit in the integral is infinite, the domain of integration is
infinite. Thus the integral is an example of an improper integral, as introduced
in Section 9.2 of Modern Engineering Mathematics; that is,

This immediately raises the question of whether or not the integral converges, an
issue we shall consider in Section 5.2.3.

(c) Because the lower limit in the integral is zero, it follows that when taking the
Laplace transform, the behaviour of f (t) for negative values of t is ignored or

5.2

� f t( ){ } = �
0

∞

e st– f t( ) dt

(5.2)� f t( ){ } F s( ) �
0

∞

e st– f t( ) dt==

Figure 5.2
The Laplace transform 
operator.

�
0

∞

e st– f t( ) dt �
0

T

e st– f t( ) dt
T→∞
lim=
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suppressed. This means that F(s) contains information on the behaviour of f (t)
only for t � 0, so that the Laplace transform is not a suitable tool for investigating
problems in which values of f (t) for t � 0 are relevant. In most engineering applica-
tions this does not cause any problems, since we are then concerned with physical
systems for which the functions we are dealing with vary with time t. An attribute
of physical realizable systems is that they are non-anticipatory in the sense
that there is no output (or response) until an input (or excitation) is applied.
Because of this causal relationship between the input and output, we define a
function f (t) to be causal if f (t) = 0 (t � 0). In general, however, unless the
domain is clearly specified, a function f (t) is normally intepreted as being defined
for all real values, both positive and negative, of t. Making use of the Heaviside
unit step function H(t) (see also Section 5.5.1), where

we have 

Thus the effect of multiplying f (t) by H(t) is to convert it into a causal function.
Graphically, the relationship between f (t) and f (t)H(t) is as shown in Figure 5.3.

It follows that the corresponding Laplace transform F(s) contains full
information on the behaviour of f (t)H(t). Consequently, strictly speaking one
should refer to { f(t)H(t), F(s)} rather than { f (t), F(s)} as being a Laplace trans-
form pair. However, it is common practice to drop the H(t) and assume that we
are dealing with causal functions.

(d) If the behaviour of f(t) for t � 0 is of interest then we need to use the alternative
two-sided or bilateral Laplace transform of the function f (t), defined by

(5.3)

The Laplace transform defined by (5.2), with lower limit zero, is sometimes
referred to as the one-sided or unilateral Laplace transform of the function f (t).
In this chapter we shall concern ourselves only with the latter transform, and refer
to it simply as the Laplace transform of the function f (t). Note that when f (t) is a
causal function,

�B{ f(t)} = �{ f (t)}

H t( ) 0 t 0�( )
1 t 0�( )⎩

⎨
⎧

=

f t( )H t( ) 0 t 0�( )
f t( ) t 0�( )⎩

⎨
⎧

=

Figure 5.3
Graph of f(t) and 
its causal equivalent 
function.

�B f t( ){ } �
∞–

∞ 

e st– f t( ) dt=
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(e) Another issue concerning the lower limit of zero is the interpretation of f (0) when
f (t) has a peculiarity at the origin. The question then arises as to whether or not
we should include the peculiarity and take the lower limit as 0− or exclude it and
take the lower limit as 0+ (as conventional 0− and 0+ denote values of t just to the
left and right of the origin respectively). Provided we are consistent, we can take
either, both interpretations being adopted in practice. In order to accommodate
any peculiarities that may occur at t = 0, such as an impulse applied at t = 0, we
take 0− as the lower limit and interpret (5.2) as

(5.4)

We shall return to this issue when considering the impulse response in Section 5.5.8.

5.2.2 Transforms of simple functions

In this section we obtain the Laplace transformations of some simple functions.

Determine the Laplace transform of the function

f (t) = c

where c is a constant.

Solution Using the definition (5.2),

Taking s = σ + jω, where σ and ω are real,

A finite limit exists provided that σ = Re(s) � 0, when the limit is zero. Thus, provided
that Re(s) � 0, the Laplace transform is

�(c) = Re(s) � 0

so that

(5.5)

constitute an example of a Laplace transform pair.

� f t( ){ } F s( ) �
0−

∞

e st– f t( ) dt==

Example 5.1

� c( ) �=
0

∞

e st– c dt �
0

T

e st– c dt
T→∞
lim=

c
s
-- e st––

0

T

T→∞
lim c

s
-- 1 e sT–

T→∞
lim–⎝ ⎠

⎛ ⎞==

e sT–

T→∞
lim e σ +jω( )T–( )

T→∞
lim  = e σT– cos ωT j sin ωT+( )

T→∞
lim=

c
s
-- ,

f t( ) c=

F s( ) c
s
--=

⎭
⎪
⎬
⎪
⎫

Re s( ) � 0
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Determine the Laplace transform of the ramp function

f (t) = t

Solution From the definition (5.2),

Following the same procedure as in Example 5.1, limits exist provided that
Re(s) � 0, when

Thus, provided that Re(s) � 0,

giving us the Laplace transform pair

(5.6)

Determine the Laplace transform of the one-sided exponential function

f (t) = ekt

Solution The definition (5.2) gives

Writing s = σ + jω, where σ and ω are real, we have

If k is real, then, provided that σ = Re(s) � k, the limit exists, and is zero. If k is
complex, say k = a + jb, then the limit will also exist, and be zero, provided that σ � a
(that is, Re(s) � Re(k )). Under these conditions, we then have

Example 5.2

� t{ } �=
0

∞

e st– t dt �
0

T

e st– t dt
T→∞
lim=

t

s
---– e st– e st–

s2
-------–

0

T

T→∞
lim= 1

s2
----- T e sT–

s
------------

T→∞
lim e sT–

s2
--------

T→∞
lim––=

T e sT–

s
------------

T→∞
lim e sT–

s2
--------

T→∞
lim 0= =

� t{ } 1

s2
-----=

f t( ) t=

F s( ) 1

s2
-----=

⎭
⎪
⎬
⎪
⎫

Re s( ) � 0

Example 5.3

� ekt{ } �=
0

∞

e st– ekt dt �
0

T

e− s−k( )t dt
T→∞
lim=

1–
s k–
------------ e− s−k( )t[ ]

T→∞
lim 0

T= 1
s k–
------------ 1 e− s−k( )T

T→∞
lim–⎝ ⎠

⎛ ⎞=

e− s−k( )T

T→∞
lim e− σ−k( )T

T→∞
lim e jωT=

� ekt{ } = 1
s k–
------------
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giving us the Laplace transform pair

(5.7)

Determine the Laplace transforms of the sine and cosine functions

f (t) = sin at, g(t) = cos at

where a is a real constant.

Solution Since

e jat = cos at + j sin at

we may write

f (t) = sin at = Im ejat

g(t) = cos at = Re e jat

Using this formulation, the required transforms may be obtained from the result 

of Example 5.3.
Taking k = ja in this result gives

or 

Thus, equating real and imaginary parts and assuming s is real,

�{sin at} = Im �{e jat} = 

�{cos at} = Re �{e jat} = 

These results also hold when s is complex, giving us the Laplace transform pairs

(5.8)

(5.9)

f t( ) ekt=

F s( ) 1
s k–
------------=

⎭
⎪
⎬
⎪
⎫

Re s( ) � Re k( )

Example 5.4

� ekt{ } 1
s k–
------------ , Re s( ) � Re k( )=

� e jat{ } 1
s ja–
------------- , Re s( ) � 0=

� e jat{ } s ja+
s2 a2+
--------------- , Re s( ) � 0=

a

s2 a2+
---------------

s

s2 a2+
---------------

� atsin{ } a

s2 a2+
--------------- , Re s( ) � 0=

� cos at{ } s

s2 a2+
--------------- , Re s( ) � 0=

www.20file.org

www.semeng.ir


5.2  THE LAPLACE TRANSFORM 353

5.2.3 Existence of the Laplace transform

Clearly, from the definition (5.2), the Laplace transform of a function f (t) exists if and
only if the improper integral in the definition converges for at least some values of s.
The examples of Section 5.2.2 suggest that this relates to the boundedness of the func-
tion, with the factor e−st in the transform integral acting like a convergence factor in
that the allowed values of Re(s) are those for which the integral converges. In order
to be able to state sufficient conditions on f (t) for the existence of �{ f (t)}, we first
introduce the definition of a function of exponential order.

Definition 5.1

In MATLAB, using the Symbolic Toolbox, the Laplace transform of a function f (t)
is obtained by entering the commands

syms s t

laplace(f(t))

with the purpose of the first command being that of setting up s and t as symbolic
variables.

To search for a simpler form of the symbolic answer enter the command
simple(ans). Sometimes repeated use of this command may be necessary. To display
the answer in a format that resembles typeset mathematics, use is made of the pretty
command. Use of such commands will be illustrated later in some of the examples.

If the function f (t) includes a parameter then this must be declared as a symbolic
term at the outset. For example, the sequence of commands

syms s t a

laplace(sin(a*t))

gives, as required,

ans=a/(s^2+a^2)

as the Laplace transform of sin(at).
Use of MAPLE is almost identical to the MATLAB Symbolic Math Toolbox

except for minor semantic differences. However, when using MAPLE the integral
transform package must be invoked using inttrans and the variables t and s must
be specified explicitly. For instance the commands

with(inttrans):

laplace(sin(a*t),t,s);

return the transform as

a

s
2

a
2

+
-----------

A function f (t) is said to be of exponential order as t → ∞ if there exists a real
number σ and positive constants M and T such that

| f (t) | � M eσ t

for all t � T.
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What this definition tells us is that a function f (t) is of exponential order if it does not
grow faster than some exponential function of the form M eσ t. Fortunately most functions
of practical significance satisfy this requirement, and are therefore of exponential order.
There are, however, functions that are not of exponential order, an example being 
since this grows more rapidly than M eσ t as t → ∞ whatever the values of M and σ.

The function f (t) = e3t is of exponential order, with σ � 3.

Show that the function f (t) = t3 (t � 0) is of exponential order.

Solution Since

eα t = 1 + α t + α2t 2 + α3t 3 + . . .

it follows that for any α � 0

so that t 3 is of exponential order, with σ � 0.

It follows from Examples 5.5 and 5.6 that the choice of σ in Definition 5.1 is not
unique for a particular function. For this reason, we define the greatest lower bound σc

of the set of possible values of σ to be the abscissa of convergence of f(t). Thus, in the
case of the function f (t) = e3t, σc = 3, while in the case of the function f (t) = t 3, σc = 0.

Returning to the definition of the Laplace transform given by (5.2), it follows that
if f(t) is a continuous function and is also of exponential order with abscissa of
convergence σc, so that

| f (t) | � M eσ t, σ � σc

then, taking T = 0 in Definition 5.1,

Writing s = σ + jω, where σ and ω are real, since |e−jωt | = 1, we have

|e−st | = |e−σ t | |e−jω t | = |e−σ t | = e−σ t

so that

et 2,

Example 5.5

Example 5.6

1
2
---- 1

6
----

t3 � 6

α3
----- eαt

F s( )  = �
0

∞

e st– f t( ) dt �
0

∞

e st– f t( ) dt�

F s( ) �
0

∞

e σt– f t( ) dt M �
0

∞

e σt– e
σ dt

dt, σd � σc��

M �
0

∞

e
(– σ−σ d)t

dt=
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This last integral is finite whenever σ = Re(s) � σd. Since σd can be chosen arbitrarily
such that σd � σc we conclude that F(s) exists for σ � σc. Thus a continuous function
f (t) of exponential order, with abscissa of convergence σc, has a Laplace transform

�{ f(t)} = F(s), Re(s) � σc

where the region of convergence is as shown in Figure 5.4.

In fact, the requirement that f(t) be continuous is not essential, and may be relaxed
to f(t) being piecewise-continuous, as defined in Section 8.8.1 of Modern Engineering
Mathematics; that is, f(t) must have only a finite number of finite discontinuities, being
elsewhere continuous and bounded.

We conclude this section by stating a theorem that ensures the existence of a Laplace
transform.

Existence of Laplace transform

If the causal function f (t) is piecewise-continuous on [0, ∞] and is of exponential order,
with abscissa of convergence σc, then its Laplace transform exists, with region of con-
vergence Re(s) � σc in the s domain; that is,

The conditions of this theorem are sufficient for ensuring the existence of the Laplace
transform of a function. They do not, however, constitute necessary conditions for
the existence of such a transform, and it does not follow that if the conditions are
violated then a transform does not exist. In fact, the conditions are more restrictive than
necessary, since there exist functions with infinite discontinuities that possess Laplace
transforms.

5.2.4 Properties of the Laplace transform

In this section we consider some of the properties of the Laplace transform that will
enable us to find further transform pairs { f (t ), F(s)} without having to compute them
directly using the definition. Further properties will be developed in later sections when
the need arises.

Figure 5.4
Region of convergence 
for �{ f(t)}; σc is 
the abscissa of 
convergence for f(t).

Theorem 5.1

� f t( ){ } F s( ) �
0

∞

e st– f t( ) dt, Re s( ) � σc==

end of theorem
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Property 5.1: The linearity property

A fundamental property of the Laplace transform is its linearity, which may be stated
as follows:

As a consequence of this property, we say that the Laplace transform operator � is
a linear operator. A proof of the property follows readily from the definition (5.2),
since

= α�{ f (t)} + β�{g(t)}

Regarding the region of convergence, if f (t) and g(t) have abscissae of convergence σf

and σg respectively, and σ1 � σf , σ2 � σg, then

It follows that 

|α f (t) + βg(t) | � |α | | f (t) | + |β | |g(t) | � |α |M1 e
σ1t + |β |M2 eσ2t 

� ( |α |M1 + |β |M2) eσt

where σ = max(σ1, σ2), so that the abscissa of convergence of the linear sum
α f (t ) + βg(t ) is less than or equal to the maximum of those for f (t) and g(t).

This linearity property may clearly be extended to a linear combination of any finite
number of functions.

Determine �{3t + 2e3t}.

Solution Using the results given in (5.6) and (5.7),

If f (t) and g(t) are functions having Laplace transforms and if α and β are any
constants then

�{α f (t) + βg(t)} = α�{ f (t)} + β�{g(t)}

� α f t( ) βg t( )+{ } �
0

∞

α f t( ) βg t( )+[ ] e st– dt=

�
0

∞

α f t( ) e st– dt �
0

∞

βg t( ) e st– dt+=

α �
0

∞

f t( ) e st– dt β �
0

∞

g t( ) e st– dt+=

f t( )  � M1 e
σ 1t

, g t( )  �  M2 e
σ 2t

Example 5.7

� t{ } 1

s2
----- , Re s( ) � 0=

� e3t{ } 1
s 3–
------------ , Re s( ) � 3=
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so, by the linearity property,

�{3t + 2e3t} = 3�{t} + 2�{e3t}

Determine �{5 − 3t + 4 sin 2t − 6e4t}.

Solution Using the results given in (5.5)–(5.8),

so, by the linearity property,

�{5 − 3t + 4 sin 2t − 6e4t} = �{5} − 3�{t} + 4�{sin 2t} − 6�{e4t}

The answer can be checked using the commands

MATLAB MAPLE
syms s t with(inttrans):

laplace(3*t + 2*exp(3*t)); laplace(3*t + 2*exp(3*t),t,s);

pretty(ans)

which return

 

= 3

s2
-----  + 2

s 3–
------------ Re s( ) � max 0 3,{ },

= 3

s2
-----  + 2

s 3–
------------ Re s( ) � 3,

3

s
2

----
2

s-3
-------+ 3

1

s
2

---- 2
1

s-3
-------+

Example 5.8

Again this answer can be checked using the commands

syms s t

laplace(5 – 3*t + 4*sin(2*t) – 6*exp(4*t))

in MATLAB, or the commands

with(inttrans):

laplace(5 – 3*t + 4*sin(2*t) – 6*exp(4*t),t,s);

in MAPLE.

� 5{ } 5
s
----, Re s( ) � 0 � t{ } 1

s2
----- , Re s( ) � 0==

� 2sin t{ } 2

s2 4+
------------- , Re s( ) � 0 � e4t{ } 1

s 4–
----------- , Re s( ) � 4==

5

s
---- 3

s2
----- 8

s2 4+
------------- 6

s 4–
----------- Re s( ) � max 0 4,{ },–+–=

5

s
---- 3

s2
----- 8

s2 4+
------------- 6

s 4–
----------- Re s( ) � 4,–+–=
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The first shift property is another property that enables us to add more combinations
to our repertoire of Laplace transform pairs. As with the linearity property, it will prove
to be of considerable importance in our later discussions particularly when considering
the inversion of Laplace transforms.

Property 5.2: The first shift property

The property is contained in the following theorem, commonly referred to as the first
shift theorem or sometimes as the exponential modulation theorem.

The first shift theorem 

Proof A proof of the theorem follows directly from the definition of the Laplace transform, since

Then, since

we see that the last integral above is in structure exactly the Laplace transform of f (t)
itself, except that s − a takes the place of s, so that

�{eat f (t)} = F(s − a), Re(s − a) � σc

or

�{eat f (t)} = F(s − a), Re(s) � σc + Re(a)

An alternative way of expressing the result of Theorem 5.2, which may be found
more convenient in application, is 

In other words, the theorem says that the Laplace transform of eat times a function f (t)
is equal to the Laplace transform of f (t ) itself, with s replaced by s − a.

Determine �{t e−2t}.

Solution From the result given in (5.6),

Theorem 5.2

If f (t) is a function having Laplace transform F(s), with Re(s) � σc, then the function
eatf (t) also has a Laplace transform, given by

�{eatf (t)} = F(s − a), Re(s) � σc + Re(a)

�{eatf (t)} = [�{ f (t)}] s→s−a = [F(s)] s→s−a

� eat f t( ){ } �
0

∞

eatf t( ) e st– dt �
0

∞

f t( ) e s−a( )t– dt= =

� f t( ){ } F s( ) �
0

∞

f t( ) e st– dt, Re s( ) � σc==

end of theorem

Example 5.9

� t{ } F s( ) 1

s2
----- , Re s( ) � 0==
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so, by the first shift theorem,

�{t  e−2t} = F(s + 2) = [F(s)]s→s+2 , Re(s) � 0 − 2

that is,

Determine �{e−3t sin 2t}.

Solution From the result (5.8),

so, by the first shift theorem,

�{e−3t sin 2t} = F(s + 3) = [F(s)]s→s+3, Re(s) � 0 − 3

that is,

This is readily dealt with using MATLAB or MAPLE. The commands

MATLAB MAPLE
syms s t with(inttrans):

laplace(t*exp(–2*t)); laplace(t*exp(–2*t),t,s);

pretty(ans)

return the transform as

� t e 2t–{ } 1

s 2+( )2
------------------ , Re s( ) � 2–=

1

(s 2)+
2

--------------

Example 5.10

In MATLAB the commands:

syms s t

laplace(exp(–3*t)*sin(2*t))

return

ans = 2/((s + 3)^2 + 4)

Entering the further commands

simple(ans);

pretty(ans)

� 2tsin{ } F s( ) 2

s2 4+
------------- , Re s( ) � 0==

� e 3t– 2tsin{ } 2

s 3+( )2 4+
--------------------------- 2

s2 6s 13+ +
----------------------------= , Re s( ) � 3–=
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The function e−3t sin 2t in Example 5.10 is a member of a general class of func-
tions called damped sinusoids. These play an important role in the study of engi-
neering systems, particularly in the analysis of vibrations. For this reason, we add
the following two general members of the class to our standard library of Laplace
transform pairs:

(5.10)

(5.11)

where in both cases k and a are real constants.

Property 5.3: Derivative-of-transform property

This property relates operations in the time domain to those in the transformed s
domain, but initially we shall simply look upon it as a method of increasing our
repertoire of Laplace transform pairs. The property is also sometimes referred to as the
multiplication-by-t property. A statement of the property is contained in the following
theorem.

Derivative of transform

returns

2/(s2 + 6s + 13)

as an alternative form of the answer. Note that the last two commands could be
replaced by the single command pretty(simple(ans)).

In MAPLE the commands

with(inttrans):

laplace(exp(–3*t)*sin(2*t),t,s);

return the answer

There is no simple command in MAPLE.

2
1

(s 3)+
2

4+
--------------------

� e kt– atsin{ } a

s k+( )2 a2+
----------------------------- , Re s( ) � k–=

� e kt– cos at{ } s k+
s k+( )2 a2+

----------------------------- , Re s( ) � k–=

Theorem 5.3

If f (t) is a function having Laplace transform

F(s) = �{ f (t)}, Re(s) � σc

then the functions t n f (t) (n = 1, 2, . . . ) also have Laplace transforms, given by

� tn f t( ){ } 1–( )n dnF s( )
dsn

---------------- , Re s( ) � σc=
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Proof By definition,

so that

Owing to the convergence properties of the improper integral involved, we can inter-
change the operations of differentiation and integration and differentiate with respect to
s under the integral sign. Thus

which, on carrying out the repeated differentiation, gives

= (−1)n�{t n f (t)}, Re(s) � σc

the region of convergence remaining unchanged.

In other words, Theorem 5.3 says that differentiating the transform of a function
with respect to s is equivalent to multiplying the function itself by −t. As with the pre-
vious properties, we can now use this result to add to our list of Laplace transform pairs.

Determine �{t sin 3t}.

Solution Using the result (5.8),

so, by the derivative theorem,

� f t( ){ } F s( ) �
0

∞

e st– f t( ) dt==

dnF s( )
dsn

---------------- dn

dsn
------- �

0

∞

e st– f t( ) dt=

dnF s( )
dsn

---------------- �
0

∞
∂n

∂sn
------- e st– f t( )[ ] dt=

dnF s( )
dsn

---------------- 1–( )n �
0

∞

e st– tn f t( ) dt=

end of theorem

Example 5.11

In MATLAB the commands

syms s t

laplace(t*sin(3*t))

return

ans = 1/(s^2 + 9)*sin(2*atan(3/5))

Applying the further command

simple(ans)

� 3tsin{ } F s( ) 3

s2 9+
------------- , Re s( ) � 0= =

� t 3tsin{ } dF s( )
ds

--------------– 6s

s2 9+( )2
-------------------- , Re s( ) � 0= =
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Determine �{t 2 et}.

Solution From the result (5.7),

so, by the derivative theorem,

Note that the result is easier to deduce using the first shift theorem.

returns

ans = 6/(s^2 + 9)/s/(1 + 9/s^2)

Repeating the simple command

simple(ans)

returns the answer in the more desirable form

ans = 6*s/(s^2 + 9)^2

In MAPLE the commands

with(intrans):

laplace(t*sin(3*t),t,s);

return the transform as

and there appears to be no command to simplify this.

2arc 3
1

s
-⎝ ⎠

⎛ ⎞tan⎝ ⎠
⎛ ⎞sin

s
2

9+
---------------------------------

Example 5.12

Using MATLAB or MAPLE confirm that the answer may be checked using the 
following commands:

MATLAB MAPLE
syms s t with(inttrans):

laplace(t^2*exp(t)) laplace(t^2*exp(t),t,s);

� et{ } F s( ) 1
s 1–
------------ , Re s( ) � 1= =

� t 2e
t{ } 1–( )2 d2F s( )

ds2
---------------- 1–( )2 d2

ds2
------- 1

s 1–
------------⎝ ⎠

⎛ ⎞==

= 1–( ) d

ds
----- 1

s 1–( )2
-------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

s 1–( )3
------------------- , Re s( ) � 1=
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Determine �{t n}, where n is a positive integer.

Solution Using the result (5.5),

so, by the derivative theorem,

5.2.5 Table of Laplace transforms

It is appropriate at this stage to draw together the results proved to date for easy access.
This is done in the form of two short tables. Figure 5.5(a) lists some Laplace transform
pairs and Figure 5.5(b) lists the properties already considered.

Example 5.13

� 1{ } 1
s
---- Re s( ) � 0,=

� tn{ } 1–( )n dn

dsn
------- 1

s
----⎝ ⎠

⎛ ⎞ n!

sn+1
-------- Re s( ) � 0,= =

(a)
f (t) �{ f (t)} = F(s) Region of convergence

c, c a constant Re(s) � 0

t Re(s) � 0

t n, n a positive integer Re(s) � 0

ekt, k a constant Re(s) � Re(k)

sin  at, a a real constant Re(s) � 0

cos at, a a real constant Re(s) � 0

e−kt sin at, k and a real constants Re(s) � −k

e−kt cos at, k and a real constants Re(s) � −k

(b)
�{ f (t)} = F(s), Re(s) � σ1 and �{g (t)} = G(s), Re(s) � σ2

Linearity: �{α f (t) + βg (t)} = αF(s) + βG(s), Re(s) � max(σ1, σ2)

First shift theorem: �{e at f (t)} = F(s − a), Re(s) � σ1 + Re(a)

Derivative of transform:

�{ t n f (t)} = (−1)n , (n = 1, 2, . . . ), Re(s) � σ1

Figure 5.5
(a) Table of Laplace 
transform pairs; 
(b) some properties of 
the Laplace transform.

c
s
--

1

s2
-----

n!

s n+1
---------

1
s k
------------

–

a

s2 a2+
---------------

s

s2 a2+
---------------

a

s k+( )2 a2+
-----------------------------

s k+
s k+( )2 a2+

-----------------------------

dnF s( )
ds n

----------------
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5.2.7 The inverse transform

The symbol �−1{F(s)} denotes a causal function f (t) whose Laplace transform is F(s);
that is,

if �{ f (t)} = F(s) then f (t) = �−1{F(s)}

This correspondence between the functions F(s) and f(t) is called the inverse
Laplace transformation, f (t) being the inverse transform of F(s), and �−1 being
referred to as the inverse Laplace transform operator. These relationships are depicted
in Figure 5.6.

As was pointed out in observation (c) of Section 5.2.1, the Laplace transform F(s)
only determines the behaviour of f (t) for t � 0. Thus �−1{F(s)} = f (t) only for t � 0.
When writing �−1{F(s)} = f (t), it is assumed that t � 0 so strictly speaking, we should
write

Figure 5.6
The Laplace transform 
and its inverse.

�−1{F(s)} = f (t)H(t) (5.12)

Use the definition of the Laplace transform 
to obtain the transforms of f(t) when f(t) is 
given by

(a) cosh 2t (b) t 2 (c) 3 + t (d) t e−t

stating the region of convergence in each case.

What are the abscissae of convergence for the 
following functions?

(a) e5t (b) e−3t

(c) sin 2t (d) sinh 3t

(e) cosh 2t (f ) t 4

(g) e−5t + t 2 (h) 3 cos 2t − t 3

(i) 3 e2t − 2 e−2t + sin 2t ( j) sinh 3t + sin 3t

Using the results shown in Figure 5.5, obtain the 
Laplace transforms of the following functions, 
stating the region of convergence:

(a) 5 − 3t (b) 7t 3 − 2 sin 3t

(c) 3 − 2t + 4 cos 2t (d) cosh 3t

(e) sinh 2t (f ) 5e−2t + 3 − 2cos 2t

(g) 4t e−2t (h) 2e−3t sin 2t

(i) t 2 e−4t ( j) 6t 3 − 3t 2 + 4t − 2

(k) 2 cos 3t + 5 sin 3t (l) t cos 2t

(m) t 2 sin 3t (n) t 2 − 3 cos 4t

(o) t 2 e−2t + e−t cos 2t + 3

Check your answers using MATLAB or MAPLE.

5.2.6 Exercises

1

2

3
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Since

if follows that

Since

it follows that

The linearity property for the Laplace transform (Property 5.1) states that if α and β
are any constants then

�{α f (t) + βg(t)} = α�{ f (t)} + β�{g(t)} = αF(s) + βG(s)

It then follows from the above definition that

�−1{αF(s) + βG(s)} = α f (t) + βg(t) = α�−1{F(s)} + β�−1{G(s)}

so that the inverse Laplace transform operator �−1 is also a linear operator.

5.2.8 Evaluation of inverse transforms

The most obvious way of finding the inverse transform of the function F(s) is to make
use of a table of transforms such as that given in Figure 5.5. Sometimes it is possible
to write down the inverse transform directly from the table, but more often than not
it is first necessary to carry out some algebraic manipulation on F(s). In particular, we
frequently need to determine the inverse transform of a rational function of the form
p(s)/q(s), where p(s) and q(s) are polynomials in s. In such cases the procedure is first
to resolve the function into partial fractions and then to use the table of transforms.

Example 5.14

� eat{ } 1
s a–
------------=

� 1– 1
s a–
------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

eat=

Example 5.15

� sin ω t{ } ω
s2 ω2+
----------------=

� 1– ω
s2 ω2+
----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

ωtsin=

Using MATLAB Symbolic Math Toolbox the commands

syms s t

ilaplace(F(s))

return the inverse transform of F(s). The corresponding MAPLE commands are

with(inttrans):

invlaplace(F(s),s,t);
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Find

Solution First 1/(s + 3)(s − 2) is resolved into partial fractions, giving

Then, using the result �−1{1/(s + a)} = e−at together with the linearity property, we
have

Find

Solution Resolving (s + 1)/s2(s 2 + 9) into partial fractions gives

Using the results in Figure 5.5, together with the linearity property, we have

Example 5.16

� 1– 1
s 3+( ) s 2–( )

----------------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

Using MATLAB or MAPLE the commands

MATLAB MAPLE
syms s t with(inttrans):

ilaplace(1/((s + 3)*(s – 2))); ilaplace(1/((s + 3)*

pretty(ans) (s – 2)),s,t);

return the anwers

– exp(–3t) + 1/5exp(2t) - e(-3t) + e(2t)

1
s 3+( ) s 2–( )

----------------------------------
– 1

5
----

s 3+
-----------

1
5
----

s 2–
------------+=

� 1– 1
s 3+( ) s 2–( )

----------------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

– 1
5
---- �

1– 1
s 3+
-----------

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

5
---- �

1– 1
s 2–
------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

+ – 1
5
---- e 3t– 1

5
---- e2t+= =

1

5
-

1

5
-

1

5
-

Example 5.17

� 1– s 1+
s2 s2 9+( )
------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 1+
s2 s2 9+( )
------------------------

1
9
----

s
--

1
9
----

s2
----- 1

9
----

s 1+
s2 9+
-------------–+=

1
9
----

s
--

1
9
----

s2
----- 1

9
----

s

s2 32+
---------------– 1

27
-------

3

s2 32+
---------------–+=

� 1– s 1+
s2 s2 9+( )
------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

9
---- 1

9
---- t 1

9
---- 3tcos 1

27
------- 3tsin––+=
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5.2.9 Inversion using the first shift theorem

In Theorem 5.2 we saw that if F(s) is the Laplace transform of f (t) then, for a scalar a,
F(s − a) is the Laplace transform of eat f (t). This theorem normally causes little diffi-
culty when used to obtain the Laplace transforms of functions, but it does frequently
lead to problems when used to obtain inverse transforms. Expressed in the inverse form,
the theorem becomes 

The notation

�−1{[F(s)]s→s−a} = eat [ f (t)]

where F(s) = �{ f (t)} and [F(s)]s→s−a denotes that s in F(s) is replaced by s − a, may
make the relation clearer.

Find

Solution

and, since 1/s2 = �{t}, the shift theorem gives

Using MATLAB or MAPLE check that the answer can be verified using the
following commands:

MATLAB MAPLE
syms s t with(inttrans):

ilaplace((s + 1)/(s^2*(s^2 + 9))); invlaplace((s + 1)/

pretty(ans) (s^2*(s^2 + 9)),s,t);

�−1{F(s − a)} = eatf (t)

Example 5.18

� 1– 1

s 2+( )2
------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

Check the answer using MATLAB or MAPLE.

1

s 2+( )2
------------------  = 1

s2
-----

s→s+2

� 1– 1

s 2+( )2
------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = t e 2t–
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Find

Solution

and, since 2/(s2 + 22) = �{sin 2t}, the shift theorem gives

Find

Solution

Example 5.19

� 1– 2

s2 6s 13+ +
----------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

The MATLAB commands

syms s t

ilaplace(2/(s^2 + 6*s + 13);

pretty(simple(ans))

return

ans = –1/2i(exp((–3 + 2i)t) – exp((–3 – 2i)t))

The MAPLE commands

with(inttrans):

invlaplace(2/(s^2 + 6*s + 13),s,t);

simplify(%);

return the same answer.
To obtain the same format as provided in the solution further manipulation is

required as follows:

1/2i[−e−3te2it + e−3te−2it ] = e−3t( (e2it − e−2it )/(2i ) ) = e−3t sin 2t

2

s2 6s 13+ +
----------------------------  = 2

s 3+( )2 4+
---------------------------  = 2

s2 22+
---------------

s→s+3

� 1– 2

s2 6s 13+ +
----------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

e 3t– 2tsin=

Example 5.20

� 1– s 7+
s2 2s 5+ +
-------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 7+
s2 2s 5+ +
------------------------- s 7+

s 1+( )2 4+
---------------------------=

= s 1+( )
s 1+( )2 4+

--------------------------- 3 2

s 1+( )2 4+
---------------------------+

s

s2 22+
---------------

s→s+1

3 2

s2 22+
---------------

s→s+1

+=
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Since s/(s2 + 22) = �{cos 2t} and 2/(s2 + 22) = �{sin 2t}, the shift theorem gives

Find

Solution Resolving 1/(s + 1)2(s2 + 4) into partial fractions gives

Since 1/s 2 = �{t}, the shift theorem, together with the results in Figure 5.5, gives

� 1– s 7+
s2 2s 5+ +
-------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = e t– cos 2t 3e t– sin 2t+

Example 5.21

� 1– 1

s 1+( )2 s2 4+( )
--------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

Check the answers to Examples 5.20 and 5.21 using MATLAB or MAPLE.

1

s 1+( )2 s2 4+( )
--------------------------------------  = 

2
25
-------

s 1+
-------------

1
5
----

s 1+( )2
------------------ 1

25
-------

2s 3+
s2 4+
----------------–+

= 
2
25
-------

s 1+
------------- 1

5
----

1

s2
-----

s→s+1

2
25
-------

s

s2 22+
--------------- 3-------

2
50

s2 22+
---------------––+

� 1– 1

s 1+( )2 s2 4+( )
--------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 2
25
------- e t– 1

5
---- e t– t 2

25
------- cos 2t 3

50
------- sin 2t––+

Check your answers using MATLAB or MAPLE.

Find �−1{F(s)} when F(s) is given by 

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i)

( j) (k)

(l) (m)

(n) (o)

(p)

(q)

(r)

5.2.10 Exercise

4

1
s 3+( ) s 7+( )

--------------------------------- s 5+
s 1+( ) s 3–( )

----------------------------------

s 1–

s2 s 3+( )
---------------------- 2s 6+

s2 4+
----------------

1

s2 s2 16+( )
--------------------------- s 8+

s2 4s 5+ +
-------------------------

s 1+

s2 s2 4s 8+ +( )
----------------------------------- 4s

s 1–( ) s 1+( )2
------------------------------------

s 7+

s2 2s 5+ +
-------------------------

3s2 7s 5+–
s 1–( ) s 2–( ) s 3–( )

-------------------------------------------------- 5s 7–

s 3+( ) s2 2+( )
-----------------------------------

s

s 1–( ) s2 2s 2+ +( )
------------------------------------------------ s 1–

s2 2s 5+ +
-------------------------

s 1–
s 2–( ) s 3–( ) s 4–( )

-------------------------------------------------- 3s

s 1–( ) s2 4–( )
----------------------------------

36

s s2 1+( ) s2 9+( )
-----------------------------------------

2s2 4s 9+ +

s 2+( ) s2 3s 3+ +( )
-----------------------------------------------

1

s 1+( ) s 2+( ) s2 2s 10+ +( )
-------------------------------------------------------------------
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Solution of differential equations
We first consider the Laplace transforms of derivatives and integrals, and then apply
these to the solution of differential equations.

5.3.1 Transforms of derivatives

If we are to use Laplace transform methods to solve differential equations, we need
to find convenient expressions for the Laplace transforms of derivatives such as d f /dt,
d2f /dt 2 or, in general, dnf /dt n. By definition,

Integrating by parts, we have

= − f (0) + sF(s)

that is,

In taking the Laplace transform of a derivative we have assumed that f (t) is continuous
at t = 0, so that f (0−) = f (0) = f (0+). In Section 5.5.8, when considering the impulse
function, f (0−) ≠ f (0+) and we have to revert to a more generalized calculus to resolve
the problem.

The advantage of using the Laplace transform when dealing with differential equations
can readily be seen, since it enables us to replace the operation of differentiation in the
time domain by a simple algebraic operation in the s domain.

Note that to deduce the result (5.13), we have assumed that f (t) is continuous, with
a piecewise-continuous derivative df /dt, for t � 0 and that it is also of exponential order
as t → ∞.

Likewise, if both f (t) and df /dt are continuous on t � 0 and are of exponential order
as t → ∞, and d2f /dt 2 is piecewise-continuous for t � 0, then

which, on using (5.12), gives

leading to the result 

5.3

� df
dt
------

⎩ ⎭
⎨ ⎬
⎧ ⎫ �

0

∞

e st– df
dt
------ dt=

� df
dt
------

⎩ ⎭
⎨ ⎬
⎧ ⎫

e st– f t( )[ ]0
∞ s+ �

0

∞

e st– f t( )dt=

(5.13)� df
dt
------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = sF s( ) − f 0( )

� d2f

dt2
--------

⎩ ⎭
⎨ ⎬
⎧ ⎫ �

0

∞

e st– d2f

dt2
-------- dt e st– df

dt
------

0

∞

s �
0

∞

e st– df
dt
------ dt+== − df

dt
------

t=0

s� df
dt
------

⎩ ⎭
⎨ ⎬
⎧ ⎫

+=

� d2f

dt2
--------

⎩ ⎭
⎨ ⎬
⎧ ⎫

– df
dt
------

t=0

+ s sF s( ) f 0( )–[ ]=

(5.14)� d2f

dt2
--------

⎩ ⎭
⎨ ⎬
⎧ ⎫

s2F s( ) sf 0( )– df
dt
------

t=0

– s2F s( ) sf 0( )– f 1( ) 0( )–= =

www.20file.org

www.semeng.ir


5.3  SOLUTION OF DIFFERENTIAL EQUATIONS 371

Clearly, provided that f (t) and its derivatives satisfy the required conditions, this pro-
cedure may be extended to obtain the Laplace transform of f (n)(t) = d nf /dt n in the form

a result that may be readily proved by induction.
Again it is noted that in determining the Laplace transform of f (n)(t) we have

assumed that f (n−1)(t) is continuous.

5.3.2 Transforms of integrals

In some applications the behaviour of a system may be represented by an integro-
differential equation, which is an equation containing both derivatives and integrals
of the unknown variable. For example, the current i in a series electrical circuit con-
sisting of a resistance R, an inductance L and capacitance C, and subject to an applied
voltage E, is given by

To solve such equations directly, it is convenient to be able to obtain the Laplace
transform of integrals such as �t

0 f (τ) dτ .
Writing

we have

Taking Laplace transforms,

which, on using (5.13), gives

sG(s) = F(s)

or

leading to the result

�{ f (n)(t)} = snF(s) − sn−1f (0) − sn−2f (1)(0) − . . . − f (n−1)(0)

(5.15)= snF s( ) sn−if i−1( ) 0( )
i=1

n

∑–

L di
dt
------ iR 1

C
----- �

0

t

i τ( ) dτ+ +  = E

g t( ) = �
0

t

f τ( ) dτ

dg
dt
-------  = f t( ) g 0( ) 0=,

� dg
dt
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = � f t( ){ }

� g t( ){ } = G s( ) = 1
s
---- F s( ) = 1

s
---- � f t( ){ }

(5.16)� �
0

t

f τ( ) dτ
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 1
s
---- � f t( ){ } = 1

s
---- F s( )
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Obtain

In this case f (t) = t 3 + sin 2t, giving

F(s) = �{ f (t)} = �{t 3} + �{sin 2t}

so, by (5.16),

5.3.3 Ordinary differential equations

Having obtained expressions for the Laplace transforms of derivatives, we are now in
a position to use Laplace transform methods to solve ordinary linear differential equations
with constant coefficients. To illustrate this, consider the general second-order linear
differential equation

(5.17)

subject to the initial conditions x(0) = x0, x(0) = v0 where as usual a dot denotes differ-
entiation with respect to time, t. Such a differential equation may model the dynamics
of some system for which the variable x(t) determines the response of the system to the
forcing or excitation term u(t). The terms system input and system output are also
frequently used for u(t) and x(t) respectively. Since the differential equation is linear
and has constant coefficients, a system characterized by such a model is said to be a
linear time-invariant system.

Taking Laplace transforms of each term in (5.17) gives

which on using (5.13) and (5.14) leads to

a[s2X(s) − sx(0) − x(0)] + b[sX(s) − x(0)] + cX(s) = U(s)

Rearranging, and incorporating the given initial conditions, gives

(as2 + bs + c)X(s) = U(s) + (as + b)x0 + av0

so that

(5.18)

Example 5.22

� �
0

t

τ3 2τsin+( ) dτ
⎩ ⎭
⎨ ⎬
⎧ ⎫

= 6

s4
----- 2

s2 4+
-------------+

� �
0

t

τ3 2τsin+( ) dτ
⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

s
---- F s( ) 6

s5
----- 2

s s2 4+( )
----------------------+= =

a d2x

dt2
--------- b dx

dt
------- cx+ + u t( ) t � 0( )=

a� d2x

dt2
---------

⎩ ⎭
⎨ ⎬
⎧ ⎫

b� dx

dt
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

c� x{ }+ +  = � u t( ){ }

X s( ) U s( ) as b+( )x0 av0+ +
as2 bs c+ +

---------------------------------------------------------=
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Equation (5.18) determines the Laplace transform X(s) of the response, from which, by
taking the inverse transform, the desired time response x(t) may be obtained.

Before considering specific examples, there are a few observations worth noting at
this stage.

(a) As we have already noted in Section 5.3.1, a distinct advantage of using the
Laplace transform is that it enables us to replace the operation of differentiation
by an algebraic operation. Consequently, by taking the Laplace transform of each
term in a differential equation, it is converted into an algebraic equation in the
variable s. This may then be rearranged using algebraic rules to obtain an expres-
sion for the Laplace transform of the response; the desired time response is then
obtained by taking the inverse transform.

(b) The Laplace transform method yields the complete solution to the linear differ-
ential equation, with the initial conditions automatically included. This contrasts
with the classical approach, in which the general solution consists of two compo-
nents, the complementary function and the particular integral, with the initial
conditions determining the undetermined constants associated with the comple-
mentary function. When the solution is expressed in the general form (5.18), upon
inversion the term involving U(s) leads to a particular integral while that involv-
ing x0 and v0 gives a complementary function. A useful side issue is that an
explicit solution for the transient is obtained that reflects the initial conditions.

(c) The Laplace transform method is ideally suited for solving initial-value prob-
lems; that is, linear differential equations in which all the initial conditions
x(0), x(0), and so on, at time t = 0 are specified. The method is less attractive for
boundary-value problems, when the conditions on x(t) and its derivatives are not
all specified at t = 0, but some are specified at other values of the independent
variable. It is still possible, however, to use the Laplace transform method by
assigning arbitrary constants to one or more of the initial conditions and then
determining their values using the given boundary conditions.

(d) It should be noted that the denominator of the right-hand side of (5.18) is the left-
hand side of (5.17) with the operator d/dt replaced by s. The denominator equated
to zero also corresponds to the auxiliary equation or characteristic equation used
in the classical approach. Given a specific initial-value problem, the process of
obtaining a solution using Laplace transform methods is fairly straightforward,
and is illustrated by Example 5.23.

Solve the differential equation

subject to the initial conditions x = 1 and dx/dt = 0 at t = 0.

Solution Taking Laplace transforms

Example 5.23

d2x

dt2
--------- 5 dx

dt
------- 6x+ +  = 2 e t– t � 0( )

� d2x

dt2
---------

⎩ ⎭
⎨ ⎬
⎧ ⎫

5� dx

dt
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

6� x{ }+ +  = 2� e t–{ }
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leads to the transformed equation

[s2X(s) − sx(0) − x(0)] + 5[sX(s) − x(0)] + 6X(s) = 

which on rearrangement gives

(s2 + 5s + 6)X(s) = + (s + 5)x(0) + x(0)

Incorporating the given initial conditions x(0) = 1 and x(0) = 0 leads to

(s2 + 5s + 6)X(s) = + s + 5

That is,

Resolving the rational terms into partial fractions gives

Taking inverse transforms gives the desired solution

x(t) = e−t + e−2t − e−3t (t � 0)

In principle the procedure adopted in Example 5.23 for solving a second-order linear
differential equation with constant coefficients is readily carried over to higher-order
differential equations. A general nth-order linear differential equation may be written as

(5.19)

where an, an−1, . . . , a0 are constants, with an ≠ 0. This may be written in the more
concise form

q(D)x(t) = u(t) (5.20)

where D denotes the operator d/dt and q(D) is the polynomial

The objective is then to determine the response x(t) for a given forcing function u(t)
subject to the given set of initial conditions

Taking Laplace transforms in (5.20) and proceeding as before leads to

2
s 1+
-----------

2
s 1+
-----------

2
s 1+
−−−−−−−−

X s( ) = 2
s 1+( ) s 2+( ) s 3+( )

--------------------------------------------------- s 5+
s 3+( ) s 2+( )

----------------------------------+

X s( ) = 1
s 1+
----------- 2

s 2+
----------- 1

s 3+
----------- 3

s 2+
----------- 2

s 3+
-----------–+ +–

= 1
s 1+
----------- 1

s 2+
----------- 1

s 3+
-----------–+

an
dnx

dtn
--------- an−1

dn−1x

dtn−1
------------- . . . a0x+ + +  = u t( ) t � 0( )

q D( ) = arD
r

r=0

n

∑

Drx 0( ) d rx

dt r
-------

t=0

 = cr r 0  1  . . .  n 1–,,,=( )=
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where

Then, in principle, by taking the inverse transform, the desired response x (t) may be
obtained as

For high-order differential equations the process of performing this inversion may
prove to be rather tedious, and matrix methods may be used as indicated in Section 5.7.

To conclude this section, further worked examples are developed in order to help
consolidate understanding of this method for solving linear differential equations.

Solve the differential equation

subject to the initial conditions x = 0 and dx/dt = 0 at t = 0.

Solution Taking the Laplace transforms

leads to the equation

[s2X(s) − sx(0) − x(0)] + 6[sX(s) − x(0)] + 9X(s) = 

which on rearrangement gives

(s2 + 6s + 9)X(s) =  + (s + 6)x(0) + x(0)

Incorporating the given initial conditions x(0) = x(0) = 0 leads to

Resolving into partial fractions gives

that is,

X s( ) =  p s( )
q s( )
----------

p s( ) = U s( ) cr

r=0

n−1

∑ ais
i−r−1

i=r+1

n

∑+

x t( ) = � 1– p s( )
q s( )
----------

⎩ ⎭
⎨ ⎬
⎧ ⎫

Example 5.24

d2x

dt2
--------- 6 dx

dt
------- 9x+ +  = tsin t � 0( )

� d2x

dt2
---------

⎩ ⎭
⎨ ⎬
⎧ ⎫

6� dx
dt
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

9� x{ }+ +  = � tsin{ }

1

s2 1+
-------------

1

s2 1+
-------------

X s( ) = 1

s2 1+( ) s 3+( )2
--------------------------------------

X s( ) = 3
50
-------

1

s 3+
------------- 1

10
-------

1

s 3+( )2
------------------ 2-------

1
25

s2 1+
------------- 3-------

s
50

s2 1+
-------------–+ +

X s( ) = 3
50
-------

1

s 3+
------------- 1-------

1
10

s2
-----

s→s+3

2
25
-------

1

s2 1+
------------- 3-------

s
50

s2 1+
-------------–+ +
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Taking inverse transforms, using the shift theorem, leads to the desired solution

In MATLAB, using the Symbolic Math Toolbox, the command dsolve computes
symbolic solutions to differential equations. The letter D denotes differentiation
whilst the symbols D2, D3, . . . , DN denote the 2nd, 3rd, . . . , Nth derivatives respec-
tively. The dependent variable is that preceded by D whilst the default independent
variable is t. The independent variable can be changed from t to another symbolic
variable by including that variable as the last input variable. The initial conditions
are specified by additional equations, such as Dx(0) = 6. If the initial conditions
are not specified the solution will contain constants of integration such as C1 and C2.

For the differential equation of Example 5.24 the MATLAB commands

syms x t

x = dsolve(‘D2x + 6*Dx + 9*x = sin(t)’,‘x(0) = 0,Dx(0) = 

0’);

pretty(simple(x))

return the solution

x = –3/50cos(t) + 2/25sin(t) + 3/50(1/exp(t)3) 

+ 1/10(t/exp(t)3)

It is left as an exercise to express 1/exp(t)3 as e–3t.
In MAPLE the command dsolve is also used and the commands

ode2:= diff(x(t),t,t) + 6*diff(x(t),t) + 9*x(t) = sin(t);

dsolve({ode2, x(0) = 0, D(x)(0) = 0}, x(t));

return the solution

x(t) = e(-3t) + e(-3t) - cos(t) + sin(t)

If the initial conditions were not specified then the command

dsolve({ode2}, x(t));

returns the solution

x(t) = e(–3t)_C1 + e(–3t)t_ C2 – cos(t) + sin(t)

In MAPLE it is also possible to specify solution by the Laplace method and the
command

dsolve({ode2, x(0) = 0, D(x)(0) = 0}, x(t), 

method = laplace);

also returns the solution

x(t) = - cos(t) + sin(t) + e(–3t)(5t + 3)

and, when initial conditions are not specified, the command

dsolve({ode2},x(t), method = laplace);

returns the solution

x(t) = - cos(t) + sin(t) + e(–3t)(50 tD(x)(0) 

+ 150 t x(0) + 5t + 50x(0) + 3)

x t( ) 3
50
------- e 3t– 1

10
------- te 3t– 2

25
------- tsin 3

50
------- t t 0�( )cos–+ +=

3

50
-----

1

10
-----

3

50
-----

2

25
-----

3

50
-----

2

25
-----

3

50
-----

2

25
-----

1

50
-----

3

50
-----

2

25
-----

1

50
-----
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Solve the differential equation

subject to the initial conditions x = dx/dt = 1 and d2x/d t 2 = 0 at t = 0.

Solution Taking Laplace transforms

leads to the equation

s3X(s) − s2x(0) − sx(0) − y(0) + 5[s2X(s) − sx(0) − x(0)]

+ 17[sX(s) − x(0)] + 13X(s) = 

which on rearrangement gives

(s3 + 5s2 + 17s + 13)X(s) =  + (s2 + 5s + 17)x(0) + (s + 5)x(0) + y(0)

Incorporating the given initial conditions x(0) = x (0) = 1 and y(0) = 0 leads to

Clearly s + 1 is a factor of s3 + 5s2 + 17s + 13, and by algebraic division we have 

Resolving into partial fractions,

Taking inverse transforms, using the shift theorem, leads to the solution

Example 5.25

d3x

dt3
--------- 5 d2x

dt2
--------- 17 dx

dt
------- 13x+ + +  = 1 t � 0( )

Confirm that the answer may be checked using the commands

syms x t

x = dsolve(‘D3x + 5*D2x + 17*Dx + 13*x = 1’,’x(0) = 1, 

D2x(0) = 0’);

pretty(simple(x))

in MATLAB, or the commands

ode3: = diff(x(t), t$3) + 5*diff(x(t), t$2) 

+ 17*diff(x(t),t) + 13*x(t) = 1;

dsolve({ode3,x(0) = 1,D(x)(0) = 1,(D@@2)(x)(0) = 0},

x(t),method = laplace);

in MAPLE.

� d3x

dt3
---------

⎩ ⎭
⎨ ⎬
⎧ ⎫

5� d2x

dt2
---------

⎩ ⎭
⎨ ⎬
⎧ ⎫

17� dx

dt
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

13� x{ }+ + +  = � 1{ }

1
s
----

1
s
----

X s( ) = s3 6s2 22s 1+ + +
s s3 5s2 17s 13+ + +( )
------------------------------------------------------

X s( ) = s3 6s2 22s 1+ + +
s s 1+( ) s2 4s 13+ +( )
------------------------------------------------------

X s( ) = 
1
13
-------

s
---

8
5
----

s 1+
----------- 1

65
-------

44s 7+
s2 4s 13+ +
----------------------------–+  = 

1
13
-------

s
---

8
5
----

s 1+
----------- 1

65
-------

44 s 2+( ) 27 3( )–

s 2+( )2 32+
--------------------------------------------–+

x t( ) = 1
13
------- 8

5
---- e t– 1

65
------- e 2t– 44 3tcos 27 3tsin–( ) t 0�( )–+
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5.3.4 Simultaneous differential equations

In engineering we frequently encounter systems whose characteristics are modelled
by a set of simultaneous linear differential equations with constant coefficients. The
method of solution is essentially the same as that adopted in Section 5.3.3 for solving
a single differential equation in one unknown. Taking Laplace transforms throughout,
the system of simultaneous differential equations is transformed into a system of
simultaneous algebraic equations, which are then solved for the transformed variables;
inverse transforms then give the desired solutions.

Solve for t � 0 the simultaneous first-order differential equations

(5.21)

(5.22)

subject to the initial conditions x = 2 and y = 1 at t = 0.

Solution Taking Laplace transforms in (5.21) and (5.22) gives

sX(s) − x(0) + sY(s) − y(0) + 5X(s) + 3Y(s) = 

2[sX(s) − x(0)] + sY(s) − y(0) + X(s) + Y(s) = 

Rearranging and incorporating the given initial conditions x(0) = 2 and y(0) = 1
leads to

(s + 5)X(s) + (s + 3)Y(s) (5.23)

(2s + 1)X(s) + (s + 1)Y(s) (5.24)

Hence, by taking Laplace transforms, the pair of simultaneous differential equations
(5.21) and (5.22) in x(t) and y(t) has been transformed into a pair of simultaneous
algebraic equations (5.23) and (5.24) in the transformed variables X(s) and Y(s).
These algebraic equations may now be solved simultaneously for X(s) and Y(s) using
standard algebraic techniques.

Solving first for X(s) gives

Resolving into partial fractions,

Example 5.26

dx
dt
------- dy

dt
------- 5x 3y+ + +  = e t–

2 dx
dt
------- dy

dt
------- x y+ + +  = 3

1
s 1+
-----------

3
s
----

= 3 1
s 1+
----------- 3s 4+

s 1+
----------------=+

= 5 3
s
---- 5s 3+

s
----------------=+

X s( ) = 2s2 14s 9+ +
s s 2+( ) s 1–( )
-----------------------------------

X s( ) = −
9
2
----

s
---  − 

11
6
-------

s 2+
-----------

25
3
-------

s 1–
------------+

www.20file.org

www.semeng.ir


5.3  SOLUTION OF DIFFERENTIAL EQUATIONS 379

which on inversion gives

(5.25)

Likewise, solving for Y(s) gives

Resolving into partial fractions,

which on inversion gives

Thus the solution to the given pair of simultaneous differential equations is

Note: When solving a pair of first-order simultaneous differential equations such as
(5.21) and (5.22), an alternative approach to obtaining the value of y(t) having obtained
x(t) is to use (5.21) and (5.22) directly.

Eliminating dy/dt from (5.21) and (5.22) gives

2y =  − 4x − 3 + e−t

Substituting the solution obtained in (5.25) for x(t) gives

leading as before to the solution

A further alternative is to express (5.23) and (5.24) in matrix form and solve for X(s)
and Y(s) using Gaussian elimination.

In MATLAB the solution to the pair of simultaneous differential equations of
Example 5.26 may be obtained using the commands

syms x y t

[x,y] = dsolve(‘Dx + Dy + 5*x + 3*y = exp(–t)’, 

‘2*Dx + Dy + x + y = 3’,

‘x(0) = 2,y(0) = 1’)

which return

x = –11/6*exp(–2*t) + 25/3*exp(t)–9/2

y = –25/2*exp(t) + 11/2*exp(–2*t) + 15/2 + 1/2*exp(–t)

x t( ) = − 9
2
---- − 11

6
------- e 2t– 25

3
------- et t � 0( )+

Y s( ) = s3 22s2– 39s– 15–
s s 1+( ) s 2+( ) s 1–( )
----------------------------------------------------

Y s( ) = 
15
2
-------

s
---

1
2
----

s 1+
-----------

11
2
-------

s 2+
-----------

25
2
-------

s 1–
------------–+ +

y t( ) = 15
2
------- 1

2
---- e t– 11

2
------- e 2t– 25

2
------- et

t � 0( )–+ +

x t( ) = 9
2
----– 11

6
------- e 2t– 25

3
------- et+–

y t( ) = 15
2
------- 1

2
---- e t– 11

2
------- e 2t– 25

2
------- et–+ + ⎭

⎬
⎫

t � 0( )

dx
dt
-------

2y = 11
3
------- e 2t– 25

3
------- et+( ) 4 9

2
----  11

6
------- e 2t– 25

3
-------+––( ) et– 3– e t–+

y = 15
2
------- 1

2
---- e t– 11

2
------- e 2t– 25

2
------- et–+ +
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Check your answers using MATLAB or MAPLE.

Using Laplace transform methods, solve for t � 0 
the following differential equations, subject to the 
specified initial conditions:

(a)

subject to x = 2 at t = 0

(b)

subject to  at t = 0

(c)

subject to x = 0 and  at t = 0

(d)

subject to y = 0 and  at t = 0

(e)

subject to x = 0 and  at t = 0

(f)

subject to x = 4 and  at t = 0

(g)

subject to x = 1 and  at t = 0

(h)

subject to y = 0 and  at t = 0

(i)

subject to  and  at t = 0

( j)

subject to x = 0 and  at t = 0

(k)

subject to  and  at t = 0

(l)

subject to y = 1 and  at t = 0

5.3.5 Exercises

5

dx
dt
------- 3x+  = e 2t–

3 dx
dt
------- 4x–  = 2tsin

x = 1
3
----

d2x

dt2
--------- 2 dx

dt
------- 5x+ +  = 1

dx
dt
------- = 0

d2y

dt2
--------- 2 dy

dt
------- y+ +  = 4 2tcos

dy
dt
------- = 2

d2x

dt2
--------- 3 dx

dt
------- 2x+–  = 2 e 4t–

dx
dt
------- = 1

d2x

dt2
--------- 4 dx

dt
------- 5x+ +  = 3 e 2t–

dx
dt
------- = 7–

d2x

dt2
--------- dx

dt
------- 2x–+  = 5 e t– tsin

dx
dt
------- = 0

d2y

dt2
--------- 2 dy

dt
------- 3y+ +  = 3t

dy
dt
------- = 1

d2x

dt2
--------- 4 dx

dt
------- 4x+ +  = t2 e 2t–+

x = 1
2
----

dx
dt
------- = 0

9 d2x

dt2
--------- 12 dx

dt
------- 5x+ +  = 1

dx
dt
------- = 0

d2x

dt2
--------- 8 dx

dt
------- 16x+ +  = 16 4tsin

x = 1
2
----– dx

dt
------- = 1

9 d2y

dt2
--------- 12 dy

dt
------- 4y+ +  = e t–

dy
dt
------- = 1

In principle, the same procedure as used in Example 5.26 can be employed to solve a
pair of higher-order simultaneous differential equations or a larger system of differen-
tial equations involving more unknowns. However, the algebra involved can become
quite complicated, and matrix methods, considered in Section 5.7, are usually preferred.

These can then be expressed in typeset form using the commands pretty(x) and
pretty(y). In MAPLE the commands

ode1:= D(x)(t) + D(y)(t) + 5*x(t) + 3*y(t) = exp(–t);

ode2:= 2*D(x)(t) + D(y)(t) + x(t) + y(t) = 3;

dsolve({ode1,ode2, x(0) = 2,y(0) = 1},{x(t),y(t)});

return

{x(t) = - e(–2t) + et - , y(t) = - et + e(–2t) +  + e(–t)}
11

6
-----

25

3
-----

9

2
-

25

2
-----

11

2
-----

15

2
-----

1

2
-
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(m)

subject to x = 0,  and  at t = 0

(n)

subject to x = 0,  and  at t = 0

Using Laplace transform methods, solve for t � 0 
the following simultaneous differential equations 
subject to the given initial conditions:

(a)

subject to x = 0 and  at t = 0

(b)

subject to x = 0 and y = 0 at t = 0

(c)

subject to x = −1 and y = 4 at t = 0

(d)

subject to x = 1 and y = 1 at t = 0

(e)

subject to x = 0 and y = −1 at t = 0

(f )

subject to x = 1 and y = 0 at t = 0

(g)

subject to x = y = 0 at t = 0

(h)

subject to x = 4, y = 2, dx/dt = 0 and dy/dt = 0 
at t = 0

(i)

subject to x = , y = 1, dx/dt = 0 and dy /dt = 0 
at t = 0

( j)

subject to x = dx/dt = 1 and y = dy/dt = 0 at t = 0

d3x

dt3
--------- 2 d2x

dt2
---------– dx

dt
------- 2x+–  = 2 t+

dx
dt
------- = 1 d2x

dt2
---------  = 0

d3x

dt3
--------- d2x

dt2
--------- dx

dt
------- x+ + +  = 3tcos

dx

dt
------- = 1 d2x

dt2
---------  = 1

6

2 dx
dt
------- 2 dy

dt
-------– 9y–  = e 2t–

2 dx
dt
------- 4 dy

dt
------- 4x 37y–+ +  = 0

y = 1
4
----

dx
dt
------- 2 dy

dt
------- x y–+ +  = 5 tsin

2 dx
dt
------- 3 dy

dt
------- x y–+ +  = et

dx
dt
------- dy

dt
------- 2x y+ + +  = e 3t–

dy
dt
------- 5x 3y+ + = 5e 2t–

3 dx
dt
------- 3 dy

dt
------- 2x–+  = et

dx
dt
------- 2 dy

dt
------- y–+  = 1

3 dx
dt
------- dy

dt
-------  2x–  = 3 tsin 5 tcos+ +

2 dx
dt
------- dy

dt
------- y+ +  = tsin tcos+

dx
dt
------- dy

dt
------- y+ +  = t

dx
dt
------- 4 dy

dt
------- x+ +  = 1

2 dx
dt
------- 3 dy

dt
------- 7x+ +  = 14t 7+

5 dx
dt
------- 3 dy

dt
------- 4x 6y+ +–  = 14t 14–

d2x

dt2
---------  = y 2x– d2y

dt2
---------  = x 2y–

5 d2x

dt2
--------- 12 d2y

dt2
--------- 6x+ +  = 0

5 d2x

dt2
--------- 16 d2y

dt2
--------- 6y+ +  = 0

7
4
----

2 d2x

dt2
--------- d2y

dt2
---------– dx

dt
-------– dy

dt
-------–  = 3y 9x–

2 d2x

dt2
--------- d2y

dt2
---------– dx

dt
------- dy

dt
-------+ +  = 5y 7x–

Engineering applications: electrical circuits and 
mechanical vibrations

To illustrate the use of Laplace transforms, we consider here their application to the
analysis of electrical circuits and vibrating mechanical systems. Since initial con-
ditions are automatically taken into account in the transformation process, the Laplace
transform is particularly attractive for examining the transient behaviour of such
systems.

5.4 Engineering applications:
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Using the commands introduced in previous sections MATLAB or MAPLE can be
used throughout this section to check answers obtained.

5.4.1 Electrical circuits

Passive electrical circuits are constructed of three basic elements: resistors (having
resistance R, measured in ohms Ω), capacitors (having capacitance C, measured in
farads F) and inductors (having inductance L, measured in henries H), with the asso-
ciated variables being current i(t) (measured in amperes A) and voltage v(t) (measured
in volts V). The current flow in the circuit is related to the charge q(t) (measured in
coulombs C) by the relationship

Conventionally, the basic elements are represented symbolically as in Figure 5.7.

The relationship between the flow of current i(t) and the voltage drops v(t) across
these elements at time t are

The interaction between the individual elements making up an electrical circuit is deter-
mined by Kirchhoff’s laws:

Law 1

The algebraic sum of all the currents entering any junction (or node) of a circuit is zero.

Law 2

The algebraic sum of the voltage drops around any closed loop (or path) in a circuit is zero.

Use of these laws leads to circuit equations, which may then be analysed using Laplace
transform techniques.

The LCR circuit of Figure 5.8 consists of a resistor R, a capacitor C and an inductor L
connected in series together with a voltage source e(t). Prior to closing the switch at
time t = 0, both the charge on the capacitor and the resulting current in the circuit are
zero. Determine the charge q(t) on the capacitor and the resulting current i(t) in the
circuit at time t given that R = 160 Ω, L = 1 H, C = 10−4 F and e(t) = 20 V.

i dq
dt
-------=

Figure 5.7
Constituent elements 
of an electrical circuit.

voltage drop across resistor = Ri (Ohm’s law)

voltage drop across capacitor = 1
C
----- �i dt = q

C
-----

Example 5.27
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Solution Applying Kirchhoff’s second law to the circuit of Figure 5.8 gives

(5.26)

or, using i = dq/dt,

Substituting the given values for L, R, C and e(t) gives

Taking Laplace transforms throughout leads to the equation

(s2 + 160s + 104)Q(s) = [sq(0) + r(0)] + 160q(0) + 

where Q(s) is the transform of q(t). We are given that q(0) = 0 and r(0) = i(0) = 0, so
that this reduces to 

(s2 + 160s + 104)Q(s) = 

that is,

Resolving into partial fractions gives

Taking inverse transforms, making use of the shift theorem (Theorem 5.2), gives

q(t) = (1 − e−80t cos 60t − e−80t sin 60t)

The resulting current i(t) in the circuit is then given by

Figure 5.8
LCR circuit of 
Example 5.27.

Ri L di
dt
------ 1

C
----- �i dt+ +  = e t( )

L d2q

dt2
--------- R dq

dt
------- 1

C
---- q+ +  = e t( )

d2q

dt2
--------- 160 dq

dt
------- 104q+ +  = 20

20
s

-------

20
s

-------

Q s( ) = 20

s s2 160s 104+ +( )
---------------------------------------------

Q s( ) = 
1

500
----------

s
----- 1

500
----------

s 160+
s2 160s 104+ +
------------------------------------–

= 1
500
----------

1

s
---

s 80+( ) 4
3
---- 60( )+

s 80+( )2 60( )2+
----------------------------------------– = 1

500
----------

1

s
---

s 4
3
---- 60×+

s2 602+
-----------------------

s→s+80

–

1
500
---------- 4

3
----

i t( ) = dq
dt
------- 1

3
---- e 80t– 60tsin=
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Note that we could have determined the current by taking Laplace transforms in (5.26).
Substituting the given values for L, R, C and e(t) and using (5.26) leads to the trans-
formed equation

that is,

(= sQ(s) since q(0) = 0)

which, on taking inverse transforms, gives as before

In the parallel network of Figure 5.9 there is no current flowing in either loop prior to
closing the switch at time t = 0. Deduce the currents i1(t) and i2(t) flowing in the loops
at time t.

Solution Applying Kirchhoff’s first law to node X gives

i = i1 + i2

Applying Kirchhoff’s second law to each of the two loops in turn gives 

R1(i1 + i2) + L1 (i1 + i2) + R2i1 = 200

+ R3i2 − R2i1 = 0

Substituting the given values for the resistances and inductances gives

(5.27)

Taking Laplace transforms and incorporating the initial conditions i1(0) = i2(0) = 0
leads to the transformed equations

(s + 56)I1(s) + (s + 40)I2(s) = (5.28)

−8I1(s) + (s + 10)I2(s) = 0 (5.29)

160I s( ) sI s( ) 104

s
--------- I s( )+ +  = 20

s
-------

I s( ) = 20

s2 80+( )2
602+

-------------------------------------

i t( ) = 1
3
---- e 80t– 60tsin

Example 5.28

Figure 5.9
Parallel circuit of 
Example 5.28.

d
dt
------

L2
di2--------
dt

di1

dt
--------

di2

dt
-------- 56i1 40i2+ + +  = 400

di2

dt
-------- 8i1 10i2+–  = 0 ⎭

⎪
⎬
⎪
⎫

400
s

----------
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Hence

Resolving into partial fractions gives

which, on taking inverse transforms, leads to 

i2(t) = 3.64 + 1.22 e−59.1t − 4.86 e−14.9t

From (5.27),

that is, 

i1(t) = 4.55 − 7.49 e−59.1t + 2.98 e−14.9t

Note that as t → ∞, the currents i1(t) and i2(t) approach the constant values 4.55 and 3.64
A respectively. (Note that i(0) = i1(0) + i2(0) ≠ 0 due to rounding errors in the calculation.)

A voltage e(t) is applied to the primary circuit at time t = 0, and mutual induction
M drives the current i2(t) in the secondary circuit of Figure 5.10. If, prior to closing
the switch, the currents in both circuits are zero, determine the induced current i2(t)
in the secondary circuit at time t when R1 = 4 Ω, R2 = 10 Ω, L1 = 2 H, L2 = 8 H,
M = 2  H and e(t) = 28 sin 2t V.

Solution Applying Kirchhoff’s second law to the primary and secondary circuits respectively gives

Substituting the given values for the resistances, inductances and applied voltage leads to 

I2 s( ) = 3200

s s2 74s 880+ +( )
------------------------------------------- = 3200

s s 59.1+( ) s 14.9+( )
---------------------------------------------------

I2 s( ) = 3.64
s

---------- 1.22
s 59.1
-------------------- 4.86

+ s 14.9+
--------------------–+

i1 t( ) = 1
8
---- 10i2

di2

dt
--------+⎝ ⎠

⎛ ⎞

Example 5.29

Figure 5.10
Circuit of 
Example 5.29.

R1i1 L1
di1-------- M

di2

dt dt
--------+ +  = e t( )

R2i2 L2
di2-------- M

di1

dt dt
--------+ +  = 0

2
di1-------- 4i1 2

di2

dt dt
--------+ +  = 28 2tsin

2
di1

dt
-------- 8

di2

dt
-------- 10i2+ +  = 0
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Taking Laplace transforms and noting that i1(0) = i2(0) = 0 leads to the equations

(s + 2)I1(s) + sI2(s) = (5.30)

sI1(s) + (4s + 5)I2(s) = 0 (5.31)

Solving for I2(s) yields

Resolving into partial fractions gives

Taking inverse Laplace transforms gives the current in the secondary circuit as

As t → ∞, the current will approach the sinusoidal response 

5.4.2 Mechanical vibrations

Mechanical translational systems may be used to model many situations, and involve
three basic elements: masses (having mass M, measured in kg), springs (having spring
stiffness K, measured in Nm−1) and dampers (having damping coefficient B, measured
in Nsm−1). The associated variables are displacement x(t) (measured in m) and force
F(t) (measured in N). Conventionally, the basic elements are represented symbolically
as in Figure 5.11.

Assuming we are dealing with ideal springs and dampers (that is, assuming that they
behave linearly), the relationships between the forces and displacements at time t are:

28

s2 4+
-------------

I2 s( ) = − 28s

3s 10+( ) s 1+( ) s2 4+( )
----------------------------------------------------------

I2 s( ) = 
45
17
-------

3s 10+
------------------

4
5
----

s 1+
----------- 7

85
-------

s 26–

s2 4+
---------------+ +–

i2 t( ) = 4
5
---- e t– 15

17
------- e 10t/3– 7

85
------- 2tcos 91

85
------- 2tsin–+–

i2 t( ) = 7
85
------- 2tcos 91

85
------- 2tsin–

Figure 5.11
Constituent elements 
of a translational 
mechanical system.

mass: = My  (Newton’s law)

spring: F = K(x2 − x1)  (Hooke’s law)

damper: = B(x2 − x1)

F = M d2x

dt2
---------

F = B
dx2---------

dx1

dt dt
---------–⎝ ⎠

⎛ ⎞
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Using these relationships leads to the system equations, which may then be analysed
using Laplace transform techniques.

The mass of the mass–spring–damper system of Figure 5.12(a) is subjected to an
externally applied periodic force F(t) = 4 sin ωt at time t = 0. Determine the resulting
displacement x(t) of the mass at time t, given that x(0) = x(0) = 0, for the two cases

(a) ω = 2 (b) ω = 5

In the case ω = 5, what would happen to the response if the damper were missing?

Solution As indicated in Figure 5.12(b), the forces acting on the mass M are the applied force
F(t) and the restoring forces F1 and F2 due to the spring and damper respectively. Thus,
by Newton’s law,

My(t) = F(t) − F1(t) − F2(t)

Since M = 1, F(t) = 4 sin ω t, F1(t) = Kx(t) = 25x(t) and F2(t) = Bx(t) = 6x(t), this gives

y(t) + 6x(t) + 25x(t) = 4 sin ω t (5.32)

as the differential equation representing the motion of the system.
Taking Laplace transforms throughout in (5.32) gives

(s2 + 6s + 25)X(s) = [sx(0) + x(0)] + 6x(0) + 

where X(s) is the transform of x(t). Incorporating the given initial conditions
x (0) = x(0) = 0 leads to 

(5.33)

In case (a), with ω = 2, (5.33) gives

Example 5.30

Figure 5.12
Mass–spring–damper 
system of 
Example 5.30.

4ω
s2 ω2+
----------------

X s( ) = 4ω
s2 ω2+( ) s2 6s 25+ +( )

-------------------------------------------------------

X s( ) = 8

s2 4+( ) s2 6s 25+ +( )
-----------------------------------------------------
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which, on resolving into partial fractions, leads to

Taking inverse Laplace transforms gives the required response

(5.34)

In case (b), with ω = 5, (5.33) gives

(5.35)

that is,

which, on taking inverse Laplace transforms, gives the required response

(5.36)

If the damping term were missing then (5.35) would become

(5.37)

By Theorem 5.3,

that is, 

Thus, by the linearity property (5.11),

so that taking inverse Laplace transforms in (5.37) gives the response as

X s( ) = 4
195
----------

4– s 14+
s2 4+

----------------------- 2
195
----------

8s 20+
s2 6s 25+ +
----------------------------+

= 4
195
----------

4– s 14+
s2 4+

----------------------- 2
195
----------

8 s 3+( ) 4–

s 3+( )2 16+
------------------------------+

x t( ) = 4
195
---------- 7 2tsin 4 2tcos–( ) 2

195
---------- e 3t– 8 4tcos 4tsin–( )+

X s( ) = 20

s2 25+( ) s2 6s 25+ +( )
--------------------------------------------------------

X s( ) = 
2
15
------- s–

s2 25+
---------------- 1

15
-------

2 s 3+( ) 6+
s 3+( )2 16+

------------------------------+

x t( ) = 2
15
-------– 5t 1

15
------- e 3t– 2 4t 3

2
---- 4tsin+cos( )+cos

X s( ) 20

s2 25+( )2
-----------------------=

� t 5tcos{ } = d

ds
-------– � 5tcos{ } = d

ds
-------– s

s2 25+
----------------⎝ ⎠

⎛ ⎞

� t 5tcos{ } = 1

s2 25+
----------------– 2s2

s2 25+( )2
-----------------------+ = 1

s2 25+
---------------- 50

s2 25+( )2
-----------------------–

1
5
---- � 5tsin{ } 50

s2 25+( )2
-----------------------–=

� 1
5
---- 5t t 5tcos–sin{ } = 50

s2 25+( )2
-----------------------

x t( ) = 2
25
------- 5t 5t 5tcos–sin( )
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Because of the term t cos 5t, the response x(t) is unbounded as t → ∞. This arises
because in this case the applied force F(t) = 4 sin 5t is in resonance with the system
(that is, the vibrating mass), whose natural oscillating frequency is 5/2π Hz, equal to
that of the applied force. Even in the presence of damping, the amplitude of the system
response is maximized when the applied force is approaching resonance with the sys-
tem. (This is left as an exercise for the reader.) In the absence of damping we have the
limiting case of pure resonance, leading to an unbounded response. As noted in Sec-
tion 10.10.3 of Modern Engineering Mathematics, resonance is of practical importance,
since, for example, it can lead to large and strong structures collapsing under what
appears to be a relatively small force.

Consider the mechanical system of Figure 5.13(a), which consists of two masses M1 = 1
and M2 = 2, each attached to a fixed base by a spring, having constants K1 = 1 and
K3 = 2 respectively, and attached to each other by a third spring having constant K2 = 2.
The system is released from rest at time t = 0 in a position in which M1 is displaced
1 unit to the left of its equilibrium position and M2 is displaced 2 units to the right of its
equilibrium position. Neglecting all frictional effects, determine the positions of the
masses at time t.

Solution Let x1(t) and x2(t) denote the displacements of the masses M1 and M2 respectively from
their equilibrium positions. Since frictional effects are neglected, the only forces acting
on the masses are the restoring forces due to the springs, as shown in Figure 5.13(b).
Applying Newton’s law to the motions of M1 and M2 respectively gives

M1y1 = F2 − F1 = K2(x2 − x1) − K1x1

M2y2 = −F3 − F2 = −K3x2 − K2(x2 − x1)

which, on substituting the given values for M1, M2, K1, K2 and K3, gives

y1 + 3x1 − 2x2 = 0 (5.38)

2y2 + 4x2 − 2x1 = 0 (5.39)

Taking Laplace transforms leads to the equations

(s2 + 3)X1(s) − 2X2(s) = sx1(0) + x1(0)

−X1(s) + (s2 + 2)X2(s) = sx2(0) + x2(0)

Example 5.31

Figure 5.13
Two-mass system of 
Example 5.31.
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Since x1(t) and x2(t) denote displacements to the right of the equilibrium positions, we
have x1(0) = −1 and x2(0) = 2. Also, the system is released from rest, so that x1(0) = x2(0)
= 0. Incorporating these initial conditions, the transformed equations become

(s2 + 3)X1(s) − 2X2(s) = −s (5.40)

−X1(s) + (s2 + 2)X2(s) = 2s (5.41)

Hence

Resolving into partial fractions gives

which, on taking inverse Laplace transforms, leads to the response

x2(t) = cos t + cos 2t

Substituting for x2(t) in (5.39) gives

x1(t) = 2x2(t) + y2(t)

= 2 cos t + 2 cos 2t − cos t − 4 cos 2t

that is,

x1(t) = cos t − 2 cos 2t

Thus the positions of the masses at time t are

x1(t) = cos t − 2 cos 2t, x2(t) = cos t + cos 2t

X2 s( ) = 2s3 5s+
s2 4+( ) s2 1+( )

--------------------------------------

X2 s( ) = s

s2 1+
------------- s

s2 4+
-------------+

Check your answers using MATLAB or MAPLE whenever possible.

Use the Laplace transform technique to find the 
transforms I1(s) and I2(s) of the respective currents 
flowing in the circuit of Figure 5.14, where i1(t) is 
that through the capacitor and i2(t) that through 

the resistance. Hence, determine i2(t). (Initially, 
i1(0) = i2(0) = q1(0) = 0.) Sketch i2(t) for large 
values of t.

At time t = 0, with no currents flowing, a voltage 
v(t) = 10 sin t is applied to the primary circuit of 
a transformer that has a mutual inductance of 1 H, 
as shown in Figure 5.15. Denoting the current 
flowing at time t in the secondary circuit by i2(t), 
show that

5.4.3 Exercises

7

Figure 5.14 Circuit of Exercise 7.

8

� i2 t( ){ } = 10s

s2 7s 6+ +( ) s2 1+( )
--------------------------------------------------
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and deduce that 

In the circuit of Figure 5.16 there is no energy 
stored (that is, there is no charge on the capacitors 
and no current flowing in the inductances) prior to 
the closure of the switch at time t = 0. Determine 
i1(t) for t � 0 for a constant applied voltage 
E0 = 10 V.

Determine the displacements of the masses M1 and 
M2 in Figure 5.13 at time t � 0 when

M1 = M2 = 1

K1 = 1, K2 = 3 and K3 = 9

What are the natural frequencies of the 
system?

When testing the landing-gear unit of a space 
vehicle, drop tests are carried out. Figure 5.17 is a 
schematic model of the unit at the instant when it 
first touches the ground. At this instant the spring 
is fully extended and the velocity of the mass is 
�(2gh), where h is the height from which the 
unit has been dropped. Obtain the equation 
representing the displacement of the mass at 
time t � 0 when M = 50 kg, B = 180 N s m−1 and 

K = 474.5 N m−1, and investigate the effects of 
different dropping heights h. (g is the acceleration 
due to gravity, and may be taken as 9.8 m s−2.)

Consider the mass–spring–damper system 
of Figure 5.18, which may be subject to two 
input forces u1(t) and u2(t). Show that the 
displacements x1(t) and x2(t) of the two masses 
are given by

where 

Δ = (M1s
2 + B1s + K1)(M2s

2 + B1s + K2) − B2
1s

2

i2 t( ) = –e t– 12
37
------- e 6t– 25

37
------- tcos 35

37
------- tsin+ + +

9

Figure 5.15 Circuit of Exercise 8.

Figure 5.16 Circuit of Exercise 9.

10

11

Figure 5.17 Landing-gear of Exercise 11.

12

Figure 5.18 Mechanical system of Exercise 12.

x1 t( ) = � 1– M2s2 B1s K2+ +
Δ

---------------------------------------- U1 s( ) B1s
Δ

--------- U2 s( )+
⎩ ⎭
⎨ ⎬
⎧ ⎫

x2 t( ) = � 1– B1s
Δ

--------- U1 s( ) M1s2 B1s K1+ +
Δ

---------------------------------------- U2 s( )+
⎩ ⎭
⎨ ⎬
⎧ ⎫
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Step and impulse functions

5.5.1 The Heaviside step function

In Sections 5.3 and 5.4 we considered linear differential equations in which the forcing
functions were continuous. In many engineering applications the forcing function may
frequently be discontinuous, for example a square wave resulting from an on/off
switch. In order to accommodate such discontinuous functions, we use the Heaviside
unit step function H(t), which, as we saw in Section 5.2.1, is defined by

and is illustrated graphically in Figure 5.19(a). The Heaviside function is also fre-
quently referred to simply as the unit step function. A function representing a unit step
at t = a may be obtained by a horizontal translation of duration a. This is depicted
graphically in Figure 5.19(b), and defined by

The product function f (t)H(t − a) takes values

so the function H(t − a) may be interpreted as a device for ‘switching on’ the function
f (t) at t = a. In this way the unit step function may be used to write a concise formula-
tion of piecewise-continuous functions. To illustrate this, consider the piecewise-
continuous function f (t) illustrated in Figure 5.20 and defined by 

5.5

H t( ) 0 t � 0( )
1 t � 0( )⎩

⎨
⎧

=

H t a–( ) 0 t � a( )
1 t � a( )⎩

⎨
⎧

=

Figure 5.19
Heaviside unit 
step function.

f t( )H t a–( ) 0 t � a( )
f t( ) t � a( )⎩

⎨
⎧

=

Figure 5.20
Piecewise-continuous 
function.
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To construct this function f (t), we could use the following ‘switching’ operations:

(a) switch on the function f1(t) at t = 0;
(b) switch on the function f2(t) at t = t1 and at the same time switch off the function

f1(t);
(c) switch on the function f3(t) at t = t2 and at the same time switch off the function

f2(t).

In terms of the unit step function, the function f (t) may thus be expressed as

f (t) = f1(t)H(t) + [ f2(t) − f1(t)]H(t − t1) + [ f3(t) − f2(t)]H(t − t2)

Alternatively, f (t) may be constructed using the top hat function H(t − a) − H(t − b).
Clearly,

(5.42)

which, as illustrated in Figure 5.21, gives

Using this approach, the function f (t) of Figure 5.20 may be expressed as

f (t) = f1(t)[H(t) − H(t − t1)] + f2(t)[H(t − t1) − H(t − t2)] + f3(t)H(t − t2)

giving, as before,

f (t) = f1(t)H(t) + [ f2(t) − f1(t)]H(t − t1) + [ f3(t) − f2(t)]H(t − t2)

It is easily checked that this corresponds to the given formulation, since for 0 � t � t1

H(t) = 1, H(t − t1) = H(t − t2) = 0

giving

f (t) = f1(t) (0 � t � t1)

while for t1 � t � t2

H(t) = H(t − t1) = 1, H(t − t2) = 0

giving

f (t) = f1(t) + [ f2(t) − f1(t)] = f2(t) (t1 � t � t2)

f t( )
f1 t( ) 0 � t � t1( )
f2 t( ) t1 � t � t2( )
f3 t( ) t � t2( )⎩

⎪
⎨
⎪
⎧

=

H t a–( ) H t b–( )–
1 a � t � b( )
0 otherwise⎩

⎨
⎧

=

f t( ) H t a–( ) H t b–( )–[ ] f t( ) a � t � b( )
0 otherwise⎩

⎨
⎧

=

Figure 5.21
Top hat function.
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and finally for t � t2

H(t) = H(t − t1) = H(t − t2) = 1

giving

f (t) = f1(t) + [ f2(t) − f1(t)] + [ f3(t) − f2(t)] = f3(t) (t � t2)

Express in terms of unit step functions the piecewise-continuous causal function

Solution f (t) is depicted graphically in Figure 5.22, and in terms of unit step functions it may be
expressed as

f (t) = 2t 2H(t) + (t + 4 − 2t 2)H(t − 3) + (9 − t − 4)H(t − 5)

That is,

f (t) = 2t 2H(t) + (4 + t − 2t 2)H(t − 3) + (5 − t)H(t − 5)

Express in terms of unit step functions the piecewise-continuous causal function

Solution f (t) is depicted graphically in Figure 5.23, and in terms of unit step functions it may be
expressed as

f (t) = 1H(t − 1) + (3 − 1)H(t − 3) + (2 − 3)H(t − 5) + (0 − 2)H(t − 6)

That is,

f (t) = 1H(t − 1) + 2H(t − 3) − 1H(t − 5) − 2H(t − 6)

Example 5.32

f t( )
2t2 0 � t � 3( )
t 4+ 3 � t � 5( )
9 t � 5( )⎩

⎪
⎨
⎪
⎧

=

Figure 5.22
Piecewise-continuous 
function of 
Example 5.32.

Example 5.33

f t( )

0 t � 1( )
1 1 � t � 3( )
3 3 � t � 5( )
2 5 � t � 6( )
0 t � 6( )⎩

⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=
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5.5.2 Laplace transform of unit step function
By definition of the Laplace transform, the transform of H(t − a), a � 0, is given by

That is,

and in the particular case of a = 0

Figure 5.23
Piecewise-continuous 
function of 
Example 5.33.

(5.43)

� H t a–( ){ } �
0

∞

H t a–( ) e st– dt �
0

a

0 e st– dt �
a

∞

1 e st– dt+==

e st–

s–
-------

a

∞

= e as–

s
---------=

� H t a–( ){ } e as–

s
--------- a 0�( )=

(5.44)� H t( ){ } 1
s
----=

This may be implemented in MATLAB using the commands

syms s t

H=sym(‘Heaviside(t)’)

laplace(H)

which return

ans=1/s

It may also be obtained directly using the command

laplace(sym(‘Heaviside(t)’))

Likewise to obtain the Laplace transform of H(t-2) we use the commands

H2=sym(‘Heaviside(t-2)’)

laplace(H2)
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Determine the Laplace transform of the rectangular pulse

Solution The pulse is depicted graphically in Figure 5.24. In terms of unit step functions, it may
be expressed, using the top hat function, as

f (t) = K [H(t − a) − H(t − b)]

Then, taking Laplace transforms,

�{ f (t)} = K�{H(t − a)} − K�{H(t − b)}

which, on using the result (5.24), gives

That is,

Determine the Laplace transform of the piecewise-constant function f (t) shown in
Figure 5.23.

Solution From Example 5.33 f (t) may be expressed as

f (t) = 1H(t − 1) + 2H(t − 3) − 1H(t − 5) − 2H(t − 6)

Taking Laplace transforms,

�{ f (t)} = 1�{H(t − 1)} + 2�{H(t − 3)} − 1�{H(t − 5)} − 2�{H(t − 6)}

which, on using the result (5.43), gives

That is,

which return

ans=exp(-2*s)/s

In MAPLE the results are obtained using the commands:

with(inttrans):

laplace(Heaviside(t),t,s);

laplace(Heaviside(t-2),t,s);

Example 5.34

f t( )
0 t � a( )
K a � t � b( ) K constant, b � a � 0

0 t � b( )⎩
⎪
⎨
⎪
⎧

=

Figure 5.24
Rectangular pulse.

� f t( ){ } K e as–

s
--------- K e bs–

s
---------–=

� f t( ){ } K
s
----- e as– e bs––( )=

Example 5.35

� f t( ){ } e s–

s
------- 2 e 3s–

s
--------- e 5s–

s
--------- 2 e 6s–

s
---------––+=

� f t( ){ } 1
s
---- e s– 2 e 3s– e 5s– 2 e 6s–––+( )=
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5.5.3 The second shift theorem
This theorem is dual to the first shift theorem given as Theorem 5.2, and is sometimes
referred to as the Heaviside or delay theorem.

Proof By definition,

Making the substitution T = t − a,

Since  it follows that

�{ f (t − a)H(t − a)} = e−asF(s)

Check that the same answer is obtained using the MATLAB sequence of commands

symsst

H1=sym(‘Heaviside(t-1)’);

H3=sym(‘Heaviside(t-3)’);

H5=sym(‘Heaviside(t-5)’);

H6=sym(‘Heaviside(t-6)’);

laplace(H1-2*H3-H5-2*H6)

In MAPLE the commands

with(inttrans):

laplace(Heaviside(t-1)+Heaviside(t-3)*2 - Heaviside(t-5) 

- Heaviside(t-6)*2,t,s);

return the answer 

e
s–( )

2e
3s–( ) - e 5s–( ) - 2e 6s–( )

+

s
-----------------------------------------

If �{ f (t)} = F(s) then for a positive constant a

�{ f (t − a)H(t − a)} = e−asF(s)

Theorem 5.4

� f t a–( )H t a–( ){ } �
0

∞

f t a–( )H t a–( ) e st– dt=

�=
a

∞

f t a–( ) e st– dt

� f t a–( )H t a–( ){ } �
0

∞

f T( ) e s T+a( )– dT=

e sa– �=
0

∞

f T( ) e sT– dT

F s( ) � f t( ){ } �
0

∞

f T( ) e sT– ,==

end of theorem
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It is important to distinguish between the two functions f(t)H(t − a) and f (t − a)H(t − a).
As we saw earlier, f (t)H(t − a) simply indicates that the function f (t) is ‘switched on’
at time t = a, so that

On the other hand, f (t − a)H(t − a) represents a translation of the function f (t) by a units
to the right (to the right, since a � 0), so that 

The difference between the two is illustrated graphically in Figure 5.25. f (t − a)H(t − a)
may be interpreted as representing the function f(t) delayed in time by a units. Thus, when
considering its Laplace transform e−asF(s), where F(s) denotes the Laplace transform of
f (t), the component e−as

 may be interpreted as a delay operator on the transform F(s),
indicating that the response of the system characterized by F(s) will be delayed in time
by a units. Since many practically important systems have some form of delay inherent
in their behaviour, it is clear that the result of this theorem is very useful.

Determine the Laplace transform of the causal function f(t) defined by

Solution f (t) is illustrated graphically in Figure 5.26, and is seen to characterize a sawtooth pulse
of duration b. In terms of unit step functions,

f (t) = tH(t) − tH(t − b)

In order to apply the second shift theorem, each term must be rearranged to be of the
form f (t − a)H(t − a); that is, the time argument t − a of the function must be the same
as that of the associated step function. In this particular example this gives

f (t) = tH(t) − (t − b)H(t − b) − bH(t − b)

Taking Laplace transforms,

�{ f (t)} = �{tH(t)} − �{(t − b)H(t − b)} − b�{H(t − b)}

f t( )H t a–( ) 0 t � a( )
f t( ) t � a( )⎩

⎨
⎧

=

f t a–( )H t a–( ) 0 t � a( )
f t a–( ) t � a( )⎩

⎨
⎧

=

Figure 5.25 Illustration of f(t − a)H(t − a).

Example 5.36

f t( ) t 0 � t � b( )
0 t � b( )⎩

⎨
⎧

=

Figure 5.26
Sawtooth pulse.
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which, on using Theorem 5.4, leads to

giving

It should be noted that this result could have been obtained without the use of the
second shift theorem, since, directly from the definition of the Laplace transform,

as before.

Obtain the Laplace transform of the piecewise-continuous causal function

considered in Example 5.32.

Solution In Example 5.32 we saw that f (t) may be expressed in terms of unit step functions as

f (t) = 2t 2H(t) − (2t 2 − t − 4)H(t − 3) − (t − 5)H(t − 5)

Before we can find �{ f (t)}, the function 2t 2 − t − 4 must be expressed as a function of
t − 3. This may be readily achieved as follows. Let z = t − 3. Then

2t 2 − t − 4 = 2(z + 3)2 − (z + 3) − 4

= 2z2 + 11z + 11

= 2(t − 3)2 + 11(t − 3) + 11

Hence

f (t) = 2t 2H(t) − [2(t − 3)2 + 11(t − 3) + 11]H(t − 3) − (t − 5)H(t − 5)

Taking Laplace transforms,

�{ f (t)} = 2�{t 2H(t)} − �{[2(t − 3)2 + 11(t − 3) + 11]H(t − 3)}

− �{(t − 5)H(t − 5)}

� f t( ){ } 1

s2
----- e bs– � t( )– b e bs–

s
---------  

1

s2
----- e bs–

s2
---------– b e bs–

s
---------–=–=

� f t( ){ } 1

s2
----- 1 e bs––( ) b

s
---- e bs––=

� f t( ){ } �
0

∞

f t( ) e st– dt �
0

b

t e st– dt �
b

∞

0 e st– dt+==

t e st–

s
-----------–

0

b

�
0

b
e st–

s
-------dt 

t e st–

s
-----------– e st–

s2
-------–

0

b

=+=

b e sb–

s
------------– e sb–

s2
---------–⎝ ⎠

⎛ ⎞ 1

s2
-----–⎝ ⎠

⎛ ⎞–= 1

s2
----- 1 e bs––( ) b

s
----e bs––=

Example 5.37

f t( )
2t2 0 � t � 3( )
t 4 3 � t � 5( )+
9 t � 5( )⎩

⎪
⎨
⎪
⎧

=
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which, on using Theorem 5.4, leads to

Again this result could have been obtained directly from the definition of the Laplace
transform, but in this case the required integration by parts is a little more tedious.

5.5.4 Inversion using the second shift theorem

We have seen in Examples 5.34 and 5.35 that, to obtain the Laplace transforms of
piecewise-continuous functions, use of the second shift theorem could be avoided,
since it is possible to obtain such transforms directly from the definition of the Laplace
transform.

In practice, the importance of the theorem lies in determining inverse transforms,
since, as indicated earlier, delays are inherent in most practical systems and engineers
are interested in knowing how these influence the system response. Consequently, by
far the most useful form of the second shift theorem is

Comparing (5.45) with the result (5.12), namely

�−1{F(s)} = f (t)H(t)

we see that

�−1{e−asF(s)} = [ f (t)H(t)] with t replaced by t − a

Having set up s and t as symbolic variables and specified H, H1 and H5 then the
MATLAB commands

laplace(2*t^2*H-(2*t^2-t-4)*H3-(t-5)*H5);

pretty(ans)

generate

ans= 4/s3-11exp(-3s)/s-11exp(-3s)/s2-4exp(-3s)/s3-exp(-5s)/s2

In MAPLE the commands

with(inttrans):

laplace(Heaviside(t)*2*t^2 - Heaviside(t-3)*(2*t^2-t-4) 

- Heaviside(t-5)*(t-5),t,s);

return the answer

� f t( ){ } 2 2

s3
----- e 3s– � 2t2 11t 11+ +{ }–= e 5s– � t{ }–

4

s3
----- e 3s– 4

s3
----- 11

s2
------- 11

s
-------+ +⎝ ⎠

⎛ ⎞ e 5s–

s2
---------––=

e
5s–( )

s2
--------–

4 - e 3s–( )
11s2 11s 4+ +( )
s3

---------------------------------------+

� −1{e−asF(s)} = f (t − a)H(t − a) (5.45)
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indicating that the response f (t) has been delayed in time by a units. This is why the
theorem is sometimes called the delay theorem.

Determine 

Solution This may be written as �−1{e−4sF (s)}, where

First we obtain the inverse transform f (t) of F(s). Resolving into partial fractions,

which, on inversion, gives

f (t) = 2 − 2 e−2t

a graph of which is shown in Figure 5.27(a). Then, using (5.45), we have

= (2 − 2e−2(t−4))H(t − 4)

giving

which is plotted in Figure 5.27(b). 

This is readily implemented in MATLAB using the command ilaplace.

Example 5.38 � 1– 4 e 4s–

s s 2+( )
--------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

.

Using MATLAB confirm that the commands

ilaplace(4*exp(-4*s)/(s*(s+2)));

pretty(ans)

generate the answer

2H(t-4)(1-exp(-2t+8))

The same answer is obtained in MAPLE using the commands

with(inttrans):

invlaplace(4*exp(-4*s)/(s*(s+2)),s,t);

F s( ) 4
s s 2+( )
--------------------=

F s( ) 2
s
---- 2

s 2+
-----------–=

� 1– e 4s– 4
s s 2+( )
--------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

� 1– e 4s– F s( ){ } f t 4–( )H t 4–( )= =

� 1– 4 e 4s–

s s 2+( )
--------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ 0 t � 4( )

2 1 e 2 t −4( )––( ) t � 4( )⎩
⎨
⎧

=

www.20file.org

www.semeng.ir


402 LAPLACE TRANSFORMS

Determine 

Solution This may be written as �−1{e−sπF(s)}, where

Resolving into partial fractions,

which, on inversion, gives

f (t) = 3 − 3 cos t + sin t

a graph of which is shown in Figure 5.28(a). Then, using (5.45), we have

= [3 − 3 cos (t − π) + sin (t − π)]H(t − π)

= (3 + 3 cos t − sin t)H(t − π)

Figure 5.27 Inverse 
transforms of 
Example 5.38.

Example 5.39 � 1– e sπ– s 3+( )
s s2 1+( )

--------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

.

F s( ) s 3+
s s2 1+( )
----------------------=

F s( ) 3

s
---- 3s

s2 1+
------------- 1

s2 1+
-------------+–=

� 1– e sπ– s 3+( )
s s2 1+( )

--------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

� 1– e sπ– F s( ){ } f t π–( )H t π–( )= =
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giving

which is plotted in Figure 5.28(b). 

5.5.5 Differential equations

We now return to the solution of linear differential equations for which the forcing
function f(t) is piecewise-continuous, like that illustrated in Figure 5.20. One
approach to solving a differential equation having such a forcing function is to solve
it separately for each of the continuous components f1(t), f2(t), and so on, comprising
f (t), using the fact that in this equation all the derivatives, except the highest, must
remain continuous so that values at the point of discontinuity provide the initial con-
ditions for the next section. This approach is obviously rather tedious, and a much
more direct one is to make use of Heaviside step functions to specify f (t). Then the
method of solution follows that used in Section 5.3, and we shall simply illustrate it
by examples.

� 1– e sπ– s 3+( )
s s2 1+( )

--------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫ 0 t � π( )

3 3 t tsin–cos t � π( )+⎩
⎨
⎧

=

Figure 5.28 Inverse transforms of Example 5.39.
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Obtain the solution x(t), t � 0, of the differential equation

(5.46)

where f (t) is the pulse function

and subject to the initial conditions x(0) = 0 and x(0) = 2.

Solution To illustrate the advantage of using a step function formulation of the forcing function
f (t), we shall first solve separately for each of the time ranges.

Method 1 For 0 � t � 6, (5.46) becomes

with x(0) = 0 and x(0) = 2.
Taking Laplace transforms gives

(s2 + 5s + 6)X(s) = sx(0) + x(0) + 5x(0) +  = 2 + 

That is,

which, on inversion, gives

We now determine the values of x(6) and x(6) in order to provide the initial conditions
for the next stage:

x(6) = −e−12 + 3 e−18 = β

For t � 6 we make the change of independent variable T = t − 6, whence (5.46) becomes

subject to x(T = 0) = α and x(T = 0) = β.
Taking Laplace transforms gives

(s2 + 5s + 6)X(s) = sx(T = 0) + x(T = 0) + 5x(T = 0) = αs + 5α + β

That is,

Example 5.40

d2x

dt2
--------- 5 dx

dt
------- 6x+ + f t( )=

f t( ) 3 0 � t 6�( )
0 t � 6( )⎩

⎨
⎧

=

d2x

dt2
--------- 5 dx

dt
------- 6x+ + 3=

3
s
---- 3

s
----

X s( ) 2s 3+
s s 2+( ) s 3+( )
-------------------------------------

1
2
----

s
---

1
2
----

s 2+
----------- 1

s 3+
-----------–+= =

x t( ) 1
2
---- 1

2
---- e 2t– e 3t––+= 0 � t � 6( )

x 6( ) 1
2
---- 1

2
---- e 12– e 18––+  = α,=

d2x

dT 2
--------- 5 dx

dT
-------- 6x+ + 0=

X s( ) αs 5α β+ +
s 2+( ) s 3+( )

---------------------------------- β 3α+
s 2+

---------------- β 2α+
s 3+

----------------–= =
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which, on taking inverse transforms, gives

x(T ) = ( β + 3α)e−2T − ( β + 2α)e−3T

Substituting the values of α and β and reverting to the independent variable t gives

x(t) = (  + e−12) e−2(t−6) − (1 + e−18) e−3(t−6) (t � 6)

That is,

x(t) = ( e−2t − e−3t) + ( e−2(t−6) − e−3(t−6)) (t � 6)

Thus the solution of the differential equation is

The forcing function f (t) and response x(t) are shown in Figures 5.29(a) and (b)
respectively.

Method 2 In terms of Heaviside step functions,

f (t) = 3H(t) − 3H(t − 6)

so that, using (5.43),

Taking Laplace transforms in (5.46) then gives

(s2 + 5s + 6)X(s) = sx(0) + x(0) + 5x(0) + �{ f (t)} 

That is,

Taking inverse Laplace transforms and using the result (5.45) gives

x(t) = (  + e−2t − e−3t ) − (  − e−2(t−6) + e−3(t−6))H(t − 6)

3
2
---- 1

2
----

1
2
---- 3

2
----

x t( )
1
2
---- 1

2
---- e 2t– e 3t– 0 � t � 6( )–+

1
2
---- e 2t– e 3t––( ) 3

2
---- e 2 t−6( )– e 3 t−6( )––( ) t � 6( )+⎩

⎨
⎧

=

Figure 5.29
Forcing function 
and response of 
Example 5.40.

� f t( ){ } 3
s
---- 3

s
----e 6s––=

2 3
s
---- 3

s
----e 6s––+=

X s( ) 2s 3+
s s 2+( ) s 3+( )
------------------------------------- e 6s– 3

s s 2+( ) s 3+( )
-------------------------------------–=

1
2
----

s
---

1
2
----

s 2+
----------- 1

s 3+
-----------–+⎝ ⎠

⎛ ⎞ e 6s–
1
2
----

s
---

3
2
----

s 2+
-----------– 1

s 3+
-----------+⎝ ⎠

⎛ ⎞–=

1
2
---- 1

2
---- 1

2
---- 3

2
----
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which is the required solution. This corresponds to that obtained in Method 1, since,
using the definition of H(t − 6), it may be written as

This approach is clearly less tedious, since the initial conditions at the discontinuities
are automatically taken account of in the solution.

Determine the solution x(t), t � 0, of the differential equation

(5.47)

where

and subject to the initial conditions x(0) = 0 and x(0) = 3.

Solution Following the procedures of Example 5.36, we have

f (t) = tH(t) − tH(t − π)

= tH(t) − (t − π)H(t − π) − πH(t − π)

so that, using Theorem 5.4,

It seems that the standard dsolve command is unable to deal with differential
equations having such Heaviside functions as their forcing function. To resolve this
problem use can be made of the maple command in MATLAB, which lets us
access MAPLE commands directly. Confirm that the following commands produce
the correct solution:

maple(‘de:=diff(x(t),t$2)+5*diff(x(t),t)+6*x(t)

=3*Heaviside-3*Heaviside(t-6);’)

ans=

de := diff(x(t),’$’(t,2))+5*diff(x(t),t)+6*x(t)

= 3*Heaviside-3*Heaviside(t-6)

maple(‘dsolve({de,x(0)=0,D(x)(0)=2},x(t)),method=laplace;’)

In MAPLE the answer may be obtained directly using the commands:

with(inttrans):

de:=diff(x(t),t$2)+5*diff(x(t),t)+6*x(t) 

-3*Heaviside-3*Heaviside(t-6);

dsolve({de,x(0)=0,D(x)(0)=2},x(t)),method=laplace;

x t( )
1
2
---- 1

2
---- e 2t– e 3t– 0 � t 6�( )–+

1
2
---- e 2t– e 3t––( ) 3

2
---- e 2 t−6( )– e 3 t−6( )––( ) t � 6( )+⎩

⎨
⎧

=

Example 5.41

d2x

dt2
--------- 2 dx

dt
------- 5x+ + f t( )=

f t( ) t 0 � t � π( )
0 t � π( )⎩

⎨
⎧

=

� f t( ){ } 1

s2
----- e πs–

s2
--------– πe πs–

s
-------------  1

s2
----- e πs– 1

s2
----- π

s
----+⎝ ⎠

⎛ ⎞–=–=
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Taking Laplace transforms in (5.47) then gives

(s2 + 2s + 5)X(s) = sx(0) + x(0) + 2x(0) + �{ f (t)}

using the given initial conditions.
Thus

which, on resolving into partial fractions, leads to

Taking inverse Laplace transforms and using (5.45) gives the desired solution:

x(t) = (−2 + 5t + 2 e−t cos 2t + 36 e−t sin 2t)

− [(5π − 2) + 5(t − π) − (5π − 2) e−(t−π) cos 2(t − π)

− (5π + 3) e−(t−π) sin 2(t − π)]H(t − π)

That is,

x(t) = [5t − 2 + 2 e−t(cos 2t + 18 sin 2t)]

− {5t − 2 − eπ e−t [(5π − 2) cos 2t + (5π + 3) sin 2t]}H (t − π)

or, in alternative form,

5.5.6 Periodic functions

We have already determined the Laplace transforms of periodic functions, such
as sin ω t and cos ω t, which are smooth (differentiable) continuous functions. In many
engineering applications, however, one frequently encounters periodic functions that
exhibit discontinuous behaviour. Examples of typical periodic functions of practical
importance are shown in Figure 5.30.

Such periodic functions may be represented as infinite series of terms involving step
functions; once expressed in such a form, the result (5.43) may then be used to obtain
their Laplace transforms. 

3 1

s2
----- e πs– 1

s2
----- π

s
----+⎝ ⎠

⎛ ⎞–+=

X s( ) 3s2 1+
s2 s2 2s 5+ +( )
------------------------------------ e πs– 1 sπ+

s2 s2 2s 5+ +( )
------------------------------------–=

X s( ) 1
25
------- −2

s
---- 5

s2
----- 2s 74+

s 1+( )2 4+
---------------------------+ + e πs–

25
--------

5π 2–

s
--------------- 5

s2
-----  − 5π 2–( )s 10π 1+( )+

s 1+( )2 4+
------------------------------------------------------+–=

1
25
-------

2

s
----– 5

s2
----- 2 s 1+( ) 72+

s 1+( )2 4+
---------------------------------+ +=

e πs–

25
--------–

5π 2–

s
--------------- 5

s2
-----  − 5π 2–( ) s 1+( ) 5π 3+( )+

s 1+( )2 4+
----------------------------------------------------------------+

1
25
-------

1
25
-------

1
2
----

1
25
-------

1
25
------- 1

2
----

x t( ) = 

1
25
------- 5t 2– 2 e t– 2t 18 2tsin+cos( )+[ ] 0 � t � π( )

1
25
------- e t– 2 5π 2–( ) eπ+( ) 2t 36 1

2
---- 5π 3+( ) eπ+[ ] 2tsin+cos{ } t � π( )⎩

⎨
⎧
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Obtain the Laplace transform of the square wave illustrated in Figure 5.30(a).

Solution In terms of step functions, the square wave may be expressed in the form

f (t) = KH(t) − 2KH(t − T ) + 2KH(t − T) − 2KH(t − T ) + 2KH(t − 2T ) + . . .

= K[H(t) − 2H(t − T ) + 2H(t − T ) − 2H(t − T ) + 2H(t − 2T ) + . . . ]

Taking Laplace transforms and using the result (5.43) gives

Figure 5.30
Typical practically 
important periodic 
functions: (a) square 
wave; (b) sawtooth 
wave; (c) repeated 
pulse wave; (d) half-
wave rectifier.

Example 5.42

1
2
---- 3

2
----

1
2
---- 3

2
----

� f t( ){ } F s( ) K 1
s
---- 2

s
---- e sT/2–– 2

s
---- e sT– 2

s
---- e 3sT/2–– 2

s
---- e 2sT–  + . . . + +⎝ ⎠

⎛ ⎞= =

2K
s

-------- 1 e sT/2– e sT/2–( )2
e sT/2–( )3

– e sT/2–( )4
 − . . . + +–[ ] K

s
-----–=
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The series inside the square brackets is an infinite geometric progression with first
term 1 and common ratio −e−sT/2, and therefore has sum (1 + e−sT/2)−1. Thus,

That is,

The approach used in Example 5.42 may be used to prove the following theorem, which
provides an explicit expression for the Laplace transform of a periodic function.

Proof If, as illustrated in Figure 5.31, the periodic function f (t) is piecewise-continuous over
an interval of length T, then its Laplace transform exists and can be expressed as a
series of integrals over successive periods; that is,

If in successive integrals we make the substitutions

t = τ + nT (n = 0, 1, 2, 3, . . . )

then

F s( ) 2K
s

-------- 1

1 e sT/2–+
---------------------- K

s
-----– K

s
----- 1 e sT/2––

1 e sT/2–+
----------------------= =

� f t( ){ } F s( ) K
s
----- 1

4
---- sTtanh= =

If f (t), defined for all positive t, is a periodic function with period T, that is
f (t + nT ) = f (t) for all integers n, then

Theorem 5.5

� f t( ){ } 1

1 e sT––
----------------- �

0

T

e st– f t( )  dt =

� f t( ){ } �
0

∞

f t( ) e st– dt=

�
0

T

f t( ) e st– dt + �
T

2T

f t( ) e st– dt + �
2T

3T

f t( ) e st– dt + . . .=

+ �
n−1( )T

nT

f t( ) e st– dt + . . .

� f t( ){ }
n=0

∞

∑ �
0

T

f τ nT+( ) e s τ+nT( )– dτ=

Figure 5.31
Periodic function 
having period T.
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Since f (t) is periodic with period T,

f (τ + nT ) = f (t) (n = 0, 1, 2, 3, . . . )

so that

The series ∑∞
n=0 e−snT = 1 + e−sT + e−2sT + e−3sT + . . . is an infinite geometric progression

with first term 1 and common ratio e−sT. Its sum is given by (1 − e−sT)−1, so that

Since, within the integral, τ is a ‘dummy’ variable, it may be replaced by t to give the
desired result.

We note that, in terms of the Heaviside step function, Theorem 5.5 may be stated as
follows:

This formulation follows since f (t) is periodic and f1(t) = 0 for t � T. For the periodic
function f (t) shown in Figure 5.31 the corresponding function f1(t) is shown in
Figure 5.32. We shall see from the following examples that this formulation simplifies
the process of obtaining Laplace transforms of periodic functions.

Confirm the result obtained in Example 5.42 using Theorem 5.5.

Solution For the square wave f (t) illustrated in Figure 5.30(a), f (t) is defined over the period
0 � t � T by

Hence we can write f1(t) = K [H(t) − 2H(t − T ) + H(t − T )], and thus

� f t( ){ }
n=0

∞

∑ �
0

T

f τ( ) e sτ– e snT– dτ= e snT–

n=0

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞ �

0

T

f τ( ) e sτ– dτ=

� f t( ){ } 1

1 e sT––
----------------- �

0

T

f τ( ) e sτ– dτ=

end of theorem

If f (t), defined for all positive t, is a periodic function with period T and

f1(t) = f (t)(H(t) − H(t − T ))

then

�{ f (t)} = (1 − e−sT )−1�{ f1(t)}

Figure 5.32
Plot of periodic 
function within one 
period.

Example 5.43

f t( )
K 0 t 1

2
----T� �( )

K 1
2
----T t T� �( )–⎩

⎨
⎧

=

1
2
----

� f1 t( ){ } = K 1
s
---- 2

s
---- e sT/2–– 1

s
---- e sT–+⎝ ⎠

⎛ ⎞ K
s
----- 1 e sT/2––( )2=
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Using the result of Theorem 5.5,

confirming the result obtained in Example 5.42.

Determine the Laplace transform of the rectified half-wave defined by

f (t + 2nπ/ω) = f (t) for all integers n

Solution f (t) is illustrated in Figure 5.30(d), with T = 2π/ω. We can express f1(t) as 

f1(t) = sin ωt [H(t) − H(t − π/ω)]

= sin ωtH(t) + sinω (t − π/ω)H(t − π/ω)

So

Then, by the result of Theorem 5.5,

� f t( ){ } K 1 e sT/2––( )2

s 1 e sT––( )
--------------------------------- K 1 e sT/2––( )2

s 1 e sT/2––( ) 1 e sT/2–+( )
------------------------------------------------------= =

K

s
----- 1 e sT/2––

1 e sT/2–+
----------------------= K

s
----- 1

4
---- sTtanh=

Example 5.44

f t( ) ωt 0 t π /ω� �( )sin

0 π/ω t 2π /ω� �( )⎩
⎨
⎧

=

� f1 t( ){ } ω
s2 ω2+
---------------- e sπ/ω– ω

s2 ω2+
----------------+ ω

s2 ω2+
---------------- 1 e sπ/ω–+( )= =

� f t( ){ } ω
s2 ω2+
---------------- 1 e sπ/ω–+

1 e 2sπ/ω––
-----------------------  = ω

s2 ω2+( ) 1 e sπ/ω––( )
-------------------------------------------------=

Check your answers using MATLAB or MAPLE whenever possible.

A function f(t) is defined by

Express f(t) in terms of Heaviside unit step 
functions and show that

Express in terms of Heaviside unit step functions the 
following piecewise-continuous causal functions. 
In each case obtain the Laplace transform of the 
function.

Obtain the inverse Laplace transforms of the 
following:

(b)

5.5.7 Exercises

13

f t( )
t 0 t 1� �( )
0 t � 1( )⎩

⎨
⎧

=

� f t( ){ } 1

s2
----- 1 e s––( ) 1

s
---- e s––=

14

a( ) f t( )
3t2 0 t � 4�( )
2t 3 4 t � 6�( )–

5 t � 6( )⎩
⎪
⎨
⎪
⎧

=

b( ) g t( )
t 0 t 1��( )
2 t 1 t � 2�( )–

0 t � 2( )⎩
⎪
⎨
⎪
⎧

=

15

a( ) e 5s–

s 2–( )4
------------------- 3e 2s–

s 3+( ) s 1+( )
----------------------------------
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(d)

(f )

Given that x = 0 when t = 0, obtain the solution of 
the differential equation

where f(t) is the function defined in Exercise 13. 
Sketch a graph of the solution.

Given that x = 1 and dx /dt = 0, obtain the solution 
of the differential equation

where g(t) is the piecewise-continuous function 
defined in Exercise 14(b).

Show that the function

may be expressed in the form f(t) = cos (t − π) 
H(t − π), where H(t) is the Heaviside unit step 
function. Hence solve the differential equation

where f(t) is given above, and x = 1 and 
dx/dt = −1 when t = 0.

Express the function

in terms of Heaviside unit step functions and obtain 
its Laplace transform. Obtain the response of the 
harmonic oscillator

y + x = f(t)

to such a forcing function, given that x = 1 and 
dx/dt = 0 when t = 0.

The response θo(t) of a system to a forcing function 
θi(t) is determined by the second-order differential 
equation

3o + 62o + 10θo = θi (t � 0)

Suppose that θi(t) is a constant stimulus applied for 
a limited period and characterized by

Determine the response of the system at time t
given that the system was initially in a quiescent 
state. Show that the transient response at time 
T (� a) is

e−3T{cos T + 3 sin T − e3a[cos (T − a)

+ 3 sin (T − a)]}

The input θi(t) and output θo(t) of a servomechanism
are related by the differential equation

3o + 82o + 16θo = θi (t � 0)

and initially θo(0) = 2o(0) = 0. For θi = f(t), where

Show that

and hence obtain an expression for the response of 
the system at time t.

During the time interval t1 to t2, a constant 
electromotive force e0 acts on the series RC circuit 
shown in Figure 5.33. Assuming that the circuit is 
initially in a quiescent state, show that the current 
in the circuit at time t is

Sketch this as a function of time.

A periodic function f(t), with period 4 units, is 
defined within the interval 0 � t � 4 by

Sketch a graph of the function for 0 � t � 12 and 
obtain its Laplace transform.

Obtain the Laplace transform of the periodic 
sawtooth wave with period T, illustrated in 
Figure 5.30(b).

c( ) s 1+
s2 s2 1+( )
------------------------ e s– s 1+

s2 s 1+ +
----------------------- e πs–

e( ) s

s2 25+
---------------- e 4πs/5– e s– 1 e s––( )

s2 s2 1+( )
--------------------------

16

dx
dt
------- x+ f t( ) t 0�( )=

17

d2x

dt2
--------- dx

dt
------- x+ + g t( ) t 0�( )=

18

f t( )
0 0 � t 1

2
----π�( )

t t � 1
2
----π( )sin⎩

⎨
⎧

=

1
2
----

1
2
----

d2x

dt2
--------- 3 dx

dt
------- 2x+ + f t( )=

19

f t( ) 3 0 � t 4�( )
2t 5 t 4�( )–⎩

⎨
⎧

=

20

θ i t( ) 3 0 � t a�( )
0 t a�( )⎩

⎨
⎧

=

3
10
-------–

21

f t( ) 1 t 0 t 1� �( )–

0 t � 1( )⎩
⎨
⎧

=

� θ i t( ){ } s 1–

s2
------------ 1

s2
----- e s–+=

22

i t( ) e0

R
---- e

t−t1( )/RC–
H t t1–( ) e

t−t2( )/RC–
H t t2–( )–[ ]=

Figure 5.33 Circuit of Exercise 22.
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5.5.8 The impulse function

Suppose a hammer is used to strike a nail then the hammer will be in contact with the
nail for a very short period of time, indeed almost instantaneously. A similar situation
arises when a golfer strikes a golf ball. In both cases the force applied, during this short
period of time, builds up rapidly to a large value and then rapidly decreases to zero.
Such short sharp forces are known as impulsive forces and are of interest in many
engineering applications. In practice it is not the duration of contact that is important
but the momentum transmitted, this being proportional to the time integral of the force
applied. Mathematically such forcing functions are represented by the impulse function.
To develop a mathematical formulation of the impulse function and obtain some insight
into its physical interpretation, consider the pulse function φ(t) defined by

and illustrated in Figure 5.34(a). Since the height of the pulse is A/T and its duration (or
width) is T, the area under the pulse is A; that is,

If we now consider the limiting process in which the duration of the pulse approaches
zero, in such a way that the area under the pulse remains A, then we obtain a formula-
tion of the impulse function of magnitude A occurring at time t = a. It is important to
appreciate that the magnitude of the impulse function is measured by its area.

The impulse function whose magnitude is unity is called the unit impulse function
or Dirac delta function (or simply delta function). The unit impulse occurring at
t = a is the limiting case of the pulse φ(t) of Figure 5.34(a) with A having the value
unity. It is denoted by δ(t − a) and has the properties

δ(t − a) = 0 (t ≠ a)

Likewise, an impulse function of magnitude A occurring at t = a is denoted by Aδ (t − a)
and may be represented diagrammatically as in Figure 5.34(b).

An impulse function is not a function in the usual sense, but is an example of a class
of what are called generalized functions, which may be analysed using the theory of

φ t( )

0 0 t � a 1
2
----T–�( )

A/T a 1
2
----T t a 1

2
----T+��–( )

0 t a 1
2
----T+�( )⎩

⎪
⎨
⎪
⎧

=

�
∞–

∞

φ t( ) dt �
a−T/2

a+T/2
A
T
--- dt A= =

�
∞–

∞

δ t a–( ) dt 1=

Figure 5.34
Impulse function.
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generalized calculus. (It may also be regarded mathematically as a distribution and
investigated using the theory of distributions.) However, its properties are such that,
used with care, it can lead to results that have physical or practical significance and
which in many cases cannot be obtained by any other method. In this context it provides
engineers with an important mathematical tool. Although, clearly, an impulse function
is not physically realizable, it follows from the above formulation that physical signals
can be produced that closely approximate it.

We noted that the magnitude of the impulse function is determined by the area under
the limiting pulse. The actual shape of the limiting pulse is not really important, pro-
vided that the area contained within it remains constant as its duration approaches zero.
Physically, therefore, the unit impulse function at t = a may equally well be regarded
as the pulse φ1(t) of Figure 5.35 in the limiting case as T approaches zero.

In some applications we need to consider a unit impulse function at time t = 0. This
is denoted by δ (t) and is defined as the limiting case of the pulse φ2(t) illustrated in
Figure 5.36 as T approaches zero. It has the properties

δ(t) = 0 (t ≠ 0)

5.5.9 The sifting property

An important property of the unit impulse function that is of practical significance is
the so-called sifting property, which states that if f (t) is continuous at t = a then

This is referred to as the sifting property because it provides a method of isolating, or
sifting out, the value of a function at any particular point.

For theoretical reasons it is convenient to use infinite limits in (5.48), while in reality
finite limits can be substituted. This follows since for α � a � β, where α and β are
constants,

(5.49)

Figure 5.35 Approximation to a unit pulse. Figure 5.36 Pulse at the origin.

�
∞–

∞

δ t( ) dt 1=

(5.48)�
∞–

∞

f t( )δ t a–( ) dt f a( )=

�
α

β

f t( )δ t a–( ) dt f a( )=
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For example,

5.5.10 Laplace transforms of impulse functions

By the definition of the Laplace transform, we have for any a � 0

which, using the sifting property, gives the important result

or, in terms of the inverse transform,

As mentioned earlier, in many applications we may have an impulse function δ(t) at
t = 0, and it is in order to handle such a function that we must carefully specify whether
the lower limit in the Laplace integral defined in Section 5.2.1 is 0− or 0+. Adopting the
notation

we have

If f (t) does not involve an impulse function at t = 0 then clearly �+{ f (t)} = �−{ f (t)}.
However, if f (t) does involve an impulse function at t = 0 then

and it follows that

�+{ f (t)} ≠ �−{ f (t)}

In Section 5.2.1 we adopted the definition

�{ f (t)} = �−{ f (t)}

so that (5.50) and (5.51) hold for a = 0, giving

�
0

2π

tδcos t 1
3
----π–( ) dt 1

3
---- πcos 1

2
----= =

�{δ(t − a)} = e−as (5.50)

� −1{e−as} = δ(t − a) (5.51)

� δ t a–( ){ } �
0

∞

= δ t a–( ) e st– dt

�+ f t( ){ } = �
0+

∞

f t( ) e st– dt

�− f t( ){ } �=
0−

∞

f t( ) e st– dt

�− f t( ){ } �=
0−

0+

f t( ) e st– dt + �
0+

∞

f t( ) e st– dt

�
0−

0+

f t( ) dt 0≠

� δ t( ){ } �=
0−

∞

δ t( ) e st– dt e s0– 1= =
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so that

or, in inverse form,

Determine .

Solution Since

we have

giving

�{δ(t)} = 1 (5.52)

�−1{1} = δ(t) (5.53)

This transform can be implemented in MATLAB using the sequence of commands

syms s t

del=sym(‘Dirac(t)’);

laplace(del)

Likewise for (5.50); for example, if a = 2 then the Laplace transform of δ(t – 2) is
generated by the commands

del2=sym(‘Dirac(t-2)’);

laplace(del2)

or directly using the command

laplace(sym(‘Dirac(t-2)’))

giving the answer exp(-2*s) in each case.
In MAPLE the commands

with(inttrans):

laplace(Dirac(t-2), t, s);

return the answer e(−2s).

Example 5.45 � 1– s2

s2 4+
-------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

s2

s2 4+
------------- s2 4 4–+

s2 4+
---------------------- 1 4

s2 4+
-------------–= =

� 1– s2

s2 4+
-------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

� 1– 1{ } � 1– 4

s2 4+
-------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

–=

� 1– s2

s2 4+
-------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

δ t( ) 2 2tsin–=
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Determine the solution of the differential equation

(5.54)

subject to the initial conditions x(0) = x(0) = 0.

Solution Taking Laplace transforms in (5.54) gives

[s2X(s) − sx(0) − x(0)] + 3[sX(s) − x(0)] + 2X(s) = �{1} + �{δ(t − 4)}

which, on incorporating the given initial conditions and using (5.50), leads to

(s2 + 3s + 2)X (s) =  + e−4s

giving

Resolving into partial fractions, we have

which, on taking inverse transforms and using the result (5.45), gives the required
response:

x(t) = (1 + e−2t − 2 e−t) + (e−(t−4) − e−2(t−4))H(t − 4)

or, in an alternative form,

We note that, although the response x(t) is continuous at t = 4, the consequence of the
impulsive input at t = 4 is a step change in the derivative x(t). 

In MATLAB this is obtained directly, with the commands

ilaplace(s^2/(s^2+4));

pretty(ans)

generating the answer

Dirac(t)-2sin2t

The answers may also be obtained in MAPLE using the commands

with(inttrans):

invlaplace(s^2/(s^2+4), s, t);

Example 5.46

d2x

dt2
--------- 3 dx

dt
------- 2x+ + 1 δ t 4–( )+=

1
s
----

X s( ) 1
s s 2+( ) s 1+( )
------------------------------------- e 4s– 1

s 2+( ) s 1+( )
----------------------------------+=

X s( ) 1
2
---- 1

s
---- 1

s 2+
----------- 2

s 1+
-----------–+⎝ ⎠

⎛ ⎞ e 4s– 1
s 1+
----------- 1

s 2+
-----------–⎝ ⎠

⎛ ⎞+=

1
2
----

x t( )
1
2
---- 1 e 2t– 2 e t––+( ) 0 t 4��( )
1
2
---- e4 1–( ) e− t − e8 1

2
----–( ) e 2t– t � 4( )+⎩

⎨
⎧

=
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5.5.11 Relationship between Heaviside step and 
impulse functions

From the definitions of H(t) and δ(t), it can be argued that

(5.55)

since the interval of integration contains zero if t � 0 but not if t � 0. Conversely,
(5.55) may be written as

which expresses the fact that H ′(t) is zero everywhere except at t = 0, when the jump
in H(t) occurs.

While this argument may suffice in practice, since we are dealing with generalized
functions a more formal proof requires the development of some properties of gener-
alized functions. In particular, we need to define what is meant by saying that two
generalized functions are equivalent.

One method of approach is to use the concept of a test function θ (t), which is a
continuous function that has continuous derivatives of all orders and that is zero outside
a finite interval. One class of testing function, adopted by R. R. Gabel and R. A. Roberts
(Signals and Linear Systems, Wiley, New York, 1973), is

For a generalized function g(t) the integral

As was the case in Example 5.40, when considering Heaviside functions as forcing
terms, it seems that the dsolve command in MATLAB cannot be used directly in
this case. Using the maple command the following commands:

maple(‘de:=diff(x(t),t$2)+3*diff(x(t),t)+2*x(t) 

= 1+Dirac(t-4);’)

ans=

de := diff(x(t),’$’(t,2))+3*diff(x(t),t)+2*x(t) 

= 1+Dirac(t-4)

maple(‘dsolve({de,x(0)=0,D(x)(0)=0},x(t)), 

method=laplace;’)

output the required answer:

x(t)=1/2-exp(-t)+1/2*exp(-2*t)-Heaviside(t-4)*

exp(-2*t+8)+Heaviside(t-4)*exp(-t+4)

δ(t) = H(t) = H ′(t) (5.56)

H t( ) �
∞–

t

= δ τ( ) dτ

d
dt
------

θ t( ) e
d

2
/ d

2−t
2( )–

t  d�( ), where d = constant

0 otherwise⎩
⎨
⎧

=
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is evaluated. This integral assigns the number G(θ ) to each function θ (t), so that G(θ)
is a generalization of the concept of a function: it is a linear functional on the space of
test functions θ(t). For example, if g(t) = δ(t) then

so that in this particular case, for each weighting function θ (t), the value θ (0) is
assigned to G(θ ).

We can now use the concept of a test function to define what is meant by saying that
two generalized functions are equivalent or ‘equal’.

Definition 5.2: The equivalence property

The test function may be regarded as a ‘device’ for examining the generalized func-
tion. Gabel and Roberts draw a rough parallel with the role of using the output of a
measuring instrument to deduce properties about what is being measured. In such an
analogy g1(t) = g2(t) if the measuring instrument can detect no differences between
them.

Using the concept of a test function θ (t), the Dirac delta function δ(t) may be
defined in the generalized form

Interpreted as an ordinary integral, this has no meaning. The integral and the function
δ(t) are merely defined by the number θ (0). In this sense we can handle δ (t) as if it
were an ordinary function, except that we never talk about the value of δ(t); rather we
talk about the value of integrals involving δ(t).

Using the equivalence property, we can now confirm the result (5.56), namely that

δ(t) = H(t) = H ′(t)

To prove this, we must show that

(5.57)

Integrating the right-hand side of (5.57) by parts, we have

If g1(t) and g2(t) are two generalized functions then g1(t) = g2(t) if and only if 

for all test functions θ (t) for which the integrals exist.

G θ( ) �
∞–

∞

= θ t( )g t( ) dt

G θ( ) �
∞–

∞

= θ t( )δ t( ) dt θ 0( )=

�
∞–

∞

θ t( )g1 t( ) dt �
∞–

∞

θ t( )g2 t( ) dt=

�
∞–

∞

θ t( )δ t( ) dt θ 0( )=

d
dt
------

�
∞–

∞

θ t( )δ t( ) dt �
∞–

∞

θ t( )H′ t( ) dt=
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(by the definitions of θ(t) and H(t))

Since the left-hand side of (5.57) is also θ (0), the equivalence of δ(t) and H ′(t) is proved.
Likewise, it can be shown that 

The results (5.56) and (5.58) may be used to obtain the generalized derivatives of
piecewise-continuous functions having jump discontinuities d1, d2, . . . , dn at times
t1, t2, . . . , tn respectively, as illustrated in Figure 5.37. On expressing f (t) in terms of
Heaviside step functions as in Section 5.5.1, and differentiating using the product rule,
use of (5.56) and (5.58) leads to the result

where g′(t) denotes the ordinary derivative of f (t) where it exists. The result (5.59) tells
us that the derivative of a piecewise-continuous function with jump discontinuities
is the ordinary derivative where it exists plus the sum of delta functions at the discon-
tinuities multiplied by the magnitudes of the respective jumps.

By the magnitude di of a jump in a function f (t) at a point ti, we mean the difference
between the right-hand and left-hand limits of f (t) at ti; that is,

di = f (ti + 0) − f (ti − 0)

It follows that an upward jump, such as d1 and d2 in Figure 5.37, is positive, while a
downward jump, such as d3 in Figure 5.37, is negative.

The result (5.59) gives an indication as to why the use of differentiators in practical
systems is not encouraged, since the introduction of impulses means that derivatives
increase noise levels in signal reception. In contrast, integrators have a smoothing effect
on signals, and are widely used.

δ(t − a) = H(t − a) = H ′(t − a) (5.58)

(5.59)

�
∞–

∞

θ t( )H′ t( ) dt H t( )θ t( )[ ] ∞–
∞  �

∞–

∞

H t( )θ ′ t( ) dt–=

0= �
∞–

∞

θ ′ t( )dt–

θ t( )[ ]0
∞–= θ 0( )=

d
dt
------

f ′ t( ) g′ t( ) diδ t ti–( )
i=1

n

∑+=

Figure 5.37
Piecewise-continuous 
function with jump 
discontinuities.
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Obtain the generalized derivative of the piecewise-continuous function

Solution f (t) is depicted graphically in Figure 5.38, and it has jump discontinuities of magni-
tudes 1, −12 and −5 at times t = 0, 3 and 5 respectively. Using (5.59), the generalized
derivative is

f ′(t) = g′(t) + 1δ(t) − 12δ(t − 3) − 5δ(t − 5)

where

A system is characterized by the differential equation model

(5.60)

Determine the response of the system to a forcing function u(t) = e−t applied at time
t = 0, given that it was initially in a quiescent state.

Solution Since the system is initially in a quiescent state, the transformed equation correspond-
ing to (5.60) is

(s2 + 5s + 6)X(s) = (3s + 1)U(s)

giving

In the particular case when u(t) = e−t, U(s) = 1/(s + 1), so that

Example 5.47

f t( )
2t2 1 0 t 3��( )+
t 4 3 t 5��( )+
4 t 5�( )⎩

⎪
⎨
⎪
⎧

=

Figure 5.38 Piecewise-
continuous function of 
Example 5.47.

g′ t( )
4t 0 t 3��( )
1 3 t 5��( )
0 t 5�( )⎩

⎪
⎨
⎪
⎧

=

Example 5.48

d2x

dt2
--------- 5 dx
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------- 6x u 3 du
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-------+=+ +

X s( ) 3s 1+
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------------------------- U s( )=
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which, on taking inverse transforms, gives the desired response as

x(t) = − e−t + 5 e−2t − 4 e−3t (t � 0)

One might have been tempted to adopt a different approach and substitute for u(t)
directly in (5.60) before taking Laplace transforms. This leads to

= e−t − 3 e−t = −2 e−t

which, on taking Laplace transforms, leads to

(s2 + 5s + 6)X(s) = 

giving

which, on inversion, gives

x(t) = −e−t + 2 e−2t − e−3t (t � 0)

Clearly this approach results in a different solution, and therefore appears to lead to a
paradox. However, this apparent paradox can be resolved by noting that the second
approach is erroneous in that it ignores the important fact that we are dealing with
causal functions. Strictly speaking,

u(t) = e−tH(t)

and, when determining du/dt, the product rule of differential calculus should be
employed, giving

= −e−tH(t) + e−tδ (t)

Substituting this into (5.60) and taking Laplace transforms gives

That is,

leading to the same response

x(t) = −e−t + 5 e−2t − 4 e−3t (t � 0)

as in the first approach above.

d2x

dt2
--------- 5dx

dt
------- 6x+ +

2
s 1+
-----------–

X s( ) 2–
s 1+( ) s 2+( ) s 3+( )

--------------------------------------------------- 1–
s 1+
----------- 2

s 2+
−−−−−−−− 1

s 3+
-----------–+= =

du
dt
------- −e t– H t( ) e t– d

dt
------ H t( )+=

s2 5s 6+ +( )X s( ) 1
s 1+
----------- 3 1

s 1+
-----------– 1+⎝ ⎠

⎛ ⎞+= 3s 1+
s 1+

----------------=

X s( ) 3s 1+
s 1+( ) s2 5s 6+ +( )

------------------------------------------------=
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The differential equation used in Example 5.48 is of a form that occurs frequently in
practice, so it is important that the causal nature of the forcing term be recognized.

The derivative δ ′(t) of the impulse function is also a generalized function, and, using
the equivalence property, it is readily shown that

or, more generally,

provided that f ′(t) is continuous at t = a.
Likewise, the nth derivative satisfies

provided that f (n)(t) is continuous at t = a.
Using the definition of the Laplace transform, it follows that

�{δ (n)(t − a)} = sne−as

and, in particular,

�{δ (n)(t)} = sn (5.61)

�
∞–

∞

f t( )δ ′ t( ) dt f ′ 0( )–=

�
∞–

∞

f t( )δ ′ t a–( ) dt f ′ a( )–=

�
∞–

∞

f t( )δn t a–( ) dt 1–( )nf n( ) a( )=

Check your answers using MATLAB or MAPLE whenever possible.

Obtain the inverse Laplace transforms of the 
following:

Solve for t � 0 the following differential equations, 
subject to the specified initial conditions:

subject to x = 0 and  = 0 at t = 0

subject to x = 0 and  = 0 at t = 0

subject to x = 1 and  = 1 at t = 0

Obtain the generalized derivatives of the following 
piecewise-continuous functions:

5.5.12 Exercises

25

a( ) 2s2 1+
s 2+( ) s 3+( )

---------------------------------- b( ) s2 1–

s2 4+
------------- c( ) s2 2+

s2 2s 5+ +
-------------------------

26
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dt2
--------- 7 dx

dt
------- 12x+ + 2 δ t 2–( )+=
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-------
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--------- 6 dx
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------- 13x+ + δ t 2π–( )=
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--------- 7 dx
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------- 12x+ + δ t 3–( )=
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-------

27
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5.5.13 Bending of beams

So far, we have considered examples in which Laplace transform methods have been
used to solve initial-value-type problems. These methods may also be used to solve
boundary-value problems, and, to illustrate, we consider in this section the application
of Laplace transform methods to determine the transverse deflection of a uniform thin
beam due to loading.

Consider a thin uniform beam of length l and let y(x) be its transverse displacement,
at distance x measured from one end, from the original position due to loading. The
situation is illustrated in Figure 5.39, with the displacement measured upwards. Then,
from the elementary theory of beams, we have

where W(x) is the transverse force per unit length, with a downwards force taken to be
positive, and EI is the flexural rigidity of the beam (E is Young’s modulus of elasticity
and I is the moment of inertia of the beam about its central axis). It is assumed that the
beam has uniform elastic properties and a uniform cross-section over its length, so that
both E and I are taken to be constants.

(5.62)

Figure 5.39
Transverse deflection 
of a beam: (a) initial 
position; (b) displaced 
position.

EI d4y

dx4
--------- W x( )–=

Solve for t � 0 the differential equation

subject to x = 0 and dx/dt = 2 at t = 0 and where 
u(t) = e−2tH(t).

A periodic function f(t) is an infinite train of unit 
impulses at t = 0 and repeated at intervals of t = T. 
Show that

The response of a harmonic oscillator to such a periodic 
stimulus is determined by the differential equation

+ ω2x = f(t) (t � 0)

Show that

and sketch the responses from t = 0 to t = 6π /ω for 
the two cases (a) T = π /ω and (b) T = 2π /ω.

An impulse voltage Eδ(t) is applied at time t = 0 
to a circuit consisting of a resistor R, a capacitor 
C and an inductor L connected in series. Prior to 
application of this voltage, both the charge on 
the capacitor and the resulting current in the 
circuit are zero. Determine the charge q(t) on the 
capacitor and the resulting current i(t) in the circuit 
at time t.

c( ) f t( )
2t 5 0 � t � 2( )+
9 3t 2 � t � 4( )–

t2 t t 4�( )–⎩
⎪
⎨
⎪
⎧

=

28
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∞
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Equation (5.62) is sometimes written as

where y(x) is the transverse displacement measured downwards and not upwards as
in (5.62).

In cases when the loading is uniform along the full length of the beam, that is
W(x) = constant, (5.62) may be readily solved by the normal techniques of integral
calculus. However, when the loading is non-uniform, the use of Laplace transform
methods has a distinct advantage, since by making use of Heaviside unit functions and
impulse functions, the problem of solving (5.62) independently for various sections of
the beam may be avoided.

Taking Laplace transforms throughout in (5.62) gives

EI [s4Y(s) − s3y(0) − s2y1(0) − sy2(0) − y3(0)] = −W(s) (5.63)

where

and may be interpreted physically as follows:

EIy3(0) is the shear at x = 0

EIy2(0) is the bending moment at x = 0

y1(0) is the slope at x = 0

y(0) is the deflection at x = 0

Solving (5.63) for y(s) leads to

(5.64)

Thus four boundary conditions need to be found, and ideally they should be the shear,
bending moment, slope and deflection at x = 0. However, in practice these boundary
conditions are not often available. While some of them are known, other boundary con-
ditions are specified at points along the beam other than at x = 0, for example conditions
at the far end, x = l, or conditions at possible points of support along the beam. That is,
we are faced with a boundary-value problem rather than an initial-value problem.

To proceed, known conditions at x = 0 are inserted, while the other conditions among
y(0), y1(0), y2(0) and y3(0) that are not specified are carried forward as undetermined
constants. Inverse transforms are taken throughout in (5.45) to obtain the deflection
y(x), and the outstanding undetermined constants are obtained using the boundary con-
ditions specified at points along the beam other than at x = 0.

The boundary conditions are usually embodied in physical conditions such as the
following:

(a) The beam is freely, or simply, supported at both ends, indicating that both the
bending moments and deflection are zero at both ends, so that y = d2y/dx2 = 0 at
both x = 0 and x = l.

(b) At both ends the beam is clamped, or built into a wall. Thus the beam is horizontal
at both ends, so that y = dy/dx = 0 at both x = 0 and x = l.

EI d4y

dx4
--------- W x( )=

y1 0( ) dy

dx
------⎝ ⎠

⎛ ⎞
x=0

= , y2 0( ) d2y

dx2
---------⎝ ⎠

⎛ ⎞
x=0

= , y3 0( ) d3y

dx3
---------⎝ ⎠

⎛ ⎞
x=0

=

Y s( ) W s( )
EIs4
------------– y 0( )

s
----------

y1 0( )
s2

------------
y2 0( )

s3
------------

y3 0( )
s4

------------+ + + +=
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(c) The beam is a cantilever with one end free (that is, fixed horizontally at one end,
with the other end free). At the fixed end (say x = 0)

at x = 0

and at the free end (x = l ), since both the shearing force and bending moment are zero, 

at x = l

If the load is not uniform along the full length of the beam, use is made of Heaviside
step functions and impulse functions in specifying W(x) in (5.62). For example, a
uniform load w per unit length over the portion of the beam x = x1 to x = x2 is specified
as wH(x − x1) − wH(x − x2), and a point load w at x = x1 is specified as wδ (x − x1).

Figure 5.40 illustrates a uniform beam of length l, freely supported at both ends, bending
under uniformly distributed self-weight W and a concentrated point load P at x = l.
Determine the transverse deflection y(x) of the beam.

Solution As in Figure 5.39, the origin is taken at the left-hand end of the beam, and the deflection
y(x) measured upwards from the horizontal at the level of the supports. The deflection
y(x) is then given by (5.62), with the force function W(x) having contributions from the
weight W, the concentrated load P and the support reactions R1 and R2. However, since
we are interested in solving (5.62) for 0 � x � l, point loads or reactions at the end
x = l may be omitted from the force function.

As a preliminary, we need to determine R1. This is done by taking static moments
about the end x = l, assuming the weight W to be concentrated at the centroid x = l,
giving

or

The force function W(x) may then be expressed as 

W(x) = H(x) + Pδ (x − l ) − ( W + P)δ (x)

with a Laplace transform

y dy
dx
------- 0= =

d2y

dx2
--------- d3y

dx3
--------- 0= =

Example 5.49
1
3
----

Figure 5.40
Loaded beam of 
Example 5.49.

1
2
----

R1l 1
2
----Wl P2

3
----l+=

R1
1
2
----W 2

3
----P+=

W
l

------ 1
3
---- 1

2
---- 2

3
----

W s( ) W
ls
------ P e ls/3– 1

2
----W 2

3
---- P+( )–+=

www.20file.org

www.semeng.ir


5.5  STEP AND IMPULSE FUNCTIONS 427

Since the beam is freely supported at both ends, the deflection and bending moments
are zero at both ends, so we take the boundary conditions as

y = 0 at x = 0 and x = l

at x = 0 and x = l

The transformed equation (5.64) becomes

Taking inverse transforms, making use of the second shift theorem (Theorem 5.4),
gives the deflection y(x) as

To obtain the value of the undetermined constants y1(0) and y3(0), we employ the
unused boundary conditions at x = l, namely y(l ) = 0 and y2(l ) = 0. For x � l

Thus taking y2(l ) = 0 gives y3(0) = 0, and taking y(l ) = 0 gives

so that

Substituting back, we find that the deflection y(x) is given by

or, for the two sections of the beam,

d2y

dx2
--------- 0=

Y s( ) 1
EI
-------– W

ls5
------- P

s4
----- e ls/3– 1

2
----W 2

3
---- P+( ) 1

s4
-----–+ y1 0( )

s2
------------

y3 0( )
s4

------------+ +=

y x( ) 1
EI
-------– 1

24
-------

W
l

------ x4 1
6
---- P x 1

3
---- l–( )3

H x 1
3
---- l–( ) 1

6
---- 1

2
----W 2

3
---- P+( )x3–+=

+ y1 0( )x 1
6
---- y3 0( )x3+

1
3
----

y x( ) 1
EI
-------– 1

24
-------

W
l

------ x4 1
6
---- P x 1

3
---- l–( )3 1

6
---- 1

2
----W 2

3
---- P+( )x3–+ y1 0( )x 1

6
---- y3 0( )x3++=

d2y

dx2
--------- y2 x( ) 1

EI
−−−– Wx2

2l
----------- P x 1

3
---- l–( ) 1

3
----W 2P

3
--------+⎝ ⎠

⎛ ⎞ x–+ y3 0( )x+= =

1
EI
-------– 1

24
------- Wl3 4

81
------- Pl 3 1

12
-------Wl3 1

9
---- Pl 3––+( ) y1 0( )l+ 0=

y1 0( ) l2

El
-----– 1

24
-------W 5

81
------- P+( )=

y x( ) W
EI
-------– x4

24l
--------- 1

12
------- x3– 1

24
------- l2x+⎝ ⎠

⎛ ⎞ P
EI
------- 5

81
------- l2x 1

9
---- x

3–( )– P
6EI
---------- x 1

3
---- l–( )3

H x 1
3
---- l–( )–=

y x( ) = 

W
EI
-------– x

24l
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12
------- x3– 1

24
------- l2x+⎝ ⎠

⎛ ⎞ P
EI
------- 5
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------- l2x 1

9
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3–( ) 0 x 1
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24l
--------- 1

12
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24
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⎪
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⎧
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Transfer functions

5.6.1 Definitions

The transfer function of a linear time-invariant system is defined to be the ratio of
the Laplace transform of the system output (or response function) to the Laplace trans-
form of the system input (or forcing function), under the assumption that all the initial
conditions are zero (that is, the system is initially in a quiescent state).

Transfer functions are frequently used in engineering to characterize the input–
output relationships of linear time-invariant systems, and play an important role in the
analysis and design of such systems.

Consider a linear time-invariant system characterized by the differential equation

(5.65)

where n � m, the as and bs are constant coefficients, and x(t) is the system response or
output to the input or forcing term u(t) applied at time t = 0. Taking Laplace transforms
throughout in (5.65) will lead to the transformed equation. Since all the initial condi-
tions are assumed to be zero, we see from (5.15) that, in order to obtain the transformed
equation, we simply replace d/dt by s, giving

(ansn + an−1s
n−1 + . . . + a0)X(s) = (bmsm + . . . + b0)U(s)

where X(s) and U(s) denote the Laplace transforms of x(t) and u(t) respectively.
The system transfer function G(s) is then defined to be

(5.66)

with (5.66) being referred to as the transfer function model of the system characterized
by the differential equation model (5.65). Diagramatically this may be represented by the
input–output block diagram of Figure 5.41.

Writing

P(s) = bmsm + . . . + b0

Q(s) = ansn + . . . + a0

5.6

an
dnx

dtn
--------- an−1

dn−1x

dtn−1
------------- . . . a0x+ + + bm

dmu

dtm
---------- . . . b0u+ +=

G s( ) X s( )
U s( )
-----------

bmsm . . . b0+ +
ansn . . . a0+ +
------------------------------------= =

Figure 5.41
Transfer function 
block diagram.

Find the deflection of a beam simply supported at 
its ends x = 0 and x = l, bending under a uniformly 
distributed self-weight M and a concentrated load 
W at x = l.

A cantilever beam of negligible weight and of 
length l is clamped at the end x = 0. Determine the 
deflection of the beam when it is subjected to a load 

per unit length, w, over the section x = x1 to x = x2. 
What is the maximum deflection if x1 = 0 and x2 = l?

A uniform cantilever beam of length l is subjected 
to a concentrated load W at a point distance b from 
the fixed end. Determine the deflection of the beam, 
distinguishing between the sections 0 � x � b and 
b � x � l.

5.5.14 Exercises

31

1
2
----

32

33
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the transfer function may be expressed as

where, in order to make the system physically realizable, the degrees m and n of the
polynomials P(s) and Q(s) must be such that n � m. This is because it follows from
(5.61) that if m � n then the system response x(t) to a realistic input u(t) will involve
impulses.

The equation Q(s) = 0 is called the characteristic equation of the system; its order
determines the order of the system, and its roots are referred to as the poles of the
transfer function. Likewise, the roots of P(s) = 0 are referred to as the zeros of the
transfer function.

It is important to realize that, in general, a transfer function is only used to character-
ize a linear time-invariant system. It is a property of the system itself, and is independent
of both system input and output.

Although the transfer function characterizes the dynamics of the system, it provides
no information concerning the actual physical structure of the system, and in fact sys-
tems that are physically different may have identical transfer functions; for example,
the mass–spring–damper system of Figure 5.12 and the LCR circuit of Figure 5.8 both
have the transfer function

In the mass–spring–damper system X(s) determines the displacement x(t) of the mass
and U(s) represents the applied force F(t), while α denotes the mass, β the damping
coefficient and γ the spring constant. On the other hand, in the LCR circuit X(s) deter-
mines the charge q(t) on the condenser and U(s) represents the applied emf e(t), while
α denotes the inductance, β the resistance and γ the reciprocal of the capacitance.

In practice, an overall system may be made up of a number of components each
characterized by its own transfer function and related operation box. The overall system
input–output transfer function is then obtained by the rules of block diagram algebra.

Since G(s) may be written as

where the zis and pis are the transfer function zeros and poles respectively, we observe
that G(s) is known, apart from a constant factor, if the positions of all the poles and
zeros are known. Consequently, a plot of the poles and zeros of G(s) is often used as
an aid in the graphical analysis of the transfer function (a common convention is to
mark the position of a zero by a circle � and that of a pole by a cross ×). Since the
coefficients of the polynomials P(s) and Q(s) are real, all complex roots always occur in
complex conjugate pairs, so that the pole–zero plot is symmetrical about the real axis.

The response x(t) of a system to a forcing function u(t) is determined by the differential
equation

G s( ) P s( )
Q s( )
-----------=

G s( ) X s( )
U s( )
----------- 1

αs2 βs γ+ +
-------------------------------= =

G s( ) bm

am

-----
s z1–( ) s z2–( ) . . . s zm–( )
s p1–( ) s p2–( ) . . . s pn–( )

-------------------------------------------------------------------=

Example 5.50

9d2x

dt2
--------- 12dx

dt
------- 13x+ + 2du

dt
------- 3u+=
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(a) Determine the transfer function characterizing the system.
(b) Write down the characteristic equation of the system. What is the order of the

system?
(c) Determine the transfer function poles and zeros, and illustrate them diagram-

matically in the s plane.

Solution (a) Assuming all the initial conditions to be zero, taking Laplace transforms throughout
in the differential equation

leads to

(9s2 + 12s + 13)X(s) = (2s + 3)U(s)

so that the system transfer function is given by

(b) The characteristic equation of the system is

9s2 + 12s + 13 = 0

and the system is of order 2.

(c) The transfer function poles are the roots of the characteristic equation

9s2 + 12s + 13 = 0

which are

That is, the transfer function has simple poles at

s = −  + j and s = −  − j

The transfer function zeros are determined by equating the numerator polynomial
2s + 3 to zero, giving a single zero at

s = −

The corresponding pole–zero plot in the s plane is shown in Figure 5.42.

9d2x

dt2
--------- 12dx

dt
------- 13x+ + 2du

dt
------- 3u+=

G s( ) X s( )
U s( )
----------- 2s 3+

9s2 12s 13+ +
------------------------------------= =

s −12 ± � 144 468–( )------------------------------------------------ −2 ± j3
18 3

-------------------= =

2
3
---- 2

3
----

3
2
----

Figure 5.42
Pole (×)–zero (�) plot 
for Example 5.50.
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5.6.2 Stability

The stability of a system is a property of vital importance to engineers. Intuitively, we
may regard a stable system as one that will remain at rest unless it is excited by an
external source, and will return to rest if all such external influences are removed. Thus
a stable system is one whose response, in the absence of an input, will approach zero
as time approaches infinity. This then ensures that any bounded input produces a
bounded output; this property is frequently taken to be the definition of a stable linear
system.

Clearly, stability is a property of the system itself, and does not depend on the
system input or forcing function. Since a system may be characterized in the s domain
by its transfer function G(s), it should be possible to use the transfer function to specify
conditions for the system to be stable.

In considering the time response of

X(s) = G(s)U(s),

to any given input u(t), it is necessary to factorize the denominator polynomial

Q(s) = ansn + an−1s
n−1 +  . . . + a0

and various forms of factors can be involved.

Simple factor of the form s +++ ααα , with ααα real

This corresponds to a simple pole at s = −α, and will in the partial-fractions expansion
of G(s) lead to a term of the form c/(s + α) having corresponding time response
c e−α tH(t), using the strict form of the inverse given in (5.12). If α � 0, so that the pole
is in the left half of the s plane, the time response will tend to zero as t → ∞. If α � 0,
so that the pole is in the right half of the s plane, the time response will increase without
bound as t → ∞. It follows that a stable system must have real-valued simple poles of
G(s) in the left half of the s plane.

α = 0 corresponds to a simple pole at the origin, having a corresponding time
response that is a step cH(t). A system having such a pole is said to be marginally

A transfer function (tf ) is implemented within MATLAB using the commands

s = tf(‘s’)

G = G(s)

Thus, entering G=(2*s+3)/(9*s^2+12*s+13) generates

transfer function = 

The command poly(G) generates the characteristic polynomial, whilst the commands
pole(G) and zero(G) generate the poles and zeros respectively. The command
pzmap(G) draws the pole–zero map.

2s + 3

9s
2
 + 12s + 13

----------------------------------------------------

G s( ) P s( )
Q s( )
-----------=
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stable; this does not ensure that a bounded input will lead to a bounded output, since,
for example, if such a system has an input that is a step d applied at time t = 0 then the
response will be a ramp cdtH(t), which is unbounded as t → ∞.

Repeated simple factors of the form (s +++ ααα)n, with ααα real

This corresponds to a multiple pole at s = −α, and will lead in the partial-fractions
expansion of G(s) to a term of the form c/(s + α)n having corresponding time response
[c/(n − 1)!]t n−1 e−αtH(t). Again the response will decay to zero as t → ∞ only if α � 0,
indicating that a stable system must have all real-valued repeated poles of G(s) in the
left half of the s plane.

Quadratic factors of the form (s +++ ααα)2 +++ βββ2, with ααα and βββ real

This corresponds to a pair of complex conjugate poles at s = −α + jβ, s = −α − jβ, and
will lead in the partial-fractions expansion of G(s) to a term of the form

having corresponding time response

e−α t(c cos β t + d sin βt) ≡ A e−α t sin (β t + γ )

where A = �(c2 + d 2) and γ = tan−1(c/d ).
Again we see that poles in the left half of the s plane (corresponding to α � 0) have

corresponding time responses that die away, in the form of an exponentially damped
sinusoid, as t → ∞. A stable system must therefore have complex conjugate poles
located in the left half of the s plane; that is, all complex poles must have a negative
real part.

If α = 0, the corresponding time response will be a periodic sinusoid, which will not
die away as t → ∞. Again this corresponds to a marginally stable system, and will, for
example, give rise to a response that increases without bound as t → ∞ when the input
is a sinusoid at the same frequency β.

A summary of the responses corresponding to the various types of poles is given in
Figure 5.43.

The concept of stability may be expressed in the form of Definition 5.3.

Definition 5.3

The requirement in the definition that the system be physically realizable, that is n � m
in the transfer function G(s) of (5.66), avoids terms of the form sm−n in the partial-
fractions expansion of G(s). Such a term would correspond to differentiation of degree
m − n, and were an input such as sin ωt used to excite the system then the response
would include a term such as ωm−n sin ω t or ωm−n cos ω t, which could be made as large
as desired by increasing the input frequency ω.

c s α+( ) dβ+
s α+( )2 β2+

----------------------------------

A physically realizable causal time-invariant linear system with transfer function
G(s) is stable provided that all the poles of G(s) are in the left half of the s plane.
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In terms of the poles of the transfer function G(s), its abscissa of convergence σc

corresponds to the real part of the pole located furthest to the right in the s plane. For
example, if

then the abscissa of convergence σc = −2.

Figure 5.43
Relationship between 
transfer function poles 
and time response.

G s( ) s 1+
s 3+( ) s 2+( )

----------------------------------=
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It follows from Definition 5.3 that the transfer function G(s) of a stable system has an
abscissa of convergence σc = −α, with α � 0. Thus its region of convergence includes
the imaginary axis, so that G(s) exists when s = jω. We shall return to this result when
considering the relationship between Laplace and Fourier transforms in Section 8.4.1.

According to Definition 5.3, in order to prove stability, we need to show that all the
roots of the characteristic equation

Q(s) = ansn + an−1sn−1 + . . . + a1s + a0 = 0 (5.67)

have negative real parts (that is, they lie in the left half of the s plane). Various criteria
exist to show that all the roots satisfy this requirement, and it is not necessary to solve
the equation to prove stability. One widely used criterion is the Routh–Hurwitz criterion,
which can be stated as follows: 

Show that the roots of the characteristic equation

s4 + 9s3 + 33s2 + 51s + 26 = 0

all have negative real parts.

Solution In this case n = 4, a0 = 26, a1 = 51, a2 = 33, a3 = 9, a4 = 1 and ar = 0 (r � 4). The
determinants of the Routh–Hurwitz criterion are

Δ1 = |an−1 | = |a3 | = |9 | = 9 � 0

A necessary and sufficient condition for all the roots of equation (5.67) 
to have negative real parts is that the determinants Δ1, Δ 2, . . . , Δn are 
all positive, where

it being understood that in each determinant all the as with subscripts 
that are either negative or greater than n are to be replaced by zero.

(5.68)Δ r

an−1 an 0 0 6 0

an−3 an−2 an−1 an 6 0

an−5 an−4 an−3 an−2 6 0

7 7 7 7 7

an− 2r−1( ) an−2r an−2r−1 an−2r−2 6 an−r

=

Example 5.51

Δ2

an−1 an

an−3 an−2

a3 a4

a1 a2

= =

9 1

51 33
246 � 0= =

Δ3

an−1 an 0

an−3 an−2 an−1

an−5 an−4 an−3

a3 a4 0

a1 a2 a3

a−1 a0 a1

= =
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Thus Δ1 � 0, Δ2 � 0, Δ3 � 0 and Δ4 � 0, so that all the roots of the given characteristic
equation have negative real parts. This is readily checked, since the roots are −2, −1,
−3 + j2 and −3 − j2.

The steady motion of a steam-engine governor is modelled by the differential equations

m5 + b4 + dη − eω = 0 (5.69)

I09 = −fη (5.70)

where η is a small fluctuation in the angle of inclination, ω a small fluctuation in the
angular velocity of rotation, and m, b, d, e, f and I0 are all positive constants. Show that
the motion of the governor is stable provided that

Solution Differentiating (5.69) gives

m0 + b5 + d4 − e9 = 0

which, on using (5.70), leads to

m0 + b5 + d4 +  = 0

for which the corresponding characteristic equation is

ms3 + bs2 + ds +  = 0

This is a cubic polynomial, so the parameters of (5.67) are

n = 3, a0 = a1 = d, a2 = b, a3 = m (ar = 0, r � 3)

The determinants (5.68) of the Routh–Hurwitz criterion are

Δ1 = |a2 | = b � 0

Δ4

an−1 an 0 0

an−3 an−2 an−1 an

an−5 an−4 an−3 an−2

an−7 an−6 an−5 an−4

a3 a4 0 0

a1 a2 a3 a4

a−1 a0 a1 a2

a−3 a−2 a−1 a0

= =

9 1 0 0

51 33 9 1

0 26 51 37

0 0 0 26

= 26Δ3 � 0=

Example 5.52

bd
m
-------  � 

ef
I0

----

ef
I0

----η

ef
I0

----

ef
I0

---- ,

Δ2

a2 a3

a0 a1

b m

ef /I0 d
bd mef

I0

----------–= = =
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(and so Δ2 � 0 provided that bd – mef/I0 � 0 or bd/m � ef/I0), and

if Δ2 � 0

Thus the action of the governor is stable provided that Δ2 � 0; that is,

5.6.3 Impulse response

From (5.66), we find that for a system having transfer function G(s) the response x(t)
of the system, initially in a quiescent state, to an input u(t) is determined by the
transformed relationship

X(s) = G(s)U(s)

If the input u(t) is taken to be the unit impulse function δ (t) then the system response
will be determined by

X(s) = G(s)�{δ (t)} = G(s)

Taking inverse Laplace transforms leads to the corresponding time response h(t), which
is called the impulse response of the system (it is also sometimes referred to as the
weighting function of the system); that is, the impulse response is given by

h(t) = �−1{X(s)} = �−1{G(s)} (5.71)

We therefore have the following definition.

Definition 5.4: Impulse response

Since the impulse response is the inverse Laplace transform of the transfer function,
it follows that both the impulse response and the transfer function carry the same informa-
tion about the dynamics of a linear time-invariant system. Theoretically, therefore, it is
possible to determine the complete information about the system by exciting it with an
impulse and measuring the response. For this reason, it is common practice in engineering
to regard the transfer function as being the Laplace transform of the impulse response,
since this places greater emphasis on the parameters of the system when considering
system design.

We saw in Section 5.6.2 that, since the transfer function G(s) completely characterizes
a linear time-invariant system, it can be used to specify conditions for system stability,
which are that all the poles of G(s) lie in the left half of the s plane. Alternatively,
characterizing the system by its impulse response, we can say that the system is stable
provided that its impulse response decays to zero as t → ∞.

Δ3

a2 a3 0

a0 a1 a2

0 0 a0

a0Δ2 � 0= =

bd
m
-------  � 

ef
I0

----

The impulse response h(t) of a linear time-invariant system is the response of the
system to a unit impulse applied at time t = 0 when all the initial conditions are zero.
It is such that �{h(t)} = G(s), where G(s) is the system transfer function.
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Determine the impulse response of the linear system whose response x(t) to an input
u(t) is determined by the differential equation

(5.72)

Solution The impulse response h(t) is the system response to u(t) = δ (t) when all the initial
conditions are zero. It is therefore determined as the solution of the differential equation

(5.73)

subject to the initial conditions h(0) = h(0) = 0. Taking Laplace transforms in (5.73) gives

(s2 + 5s + 6)H(s) = 5�{δ (t)} = 5

so that

which, on inversion, gives the desired impulse response

h(t) = 5(e−2t − e−3t)

Alternatively, the transfer function G(s) of the system determined by (5.72) is

so that h(t) = �−1{G(s)} = 5(e−2t − e−3t) as before.

Note: This example serves to illustrate the necessity for incorporating 0− as the lower
limit in the Laplace transform integral, in order to accommodate for an impulse applied
at t = 0. The effect of the impulse is to cause a step change in x(t) at t = 0, with the initial
condition accounting for what happens up to 0−. 

5.6.4 Initial- and final-value theorems

The initial- and final-value theorems are two useful theorems that enable us to predict
system behaviour as t → 0 and t → ∞ without actually inverting Laplace transforms.

The initial-value theorem 

Example 5.53

d2x

dt2
--------- 5dx

dt
------- 6x+ + 5u t( )=

In MATLAB a plot of the impulse response is obtained using the commands

s=tf(‘s’)

G=G(s)

impulse(G)

d2h

dt2
--------- 5dh

dt
------- 6h+ + 5δ t( )=

H s( ) 5
s 3+( ) s 2+( )

---------------------------------- 5
s 2+
----------- 5

s 3+
-----------–= =

G s( ) 5

s2 5s 6+ +
-------------------------=

Theorem 5.6

If f (t) and f ′(t) are both Laplace-transformable and if sF(s) exists thenlim
s→∞

lim
t→0+

f t( ) f 0+( ) lim
s→∞

sF s( )= =
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Proof From (5.13),

�{ f ′(t)} = f ′(t) e−st dt = sF(s) − f (0−)

where we have highlighted the fact that the lower limit is 0−. Hence

[sF(s) − f (0−)] = f ′(t) e−st dt

= f ′(t) e−st dt + f ′(t) e−st dt (5.74)

If f (t) is discontinuous at the origin, so that f (0+) ≠ f (0−), then, from (5.59), f ′(t) contains
an impulse term [ f (0+) − f (0−)]δ (t), so that

f ′(t) e−st dt = f (0+) − f (0−)

Also, since the Laplace transform of f ′(t) exists, it is of exponential order and we have

f ′(t) e−st dt = 0

so that (5.74) becomes

sF(s) − f (0−) = f (0+) − f (0−)

giving the required result:

sF(s) = f (0+)

If f (t) is continuous at the origin then f ′(t) does not contain an impulse term, and the
right-hand side of (5.74) is zero, giving

sF(s) = f (0−) = f (0+)

It is important to recognize that the initial-value theorem does not give the initial
value f (0−) used when determining the Laplace transform, but rather gives the value of
f (t) as t → 0+. This distinction is highlighted in the following example.

The circuit of Figure 5.44 consists of a resistance R and a capacitance C connected in
series together with constant voltage source E. Prior to closing the switch at time t = 0,
both the charge on the capacitor and the resulting current in the circuit are zero. Deter-
mine the current i(t) in the circuit at time t after the switch is closed, and investigate the
use of the initial-value theorem.

�
0−

∞

lim
s→∞

lim
s→∞ �

0−

∞

lim
s→∞ �

0−

0+

lim
s→∞ �

0+

∞ 

lim
s→∞ �

0−

0+

lim
s→∞ �

0+

∞

lim
s→∞

lim
s→∞

lim
s→∞

end of theorem

Example 5.54
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Solution Applying Kirchhoff’s law to the circuit of Figure 5.44, we have

which, on taking Laplace transforms, gives the transformed equation

Therefore

Taking inverse transforms gives the current i(t) at t � 0 as

(5.75)

Applying the initial-value theorem,

That is,

i(0+) = 

a result that is readily confirmed by allowing t → 0+ in (5.75). We note that this is
not the same as the initial state i(0) = 0 owing to the fact that there is a step change in
i(t) at t = 0.

The final-value theorem

Proof From (5.13),

�{ f ′(t)} = f ′(t) e−st dt = sF(s) − f (0−)

Taking limits, we have

[sF(s) − f (0−)] = f ′(t) e−st dt = f ′(t) dt = [ f (t)]0−
∞

= f (t) − f (0−)

Figure 5.44
RC circuit of 
Example 5.54.

Ri 1
C
----- � i dt+ E0=

RI s( ) 1
c
---- I s( )

s
---------+ E0

s
-----=

I s( ) E0/R
s 1/RC+
---------------------=

i t( ) E0

R
----- e−t/RC=

lim
t→0+

i t( ) lim
s→∞

sI(s) lim
s→∞

sE0/R
s 1/RC+
--------------------- lim

s→∞

E0/R
1 1/RCs+
------------------------

E0

R
-----= == =

E0

R
-----

Theorem 5.7

If f (t) and f ′(t) are both Laplace-transformable and f (t) exists thenlim
t→∞

lim
t→∞

f t( ) lim
s→0

sF s( )=

�
0−

∞ 

lim
s→0

lim
s→0 �

0−

∞

�
0−

∞

lim
t→∞

www.20file.org

www.semeng.ir


440 LAPLACE TRANSFORMS

giving the required result:

f (t) = sF(s)

The restriction that f (t) must exist means that the theorem does not hold for func-

tions such as et, which tends to infinity as t → ∞, or sin ω t, whose limit is undefined.
Since in practice the final-value theorem is used to obtain the behaviour of f (t) as t → ∞
from knowledge of the transform F(s), it is more common to express the restriction in
terms of restrictions on F(s), which are that sF(s) must have all its poles in the left half
of the s plane; that is, sF(s) must represent a stable transfer function. It is important that
the theorem be used with caution and that this restriction be fully recognized, since the
existence of sF(s) does not imply that f (t) has a limiting value as t → ∞.

Investigate the application of the final-value theorem to the transfer function

(5.76)

Solution

so the use of the final-value theorem implies that for the time function f (t) corresponding
to F(s) we have

f (t) = 0

However, taking inverse transforms in (5.76) gives

f (t) = (e3t − e−2t)

implying that f (t) tends to infinity as t → ∞. This implied contradiction arises since the
theorem is not valid in this case. Although sF(s) exists, sF(s) has a pole at s = 3,
which is not in the left half of the s plane.

The final-value theorem provides a useful vehicle for determining a system’s steady-
state gain (SSG) and the steady-state errors, or offsets, in feedback control systems,
both of which are important features in control system design.

The SSG of a stable system is the system’s steady-state response, that is the response
as t → ∞, to a unit step input. For a system with transfer function G(s) we have, from
(5.66), that its response x(t) is related to the input u(t) by the transformed equation

X(s) = G(s)U(s)

For a unit step input

u(t ) = 1H(t) giving U(s) = 

lim
t→∞

lim
s→0

end of theorem

lim
t→∞

lim
s→0

Example 5.55

F s( ) 1
s 2+( ) s 3–( )

----------------------------------=

lim
s→0

sF s( ) lim
s→0

s
s 2+( ) s 3–( )

---------------------------------- 0= =

lim
t→∞

1
s
----

lim
s→0

1
s
----
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so that

X(s) = 

From the final-value theorem, the steady-state gain is

SSG = x(t) = sX(s) = G(s)

Determine the steady-state gain of a system having transfer function

Solution The response x(t) to a unit step input u(t) = 1H(t) is given by the transformed equation

X(s) = G(s)U(s) 

Then, by the final-value theorem, the steady-state gain is given by

SSG = x(t) = sX(s) 

Note that for a step input of magnitude K, that is u(t) = KH(t), the steady-state response
will be kG(s) = 2K; that is,

steady-state response to step input = SSG × magnitude of step input

A unity feedback control system having forward-path transfer function G(s), reference
input or desired output r(t) and actual output x(t) is illustrated by the block diagram
of Figure 5.45. Defining the error to be e(t) = r(t) − x(t), it follows that

G(s)E(s) = X(s) = R(s) − E(s)

giving

Thus, from the final-value theorem, the steady-state error (SSE) is

SSE = e(t) = sE(s) = (5.77)

Determine the SSE for the system of Figure 5.45 when G(s) is the same as in
Example 5.50 and r(t) is a step of magnitude K.

Solution Since r(t) = KH(t), we have R(s) = K /s, so, using (5.77),

G s( )
s

-----------

lim
t→∞

lim
s→0

lim
s→0

Example 5.56

G s( ) 20 1 3s+( )
s2 7s 10+ +
----------------------------=

20 1 3s+( )
s2 7s 10+ +
---------------------------- 1

s
----=

lim
t→∞

lim
s→0

lim
s→0

20 1 3s+( )
s2 7s 10+ +
----------------------------= 2=

lim
s→0

Figure 5.45 Unity 
feedback control 
system.

E s( ) R s( )
1 G s( )+
----------------------=

lim
t→∞

lim
s→0

lim
s→0

sR s( )
1 G s( )+
----------------------

Example 5.57

SSE lim
s→0

sK/s
1 G s( )+
---------------------- K

1 SSG+
---------------------= =
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where SSG = 2 as determined in Example 5.56. Thus

SSE = K

It is clear from Example 5.57 that if we are to reduce the SSE, which is clearly
desirable in practice, then the SSG needs to be increased. However, such an increase
could lead to an undesirable transient response, and in system design a balance must be
achieved. Detailed design techniques for alleviating such problems are not considered
here; for such a discussion the reader is referred to specialist texts (see for example
J. Schwarzenbach and K. F. Gill, System Modelling and Control, Edward Arnold,
London, 1984).

1
3
----

The response x(t) of a system to a forcing function 
u(t) is determined by the differential equation model

(a) Determine the transfer function characterizing 
the system.

(b) Write down the characteristic equation of the 
system. What is the order of the system?

(c) Determine the transfer function poles and 
zeros, and illustrate them diagrammatically in 
the s plane.

Repeat Exercise 34 for a system whose response 
x(t) to an input u(t) is determined by the differential 
equation

Which of the following transfer functions represent 
stable systems and which represent unstable systems?

(a) (b)

(c) (d)

(e)

Which of the following characteristic equations are 
representative of stable systems?

(a) s2 − 4s + 13 = 0

(b) 5s3 + 13s2 + 31s + 15 = 0

(c) s3 + s2 + s + 1 = 0

(d) 24s4 + 11s3 + 26s2 + 45s + 36 = 0

(e) s3 + 2s2 + 2s + 1 = 0

The differential equation governing the motion of a 
mass–spring–damper system with controller is

where m, c, K and r are positive constants. Show 
that the motion of the system is stable provided that 
r � c/m.

The behaviour of a system having a gain controller 
is characterized by the characteristic equation

s4 + 2s3 + (K + 2)s2 + 7s + K = 0

where K is the controller gain. Show that the system 
is stable provided that K � 2.1.

A feedback control system has characteristic equation

s3 + 15Ks2 + (2K − 1)s + 5K = 0

where K is a constant gain factor. Determine the 
range of positive values of K for which the system 
will be stable.

Determine the impulse responses of the linear 
systems whose response x(t) to an input u(t) is 
determined by the following differential equations:

(a)

(b)

5.6.5 Exercises

34

d2x

dt2
--------- 2dx

dt
------- 5x+ + 3du

dt
------- 2u+=

35

d3x

dt3
--------- 5d2x

dt2
--------- 17dx

dt
------- 13x+ + + d2u

dt2
--------- 5du

dt
------- 6+ +=

36

s 1–

s 2+( ) s2 4+( )
------------------------------------ s 2+( ) s 2–( )

s 1+( ) s 1–( ) s 4+( )
-------------------------------------------------

s 1–
s 2+( ) s 4+( )

---------------------------------- 6

s2 s 1+ +( ) s 1+( )2
-----------------------------------------------

5 s 10+( )
s 5+( ) s2 s– 10+( )

----------------------------------------------

37

38

md3x

dt3
--------- cd2x

dt2
--------- K dx

dt
------- Krx+ + + 0=

39

40

41

d2x

dt2
--------- 15dx

dt
------- 56x+ + 3u t( )=

d2x

dt2
--------- 8dx

dt
------- 25x+ + u t( )=
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(c)

(d)

What can be said about the stability of each of the 
systems?

The response of a given system to a unit step 
u(t) = 1H(t) is given by

What is the transfer function of the system?

Verify the initial-value theorem for the functions

(a) 2 − 3 cos t (b) (3t − 1)2 (c) t + 3 sin 2t

Verify the final-value theorem for the functions

(a) 1 + 3e−t sin 2t (b) t 2 e−2t

(c) 3 − 2e−3t  + e−t cos 2t

Using the final-value theorem, check the value 
obtained for i2(t) as t → ∞ for the circuit of 
Example 5.28.

Discuss the applicability of the final-value theorem 
for obtaining the value of i2(t) as t → ∞ for the 
circuit of Example 5.29.

Use the initial- and final-value theorems to find the 
jump at t = 0 and the limiting value as t → ∞ for the 
solution of the initial-value problem

+ 5y = 4 + e−3t + 2δ (t)

with y(0−) = −1.

d2x

dt2
--------- 2dx

dt
-------– 8x– 4u t( )=

d2x

dt2
--------- 4dx

dt
-------– 13x+ u t( )=

42

x t( ) 1 7
3
---- e−t– 3

2
---- e−2t 1

6
---- e−4t–+=

43

44

45

46

47

7dy
dt
-------

5.6.6 Convolution

Convolution is a useful concept that has many applications in various fields of
engineering. In Section 5.6.7 we shall use it to obtain the response of a linear system to
any input in terms of the impulse response.

Definition 5.5: Convolution

In the particular case when f (t) and g(t) are causal functions

f (τ) = g(τ) = 0 (τ � 0), g(t − τ) = 0 (τ � t)

and we have

f * g(t) = f (τ )g(t − τ) dτ (5.78)

The notation f * g(t) indicates that the convolution f * g is a function of t; that is, it could
also be written as ( f * g) (t). The integral �∞

−∞ f (τ) g(t − τ ) dτ is called the convolution
integral. Alternative names are the superposition integral, Duhamel integral, folding
integral and faltung integral.

Convolution can be considered as a generalized function, and as such it has many of
the properties of multiplication. In particular, the commutative law is satisfied, so that

f * g(t) = g * f (t)

Given two piecewise-continuous functions f (t) and g(t), the convolution of f(t) and
g(t), denoted by f * g(t), is defined as

f * g(t) = f (τ)g(t − τ) dτ�
−∞

∞

�
0

t
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or, for causal functions,

This means that the convolution can be evaluated by time-shifting either of the two
functions. The result (5.79) is readily proved, since by making the substitution τ1 = t − τ
in (5.78) we obtain

f * g(t) = f (t − τ1)g(τ1)(−dτ1) = f (t − τ1)g(τ1) dτ1 = g * f (t)

For the two causal functions

f (t) = tH(t), g(t) = sin 2t H(t)

show that f * g(t) = g * f (t).

Solution f * g(t) = f (τ )g(t − τ) dτ = τ sin 2(t − τ) dτ

Integrating by parts gives

f * g(t) = [ τ cos 2(t − τ ) + sin 2(t − τ )]t
0 = t − sin 2t

g * f (t) = f (t − τ)g(τ) dτ = (t − τ) sin 2τ dτ

= [− (t − τ) cos 2τ − sin 2τ]t
0 = t − sin 2t

so that f * g(t) = g * f (t).

The importance of convolution in Laplace transform work is that it enables us to
obtain the inverse transform of the product of two transforms. The necessary result for
doing this is contained in the following theorem.

Convolution theorem for Laplace transforms

f (τ)g(t − τ ) dτ = f (t − τ)g(τ) dτ (5.79)�
0

t

�
0

t

�
t

0

�
0

t

Example 5.58

�
0

t

�
0

t

1
2
---- 1

4
---- 1

2
---- 1

4
----

�
0

t

�
0

t

1
2
---- 1

4
---- 1

2
---- 1

4
----

Theorem 5.8

If f(t) and g(t) are of exponential order σ, piecewise-continuous on t � 0 and
have Laplace transforms F (s) and G(s) respectively, then, for s � σ,

or, in the more useful inverse form,

�−1{F(s)G(s)} = f * g(t) (5.80)

� �
0

t

f t( )g t τ–( ) dt
⎩ ⎭
⎨ ⎬
⎧ ⎫

� f * g t( ){ } F s( )G s( )= =
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Proof By definition,

where we have used the ‘dummy’ variables x and y, rather than t, in the integrals to
avoid confusion. This may now be expressed in the form of the double integral

F(s)G(s) = e−s(x+y) f (x)g(y) dx dy = e−s(x+y) f (x)g(y) dx dy

where R is the first quadrant in the (x, y) plane, as shown in Figure 5.46(a). On making
the substitution

x + y = t, y = τ

the double integral is transformed into

F(s)G(s) = e−st f (t − τ )g(τ )dt dτ

where R1 is the semi-infinite region in the (τ, t) plane bounded by the lines τ = 0 and
τ = t, as shown in Figure 5.46(b). This may be written as

= e−st [g * f (t)] dt  = �{g * f (t)}

and, since convolution is commutative, we may write this as

F(s)G(s) = �{ f * g(t)}

which concludes the proof.

Using the convolution theorem, determine �−1 .

Solution We express 1/s2(s + 2)2 as (1/s2)[1/(s + 2)2]; then, since

�{t} = , �{t e−2t} = 

F s( )G s( ) � f t( ){ }� g t( ){ } �
0

∞

e−sx f x( ) dx �
0

∞

e−syg y( ) dy= =

�
0

∞

�
0

∞

��
R

��
R1

F s( )G s( ) �
0

∞

e−st �
0

t

f t τ–( ) g τ( ) dτ
⎝ ⎠
⎜ ⎟
⎛ ⎞

dt= �
0

∞

Figure 5.46
Regions of integration.

end of theorem

Example 5.59 1

s2 s 2+( )2
------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

1

s2
----- 1

s 2+( )2
------------------
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taking f (t) = t and g(t) = t e−2t in the convolution theorem gives

�−1  = f (t − τ)g(τ) dτ = (t − τ )τ e−2τ dτ

which on integration by parts gives

= [t − 1 + (t + 1)e−2t]

We can check this result by first expressing the given transform in partial-fractions
form and then inverting to give

so that 

as before.

5.6.7 System response to an arbitrary input
The impulse response of a linear time-invariant system is particularly useful in practice
in that it enables us to obtain the response of the system to an arbitrary input using the
convolution integral. This provides engineers with a powerful approach to the analysis
of dynamical systems.

Let us consider a linear system characterized by its impulse response h(t). Then
we wish to determine the response x(t) of the system to an arbitrary input u(t) such as
that illustrated in Figure 5.47(a). We first approximate the continuous function u(t) by
an infinite sequence of impulses of magnitude u(nΔT ), n = 0, 1, 2, . . . , as shown in
Figure 5.47(b). This approximation for u(t) may be written as

u(t) � u(nΔT )δ(t − nΔT ) ΔT (5.81)

Since the system is linear, the principle of superposition holds, so that the response of
the system to the sum of the impulses is equal to the sum of the responses of the system
to each of the impulses acting separately. Depicting the impulse response h(t) of the
linear system by Figure 5.48, the responses due to the individual impulses forming the
sum in (5.81) are illustrated in the sequence of plots in Figure 5.49.

1

s2
----- 1

s 2+( )2
------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ �

0

t

�
0

t

�−1 1

s2
----- 1

s 2+( )2
------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
----– e−2τ t τ–( )τ 1

2
---- t 2τ–( ) 1

2
----–+[ ][ ]

0

t= 1
4
----

1

s2 s 2+( )2
------------------------

−1
4
----

s
-----

1
4
----

s2
-----

1
4
----

s 2+
-------------

1
4
----

s 2+( )2
------------------+ + +=

�−1 1

s2 s 2+( )2
------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

−1
4
---- 1

4
---- t 1

4
---- e−2t 1

4
---- t e−2t+ + + 1

4
---- t 1– t 1+( )e−2t+[ ]= =

n=0

∞

∑

Figure 5.47
Approximation to a 
continuous input.
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Summing the individual responses, we find that the response due to the sum of the
impulses is

u(nΔT )h (t − nΔT ) ΔT (5.82)

Allowing ΔT → 0, so that nΔT approaches a continuous variable τ, the above sum will
approach an integral that will be representative of the system response x(t) to the
continuous input u(t). Thus

x(t) = u(τ)h(t − τ ) dτ = u(τ )h(t − τ ) dτ (since h(t) is a causal function)

Figure 5.48
Impulse response 
of a linear system.

Figure 5.49 Responses due to individual impulses.

n=0

∞

∑

�
0

∞

�
0

t
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That is,

x(t) = u * h(t)

Since convolution is commutative, we may also write

x(t) = h * u(t) = h(τ )u(t − τ ) dτ 

It is important to realize that this is the response of the system to the input u(t) assuming
it to be initially in a quiescent state.

The response θo(t) of a system to a driving force θi(t) is given by the linear differential
equation

Determine the impulse response of the system. Hence, using the convolution integral,
determine the response of the system to a unit step input at time t = 0, assuming that it
is initially in a quiescent state. Confirm this latter result by direct calculation.

Solution The impulse response h(t) is the solution of

subject to the initial conditions h(0) = h(0) = 0. Taking Laplace transforms gives

(s2 + 2s + 5)H(s) = �{δ(t)} = 1

so that

which, on inversion, gives the impulse response as

h(t) = e−t sin 2t

Using the convolution integral

θo(t) = h(τ)θi(t − τ) dτ

with θi(t) = 1H(t) gives the response to the unit step as

θo(t) = e−τ sin 2τ dτ

�
0

t

In summary, we have the result that if the impulse response of a linear time-invariant
system is h(t) then its response to an arbitrary input u(t) is

x(t) = u(τ )h(t − τ) dτ = h(τ)u(t − τ ) dτ (5.83)�
0

t

�
0

t

Example 5.60

d2θo

dt2
---------

2dθo

dt
------------ 5θo+ + θ i=

d2h

dt2
--------- 2dh

dt
------- 5h+ + δ t( )=

H s( ) 1

s2 2s 5+ +
------------------------- 1

2
----

2

s 1+( )2 22+
-----------------------------= =

1
2
----

�
0

t

1
2
---- �

0

t
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Integrating by parts twice gives

θo(t) = − e−t sin 2t  − e−t cos 2t  + 1 − e−τ sin 2τ dτ

= − e−t sin 2t  − e−t cos 2t  + 1 − 4θo(t)

Hence

θo(t) = (1 − e−t cos 2t − e−t sin 2t)

(Note that in this case, because of the simple form of θi(t), the convolution integral
�t

0 h(τ )θi(t − τ) dτ is taken in preference to �t
0θi(τ )h(t − τ ) dτ.)

To obtain the step response directly, we need to solve for t � 0 the differential
equation

subject to the initial conditions θo(0) = 2o(0) = 0. Taking Laplace transforms gives

(s2 + 2s + 5)Θ(s) = 

so that

which, on inversion, gives

θo(t) =  − e−t(cos 2t + sin 2t) = (1 − e−t cos 2t − e−t sin 2t)

confirming the previous result.

We therefore see that a linear time-invariant system may be characterized in the
frequency domain (or s domain) by its transfer function G(s) or in the time domain by
its impulse response h(t), as depicted in Figures 5.50(a) and (b) respectively. The
response in the frequency domain is obtained by algebraic multiplication, while the
time-domain response involves a convolution. This equivalence of the operation of
convolution in the time domain with algebraic multiplication in the frequency domain
is clearly a powerful argument for the use of frequency-domain techniques in
engineering design.

1
2
---- 2 �

0

t

1
2
----

1
5
---- 1

2
----

d2θo

dt2
--------- 2

dθo

dt
------- 5θo+ + 1=

1
s
----

Θ 1

s s2 2s 5+ +( )
----------------------------------

1
5
----

s
-- 1

5
----

s 2+
s 1+( )2 4+

---------------------------–= =

1
5
---- 1

5
---- 1

2
---- 1

5
---- 1

2
----

Figure 5.50 (a) Frequency-domain and (b) time-domain representations of a linear 
time-invariant system.
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For the following pairs of causal functions f(t) and 
g(t) show that f * g(t) = g * f(t):

(a) f (t) = t, g(t) = cos 3t

(b) f (t) = t + 1, g(t) = e−2t

(c) f(t) = t 2, g(t) = sin 2t

(d) f(t) = e−t, g(t) = sin t

Using the convolution theorem, determine the 
following inverse Laplace transforms. Check your 
results by first expressing the given transform in 
partial-fractions form and then inverting using the 
standard results:

Taking f(λ) = λ and g(λ) = e−λ , use the inverse form 
(5.80) of the convolution theorem to show that the 
solution of the integral equation

y(t) = λ e−(t−λ) dλ

is

y(t) = (t − 1) + e−t.

Find the impulse response of the system 
characterized by the differential equation

and hence find the response of the system to the 
pulse input u(t) = A[H(t) − H(t − T )], assuming that 
it is initially in a quiescent state.

The response θo(t) of a servomechanism to a driving 
force θi(t) is given by the second-order differential 
equation

(t � 0)

Determine the impulse response of the system, 
and hence, using the convolution integral, obtain 
the response of the servomechanism to a unit step 
driving force, applied at time t = 0, given that the 
system is initially in a quiescent state.

Check your answer by directly solving the 
differential equation

subject to the initial conditions θo = 2o = 0 
when t = 0.

5.6.8 Exercises

48

49

a( ) � 1– 1

s s 3+( )3
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

b( ) � 1– 1

s 2–( )2 s 3+( )2
--------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

c( ) � 1– 1

s2 s 4+( )
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

50

�
0

t

51

d2x

dt2
--------- 7dx

dt
------- 12x+ + u t( )=

52

d2θo

dt2
--------- 4

dθo

dt
------- 5θo+ + θ i=

d2θo

dt2
--------- 4

dθo

dt
------- 5θo+ + 1=

Solution of state-space equations
In this section we return to consider further the state-space model of dynamical systems
introduced in Section 1.9. In particular we consider how Laplace transform methods
may be used to solve the state-space equations.

5.7.1 SISO systems

In Section 1.9.1 we saw that the single input–single output system characterized by the
differential equation (1.66) may be expressed in the state-space form

G = Ax + bu (5.84a)

y = cTx (5.84b)

5.7
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where x = x(t) = [x1 x2 . . . xn]
T is the state vector and y the scalar output, the correspond-

ing input–output transfer function model being

(5.85)

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t) respectively. Defining
A and b as in (1.60), that is, we take A to be the companion matrix of the left-hand side
of (1.66) and take b = [0 0 . . . 0 1]T. In order to achieve the desired response, the vector
c is chosen to be

c = [b0 b1 . . . bm0 . . . 0]T (5.86)

a structure we can confirm to be appropriate using Laplace transform notation. Defining
Xi(s) = �{xi(t)} and taking

we have

X2(s) = sX1(s), X3(s) = sX2(s) = s2X1(s), . . . , Xn(s) = sXn−1(s) = sn−1X1(s)

so that

Y(s) = b0X1(s) + b1X2(s) + . . . + bm Xm+1(s)

which confirms (5.86).
Note that adopting this structure for the state-space representation the last row in A

and the vector c may be obtained directly from the transfer function (5.85) by reading
the coefficients of the denominator and numerator backwards as indicated by the
arrows, and negating those in the denominator.

For the system characterized by the differential equation model

(5.87)

considered in Example 1.41, obtain

(a) a transfer function model;
(b) a state-space model

Solution (a) Assuming all initial conditions to be zero, taking Laplace transforms throughout
in (5.87) leads to

(s3 + 6s2 + 11s + 3)Y(s) = (5s2 + s + 1)U(s)

so that the transfer-function model is given by

G s( ) Y s( )
U s( )
-----------

bmsm .  .  . b0+ + 

sn an−1sn−1 .  .  . a0+ + + 
------------------------------------------------------- ← c

←  A
-------------

 
= =

X1 s( ) 1

sn an−1sn−1
·  ·  · a0+ + +

-----------------------------------------------------U s( )=

=  
b0 b1s b2s2 .  .  .  bmsm + + +  

sn an−1sn−1 .  .  . a0+ + + 
---------------------------------------------------------------U s( )

Example 5.61

d3y

dt3
--------- 6d2y

dx2
--------- 11dy

dt
------- 3y+ + + 5d2u

dt2
--------- du

dt
------- u+ +=

G s( ) Y s( )
U s( )
----------- 5s2 s 1+ +

s3 6s2 11s 3+ + +
------------------------------------------ ← c

←  A
-------------

 
= =
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(b) Taking A to be the companion matrix  then 

c = [1 1 5]T and the corresponding state-space model is given by (5.84).

Note: The eigenvalues of the state matrix A are given by the roots of the charac-
teristic equation | λI − A| = λ3 + 6λ2 + 11λ + 3 = 0, which are the same as the poles
of the transfer function G(s).

Defining

�{x(t)} = 

and then taking the Laplace transform throughout in the state equation (5.84a) gives

sX(s) − x(0) = AX(s) + bU(s)

which on rearranging gives

(sI − A)X(s) = x(0) + bU(s)

where I is the identity matrix. Premultiplying throughout by (sI − A)−1 gives

X(s) = (sI − A)−1x(0) + (sI − A)−1bU(s) (5.88)

which on taking inverse Laplace transforms gives the response as

Having obtained an expression for the system state x(t) its output, or response, y(t) may
be obtained from the linear output equation (5.84b). 

Taking the Laplace transform throughout in (5.84b) gives

Y(s) = cTX(s) (5.90)

Assuming zero initial conditions in (5.88) we have

X(s) = (sI − A)−1bU(s)

which, on substitution in (5.90), gives the input–output relationship

Y(s) = cT(sI − A)−1bU(s) (5.91)

From (5.91) it follows that the system transfer function G(s) may be expressed in the form

G(s) = cT(sI − A)−1b = 

which indicates that the eigenvalues of A are the same as the poles of G(s), as noted at
the end of Example (5.61). It follows, from Definition 5.2, that the system is stable
provided all the eigenvalues of the state matrix A have negative real parts.

x(t) = �−1{(sI − A)−1}x(0) + �−1{(sI − A)−1bU(s)} (5.89)

A
0   1 0

0 0 1

3– 11– 6–

 and b
0

0

1

= =

� x1 t( ){ }
� x2 t( ){ }

�
� xn t( ){ }

X1 s( )
X2 s( )

�
Xn s( )

X s( )= =

cTadj sI A–( )b
det sI A–( )

--------------------------------------
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On comparing the solution (5.89) with that given in (1.81), we find that the transition
matrix ΦΦΦ(t ) = eA t may also be written in the form

ΦΦΦ(t ) = �−1{(sI − A)−1}

As mentioned in Section 1.10.3, having obtained ΦΦΦ(t ),

may be obtained by simply replacing t by t − t0.

Using the Laplace transform approach, obtain an expression for the state x(t) of the
system characterized by the state equation

when the input u(t) is the unit step function

and subject to the initial condition x(0) = [1 1]T.

Solution In this case

, , u(t ) = H(t ), x0 = [1 1]T

Thus

, det(sI − A) = (s + 1)(s + 3)

giving

which, on taking inverse transforms, gives the transition matrix as

so that the first term in the solution (5.89) becomes

(5.92)

ΦΦΦ t t0,( ) = eA t−t0( )

Example 5.62

t t( ) = x1 t( )
x2 t( )

 = −1 0

1 −3

x1 t( )
x2 t( )

1

1
u t( )+

u t( ) = H t( ) = 0 t � 0( )
1 t � 0( )⎩

⎨
⎧

A = −1 0

1 −3
b = 1

1

sI A–  = s 1 0+
−1 s 3+

sI A–( )−1 = 1
s 1+( ) s 3+( )

----------------------------------
s 3 0+

1 s 1+
 = 

1
s 1+
----------- 0

1
2 s 1+( )
------------------- 1

2 s 3–( )
-------------------– 1

s 3+
-----------

eAt = �−1 sI A–( )−1{ } = 
e−t 0

1
2
---- e−t 1

2
---- e−3t– e−3t

� −1 sI A–( )−1{ }x0 = 
e−t 0

1
2
---- e−t 1

2
---- e−3t– e−3t

1

1
 = 

e−t

1
2
---- e−t 1

2
---- e−3t+
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Since U(s) = �{H(t )} = 1/s,

so that the second term in (5.89) becomes

(5.93)

Combining (5.92) and (5.93), the response x(t) is given by

sI A–( )−1bU s( ) = 1
s 1+( ) s 3+( )

----------------------------------
s 3 0+

1 s 1+
1

1
1
s----

= 1
s s 1+( ) s 3+( )
-------------------------------------

s 3+
s 2+

= 

1
s
---- 1

s 1+
-----------–

2
3s
----- 1

2 s 1+( )
-------------------– 1

6 s 3+( )
-------------------–

� −1 sI A–( )−1bU s( ){ } = 
1 e−t–

2
3
---- 1

2
---- e−t– 1

6
---- e−3t–

x t( ) = 
e−t

1
2
---- e−t 1

2
---- e

−3t+

1 e−t–
2
3
---- 1

2
---- e−t– 1

6
---- e−3t–

 = 
1

2
3
----

1
3
---- e

−3t+
+

A system is modelled by the following differential 
equations

E1 + 5x1 + x2 = 2u
E2 − 3x1 + x2 = 5u

coupled with the output equation

y = x1 + 2x2

Express the model in state-space form and obtain 
the transfer function of the system.

Find the state-space representation of the second 
order system modelled by the transfer function

Obtain the dynamic equations in state-space form 
for the systems having transfer-function models

(a) (b)

using the companion form of the system matrix in 
each case.

In formulating the state-space model (5.84) it is 
sometimes desirable to specify the output y to 
be the state variable x1; that is, we take 
cT = [1 0 . . . 0]T. If A is again taken to be 
the companion matrix of the denominator then it 
can be shown that the coefficients b1, b2, . . . , bn of 
the vector b are determined as the first n coefficients 
in the series in s−1 obtained by dividing the 
denominator of the transfer function (5.85) into the 
numerator. Illustrate this approach for the transfer-
function model of Figure 5.51.

5.7.2 Exercises

53

54

G s( ) Y s( )
U s( )
----------- s 1+

s2 7s 6+ +
-------------------------= =

55

s2 3s 5+ +
s3 6s2 5s 7+ + +
--------------------------------------- s2 3s 2+ +

s3 4s2 3s+ +
-------------------------------

56

Figure 5.51 Transfer-function model of Exercise 56.
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A system is governed by the vector–matrix 
differential equation

(t � 0)

where x(t) and u(t) are respectively the state 
and input vectors of the system. Use Laplace 
transforms to obtain the state vector x(t) for the 
input u(t) = [4 3]T and subject to the initial 
condition x(0) = [1 2]T. 

Given that the differential equations modelling a 
certain control system are

x1 = x1 − 3x2 + u

x2 = 2x1 − 4x2 + u

use (5.89) to determine the state vector 
x = [x1 x2]

T for the control input u = e−3t, 
applied at time t = 0, given that x1 = x2 = 1 at time 
t = 0.

Using the Laplace transform approach, obtain 
an expression for the state x(t) of the system 
characterized by the state equation

(t � 0)

where the input is

and subject to the initial condition x(0) = [1 0]T.

A third-order single-input–single-output system is 
characterized by the transfer-function model

Express the system model in the state-space form

t = Ax + bu (5.94a)

y = cTx (5.94b)

where A is in the companion form. By making a 
suitable transformation x = Mz, reduce the state-
space model to its canonical form, and comment 
on the stability, controllability and observability 
of the system.

Given that

(i) a necessary and sufficient condition for 
the system (5.94) to be controllable is 
that the rank of the Kalman matrix 
[b Ab A2b . . . An−1b] be the same 
as the order of A, and

(ii) a necessary and sufficient condition for it to 
be observable is that the rank of the Kalman 
matrix [c ATc (AT)2c . . . (AT)n−1c] be 
the same as the order of A,

evaluate the ranks of the relevant Kalman matrices 
to confirm your earlier conclusions on the 
controllability and observability of the given 
system.

Repeat Exercise 60 for the system characterized by 
the transfer-function model

57

t t( ) = 
3 4

2 1
x t( )

0 1

1 1
u t( )+

58

59

t = 
x1

x2

 = 
0 1

−2 −3

x1

x2

2

0
u+

u t( ) = 
0 t � 0( )

e−t t � 0( )⎩
⎨
⎧

60

Y s( )
U s( )
-----------  = 3s2 2s 1+ +

s3 6s2 11s 6+ + +
------------------------------------------

61

s2 3s 5+ +
s3 6s2 5s+ +
-------------------------------

5.7.3 MIMO systems

As indicated in (1.69) the general form of the state-space model representation of an
nth-order multi-input–multi-output system subject to r inputs and l outputs is

G = Ax + Bu (5.95a)

y = Cx + Du (5.95b)

where x is the n-state vector, u is the r-input vector, y is the l-output vector, A is the
n × n system matrix, B is the n × r control (or input) matrix and C and D are respectively
l × n and l × r output matrices, with the matrix D relating to the part of the input that is
applied directly into the output.
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Defining

and taking Laplace transforms throughout in the state equation (5.95a), following the
same procedure as for the SISO case, gives

X(s) = (sI − A)−1x(0) + (sI − A)−1BU(s) (5.96)

Taking inverse Laplace transforms in (5.96) gives

x(t) = �−1{(sI − A)−1}x(0) + �−1{(sI − A)−1BU(s)} (5.97)

The output, or response, vector y(t) may then be obtained directly from (5.95b).
We can also use the Laplace transform formulation to obtain the transfer matrix

G(s), between the input and output vectors, for a multivariable system. Taking Laplace
transforms throughout in the output equation (5.95b) gives

Y(s) = CX(s) + DU(s) (5.98)

Assuming zero initial conditions in (5.96) we have

X(s) = (sI − A)−1BU(s)

Substituting in (5.98), gives the system input–output relationship

Y(s) = [C(sI − A)−1B + D]U(s)

Thus the transfer matrix G(s) model of a state-space model defined by the quadruple
{A, B, C, D} is

G(s) = C(sI − A)−1B + D (5.99)

The reverse problem of obtaining a state-space model from a given transfer matrix
is not uniquely solvable. For example, in Section 1.10.6 we showed that a state-space
model can be reduced to canonical form and indicated that this was without affecting the
input–output behaviour. In Section 1.10.6 it was shown that under the transformation
x = Tz, where T is a non-singular matrix, (5.95) may be reduced to the form

L = Wz + Xu

y = Yz + Zu (5.100)

where z is now a state vector and

W = T −1AT, X = T −1B, Y = CT, Z = D

� y t( ){ }

� y1 t( ){ }
� y2 t( ){ }

�
� yl t( ){ }

Y1 s( )
Y2 s( )

�
Yl s( )

Y s( )= = =

� u t( ){ }

� u1 t( ){ }
� u2 t( ){ }

�
� ur t( ){ }

U1 s( )
U2 s( )

�
Ur s( )

U s( )= = =
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From (5.99), the input–output transfer matrix corresponding to (5.100) is

G1(s) = J (sI − H)−1I + W

= CT (sI − T −1AT )−1T −1B + D

= CT (sT −1IT − T −1AT )−1T −1B + D

= CT [T −1(sI − A)T ]−1T −1B + D

= CT [T −1(sI − A)−1T ]T −1B + D (using the commutative property)

= C (sI − A)−1B + D

= G(s)

where G(s) is the transfer matrix corresponding to (5.95), confirming that the input–output
behaviour of the state-space model defined by the quadruple {A, B, C, D} is the same as
that defined by the quadruple {W, X, Y, Z}. The problem of finding state-space models
that have a specified transfer-function matrix is known as the realization problem.

It follows from (5.99) that

Clearly, if s = p is a pole of G(s) then it must necessarily be an eigenvalue of the state
matrix A, but the converse is not necessarily true. It can be shown that the poles of G(s)
are identical to the eigenvalues of A when it is impossible to find a state-space model
with a smaller state dimension than n having the same transfer-function matrix. In such
cases the state space model is said to be in minimal form.

(a) Obtain the state-space model characterizing the network of Figure 5.52. Take the
inductor current and the voltage drop across the capacitor as the state variables,
take the input variable to be the output of the voltage source, and take the output
variables to be the currents through L and R2 respectively.

(b) Find the transfer-function matrix relating the output variables y1 and y2 to the
input variable u. Thus find the system response to the unit step u(t) = H(t), assuming
that the circuit is initially in a quiescent state.

Solution (a) The current iC in the capacitor is given by

iC = CvC = Cx1

Applying Kirchhoff’s second law to the outer loop gives

e = R1(iL + iC) + vC + R2iC = R1(x2 + Cx1) + x1 + R2Cx1

G s( ) Cadj sI A–( )B
det sI A–( )

------------------------------------- D+=

Example 5.63

Figure 5.52 Network 
of Example 5.63.
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leading to

Applying Kirchhoff’s second law to the left-hand loop gives

e = R1(iL + iC) + LiL = R1(x2 + Cx1) + Lx2

leading to

Also,

y1 = x2

Substituting the given parameter values leads to the state-space representation

which is of the standard form

t = Ax + bu

y = Cx + du

(b) From (5.99), the transfer-function matrix G (s) relating the output variables y1 and
y2 to the input u is

G (s) = C (sI − A)−1b + d

Now

giving

x1 = − 1
C R1 R2+( )
--------------------------x1

R1

C R1 R2+( )
--------------------------x2– e

C R1 R2+( )
--------------------------+

x2 = R1

L R1 R2+( )
---------------------------x1

R1R2

L R1 R2+( )
---------------------------x2– e

L
----

R2

R1 R2+
-----------------+

y2 = Cx1 = − 1
R1 R2

-----------------x1
R1

+ R1 R2+
-----------------x2– e

R1 R2+
-----------------+

x1

x2

 = 
−2 −4

2 −11

x1

x2

2
11
2
-------

u+

y1

y2

 = 
0 1

− 2
15
------- − 4

15
-------

x1

x2

0
2
15
-------

u+

sI A–  = s 2 4+
−2 s 11+

sI A–( )−1 = 1
s 3+( ) s 10+( )

-------------------------------------
s 11 −4+

2 s 2+

C sI A–( )−1b = 1
s 3+( ) s 10+( )

-------------------------------------
0 1

− 2
15
------- − 4

15
-------

s 11 −4+

2 s 2+

2
11
2
-------

= 1
s 3+( ) s 10+( )

-------------------------------------
11
2
-------s 15+

−26
15
-------s 4–
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so that

The output variables y1 and y2 are then given by the inverse Laplace transform of

Y(s) = G (s)U(s)

where U(s) = �[u(t)] = �[H(t)] = 1/s; that is,

which on taking inverse Laplace transforms gives the output variables as

In MATLAB the function tf2ss can be used to convert a transfer function to state-
space form for SISO systems. At present there appears to be no equivalent function
for MIMO systems. Thus the command

[A,B,C,D] = tf2ss(b,a)

returns the A, B, C, D matrices of the state-form representation of the transfer function

where the input vector a contains the denominator coefficients and the vector b
contains the numerator coefficients, both in ascending powers of s.

(Note: The function tfss can also be used in the case of single-input–multi-output
systems. In such cases the matrix numerator must contain the numerator coefficients
with as many rows as there are outputs.)

To illustrate consider the system of Example 5.61, for which

G s( ) = 1
s 3+( ) s 10+( )

-------------------------------------
11
2
-------s 15+

−26
15
-------s 4–

0

2
15
-------

+  = 

11
2
-------s 15+

s 3+( ) s 10+( )
-------------------------------------

−26
15
-------s 4–

s 3+( ) s 10+( )
------------------------------------- 2

15
-------+

Y s( ) = 

11
2
-------s 15+

s s 3+( ) s 10+( )
----------------------------------------

−26
15
-------s 4–

s s 3+( ) s 10+( )
---------------------------------------- 2

15s
--------+

= 

1
2
----

s
---

1
14
-------

s 3+
-----------

4
7
----

s 10+
--------------–+

− 2
15
-------

s
--------

2
35
-------

s 3+
-----------–

4
21
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s3 6s2 11s 3+ + +
------------------------------------------=

www.20file.org

www.semeng.ir


460 LAPLACE TRANSFORMS

In this case the commands:

b = [5 1 1];

a = [1 6 11 3];

[A,B,C,D] = tf2ss(b,a)

return

A = -6 -11 -3

1 0 0

0 1 0

B = 1

0

0

C = 5 1 1

D = 0

giving the state-space model

(Note: This state-space model differs from the one given in the answer to Example
5.61. Both forms are equivalent to the given transfer function model, with an alter-
native companion form taken as indicated in Section 1.9.1.)

Likewise, in MATLAB the function ss2tf converts the state-space representa-
tion to the equivalent transfer function/matrix representation (this being applicable
to both SISO and MIMO systems). The command

[b,a] = ss2tf(A,B,C,D,iu)

returning the transfer function/matrix

G(s) = C(sI − A)−1B + D

from the iu-th input. Again the vector a contains the coefficients of the denominator
in ascending powers of s and the numerator coefficients are returned in array b with
as many rows as there are outputs.

(Note: The entry iu in the command can be omitted when considering SISO
systems so, for example, the commands:

A = [-6 -11 -3; 1 0 0; 0 1 0];

B=[1;0;0];

C=[5 1 1];

D=0;

[b,a]=ss2tf(A,B,C,D)

return

b = 0 5.0000 1.0000 1.0000

a = 1.0000 6.0000 11.0000 3.0000

E1

E2

E3

6–

1

0

11–

0

1

3–

0

0

x1

x2

x3

1

0

0

u  y;+ [5 1 1]

x1

x2

x3

= =
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giving the transfer function representation

which confirms the answer to the above example. As an exercise confirm that the
state-space model obtained in the answer to Example 5.61 is also equivalent to this
transfer function representation.)

To illustrate a MIMO system consider the system in Exercise 63, in which the
state-space model is

and we wish to determine the equivalent transfer matrix. The commands:

A = [0 1 0 0;-1 -1 0 1;0 0 0 1;0 1 -1 -1];

B=[0 0;1 0;0 0;0 1];

C=[1 0 0 0 ; 0 0 1 0];

D=[0 0 ;0 0];

[b1,a] = ss2tf(A,B,C,D,1)

return the response to u1

b1 = 0 0 1.0000 1.0000 1.0000

0 0.0000 0.0000 1.0000 0.0000

a = 1.0000 2.0000 2.0000 2.0000 1.0000

and the additional command

[b2,a] = ss2tf(A,B,C,D,2)

returns response to u2

b2 = 0 0.0000 0.0000 1.0000 0.0000

0 0.0000 1.0000 1.0000 1.0000

A = 1.0000 2.0000 2.0000 2.0000 1.0000

leading to the transfer matrix model

G s( ) 5s2 s 1+ +
s3 6s2 11s 3+ + +
------------------------------------------=

E1

E2

E3

E4

0

1–

0

0

1

1–

0

1

0 0

0 1

0 1

1– 1–

x1

x2

x3

x4

0

1

0

0

0

0

0

1

u1

u2

+=

y1

y2

1

0

0

0

0

1

0

0

x1

x2

x3

x4

=

G s( ) 1

s4 2s3 2s2 2s 1+ + + +
-----------------------------------------------------

s2 s 1 s+ +

s s2 s 1+ +
=

1

s 1+( )2 s2 1+( )
--------------------------------------

s2 s 1 s+ +

s s2 s 1+ +
=
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Engineering application: frequency response
Frequency-response methods provide a graphical approach for the analysis and design
of systems. Traditionally these methods have evolved from practical considerations,
and as such are still widely used by engineers, providing tremendous insight into over-
all system behaviour. In this section we shall illustrate how the frequency response can
be readily obtained from the system transfer function G(s) by simply replacing s by jω.
Methods of representing it graphically will also be considered.

Consider the system depicted in Figure 5.41, with transfer function

(m � n) (5.101)

When the input is the sinusoidally varying signal

u(t) = A sin ω t

5.8 Engineering application:

G s( ) K s z1–( ) s z2–( ) . . . s zm–( )
s p1–( ) s p2–( ) . . . s pn–( )

-----------------------------------------------------------------------=

Determine the response y = x1 of the system 
governed by the differential equations

to an input u = [u1 u2]
T

 = [1 t]T and subject to 
the initial conditions x1(0) = 0, x2(0) = 1.

Consider the 2-input–2-output system modelled by 
the pair of simultaneous differential equations

ÿ1 + I1 − I2 + y1 = u1

ÿ2 + I2 − I1 + y2 = u2

Taking the state vector to be x = [y1 I1 y2 I2]
T 

express the model as a state-space model of the form

G = Ax + Bu

y = Cx

Determine the transfer matrix and verify that its 
poles are identical to the eigenvalues of the state 
matrix A.

Considering the network of Figure 5.53

(a) Determine the state-space model in the form

G = Ax + Bu

y = Cx

Take the inductor currents in L1, L2 and L3 as 
the state variables x1, x2, x3 respectively; take 
the input variables u1 and u2 to be the outputs 
of the current and voltage sources respectively; 
and take the output variables y1 and y2 to be the 
voltage across R2 and the current through L3

respectively.

(b) Determine the transfer matrix G(s) relating the 
output vector to the input vector.

(c) Assuming that the circuit is initially in a 
quiescent state, determine the response y(t) 
to the input pair

u1(t) = H(t)

u2(t) = tH(t)

where H(t) denotes the Heaviside function.

5.7.4 Exercises

62

x1 = −2x2 u1 u2–+
x2 = x1 3x2– u1 u2+ + ⎭

⎬
⎫

t � 0( )

63

64

Figure 5.53 Network of Exercise 64.
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applied at time t = 0, the system response x(t) for t � 0 is determined by

X(s) = G(s)�{A sin ω t}

That is,

X(s) = G(s)

which, on expanding in partial fractions, gives

where α1, α2, β1, β2, . . . , βn are constants. Here the first two terms in the summation are
generated by the input and determine the steady-state response, while the remaining
terms are generated by the transfer function and determine the system transient response.

Taking inverse Laplace transforms, the system response x(t), t � 0, is given by

x(t) = α1 e jω t + α 2 e−jω t + βi e pi t (t � 0)

In practice we are generally concerned with systems that are stable, for which the poles
pi, i = 1, 2, . . . , n, of the transfer function G(s) lie in the left half of the s plane.
Consequently, for practical systems the time-domain terms βi e

pit, i = 1, 2, . . . , n, decay
to zero as t increases, and will not contribute to the steady-state response xss(t) of the
system. Thus for stable linear systems the latter is determined by the first two terms as

xss(t) = α1 e jω t + α 2 e−jω t

Using the ‘cover-up’ rule for determining the coefficients α1 and α2 in the partial-
fraction expansions gives

so that the steady-state response becomes

xss(t) = G( jω) e jω t − G(−jω) e−jω t (5.102)

G( jω) can be expressed in the polar form

G( jω) = |G( jω) | e j arg G( jω)

where |G( jω) | denotes the magnitude (or modulus) of G( jω). (Note that both the
magnitude and argument vary with frequency ω.) Then, assuming that the system has
real parameters,

G(− jω) = |G( jω) | e−j arg G( jω)

Aω
s2 ω2+
----------------

KAω s z1–( ) s z2–( ) . . . s zm–( )
s p1–( ) s p2–( ) . . . s pn–( ) s jω–( ) s jω+( )

-------------------------------------------------------------------------------------------------------------=

X s( ) α1

s jω–
---------------

α2

s jω+
--------------

β i

s pi–
------------

i=1

n

∑+ +=

i=1

n

∑

α1
s jω–( )G s( )Aω
s jω–( ) s jω+( )

-----------------------------------------
s=jω

A
2j
----G jω( )= =

α2
s jω+( )G s( )Aω
s jω–( ) s jω+( )

-----------------------------------------
s=−jω

− A
2j
----G −jω( )= =

A
2j
---- A

2j
----
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and the steady-state response (5.102) becomes

xss(t) = [ |G( jω) |e j arg G( jω)] e jω t − [ |G( jω) | e−j arg G( jω)] e−jω t

= |G( jω) |[e j[ωt+arg G( jω)] − e−j[ω t+arg G( jω)]]

That is,

xss(t) = A |G( jω) | sin [ω t + arg G( jω)] (5.103)

This indicates that if a stable linear system with transfer function G(s) is subjected to a
sinusoidal input then

(a) the steady-state system response is also a sinusoid having the same frequency ω
as the input;

(b) the amplitude of this response is |G( jω) | times the amplitude A of the input
sinusoid; the input is said to be amplified if |G( jω) | � 1 and attenuated if
|G( jω) | � 1;

(c) the phase shift between input and output is arg G( jω). The system is said to lead
if arg G( jω) � 0 and lag if arg G( jω) � 0.

The variations in both the magnitude |G( jω) | and argument arg G( jω) as the fre-
quency ω of the input sinusoid is varied constitute the frequency response of the
system, the magnitude |G( jω) | representing the amplitude gain or amplitude ratio of
the system for sinusoidal input with frequency ω, and the argument arg G( jω) represent-
ing the phase shift.

The result (5.103) implies that the function G( jω) may be found experimentally by
subjecting a system to sinusoidal excitations and measuring the amplitude gain and
phase shift between output and input as the input frequency is varied over the range
0 � ω � ∞. In principle, therefore, frequency-response measurements may be used to
determine the system transfer function G(s).

In Chapters 7 and 8, dealing with Fourier series and Fourier transforms, we shall see
that most functions can be written as sums of sinusoids, and consequently the response
of a linear system to almost any input can be deduced in the form of the corresponding
sinusoidal responses. It is important, however, to appreciate that the term ‘response’ in
the expression ‘frequency response’ only relates to the steady-state response behaviour
of the system.

The information contained in the system frequency response may be conveniently
displayed in graphical form. In practice it is usual to represent it by two graphs: one
showing how the amplitude |G( jω) | varies with frequency and one showing how the
phase shift arg G( jω) varies with frequency.

Determine the frequency response of the RC filter shown in Figure 5.54. Sketch the
amplitude and phase-shift plots.

Solution The input–output relationship is given by

A
2j
---- A

2j
----

A
2j
----

Example 5.64

Eo s( ) 1
RCs 1+
--------------------Ei s( )=
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so that the filter is characterized by the transfer function

Therefore

giving the frequency-response characteristics

amplitude ratio = |G( jω) | 

=

= 

phase shift = arg G( jω) = −tan−1(RCω)

Note that for ω = 0

|G( jω) | = 1, arg G( jω) = 0

and as ω → ∞

|G( jω) | → 0, arg G( jω) → − π

Plots of the amplitude and phase-shift curves are shown in Figures 5.55(a) and (b)
respectively.

For the simple transfer function of Example 5.64, plotting the amplitude and phase-
shift characteristics was relatively easy. For higher-order transfer functions it can be
a rather tedious task, and it would be far more efficient to use a suitable computer

Figure 5.54 RC filter.

G s( ) 1
RCs 1+
--------------------=

G jω( ) 1
RC jω 1+
------------------------ 1 jRCω–

1 R2C2ω2+
---------------------------= =

1

1 R2C2ω2+
---------------------------= j RCω

1 R2C2ω2+
---------------------------–

� 1

1 R2C2ω2+( )2
---------------------------------- R2C2ω2

1 R2C2ω2+( )2
----------------------------------+

1

� 1 R2C2ω2+( )
----------------------------------

1
2
----

Figure 5.55
Frequency-response 
plots for Example 5.64: 
(a) amplitude plot; 
(b) phase-shift plot.
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package. However, to facilitate the use of frequency-response techniques in system
design, engineers adopt a different approach, making use of Bode plots to display
the relevant information. This approach is named after H. W. Bode, who developed
the techniques at the Bell Laboratories in the late 1930s. Again it involves drawing
separate plots of amplitude and phase shift, but in this case on semi-logarithmic graph
paper, with frequency plotted on the horizontal logarithmic axis and amplitude, or phase,
on the vertical linear axis. It is also normal to express the amplitude gain in decibels
(dB); that is,

amplitude gain in dB = 20 log |G( jω) |

and the phase shift arg G( jω) in degrees. Thus the Bode plots consist of

(a) a plot of amplitude in decibels versus log ω, and

(b) a plot of phase shift in degrees versus log ω.

Note that with the amplitude gain measured in decibels, the input signal will be
amplified if the gain is greater than zero and attenuated if it is less than zero.

The advantage of using Bode plots is that the amplitude and phase information can
be obtained from the constituent parts of the transfer function by graphical addition. It
is also possible to make simplifying approximations in which curves can be replaced by
straight-line asymptotes. These can be drawn relatively quickly, and provide sufficient
information to give an engineer a ‘feel’ for the system behaviour. Desirable system
characteristics are frequently specified in terms of frequency-response behaviour, and
since the approximate Bode plots permit quick determination of the effect of changes,
they provide a good test for the system designer.

Draw the approximate Bode plots corresponding to the transfer function

(5.104)

Solution First we express the transfer function in what is known as the standard form, namely

giving

Taking logarithms to base 10,

20 log |G( jω) | = 20 log 10 + 20 log |1 + j0.2ω | − 20 log |jω |
− 20 log |1 + j0.01ω | − 20 log |1 + j0.05ω |

arg G( jω) = arg 10 + arg (1 + j0.2ω) − arg jω − arg (1 + j0.01ω)

− arg(1 + j0.05ω) (5.105)

The transfer function involves constituents that are again a simple zero and simple
poles (including one at the origin). We shall now illustrate how the Bode plots can be
built up from those of the constituent parts.

Example 5.65

G s( ) 4 103 5 s+( )×
s 100 s+( ) 20 s+( )
----------------------------------------------=

G s( ) 10 1 0.2s+( )
s 1 0.01s+( ) 1 0.05s+( )
---------------------------------------------------------=

G jω( ) 10 1 j0.2ω+( )
jω 1 j0.01ω+( ) 1 j0.05ω+( )
---------------------------------------------------------------------=
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Consider first the amplitude gain plot, which is a plot of 20 log |G( jω) | versus log ω:

(a) for a simple gain k a plot of 20 log k is a horizontal straight line, being above the
0 dB axis if k � 1 and below it if k � 1;

(b) for a simple pole at the origin a plot of −20 log ω is a straight line with slope
−20 dB/decade and intersecting the 0 dB axis at ω = 1;

(c) for a simple zero or pole not at the origin we see that

Note that the graph of 20 log τω is a straight line with slope 20 dB/decade and inter-
secting the 0 dB axis at ω = 1/τ. Thus the plot of 20 log |1 + jτω | may be approximated
by two straight lines: one for ω � 1/τ and one for ω � 1/τ. The frequency at intersection
ω = 1/τ is called the breakpoint or corner frequency; here |1 + jτω | = �2, enabling the
true curve to be indicated at this frequency. Using this approach, straight-line approxima-
tions to the amplitude plots of a simple zero and a simple pole, neither at zero, are
shown in Figures 5.56(a) and (b) respectively (actual plots are also shown).

Using the approximation plots for the constituent parts as indicated in (a)–(c) ear-
lier, we can build up the approximate amplitude gain plot corresponding to (5.104) by
graphical addition as indicated in Figure 5.57. The actual amplitude gain plot, produced
using a software package, is also shown.

The idea of using asymptotes can also be used to draw the phase-shift Bode plots,
again taking account of the accumulated effects of the individual components making
up the transfer function, namely that

(i) the phase shift associated with a constant gain k is zero;

(ii) the phase shift associated with a simple pole or zero at the origin is +90° or −90°
respectively;

(iii) for a simple zero or pole not at the origin

tan−1(ωτ) → 

tan−1(ωτ) = 45° when ωτ = 1

20 log |1 jτω+ | → 0 as ω → 0

20 τωlog 20 ωlog 20 1/τ( )log–= as ω → ∞⎩
⎨
⎧

Figure 5.56 Straight-line approximations to Bode amplitude plots: (a) simple zero; (b) simple pole.

0 as ω → 0

90° as ω → ∞⎩
⎨
⎧
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With these observations in mind, the following approximations are made. For fre-
quencies ω less than one-tenth of the corner frequency ω = 1/τ (that is, for ω � 1/10τ )
the phase shift is assumed to be 0°, and for frequencies greater than ten times the
corner frequency (that is, for ω � 10/τ) the phase shift is assumed to be ±90°. For
frequencies between these limits (that is, 1/10τ � π � 10/τ ) the phase-shift plot is
taken to be a straight line that passes through 0° at ω = 1/10τ, ±45° at ω = 1/τ, and ±90°
at ω = 10/τ. In each case the plus sign is associated with a zero and the minus sign with
a pole. With these assumptions, straight-line approximations to the phase-shift plots for
a simple zero and pole, neither located at the origin, are shown in Figures 5.58(a) and
(b) respectively (the actual plots are represented by the broken curves).

Using these approximations, a straight-line approximate phase-gain plot correspond-
ing to (5.105) is shown in Figure 5.59. Again, the actual phase-gain plot, produced using
a software package, is shown.

Figure 5.57
Amplitude Bode 
plots for the G(s) 
of Example 5.65.

Figure 5.58
Approximate Bode 
phase-shift plots: 
(a) simple zero; 
(b) simple pole.
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In the graphical approach adopted in this section, separate plots of amplitude gain
and phase shift versus frequency have been drawn. It is also possible to represent the
frequency response graphically using only one plot. When this is done using the pair of
polar coordinates ( |G(jω) |, arg G(jω)) and allowing the frequency ω to vary, the resulting
Argand diagram is referred to as the polar plot or frequency-response plot. Such a
graphical representation of the transfer function forms the basis of the Nyquist approach
to the analysis of feedback systems. In fact, the main use of frequency-response methods
in practice is in the analysis and design of closed-loop control systems. For the unity
feedback system of Figure 5.45 the frequency-response plot of the forward-path
transfer function G(s) is used to infer overall closed-loop system behaviour. The Bode
plots are perhaps the quickest plots to construct, especially when straight-line approx-
imations are made, and are useful when attempting to estimate a transfer function
from a set of physical frequency-response measurements. Other plots used in practice
are the Nichols diagram and the inverse Nyquist (or polar) plot, the first of these
being useful for designing feedforward compensators and the second for designing
feedback compensators. Although there is no simple mathematical relationship, it is
also worth noting that transient behaviour may also be inferred from the various frequency-
response plots. For example, the reciprocal of the inverse M circle centred on the −1
point in the inverse Nyquist plot gives an indication of the peak over-shoot in the transient
behaviour (see, for example, G. Franklin, D. Powell and A. Naeini-Emami, Feedback
Control of Dynamic Systems, Reading, MA, Addison-Wesley, 1986).

In MATLAB the amplitude and phase-gain plots are generated using the commands

s=tf(‘s’)

G=4*10^3*(s+5)/(s*(100+s)*(20+s));

bode(G)

Investigation of such design tools may be carried out in MATLAB, incorporating
Control Toolbox, using the command rltool(G).

Figure 5.59
Phase-shift Bode 
plot for the G(s) 
of Example 5.65.
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Engineering application: pole placement
In Chapter 1 we examined the behaviour of linear continuous-time systems modelled in
the form of vector-matrix (or state-space) differential equations. In this chapter we have
extended this, concentrating on the transform domain representation using the Laplace
transform. In Chapter 6 we shall extend the approach to discrete-time systems using the
z-transform. So far we have concentrated on system analysis; that is, the question ‘Given
the system, how does it behave?’ In this section we turn our attention briefly to consider
the design or synthesis problem, and while it is not possible to produce an exhaustive
treatment, it is intended to give the reader an appreciation of the role of mathematics in
this task.

5.9.1 Poles and eigenvalues

By now the reader should be convinced that there is an association between system
poles as deduced from the system transfer function and the eigenvalues of the system
matrix in state-space form. Thus, for example, the system modelled by the second-order
differential equation

has transfer function

The system can also be represented in the state-space form

t = Ax + bu, y = cTx (5.106)

where

x = [x1 x2]
T, A  = , b = [0 1]T, c = [1 0]T

It is easy to check that the poles of the transfer function G(s) are at s = −1 and s = ,
and that these values are also the eigenvalues of the matrix A. Clearly this is an
unstable system, with the pole or eigenvalue corresponding to s =  located in the
right half of the complex plane. In Section 5.9.2 we examine a method of moving this
unstable pole to a new location, thus providing a method of overcoming the stability
problem.

5.9.2 The pole placement or eigenvalue location technique

We now examine the possibility of introducing state feedback into the system. To do
this, we use as system input

u = kTx + uext

5.9 Engineering application:

d2y

dt2
--------- + 1

2
----

dy

dt
------- − 1

2
---- y = u

G s( ) = 1

s2 1
2
---- s − 1

2
----+

------------------------

0 1
1
2
---- −1

2
----

1
2
----

1
2
----
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where k = [k1 k2]
T and uext is the external input. The state equation in (5.106) then

becomes

[(k1x1 + k2x2) + u ext ]

That is,

Calculating the characteristic equation of the new system matrix, we find that the
eigenvalues are given by the roots of

λ2 − (k2 − )λ − (k1 + ) = 0

Suppose that we not only wish to stabilize the system, but also wish to improve the
response time. This could be achieved if both eigenvalues were located at (say) λ = −5,
which would require the characteristic equation to be

λ2 + 10λ + 25 = 0

In order to make this pole relocation, we should choose

− (k2 − ) = 10, − (k1 + ) = 25

indicating that we take k1 = −  and k2 = − . Figure 5.60 shows the original system and
the additional state-feedback connections as dotted lines. We see that for this example
at least, it is possible to locate the system poles or eigenvalues wherever we please in
the complex plane, by a suitable choice of the vector k. This corresponds to the choice
of feedback gain, and in practical situations we are of course constrained by the need
to specify reasonable values for these. Nevertheless, this technique, referred to as pole
placement, is a powerful method for system control. There are some questions that
remain. For example, can we apply the technique to all systems? Also, can it be extended
to systems with more than one input? The following exercises will suggest answers to
these questions, and help to prepare the reader for the study of specialist texts.

t = 
0 1
1
2
---- −1

2
----

x
0

1
+

t = 
 0 1

k1
1
2
---- k2

1
2
----–+

x
0

1
uext+

1
2
---- 1

2
----

1
2
---- 1

2
----

51
2
------- 19

2
-------

Figure 5.60 Feedback 
connections for eigen-
value location.
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An unstable system has Laplace transfer function

H(s) = 

Make an appropriate choice of state variables to 
represent this system in the form

t = Ax + bu, y = cTx

where

x = [x1 x2]
T, A  = 

b = [0 1]T, c = [1 0]T

This particular form of the state-space model in 
which A  takes the companion form and b has a 
single 1 in the last row is called the control 
canonical form of the system equations, and 
pole placement is particularly straightforward 
in this case.

Find a state-variable feedback control of the 
form u = kTx that will relocate both system poles 
at s = −4, thus stabilizing the system.

Find the control canonical form of the state-space 
equations for the system characterized by the 
transfer function

Calculate or (better) simulate the step response 
of the system, and find a control law that relocates 
both poles at s = −5. Calculate or simulate the step 
response of the new system. How do the two 
responses differ?

The technique for pole placement can be adapted 
to multi-input systems in certain cases. Consider 
the system

t = Ax + Bu, y = cTx

where

x = [x1 x2]
T, u = [u1 u2]

T

Writing Bu = b1u1 + b2u2, where b1 = [1 1]T and 
b2 = [0 1]T, enables us to work with each input 
separately. As a first step, use only the input u1 
to relocate both the system poles at s = −5. 
Secondly, use input u2 only to achieve the same 
result. Note that we can use either or both inputs 
to obtain any pole locations we choose, subject of 
course to physical constraints on the size of the 
feedback gains.

The bad news is that it is not always possible to 
use the procedure described in Exercise 67. In the 
first place, it assumes that a full knowledge of the 
state vector x(t) is available. This may not always 
be the case; however, in many systems this problem 
can be overcome by the use of an observer. For 
details, a specialist text on control should be 
consulted.

There are also circumstances in which the 
system itself does not permit the use of the 
technique. Such systems are said to be 
uncontrollable, and the following example, which 
is more fully discussed in J. G. Reed, Linear System 
Fundamentals (McGraw-Hill, Tokyo, 1983), 
demonstrates the problem. Consider the system

with

y = [0 1]x

Find the system poles and attempt to relocate both 
of them, at, say, s = −2. It will be seen that no gain 
vector k can be found to achieve this. Calculating 
the system transfer function gives a clue to the 
problem, but Exercise 69 shows how the problem 
could have been seen from the state-space form of 
the system.

In Exercise 60 it was stated that the system

t = Ax + bu

y = cTx 

where A  is an n × n matrix, is controllable provided 
that the Kalman matrix

M = [b Ab A 2b . . . A n−1b]

5.9.3 Exercises

65

1
s 1

2
----+( ) s 1–( )

---------------------------------

0 1
1
2
---- 1

2
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s 1+( ) s 1

4
----+( )

---------------------------------
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A = 
0 1

6 1
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1 0

1 1
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t = 
0 −2

1 −3
x

2

1
u+
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is of rank n. This condition must be satisfied if 
we are to be able to use the procedure for pole 
placement. Calculate the Kalman controllability 
matrix for the system in Exercise 68 and confirm 
that it has rank less than n = 2. Verify that the 
system of Exercise 65 satisfies the controllability 
condition.

We have noted that when the system equations 
are expressed in control canonical form, the 
calculations for pole relocation are particularly 
easy. The following technique shows how to 
transform controllable systems into this form. 
Given the system

t = Ax + bu, y = cTx 

calculate the Kalman controllability matrix M, 
defined in Exercise 69, and its inverse M−1. 
Note that this will only exist for controllable 
systems. Set vT as the last row of M−1 and form 
the transformation matrix

A transformation of state is now made by 
introducing the new state vector z(t) = Tx(t), and the 
resulting system will be in control canonical form. 
To illustrate the technique, carry out the procedure 
for the system defined by

and show that this leads to the system

Finally, check that the two system matrices have 
the same eigenvalues, and show that this will 
always be the case.

70

T  = 

vT

vTA

7

vTAn−1

t = 
8 −2

35 −9
x

1

4
u+

u = 
0 1

2 −1
z

0

1
u+

5.10 Review exercises (1–34)

Check your answers using MATLAB or MAPLE whenever possible.

Solve, using Laplace transforms, the following 
differential equations:

(a)

subject to x = = 0 at t = 0

(b)

subject to x = 1 and  = 1 at t = 0

(a) Find the inverse Laplace transform of

(b) A voltage source V e−t sin t is applied across a 
series LCR circuit with L = 1, R = 3 and C = . 

Show that the current i(t) in the circuit 
satisfies the differential equation

Find the current i(t) in the circuit at time 
t � 0 if i(t) satisfies the initial conditions
i(0) = 1 and (di/dt)(0) = 2.

Use Laplace transform methods to solve the 
simultaneous differential equations

subject to x = y = = 0 at t = 0.

1

d2x

dt2
--------- 4dx

dt
------- 5x+ + 8 tcos=

dx
dt
-------

5d2x

dt2
--------- 3dx

dt
-------– 2x– 6=

dx
dt
-------

2

1

s 1+( ) s 2+( ) s2 2s 2+ +( )
-----------------------------------------------------------------

1
2
----

d2i

dt2
-------- 3di

dt
----- 2i+ + V e−t tsin=

3

d2x

dt2
--------- x– 5dy

dt
-------+ t=

d2y

dt2
--------- 4y– 2dx

dt
-------– −2=

dx
dt
------- dy

dt
-------=
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Solve the differential equation

subject to the initial conditions x = x0 and 
dx/d t = x1 at t = 0. Identify the steady-state and 
transient solutions. Find the amplitude and phase 
shift of the steady-state solution.

Resistors of 5 and 20 Ω are connected to the 
primary and secondary coils of a transformer with 
inductances as shown in Figure 5.61. At time t = 0, 
with no currents flowing, a voltage E = 100 V 
is applied to the primary circuit. Show that 
subsequently the current in the secondary circuit is

(e−(11+�41)t /2 − e− (11−�41) t /2)

(a) Find the Laplace transforms of

(i) cos (ω t + φ) (ii) e−ω t sin (ω t + φ)

(b) Using Laplace transform methods, solve the 
differential equation

given that x = 2 and d x/dt = 1 when t = 0.

(a) Find the inverse Laplace transform of

(b) Solve using Laplace transforms the differential 
equation

 + 2y = 2(2 + cos t + 2 sin t)

given that y = −3 when t = 0.

Using Laplace transforms, solve the simultaneous 
differential equations

+ 5x + 3y = 5 sin t − 2 cos t

+ 3y + 5x = 6 sin t − 3 cos t

where x = 1 and y = 0 when t = 0.

The charge q on a capacitor in an inductive circuit 
is given by the differential equation

+ 2 × 104q = 200 sin 100t 

and it is also known that both q and dq/dt are zero 
when t = 0. Use the Laplace transform method to 
find q. What is the phase difference between the 
steady-state component of the current dq/dt and 
the applied emf 200 sin 100t to the nearest 
half-degree?

Use Laplace transforms to find the value of x
given that

 + 6x + y = 2 sin 2t

and that x = 2 and dx/d t = −2 when t = 0.

(a) Use Laplace transforms to solve the 
differential equation

given that θ = 0 and dθ/dt = 0 when t = 0.

(b) Using Laplace transforms, solve the 
simultaneous differential equations

given that i1 = 1, i2 = 0 when t = 0.

The terminals of a generator producing a voltage 
V are connected through a wire of resistance 
R and a coil of inductance L (and negligible 
resistance). A capacitor of capacitance C 
is connected in parallel with the resistance 
R as shown in Figure 5.62. Show that the 
current i flowing through the resistance R is 
given by

4

d2x

dt2
--------- 2dx

dt
------- 2x+ + tcos=

5

20
�41
----------

Figure 5.61 Circuit of Review exercise 5.

6

d2x

dt2
--------- 4dx

dt
------- 8x+ + 2tcos=

7

s 4–

s2 4s 13+ +
----------------------------

dy
dt
-------

8

dx
dt
-------

dy
dt
-------

9

d2q

dt2
--------- 300dq

dt
-------+

10

4dx
dt
-------

d2x

dt2
--------- x dy

dt
-------–+ 3 e−2t=

11

d2θ
dt2
-------- 8dθ

dt
------- 16θ+ + 2tsin=

di1

dt
-------- 2i1 6i2+ + 0=

i1
di2

dt
-------- 3i2–+ 0=

12

LCRd2i

dt2
-------- Ldi

dt
----- Ri+ + V=
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Suppose that 

(i) V = 0 for t � 0 and V = E (constant) for t � 0 
(ii) L = 2R2C
(iii) CR = 1/2n

and show that the equation reduces to

Hence, assuming that i = 0 and d i/d t = 0 when 
t = 0, use Laplace transforms to obtain an 
expression for i in terms of t.

Show that the currents in the coupled circuits of 
Figure 5.63 are determined by the simultaneous 
differential equations

+ R(i1 − i2) + Ri1 = E

+ Ri2 − R(i1 − i2) = 0

Find i1 in terms of t, L, E and R, given that i1 = 0 and 
di1/dt = E/L at t = 0, and show that i1 � E/R for 
large t. What does i2 tend to for large t?

A system consists of two unit masses lying in a 
straight line on a smooth surface and connected 
together to two fixed points by three springs. When 
a sinusoidal force is applied to the system, the 
displacements x1(t) and x2(t) of the respective 
masses from their equilibrium positions satisfy 
the equations

 = x2 − 2x1 + sin 2t

= −2x2 + x1

Given that the system is initially at rest in the 
equilibrium position (x1 = x2 = 0), use the Laplace 
transform method to solve the equations for x1(t) 
and x2(t).

(a) Obtain the inverse Laplace transforms of

(i) (ii)

(b) Use Laplace transforms to solve the 
differential equation

given that y = 4 and dy/d t = 2 when t = 0.

(a) Determine the inverse Laplace transform of

(b) The equation of motion of the moving coil 
of a galvanometer when a current i is passed 
through it is of the form

where θ is the angle of deflection from the 
‘no-current’ position and n and K are positive 
constants. Given that i is a constant and 
θ = 0 = dθ/dt when t = 0, obtain an expression 
for the Laplace transform of θ.

In constructing the galvanometer, it is desirable 
to have it critically damped (that is, n = K). 
Use the Laplace transform method to solve the 
differential equation in this case, and sketch the 
graph of θ against t for positive values of t.

(a) Given that α is a positive constant, use the 
second shift theorem to 

(i) show that the Laplace transform of 
sin t H(t − α) is

(ii) find the inverse transform of

Figure 5.62 Circuit of Review exercise 12.

d2i

dt2
-------- 2ndi

dt
----- 2n2i+ + 2n2E

R
---=

13

Figure 5.63 Circuit of Review exercise 13.

L
di1--------
dt

L
di2
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2
3
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14

d2x1-----------
dt2
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15

s 4+

s2 2s 10+ +
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d2y

dt2
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16
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s2 14s– 53+
-------------------------------

d2θ
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(b) Solve the differential equation

+ 5y = sin t − sin t H(t − π)

given that y = dy/d t = 0 when t = 0.

Show that the Laplace transform of the 
voltage v(t), with period T, defined by

is 

This voltage is applied to a capacitor of 100 μF and
a resistor of 250 Ω in series, with no charge initially
on the capacitor. Show that the Laplace transform
I(s) of the current i(t) flowing, for t � 0, is

and give an expression, involving Heaviside step 
functions, for i(t) where 0 � t � 2T. For T = 10−3 s, 
is this a good representation of the steady-state 
response of the circuit? Briefly give a reason for 
your answer.

The response x(t) of a control system to a forcing 
term u(t) is given by the differential equation

(t � 0)

Determine the impulse response of the system, and 
hence, using the convolution integral, obtain the 
response of the system to a unit step u(t) = 1H(t) 
applied at t = 0, given that initially the system is in 
a quiescent state. Check your solution by directly 
solving the differential equation

(t � 0)

with x = dx/dt = 0 at t = 0.

A light horizontal beam, of length 5 m and constant 
flexural rigidity EI, built in at the left-hand end 
x = 0, is simply supported at the point x = 4 m and 
carries a distributed load with density function

Write down the fourth-order boundary-value 
problem satisfied by the deflection y(x). Solve this 
problem to determine y(x), and write down the 
resulting expressions for y(x) for the cases 0 � x 
� 4 and 4 � x � 5. Calculate the end reaction and 
moment by evaluating appropriate derivatives of 
y(x) at x = 0. Check that your results satisfy the 
equation of equilibrium for the beam as a whole.

(a) Sketch the function defined by

Express f(t) in terms of Heaviside step 
functions, and use the Laplace transform to 
solve the differential equation

given that x = 0 at t = 0.

(b) The Laplace transform I(s) of the current i(t) 
in a certain circuit is given by

where E, L, R and C are positive constants. 
Determine (i) i(t) and (ii) i(t).

Show that the Laplace transform of the half-
rectified sine-wave function

of period 2π, is

Such a voltage v(t) is applied to a 1 Ω resistor and 
a 1 H inductor connected in series. Show that the 
resulting current, initially zero, is ∑ ∞

n =0 f(t − nπ), 
where f (t) = (sin t − cos t + e − t)H(t). Sketch a 
graph of the function f (t).

(a) Find the inverse Laplace transform of 
1/s2(s + 1)2 by writing the expression in 
the form (1/s2)[1/(s + 1)2] and using the 
convolution theorem.

(b) Use the convolution theorem to solve the 
integral equation

y(t) = t + 2 y (u) cos(t − u) du

d2y

dt2
--------- 2dy

dt
-------+

18

v t( )
1 0 � t � 1

2
----T( )

−1 1
2
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⎧

=

V s( ) 1
s
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1 e−sT/2+
----------------------=

I s( ) 1
250 s 40+( )
---------------------------- 1 e−sT/2–

1 e−sT/2+
----------------------=

19
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dt2
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20
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and the integro-differential equation

y″(u) y ′(t − u) du = y(t)

where y(0) = 0 and y′(0) = y1. Comment on the 
solution of the second equation.

A beam of negligible weight and length 3l carries a 
point load W at a distance l from the left-hand end. 
Both ends are clamped horizontally at the same 
level. Determine the equation governing the 
deflection of the beam. If, in addition, the beam 
is now subjected to a load per unit length, w, 
over the shorter part of the beam, what will then 
be the differential equation determining the 
deflection?

(a) Using Laplace transforms, solve the 
differential equation

(a � 0)

where H(t) is the Heaviside unit step function, 
given that x = 0 and dx/dt = 0 at t = 0.

(b) The output x(t) from a stable linear control 
system with input sin ω t and transfer function 
G(s) is determined by the relationship

X(s) = G(s)�{sin ω t}

where X(s) = �{x(t)}. Show that, after a long 
time t, the output approaches xs(t), where

Consider the feedback system of Figure 5.64, where 
K is a constant feedback gain.

(a) In the absence of feedback (that is, K = 0) is the 
system stable?

(b) Write down the transfer function G1(s) for the 
overall feedback system.

(c) Plot the locus of poles of G1(s) in the s plane 
for both positive and negative values of K.

(d) From the plots in (c), specify for what 
range of values of K the feedback system is 
stable.

(e) Confirm your answer to (d) using the 
Routh–Hurwitz criterion.

(a) For the feedback control system of 
Figure 5.65(a) it is known that the impulse 
response is h(t) = 2 e−2t sin t. Use this to 
determine the value of the parameter α.

(b) Consider the control system of Figure 5.65(b), 
having both proportional and rate feedback. 
Determine the critical value of the gain K for 
stability of the closed-loop system.

A continuous-time system is specified in 
state-space form as

t(t) = Ax(t) + bu(t)

y(t) = cTx(t)

where

(a) Draw a block diagram to represent the 
system.

(b) Using Laplace transforms, show that 
the state transition matrix is given by

�
0

t

24

25 

d2x

dt2
--------- 3dx

dt
-------– 3x+ H t a–( )=

xs t( ) Re ejω tG jω( )
j

-------------------------⎝ ⎠
⎛ ⎞=

26

Figure 5.64 Feedback system of Review 
exercise 26.

27

Figure 5.65 Feedback control systems of 
Review exercise 27.

28
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(c) Calculate the impulse response of the system, 
and determine the response y(t) of the system to 
an input u(t) = 1 (t � 0), subject to the initial 
state x(0) = [1 0]T.

A single-input–single-output system is represented 
in state-space form, using the usual notation, as

t(t) = Ax(t) + bu(t)

y(t) = cTx(t)

For

show that

and find x(t) given the x(0) = 0 and u(t) = 1 (t � 0).
Show that the Laplace transfer function of the 

system is

H(s) =  = c(sI − A)−1b

and find H(s) for this system. What is the system 
impulse response?

A controllable linear plant that can be 
influenced by one input u(t) is modelled by 
the differential equation

t(t) = Ax(t) + bu(t)

where x(t) = [x1(t) x2(t) . . . xn(t)]
T is 

the state vector, A  is a constant matrix with 
distinct real eigenvalues λ 1, λ 2, . . . , λ n and 
b = [b1 b2 . . . bn]

T is a constant vector. 
By the application of the feedback control

u(t) = KvT
Kx(t)

where vK is the eigenvector of AT corresponding 
to the eigenvalue λK of AT (and hence of A), the 
eigenvalue λK can be changed to a new real value ρK

without altering the other eigenvalues. To achieve 
this, the feedback gain K is chosen as

where pK = vT
Kb.

Show that the system represented by

is controllable, and find the eigenvalues and 
corresponding eigenvectors of the system matrix. 
Deduce that the system is unstable in the absence 
of control, and determine a control law that will 
relocate the eigenvalue corresponding to the 
unstable mode at the new value −5.

A second-order system is modelled by the 
differential equations

E1 + 2x1 − 4x2 = u

E2 − x2 = u

coupled with the output equation

y = x1

(a) Express the model in state-space form.

(b) Determine the transfer function of the system 
and show that the system is unstable.

(c) Show that by using the feedback control law

u(t) = r(t) − ky(t)

where k is a scalar gain, the system will be 
stabilized provided k � .

(d) If r(t) = H(t), a unit step function, and k �  
show that y(t) → 1 as t → ∞ if and only if k = .

(An extended problem) The transient response 
of a practical control system to a unit step input 
often exhibits damped oscillations before reaching 
steady state. The following properties are some 
of those used to specify the transient response 
characteristics of an underdamped system:

rise time, the time required for the response 
to rise from 0 to 100% of its final value;

peak time, the time required for the response 
to reach the first peak of the overshoot;

settling time, the time required for the response 
curve to reach and stay within a range about 
the final value of size specified by an absolute 
percentage of the final value (usually 2% or 
5%);

maximum overshoot, the maximum peak 
value of the response measured from unity.

29
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Consider the feedback control system of 
Figure 5.66 having both proportional and 
derivative feedback. It is desirable to choose the 
values of the gains K and K1 so that the system 
unit step response has a maximum overshoot of 
0.2 and a peak time of 1 s.

(a) Obtain the overall transfer function of the 
closed-loop system.

(b) Show that the unit step response of the system, 
assuming zero initial conditions, may be 
written in the form

(t � 0)

where ωd = ωn� (1 − ξ2), ω n
2  = K and 

2ωnξ = 1 + KK1.

(c) Determine the values of the gains K and K1 so 
that the desired characteristics are achieved.

(d) With these values of K and K1, determine the 
rise time and settling time, comparing both the 
2% and 5% criteria for the latter.

(An extended problem) The mass M1 of the 
mechanical system of Figure 5.67(a) is subjected to 
a harmonic forcing term sin ω t. Determine the 
steady-state response of the system.

It is desirable to design a vibration absorber to 
absorb the steady-state oscillations so that in the 
steady state x(t) ≡ 0. To achieve this, a secondary 
system is attached as illustrated in Figure 5.67(b).

(a) Show that, with an appropriate choice of M2

and K2, the desired objective may be achieved.
(b) What is the corresponding steady-state 

motion of the mass M2?
(c) Comment on the practicality of your design.

(An extended problem) The electronic amplifier 
of Figure 5.68 has open-loop transfer function G(s) 
with the following characteristics: a low-frequency 
gain of 120 dB and simple poles at 1 MHz, 10 MHz 
and 25 MHz. It may be assumed that the amplifier 
is ideal, so that K/(1 + Kβ ) � 1/β, where β is 
the feedback gain and K the steady-state gain 
associated with G(s).

(a) Construct the magnitude versus log frequency 
and phase versus log frequency plots (Bode 
plots) for the open-loop system.

(b) Determine from the Bode plots whether or 
not the system is stable in the case of unity 
feedback (that is, β = 1).

(c) Determine the value of β for marginal stability, 
and hence the corresponding value of the 
closed-loop low-frequency gain.

(d) Feedback is now applied to the amplifier to 
reduce the overall closed-loop gain at low 
frequencies to 100 dB. Determine the gain 
and phase margin corresponding to this 
closed-loop configuration.

(e) Using the given characteristics, express G(s) 
in the form

and hence obtain the input–output transfer 
function for the amplifier.

(f ) Write down the characteristic equation for the 
closed-loop system and, using the Routh–
Hurwitz criterion, reconsider parts (b) and (c).

Figure 5.66 Feedback control system of Review 
exercise 32.

x t( ) 1 e
−ω nξt

ωdtcos ξ
� 1 ξ2–( )
--------------------- ωdtsin+–=

33

Figure 5.67 Vibration absorber of 
Review exercise 33.

34

Figure 5.68 Electronic amplifier of Review 
exercise 34.
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Introduction
In this chapter we focus attention on discrete-(time) processes. With the advent of fast
and cheap digital computers, there has been renewed emphasis on the analysis and
design of digital systems, which represent a major class of engineering systems. The
main thrust of this chapter will be in this direction. However, it is a mistake to believe
that the mathematical basis of this area of work is of such recent vintage. The first
comprehensive text in English dealing with difference equations was The Treatise of
the Calculus of Finite Differences by George Boole and published in 1860. Much of the
early impetus for the finite calculus was due to the need to carry out interpolation and
to approximate derivatives and integrals. Later, numerical methods for the solution of
differential equations were devised, many of which were based on finite difference
methods, involving the approximation of the derivative terms to produce a difference
equation. The underlying idea in each case so far discussed is some form of approx-
imation of an underlying continuous function or continuous-time process. There are
situations, however, where it is more appropriate to propose a discrete-time model from
the start.

Digital systems operate on digital signals, which are usually generated by sampling
a continuous-time signal, that is a signal defined for every instant of a possibly infinite
time interval. The sampling process generates a discrete-time signal, defined only at
the instants when sampling takes place so that a digital sequence is generated. After
processing by a computer, the output digital signal may be used to construct a new
continuous-time signal, perhaps by the use of a zero-order hold device, and this in
turn might be used to control a plant or process. Digital signal processing devices
have made a major impact in many areas of engineering, as well as in the home. For
example, compact disc players, which operate using digital technology, offer such
a significant improvement in reproduction quality that recent years have seen them
rapidly take over from cassette tape players and vinyl record decks. DVD players
are taking over from video players and digital radios are setting the standard for
broadcasting. Both of these are based on digital technology.

We have seen in Chapter 5 that the Laplace transform was a valuable aid in the
analysis of continuous-time systems, and in this chapter we develop the z transform,
which will perform the same task for discrete-time systems. We introduce the transform in
connection with the solution of difference equations, and later we show how difference
equations arise as discrete-time system models.

The chapter includes two engineering applications. The first is on the design of
digital filters, and highlights one of the major applications of transform methods as
a design tool. It may be expected that whenever sampling is involved, performance will
improve as sampling rate is increased. Engineers have found that this is not the full
story, and the second application deals with some of the problems encountered. This
leads on to an introduction to the unifying concept of the � transform, which brings
together the theories of the Laplace and z transforms.

6.1
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The z transform
Since z transforms relate to sequences, we first review the notation associated with
sequences, which were considered in more detail in Chapter 7 of Modern Engineering
Mathematics. A finite sequence  is an ordered set of n + 1 real or complex
numbers:

 = {x0, x1, x2, . . . , xn}

Note that the set of numbers is ordered so that position in the sequence is important.
The position is identified by the position index k, where k is an integer. If the number
of elements in the set is infinite then this leads to the infinite sequence

= {x0, x1, x2, . . . }

When dealing with sampled functions of time t, it is necessary to have a means of
allowing for t � 0. To do this, we allow the sequence of numbers to extend to infinity
on both sides of the initial position x0, and write

 = { . . . , x−2, x−1, x0, x1, x2, . . . }

Sequences  for which xk = 0 (k � 0) are called causal sequences, by analogy
with continuous-time causal functions f (t)H(t) defined in Section 5.2.1 as

While for some finite sequences it is possible to specify the sequence by listing all the
elements of the set, it is normally the case that a sequence is specified by giving a
formula for its general element xk.

6.2.1 Definition and notation

The process of taking the z transform of a sequence thus produces a function
of a complex variable z, whose form depends upon the sequence itself. The symbol
� denotes the z-transform operator; when it operates on a sequence {xk} it trans-
forms the latter into the function X(z) of the complex variable z. It is usual to refer
to {xk}, X(z) as a z-transform pair, which is sometimes written as {xk} ↔ X(z).
Note the similarity to obtaining the Laplace transform of a function in Section 5.2.1.
We shall return to consider the relationship between Laplace and z transforms in
Section 6.7.

6.2

xk{ }0
n

xk{ }0
n

xk{ }0
∞

xk{ } ∞–
∞

xk{ } ∞–
∞

f t( )H t( ) = 
0 t 0�( )
f t( ) t 0�( )⎩

⎨
⎧

The z transform of a sequence  is defined in general as

(6.1)

whenever the sum exists and where z is a complex variable, as yet undefined.

xk{ } ∞–
∞

� xk{ } ∞–
∞  = X z( ) = 

xk------
zk

k=−∞

∞

∑
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In this chapter we shall be concerned with causal sequences, and so the definition
given in (6.2) will be the one that we shall use henceforth. We shall therefore from now
on take {xk} to denote . Non-causal sequences, however, are of importance, and
arise particularly in the field of digital image processing, among others.

Determine the z transform of the sequence

{xk} = {2k} (k � 0)

Solution From the definition (6.2),

which we recognize as a geometric series, with common ratio r = 2/z between successive
terms. The series thus converges for | z | � 2, when

leading to

(6.3)

so that

is an example of a z-transform pair.

From Example 6.1, we see that the z transform of the sequence {2k} exists provided
that we restrict the complex variable z so that it lies outside the circle |z | = 2 in the
z plane. From another point of view, the function

may be thought of as a generating function for the sequence {2k}, in the sense that the
coefficient of z−k in the expansion of X(z) in powers of 1/z generates the kth term of
the sequence {2k}. This can easily be verified, since

For sequences  that are causal, that is

xk = 0 (k � 0)

the z transform given in (6.1) reduces to

(6.2)

xk{ } ∞–
∞

� xk{ }0
∞ = X z( ) = 

xk------
zk

k=0

∞

∑

xk{ }0
∞

Example 6.1

� 2k{ } = 2k

zk
-----

k=0

∞

∑  = 2
z
----⎝ ⎠

⎛ ⎞ k

k=0

∞

∑

2
z
----⎝ ⎠

⎛ ⎞ k

k=0

∞

∑  = 1 2/z( )k–
1 2/z–

------------------------  = 
k ∞→
lim 1

1 2/z–
----------------

� 2k{ } = z
z 2–
------------ | z |  � 2( )

xk{ } = 2k{ }

X z( ) = z
z 2–
------------

⎭
⎪
⎬
⎪
⎫

X z( ) = z
z 2–
------------ | z | � 2( )
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and, since | z | � 2, we can expand this as

and we see that the coefficient of z−k is indeed 2k, as expected.
We can generalize the result (6.3) in an obvious way to determine �{ak}, the z trans-

form of the sequence {ak}, where a is a real or complex constant. At once

so that

Show that

Solution Taking a =  in (6.4), we have

so that

Further z-transform pairs can be obtained from (6.4) by formally differentiating
with respect to a, which for the moment we regard as a parameter. This gives

leading to

(6.5)

In the particular case a = 1 this gives

(6.6)

(6.4)

z
z 2–
------------  = 1

1 2/z–
----------------  = 1 2

z
----–⎝ ⎠

⎛ ⎞ 1–

1 2
z
----–⎝ ⎠

⎛ ⎞ 1–

 = 1 2
z
---- 2

z
----⎝ ⎠

⎛ ⎞ 2

6
2
z
----⎝ ⎠

⎛ ⎞ k

6+ + + + +

� ak{ } = 
ak

zk
-----

k=0

∞

∑  = 
1

1 a/z–
---------------- | z |  � | a |( )

� ak{ } = 
z

z a–
------------ | z |  � | a |( )

Example 6.2

� 1
2
----–( )k{ } = 

2z
2z 1+
---------------- | z |  � 1

2
----( )

1
2
----–

� 1
2
----–( )k{ } = 

1
2
----–( )k

zk
------------

k=0

∞

∑ z
z 1

2
----–( )–

------------------- | z |  � 1
2
----( )=

� 1
2
----–( )k{ } = 

2z
2z 1+
---------------- | z |  � 1

2
----( )

d
da
-------� ak{ } = � dak

da
---------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = d
da
------- z

z a–
------------⎝ ⎠

⎛ ⎞

� kak−1{ } = z

z a–( )2
------------------- | z |  � | a |( )

� k{ } = z

z 1–( )2
------------------- | z |  � 1( )

www.20file.org

www.semeng.ir


486 THE Z  TRANSFORM

Find the z transform of the sequence

{2k} = {0, 2, 4, 6, 8, . . . }

Solution From (6.6),

Using the definition (6.1),

so that

(6.7)

Example 6.3 demonstrates the ‘linearity’ property of the z transform, which we shall
consider further in Section 6.3.1.

A sequence of particular importance is the unit pulse or impulse sequence

{δk} = {1} = {1, 0, 0, . . . }

It follows directly from the definition (6.4) that

�{δk} = 1 (6.8)

Example 6.3

In MATLAB, using the Symbolic Math Toolbox, the z-transform of the sequence
{xk} is obtained by entering the commands

syms k z

ztrans(xk)

As for Laplace transforms (see Section 5.2.2), the answer may be simplified using
the command simple(ans) and reformatted using the pretty command. Con-
sidering the sequence {xk} = {2k} of Example 6.1, the commands

syms k z

ztrans(2^k)

return

ans=1/2*z/(1/2*z-1)

Entering the command

simple(ans)

returns

ans=z/(z-2)

� k{ } = � 0, 1, 2, 3, 6 { } = k

zk
-----

k=0

∞

∑  = z

z 1–( )2
-------------------

� 0, 2, 4, 6, 8, 6 { } = 0 2

z
---- 4

z2
----- 6

z3
----- 8

z4
----- 6+ + + + +  = 2 k

zk
-----

k=0

∞

∑

� 2k{ } = 2� k{ } = 2z

z 1–( )2
-------------------
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6.2.2 Sampling: a first introduction

Sequences are often generated in engineering applications through the sampling of
continuous-time signals, described by functions f (t) of a continuous-time variable t.
Here we shall not discuss the means by which a signal is sampled, but merely suppose
this to be possible in idealized form.

Figure 6.1 illustrates the idealized sampling process in which a continuous-time
signal f (t) is sampled instantaneously and perfectly at uniform intervals T, the sampling
interval. The idealized sampling process generates the sequence

{ f (kT )} = { f (0), f (T ), f (2T ), . . . , f(nT ), . . . } (6.9)

Using the definition (6.1), we can take the z transform of the sequence (6.9) to give

(6.10)

whenever the series converges. This idea is simply demonstrated by an example.

The signal f(t) = e−tH(t) is sampled at intervals T. What is the z transform of the resulting
sequence of samples? 

Solution Sampling the causal function f (t) generates the sequence

{ f (kT )} = { f (0), f (T ), f (2T ), . . . , f(nT ), . . . }

= {1, e−T, e−2T, e−3T, . . . , e−nT, . . . }

z transforms can be performed in MAPLE using the ztrans function; so the
commands:

ztrans(2^k,k,z);

simplify(%);

return
z

z 2–
--------

Figure 6.1 Sampling 
of a continuous-time 
signal.

� f kT( ){ } = f kT( )
zk

--------------
k=0

∞

∑

Example 6.4
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Then, using (6.1),

so that

(6.11)

It is important to note in Example 6.4 that the region of convergence depends on the
sampling interval T.

In MATLAB the commands

syms k T z

ztrans(exp(-k*T));

pretty(simple(ans))

return

ans = z/(z-exp(-T))

which confirms (6.11).
In MAPLE the commands:

ztrans(exp(-k*T),k,z);

simplify(%);

return

� f kT( ){ } = e kT–

zk
---------

k=0

∞

∑  = e T–

z
-------⎝ ⎠

⎛ ⎞
k

k=0

∞

∑

� e kT–{ } = z

z e T––
---------------- | z |  � e T–( )

ze
T

ze
T

1–
----------

Calculate the z transform of the following sequences, 
stating the region of convergence in each case:

(a) {( )k} (b) {3k} (c) {(−2)k}

(d) {−(2k)} (e) {3k}

The continuous-time signal f(t) = e−2ω t, where ω is 
a real constant, is sampled when t � 0 at intervals 
T. Write down the general term of the sequence 
of samples, and calculate the z transform of the 
sequence.

6.2.3 Exercises

1

1
4
----

2

Properties of the z transform
In this section we establish the basic properties of the z transform that will enable us to
develop further z-transform pairs, without having to compute them directly using the
definition.

6.3
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6.3.1 The linearity property

As for Laplace transforms, a fundamental property of the z transform is its linearity,
which may be stated as follows.

As a consequence of this property, we say that the z-transform operator � is a linear
operator. A proof of the property follows readily from the definition (6.4), since

+

= αX(z) + βY(z)

The region of existence of the z transform, in the z plane, of the linear sum will be the
intersection of the regions of existence (that is, the region common to both) of the
individual z transforms X(z) and Y(z).

The continuous-time function f (t) = cos ω t H(t), ω a constant, is sampled in the ideal-
ized sense at intervals T to generate the sequence {cos kωT}. Determine the z transform
of the sequence.

Solution Using the result cos kωT = (e jkωT + e−jkωT) and the linearity property, we have

�{cos kωT} = �{ e jkωT + e−jkωT} = �{e jkωT} + �{e−jkωT}

Using (6.7) and noting that |e jkωT | = |e−jkωT | = 1 gives

leading to the z-transform pair

(6.13)

In a similar manner to Example 6.5, we can verify the z-transform pair

(6.14)

and this is left as an exercise for the reader (see Exercise 3).

If {xk} and {yk} are sequences having z transforms X(z) and Y(z) respectively and if
α and β are any constants, real or complex, then

�{αxk + βyk} = α�{xk} + β�{yk} = αX(z) + βY(z) (6.12)

� αxk βyk+{ } = 
αxk βyk+

zk
------------------------

k=0

∞

∑  = α xk

zk
----

k=0

∞

∑  β yk

zk
----

k=0

∞

∑

Example 6.5

1
2
----

1
2
---- 1

2
---- 1

2
---- 1

2
----

� kωTcos{ } = 1
2
----

z

z ejωT–
---------------- 1

2
----

z

z e−jωT–
-------------------- | z |  � 1( )+

= 1
2
----
z z e−jωT–( ) z z ejωT–( )+
z2 ejωT e−jωT+( )z– 1+

----------------------------------------------------------

� cos kωT{ } = z z ωTcos–( )
z2 2z ωTcos– 1+
--------------------------------------------- | z |  � 1( )

� sin kωT{ } = z sin ωT

z2 2z ωTcos– 1+
--------------------------------------------- | z |  � 1( )
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6.3.2 The first shift property (delaying)

In this and the next section we introduce two properties relating the z transform of a
sequence to the z transform of a shifted version of the same sequence. In this section
we consider a delayed version of the sequence {xk}, denoted by {yk}, with

yk = 

Here k0 is the number of steps in the delay; for example, if k0 = 2 then yk = xk−2,
so that

y0 = x−2, y1 = x−1, y2 = x0, y3 = x1

and so on. Thus the sequence {yk} is simply the sequence {xk} moved backward, or
delayed, by two steps. From the definition (6.1),

where we have written p = k − k0. If {xk} is a causal sequence, so that xp = 0 ( p � 0),
then

where X(z) is the z transform of {xk}.
We therefore have the result 

which is referred to as the first shift property of z transforms.
If {xk} represents the sampled form, with uniform sampling interval T, of the con-

tinuous signal x(t) then represents the sampled form of the continuous signal
x(t − k0T ) which, as illustrated in Figure 6.2, is the signal x(t) delayed by a multiple
k0 of the sampling interval T. The reader will find it of interest to compare this result
with the results for the Laplace transforms of integrals (5.16).

Check that in MATLAB the commands

syms k z ω T
ztrans(cos(k*ω*T));
pretty(simple(ans))

return the transform given in (6.13) and that the MAPLE commands:

ztrans(cos(k*ω*T),k,z);
simplify(%);

do likewise.

(6.15)

xk−k0

� yk{ } = yk----
zk

k=0

∞

∑  = 
xk−k0

zk
-----------

k=0

∞

∑  = 
xp

zp+k0
-----------

p=−k0

∞

∑

� yk{ } = 
xp

zp+k0
-----------

p=0

∞

∑  = 1
zk0

-----
xp

z p
----  = 1

zk0

-----X z( )
p=0

∞

∑

� xk−k0
{ } = 1

zk0

----- � xk{ }

xk−k0
{ }
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The causal sequence {xk} is generated by

xk = ( )k (k � 0)

Determine the z transform of the shifted sequence {xk−2}.

Solution By the first shift property,

which, on using (6.4), gives

We can confirm this result by direct use of the definition (6.1). From this, and the fact
that {xk} is a causal sequence,

{xk−2} = {x−2, x−1, x0, x1, . . . } = {0, 0, 1, , , . . . }

Thus,

6.3.3 The second shift property (advancing)

In this section we seek a relationship between the z transform of an advanced version
of a sequence and that of the original sequence. First we consider a single-step
advance. If {yk} is the single-step advanced version of the sequence {xk} then {yk} is
generated by

yk = xk+1 (k � 0)

Example 6.6

Figure 6.2
Sequence and its 
shifted form.

1
2
----

� xk−2{ } = 1

z2
---- � 1

2
----( )k{ }

� xk−2{ } = 1

z2
---- z

z 1
2
----–

---------- | z | � 1
2
----( ) = 1

z2
---- 2z

2z 1–
----------------  = 2

z 2z 1–( )
---------------------- | z | � 1

2
----( )

1
2
---- 1

4
----

� xk−2{ } = 0 0 1

z2
----- 1

2z3
------- 1

4z4
------- 6 = 1

z2
----- 1 1

2z
------- 1

4z2
------- 6 + + +⎝ ⎠

⎛ ⎞+ + + + +

= 1

z2
---- z

z 1
2
----–

---------- | z | � 1
2
----( ) = z

z 2z 1–( )
---------------------- | z | � 1

2
----( )
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Then

and putting p = k + 1 gives

where X(z) is the z transform of {xk}.
We therefore have the result

In a similar manner it is readily shown that for a two-step advanced sequence {xk+2}

Note the similarity in structure between (6.16) and (6.17) on the one hand and those for
the Laplace transforms of first and second derivatives (Section 5.3.1). In general, it is
readily proved by induction that for a k0-step advanced sequence 

In Section 6.5.2 we shall use these results to solve difference equations.

6.3.4 Some further properties

In this section we shall state some further useful properties of the z transform, leaving
their verification to the reader as Exercises 9 and 10.

�{xk+1} = zX(z) − zx0 (6.16)

�{xk+2} = z 2X(z) − z 2x0 − zx1 (6.17)

(6.18)

� yk{ } = yk----
zk

k=0

∞

∑  = 
xk+1

zk
--------

k=0

∞

∑  = z
xk+1

zk+1
--------

k=0

∞

∑

� yk{ } = z
xp

z p
----  = z

xp

z p
---- x0–

p=0

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

 = zX z( ) zx0–
p=1

∞

∑

xk+k0
{ }

� xk+k0
{ } = zk0X z( ) xnzk0−n

n=0

k0−1

∑–

(i) Multiplication by ak

If Z{xk} = X(z) then for a constant a

�{akxk} = X (a−1z) (6.19)

(ii) Multiplication by k n

If �{xk} = X (z) then for a positive integer n

(6.20)� knxk{ } = z d
dz
-----–⎝ ⎠

⎛ ⎞ n

X z( )
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6.3.5 Table of z transforms

It is appropriate at this stage to draw together the results proved so far for easy access.
This is done in the form of a table in Figure 6.3.

Note that in (6.20) the operator −z d/dz means ‘first differentiate with respect
to z and then multiply by −z’. Raising to the power of n means ‘repeat the
operation n times’.

(iii) Initial-value theorem

If {xk} is a sequence with z transform X (z) then the initial-value theorem states
that

(6.21)

(iv) Final-value theorem

If {xk} is a sequence with z transform X(z) then the final-value theorem states
that

(6.22)

provided that the poles of (1 − z−1)X(z) are inside the unit circle.

X z( )
z→∞
lim  = x0

xk
k→∞
lim  = 1 z 1––( )X z( )

z→1
lim

Figure 6.3 A short 
table of z transforms. {xk} (k � 0) �{xk} Region of existence

(unit pulse sequence)

xk = 1 (unit step sequence)

xk = ak (a constant)

xk = k

xk = kak−1 (a constant)

xk = e−kT (T constant)

xk = cos kωT (ω, T constants)

xk = sin kωT (ω, T constants)

1 All z

| z | � 1

| z | � | a |

| z | � 1

| z | � a

| z | � e− T

|z | � 1

|z | � 1

xk  =  
1 k  =  0( )
0  k  � 0( )⎩

⎨
⎧

z
z 1–
------------

z
z a–
------------

z

z 1–( )2
-------------------

z

z a–( )2
-------------------

z

z e T–
----------------

–

z z ωTcos–( )
z2 2z ωTcos– 1+
-------------------------------------------

z ωTsin

z2 2z ωTcos– 1+
---------------------------------------------
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The inverse z transform
In this section we consider the problem of recovering a causal sequence {xk} from
knowledge of its z transform X(z). As we shall see, the work on the inversion of Laplace
transforms in Section 5.2.7 will prove a valuable asset for this task.

This correspondence between X(z) and {xk} is called the inverse z transformation,
{xk} being the inverse transform of X(z), and �−1 being referred to as the inverse
z-transform operator.

As for the Laplace transforms in Section 5.2.8, the most obvious way of finding the
inverse transform of X(z) is to make use of a table of transforms such as that given in
Figure 6.3. Sometimes it is possible to write down the inverse transform directly from
the table, but more often than not it is first necessary to carry out some algebraic manip-
ulation on X(z). In particular, we frequently need to determine the inverse transform of
a rational expression of the form P(z)/Q(z), where P(z) and Q(z) are polynomials in z.
In such cases the procedure, as for Laplace transforms, is first to resolve the expression,
or a revised form of the expression, into partial fractions and then to use the table of
transforms. We shall now illustrate the approach through some examples.

6.4

Formally the symbol �−1[X(z)] denotes a causal sequence {xk} whose z transform is
X(z); that is,

if �{xk} = X(z) then {xk} = �−1[X(z)]

Check your answers using MATLAB or MAPLE whenever possible.

Use the method of Example 6.5 to confirm (6.14), 
namely

where ω and T are constants.

Use the first shift property to calculate the z
transform of the sequence {yk}, with 

where {xk} is causal and xk = ( )k. Confirm your 
result by direct evaluation of �{yk} using the 
definition of the z transform.

Determine the z transforms of the sequences

(a) {( )k} (b) {cos kπ}

Determine �{( )k}. Using (6.6), obtain the z
transform of the sequence {k( )k}.

Show that for a constant α

(a) 

(b) 

Sequences are generated by sampling a causal 
continuous-time signal u(t) (t � 0) at uniform 
intervals T. Write down an expression for uk, the 
general term of the sequence, and calculate the 
corresponding z transform when u(t) is

(a) e−4t (b) sin t (c) cos 2t

Prove the initial- and final-value theorems given in 
(6.21) and (6.22).

Prove the multiplication properties given in (6.19) 
and (6.20).

6.3.6 Exercises

3

� kωTsin{ } = z ωTsin

z2 2z ωTcos 1+–
---------------------------------------------

4

yk = 0 k � 3( )
xk 3– k 3�( )⎩

⎨
⎧

1
2
----

5

1
5
----–

6 1
2
----

1
2
----

7

� sinh kα{ } = z sinh α
z2 2z cosh α 1+–
------------------------------------------

� cosh kα{ } = z2 z cosh α–

z2 2z cosh α 1+–
-------------------------------------------

8

9

10

www.20file.org

www.semeng.ir


6.4  THE INVERSE Z  TRANSFORM 495

6.4.1 Inverse techniques

Find

Solution From Figure 6.3, we see that z /(z − 2) is a special case of the transform z /(z − a), with
a = 2. Thus

Find

Solution Guided by our work on Laplace transforms, we might attempt to resolve

into partial fractions. This approach does produce the correct result, as we shall show
later. However, we notice that most of the entries in Figure 6.3 contain a factor z in the
numerator of the transform. We therefore resolve

into partial fractions, as

so that

Then using the result �−1[z /(z − a)] = {ak} together with the linearity property, we have

= {2k} − {1k} (k � 0)

so that

(6.23)

Example 6.7

� 1– z
z 2–
------------

� 1– z
z 2–
------------  = 2k{ }

Example 6.8

� 1– z
z 1–( ) z 2–( )

--------------------------------

Y z( ) = z
z 1–( ) z 2–( )

--------------------------------

Y z( )
z

----------  = 1
z 1–( ) z 2–( )

--------------------------------

Y z( )
z

----------  = 1
z 2
------------ 1

– z 1–
------------–

Y z( ) = z
z 2
------------ z

– z 1–
------------–

� 1– Y z( )[ ] = � 1– z
z 2
------------ z

– z 1–
------------–⎝ ⎠

⎛ ⎞  = � 1– z
z 2–
------------⎝ ⎠

⎛ ⎞ � 1– z
z 1–
------------⎝ ⎠

⎛ ⎞–

� 1– z
z 1–( ) z 2–( )

--------------------------------  = 2k 1–{ } k 0�( )
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Suppose that in Example 6.8 we had not thought so far ahead and we had simply
resolved Y(z), rather than Y(z) /z, into partial fractions. Would the result be the same?
The answer of course is ‘yes’, as we shall now show. Resolving

into partial fractions gives

which may be written as

Since

it follows from the first shift property (6.15) that

Similarly,

Combining these last two results, we have

which, as expected, is in agreement with the answer obtained in Example 6.8.
We can see that adopting this latter approach, while producing the correct result,

involved extra effort in the use of a shift theorem. When possible, we avoid this by
‘extracting’ the factor z as in Example 6.8, but of course this is not always possible,
and recourse may be made to the shift property, as Example 6.9 illustrates.

The inverse z-transform {xk} of X(z) is returned in MATLAB using the command

iztrans(X(z),k)

[Note: The command iztrans(X(z)) by itself returns the inverse transform
expressed in terms of n rather than k.]

For the z-transform in Example 6.8 the MATLAB command

iztrans(z/((z-1)*(z-2)),k)

Y z( ) = z
z 1–( ) z 2–( )

--------------------------------

Y z( ) = 2
z 2
------------ 1

– z 1–
------------–

Y z( ) = 1
z
---- 2z

z 2–
------------ 1

z
---- z

z 1–
------------–

� 1– 2z
z 2
------------  = 2� 1– z

– z 2–
------------⎝ ⎠

⎛ ⎞  = 2 2k{ }

� 1– 1
z
---- 2z

z 2–
------------  = 2 2k−1⋅{ } k � 0( )

0 k = 0( )⎩
⎨
⎧

� 1– 1
z
---- z

z 1–
------------ = 1k−1{ } = 1{ } k � 0( )

0  k = 0( )⎩
⎨
⎧

� 1– Y z( )[ ] = � 1– 1
z
---- 2z

z 2–
------------ � 1– 1

z
---- z

z 1–
------------–

= 2k 1–{ } k � 0( )
 0  k = 0( )⎩

⎨
⎧
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Find

Solution In this case there is no factor z available in the numerator, and so we must resolve

into partial fractions, giving

Since

it follows from the first shift property (6.15) that

Then, from the linearity property,

returns

ans=-1+2^k

as required.
The inverse z-transform can be performed in MAPLE using the invztrans

function, so that the command

invztrans(z/(z^2-3*z+2)z,k);

also returns the answer

2k − 1

Example 6.9

� 1– 2z 1+
z 1+( ) z 3–( )

----------------------------------

Y z( ) = 2z 1+
z 1+( ) z 3–( )

----------------------------------

Y z( ) = 1
4
----

1
z 1+
----------- 7

4
----

1
z 3–
------------  = 1

4
----

1
z
---- z

z 1+
----------- 7

4
----

1---- z
z z 3–

------------++

� 1– z
z 1+
----------- = 1–( )k{ } k 0�( )

� 1– z
z 3–
------------  = 3k{ } k 0�( )

� 1– 1
z
---- z

z 1+
-----------  = 1–( )k−1{ } k � 0( )

0  k = 0( )⎩
⎨
⎧

� 1– 1
z
---- z

z 3–
------------  = 3k−1 k � 0( )

0 k = 0( )⎩
⎨
⎧

� 1– Y z( )[ ] = 1
4
---- �

1– 1
z
---- z

z 1+
----------- 7

4
---- �

1– 1
z
---- z

z 3–
------------+
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giving

It is often the case that the rational function P(z) /Q(z) to be inverted has a quadratic
term in the denominator. Unfortunately, in this case there is nothing resembling the
first shift theorem of the Laplace transform which, as we saw in Section 5.2.9, proved
so useful in similar circumstances. Looking at Figure 6.3, the only two transforms with
quadratic terms in the denominator are those associated with the sequences {cos kωT}
and {sin kωT}. In practice these prove difficult to apply in the inverse form, and a
‘first principles’ approach is more appropriate. We illustrate this with two examples,
demonstrating that all that is really required is the ability to handle complex numbers
at the stage of resolution into partial fractions.

Invert the z transform

where a is a real constant.

Solution In view of the factor z in the numerator, we resolve Y(z)/z into partial fractions, giving

That is

In MATLAB the command

iztrans((2*z+1)/((z+1)*(z-3)),k)

returns

ans=-1/3*charfcn[0](k)–1/4*(-1)^k+7/12*3^k

[Note: The charfcn function is the characteristic function of the set A, and is defined
to be

Thus charfcn [0](k) = 1 if k = 0 and 0 otherwise.]
It is left as an exercise to confirm that the answer provided using MATLAB

concurs with the calculated answer.

� 1– 2z 1+
z 1+( ) z 3–( )

----------------------------------  = 
1
4
---- 1–( )k−1 7

4
---- 3

k−1+{ } k � 0( )

0 k = 0( )⎩
⎨
⎧

charfcn[A](k)
1 if k is in A

0 if k is not in A⎩
⎨
⎧

=

Example 6.10

Y z( ) = z

z2 a2+
---------------

Y z( )
z

----------  = 1

z2 a2+
---------------  = 1

z ja+( ) z ja–( )
-------------------------------------  = 1

j2a
-------- 1

z ja–( )
------------------ 1

j2a
-------- 1

z ja+( )
--------------------–

Y z( ) = 1
j2a
--------- z

z ja–
-------------- z

z ja+
-------------–⎝ ⎠

⎛ ⎞
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Using the result �−1[z/(z − a)] = {a k}, we have

From the relation e jθ  = cosθ + j sinθ, we have

j = e jπ /2, − j = e−jπ /2

so that

The linearity property then gives

Whilst MATLAB or MAPLE may be used to obtain the inverse z transform when
complex partial fractions are involved, it is difficult to convert results into a simple
form, the difficult step being that of expressing complex exponentials in terms of
trigonometric functions.

Invert

Solution The denominator of the transform may be factorized as

In exponential form we have  so the denominator may be written as

z2 − z + 1 = (z − e jπ /3)(z − e−jπ /3)

We then have

which can be resolved into partial fractions as

� 1– z
z ja–
--------------  = ja( )k{ } = jkak{ }

� 1– z
z ja+
-------------  = ja–( )k{ } = j–( )kak{ }

� 1– z
z ja–
--------------  = ak ejπ/2( )k{ } = akejkπ/2{ } = ak 1

2
---kπcos j sin 1

2
---kπ+( ){ }

� 1– z
z ja+
-------------  = ak 1

2
---kπcos j sin 1

2
---kπ–( ){ }

� 1– Y z( )[ ] = ak

j2a
--------- 1

2
---kπcos j sin 1

2
---kπ+  − 1

2
---kπcos j sin 1

2
---kπ+( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

= ak 1– sin 1
2
---kπ{ }

Example 6.11

Y z( ) = z

z2 z 1+–
-----------------------

z2 z 1+–  = z 1
2
----– j �3

2
------–⎝ ⎠

⎛ ⎞ z 1
2
----– j �3

2
------+⎝ ⎠

⎛ ⎞

1
2
----  j1

2
---- �3±  = e jπ/3± ,

Y z( )
z

----------  = 1

z e jπ/3–( ) z e j– π/3–( )
--------------------------------------------------

Y z( )
z

----------  = 1

e jπ/3 e j– π/3
----------------------------- 1

– z e jπ/3–
------------------ 1

e j– π/3 e jπ/3
----------------------------- 1  

– z e j– π/3–
---------------------+

www.20file.org

www.semeng.ir


500 THE Z  TRANSFORM

Noting that sin θ = (e jθ  − e−jθ )/j2, this reduces to

Using the result �−1[z/(z − a)] = {ak}, this gives

We conclude this section with two further examples, illustrating the inversion
technique applied to frequently occurring transform types.

Find the sequence whose z transform is

Solution F(z) is unlike any z transform treated so far in the examples. However, it is readily
expanded in a power series in z−1 as

Using (6.4), it is then apparent that

�−1[F(z)] = { fk} = {1, 2, 0, 1, 0, 0, . . .}

Find �−1[G(z)] where

where a and T are positive constants.

Solution Resolving into partial fractions,

Y z( )
z

----------  = 1

j2 1
3
----πsin

---------------------- z

z e jπ/3–
------------------  − 1

j2 1
3
----πsin

---------------------- z

z e j– π/3–
---------------------

= 1

j�3
-------- z

z e jπ/3
------------------  − 1

– j�3
-------- z

z e j– π/3–
---------------------

� 1– Y z( )[ ] = 1
j�3
--------- e jkπ/3 e j– kπ/3–( ) = 2�1

3
---- 1

3
----kπsin{ }

Example 6.12

F z( ) = z
3 2z2 1+ +

z3
---------------------------

The MATLAB command

iztrans((z^3+2*z^2+1)/z^3,k)

returns

charfcn[0](k)+2*charfcn[1](k)+charfcn[3](k)

which corresponds to the sequence

{1, 2, 0, 1, 0, 0, . . .}

F z( ) = 1 2
z
---- 1

z3
-----+ +

Example 6.13

G z( ) = z 1 e aT––( )
z 1–( ) z e aT––( )

---------------------------------------

G z( )
z

-----------  = 1

z 1–
----------- 1

z e aT––
------------------–
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giving

Using the result �−1[z/(z − a)] = {ak}, we have

�−1[G(z)] = {(1 − e−akT )} (k � 0)

In this particular example G(z) is the z transform of a sequence derived by sampling the
continuous-time signal

f (t) = 1 − e−at

at intervals T.

The MATLAB commands

syms k z a T

iztrans((z*(1-exp(-a*T)))/((z-1)*(z-exp(-a*T))),k);

pretty(simple(ans))

return

ans=1-exp(-aT)k

In MAPLE the command

invztrans((z*(1-exp(-aT)))/((z-1)*(z-exp(-aT))),z,k);

returns

-  + 1

G z( ) = 1

z 1
----------- 1

– z e aT––
------------------–

1

e
aT
----⎝ ⎠

⎛ ⎞ k

Confirm your answers using MATLAB or MAPLE whenever possible.

Invert the following z transforms. Give the general 
term of the sequence in each case.

By first resolving Y(z)/z into partial fractions, find 
�−1[Y(z)] when Y(z) is given by

Find �−1[Y(z)] when Y(z) is given by

6.4.2 Exercises

11

a( ) z
z 1–
------------ b( ) z

z 1+
----------- c( ) z

z 1
2
----–

-----------

d( ) z
3z 1+
-------------- e( ) z

z j–
----------- f( ) z

z j�2+
----------------

g( ) 1
z 1–
------------ h( ) z 2+

z 1+
-----------

12

a( ) z
z 1–( ) z 2+( )

---------------------------------- b( ) z
2z 1+( ) z 3–( )

-------------------------------------

c( ) z2

2z 1+( ) z 1–( )
------------------------------------- d( ) 2z

2z2 z 1–+
--------------------------

e( ) z

z2 1+
------------- Hint: z2 1 z j+( ) z j–( )=+[ ]

f( ) z

z2 2�3z 4+–
--------------------------------- g( ) 2z2 7z–

z 1–( )2 z 3–( )
----------------------------------

h( ) z2

z 1–( )2 z2 z + 1–( )
----------------------------------------------

13

a( ) 1

z
---- 2

z7
-----+ b( ) 1 3

z2
----- 2

z9
-----–+

c( ) 3z z+ 2 5z5+
z5

------------------------------- d( ) 1 z+
z3

----------- 3z

3z 1+
---------------+

e( ) 2z3 6z2 5z 1+ + +
z2 2z 1+( )

-------------------------------------------- f( ) 2z2 7z 7+–

z 1–( )2 z 2–( )
----------------------------------

g( ) z 3–

z2 3z– 2+
--------------------------
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Discrete-time systems and difference equations
In Chapter 5 the Laplace transform technique was examined, first as a method for
solving differential equations, then as a way of characterizing a continuous-time system.
In fact, much could be deduced concerning the behaviour of the system and its pro-
perties by examining its transform-domain representation, without looking for specific
time-domain responses at all. In this section we shall discuss the idea of a linear
discrete-time system and its model, a difference equation. Later we shall see that the
z transform plays an analogous role to the Laplace transform for such systems, by
providing a transform-domain representation of the system.

6.5.1 Difference equations

First we illustrate the motivation for studying difference equations by means of an
example.

Suppose that a sequence of observations {xk} is being recorded and we receive
observation xk at (time) step or index k. We might attempt to process (for example,
smooth or filter) this sequence of observations {xk} using the discrete-time feedback
system illustrated in Figure 6.4. At time step k the observation xk enters the system as
an input, and, after combination with the ‘feedback’ signal at the summing junction S,
proceeds to the block labelled D. This block is a unit delay block, and its function is to
hold its input signal until the ‘clock’ advances one step, to step k + 1. At this time the
input signal is passed without alteration to become the signal yk+1, the (k + 1)th member
of the output sequence {yk}. At the same time this signal is fed back through a scaling
block of amplitude α to the summing junction S. This process is instantaneous, and at
S the feedback signal is subtracted from the next input observation xk+1 to provide the
next input to the delay block D. The process then repeats at each ‘clock’ step.

To analyse the system, let {rk} denote the sequence of input signals to D; then,
owing to the delay action of D, we have

yk+1 = rk

Also, owing to the feedback action,

rk = xk − αyk

where α is the feedback gain. Combining the two expressions gives

yk+1 = xk − αyk

or

yk+1 + αyk = xk (6.24)

Equation (6.24) is an example of a first-order difference equation, and it relates adjacent
members of the sequence {yk} to each other and to the input sequence {xk}.

6.5

Figure 6.4 Discrete-
time signal processing 
system.
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A solution of the difference equation (6.24) is a formula for yk, the general term of
the output sequence {yk}, and this will depend on both k and the input sequence {xk} as
well as, in this case, the feedback gain α.

Find a difference equation to represent the system shown in Figure 6.5, having input
and output sequences {xk} and {yk} respectively, where D is the unit delay block and a
and b are constant feedback gains.

Solution Introducing intermediate signal sequences {rk} and {vk} as shown in Figure 6.5, at each
step the outputs of the delay blocks are

yk+1 = vk (6.25)

vk+1 = rk (6.26)

and at the summing junction

rk = xk − avk + byk (6.27)

From (6.25),

yk+2 = vk+1

which on using (6.26) gives

yk+2 = rk

Substituting for rk from (6.27) then gives

yk+2 = xk − avk + byk

which on using (6.25) becomes

yk+2 = xk − ayk+1 + byk

Rearranging this gives

yk+2 + ayk+1 − byk = xk (6.28)

as the difference equation representing the system.

The difference equation (6.28) is an example of a second-order linear constant-
coefficient difference equation, and there are strong similarities between this and a second-
order linear constant-coefficient differential equation. It is of second order because the
term involving the greatest shift of the {yk} sequence is the term in yk+2, implying a shift
of two steps. As demonstrated by Example 6.14, the degree of shift, or the order of the
equation, is closely related to the number of delay blocks in the block diagram.

Example 6.14

Figure 6.5 The system 
for Example 6.14.
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6.5.2 The solution of difference equations

Difference equations arise in a variety of ways, sometimes from the direct modelling of
systems in discrete time or as an approximation to a differential equation describing the
behaviour of a system modelled as a continuous-time system. We do not discuss this
further here; rather we restrict ourselves to the technique of solution but examples of
applications will be apparent from the exercises. The z-transform method is based upon
the second shift property (Section 6.3.3), and it will quickly emerge as a technique
almost identical to the Laplace transform method for ordinary differential equations
introduced in Section 5.3.3. We shall introduce the method by means of an example.

If in Example 6.14, a = 1, b = 2 and the input sequence {xk} is the unit step sequence
{1}, solve the resulting difference equation (6.28).

Solution Substituting for a, b and {xk} in (6.28) leads to the difference equation

yk+2 + yk+1 − 2yk = 1 (k � 0) (6.29)

Taking z transforms throughout in (6.29) gives

�{yk+2 + yk+1 − 2yk} = �{1, 1, 1, . . . }

which, on using the linearity property and the result �{1} = z /(z − 1), may be written as

�{yk+2} + �{yk+1} − 2�{yk} = 

Using (6.16) and (6.17) then gives

[z 2Y(z) − z 2y0 − zy1] + [zY(z) − zy0] − 2Y(z) = 

which on rearranging leads to

(z 2 + z − 2)Y(z) =  + z 2y0 + z( y1 + y0) (6.30)

To proceed, we need some further information, namely the first and second terms y0 and
y1 of the solution sequence {yk}. Without this additional information, we cannot find a
unique solution. As we saw in Section 5.3.3, this compares with the use of the Laplace
transform method to solve second-order differential equations, where the values of the
solution and its first derivative at time t = 0 are required.

Suppose that we know (or are given) that

y0 = 0, y1 = 1

Then (6.30) becomes

(z 2 + z − 2)Y(z) = z + 

or

(z + 2)(z − 1)Y(z) = z + 

Example 6.15

z
z 1–
------------

z
z 1–
------------

z
z 1–
------------

z
z 1
------------

–

z
z 1–
------------
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and solving for Y(z) gives

(6.31)

To obtain the solution sequence {yk}, we must take the inverse transform in (6.31).
Proceeding as in Section 6.4, we resolve Y(z)/z into partial fractions as

and so

Using the results �−1[z/(z − a)] = {ak} and �−1[z/(z − 1)2] = {k} from Figure 6.3, we
obtain

as the solution sequence for the difference equation satisfying the conditions y0 = 0
and y1 = 1.

The method adopted in Example 6.15 is called the z-transform method for solving
linear constant-coefficient difference equations, and is analogous to the Laplace
transform method for solving linear constant-coefficient differential equations.

To conclude this section, two further examples are given to help consolidate under-
standing of the method.

Such difference equations can be solved directly in MAPLE using the rsolve
command. In the current version of the Symbolic Math Toolbox in MATLAB there
appears to be no equivalent command for directly solving a difference equation.
However, as we saw in Section 5.5.5, using the maple command in MATLAB
lets us access MAPLE commands directly. Hence, for the difference equation in
Example 6.15, using the command

maple(‘rsolve({y(k+2)+y(k+1)–2*y(k) 

=1,y(0)=0,y(1)=1},y(k))’)

in MATLAB returns the calculated answer

-2/9*(-2)^k+2/9+1/3*k

In MAPLE difference equations can be solved directly using rsolve, so that the
command

rsolve({y(k+2)+y(k+1)−2*y(k)=1,y(0)=0,y(1)=1},y(k));

returns

 -  + 

Y z( ) = z

z 2+( ) z 1–( )
--------------------------------- z

z 2+( ) z 1–( )2
------------------------------------  = z2

z 2+( ) z 1–( )2
------------------------------------+

Y z( )
z

----------  = z

z 2+( ) z 1–( )2
------------------------------------  = 1

3
----

1

z 1–( )2
------------------- 2

9
----

1

z 1–
----------- 2

9
----

1

z 2+
-------------–+

Y z( )  = 1
3
----

z

z 1–( )2
------------------- 2

9
----

z

z 1–
----------- 2

9
----

z

z 2+
-------------–+

yk{ } = 1
3
---- k 2

9
---- 2

9
---- 2–( )k–+{ } k 0�( )

2

9
-

2( 2)–
k

-----------
k

9 3
-
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Solve the difference equation

8yk+2 − 6yk+1 + yk = 9 (k � 0)

given that y0 = 1 and y1 = .

Solution Taking z transforms

8�{yk+2} − 6�{yk+1} + �{yk} = 9�{1}

Using (6.16) and (6.17) and the result �{1} = z /(z − 1) gives

8[z 2Y(z) − z 2y0 − zy1] − 6[zY(z) − zy0] + Y(z) = 

which on rearranging leads to

(8z2 − 6z + 1)Y(z) = 8z 2y0 + 8zy1 − 6zy0 + 

We are given that y0 = 1 and y1 = , so

(8z 2 − 6z + 1)Y(z) = 8z 2 + 6z + 

or

Resolving into partial fractions gives

and so

Using the result �−1{z/(z − a)} = {ak} from Figure 6.3, we take inverse transforms, to
obtain

as the required solution.

Example 6.16

3
2
----

Check that in MATLAB the command

maple(‘rsolve({8*y(k+2)–6*y(k+1)+y(k)=9,y(0)=1,

y(1)=3/2},y(k))’)

returns the calculated answer or alternatively use the command rsolve in MAPLE.

9z
z 1–
------------

9z
z 1–
------------

3
2
----

9z
z 1–
------------

Y z( )
z

----------  = 8z 6+
4z 1–( ) 2z 1–( )

---------------------------------------- 9
4z 1–( ) 2z 1–( ) z 1–( )

---------------------------------------------------------+

= 
z 3

4
----+

z 1
4
----–( ) z 1

2
----–( )

------------------------------
9
8
----

z 1
4
----–( ) z 1

2
----–( ) z 1–( )

------------------------------------------------+

Y z( )
z

----------  = 5
z 1

2
----–

----------- 4
z 1

4
----–

----------- 6
z 1

4
----–

----------- 9
z 1

2
----

----------- 3
– z 1–

------------+–+–

= 2
z 1

4
----–

----------- 4
z 1

2
----

----------- 3
– z 1–

------------+–

Y z( ) = 2z
z 1

4
----–

----------- 4z
z 1

2
----

----------- 3z
– z 1–

------------+–

yk{ } 2 1
4
----( )k

4 1
2
----( )k

3+–{ } k 0�( )=
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Solve the difference equation

yk+2 + 2yk = 0 (k � 0)

given that y0 = 1 and y1 = �2.

Solution Taking z transforms, we have

[z 2Y(z) − z 2y0 − zy1] + 2Y(z) = 0

and substituting the given values of y0 and y1 gives

z 2Y(z) − z 2 − �2z + 2Y(z) = 0

or

(z 2 + 2)Y(z) = z 2 + �2z

Resolving Y(z)/z into partial fractions gives

Following the approach adopted in Example 6.13, we write

j�2 = �2 e jπ /2, − j�2 = �2 e−jπ /2

Thus

which on taking inverse transforms gives

as the required solution.

The solution in Example 6.17 was found to be a real-valued sequence, and this
comes as no surprise because the given difference equation and the ‘starting’ values y0

and y1 involved only real numbers. This observation provides a useful check on the
algebra when complex partial fractions are involved.

Example 6.17

Y z( )
z

----------  = z �2+
z2 2+
--------------  = z �2+

z j�2+( ) z j�2–( )
-------------------------------------------

Y z( )
z

----------  = z �2+
z �2 ejπ/2–( ) z �2 e j– π/2–( )

--------------------------------------------------------------  = 1 j+( )/j2

z �2 ejπ/2–
-------------------------- 1 j–( )/j2

z �2 e j– π/2–
---------------------------–

Y z( ) = 1
j2
------ 1 j+( ) z

z �2 ejπ/2–
-------------------------- 1 j–( ) z

z �2 e j– π/2–
---------------------------–

yk{ } = 2k/2

j2
--------- 1 j+( ) e jkπ/2 1 j–( ) e j– kπ/2–

⎩ ⎭
⎨ ⎬
⎧ ⎫

= 2k/2 1
2
----kπcos sin 1

2
----kπ+( ){ } k 0�( )
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Check your answers using MATLAB or MAPLE whenever possible.

Find difference equations representing the discrete-
time systems shown in Figure 6.6.

Using z-transform methods, solve the following 
difference equations:

(a) yk+2 − 2yk+1 + yk = 0 subject to y0 = 0, y1 = 1

(b) yn+2 − 8yn+1 − 9yn = 0 subject to y0 = 2, y1 = 1

(c) yk+2 + 4yk = 0 subject to y0 = 0, y1 = 1

(d) 2yk+2 − 5yk+1 − 3yk = 0 subject to y0 = 3, y1 = 2

Using z-transform methods, solve the following 
difference equations:

(a) 6yk+2 + yk+1 − yk = 3 subject to y0 = y1 = 0

(b) yk+2 − 5yk+1 + 6yk = 5 subject to y0 = 0, y1 = 1

(c) yn+2 − 5yn+1 + 6yn = ( )n subject to y0 = y1 = 0

(d) yn+2 − 3yn+1 + 3yn = 1 subject to y0 = 1, y1 = 0

(e) 2yn+2 − 3yn+1 − 2yn = 6n + 1 subject to y0 = 1, 
y1 = 2

(f ) yn+2 − 4yn = 3n − 5 subject to y0 = y1 = 0

6.5.3 Exercises

14

Figure 6.6 The systems for Exercise 14.

15

16

1
2
----

If complex partial fractions are involved then, as was mentioned at the end of Ex-
ample 6.10, it is difficult to simplify answers when determining inverse z transforms
using MATLAB. When such partial fractions arise in the solution of difference
equations use of the command evalc alongside rsolve in MAPLE attempts to
express complex exponentials in terms of trigonometric functions, leading in most
cases to simplified answers.

Considering the difference equation of Example 6.17, using the command

maple(‘rsolve({y(k+2)+2*y(k)=0,y(0)=1,y(1)

=2^(1/2)},y(k))’)

in MATLAB returns the answer

(1/2+1/2*i)*(-i*2^(1/2))^k+(1/2–1/2*i)*(i*2^(1/2))^k

whilst using the command

maple(‘evalc(rsolve({y(k+2)+2*y(k)=0,y(0)=1,y(1)

=2^(1/2)},y(k)))’)

returns the answer

exp(1/2*log(2)*k)*cos(1/2*k*pi)+exp(1/2*log(2)*k)

*sin(1/2*k*pi)

Noting that elog2 = 2 it is readily seen that this corresponds to the calculated
answer

2k/2(cos 1
2
---- kπ + sin 1

2
---- kπ)
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A person’s capital at the beginning of, and expenditure 
during, a given year k are denoted by Ck and Ek

respectively, and satisfy the difference equations

Ck+1 = 1.5Ck − Ek

Ek+1 = 0.21Ck + 0.5Ek

(a) Show that eventually the person’s capital 
grows at 20% per annum.

(b) If the capital at the beginning of year 1 is £6000 
and the expenditure during year 1 is £3720 then 
find the year in which the expenditure is a 
minimum and the capital at the beginning of 
that year.

The dynamics of a discrete-time system are 
determined by the difference equation

yk+2
 − 5yk+1 + 6yk = uk

Determine the response of the system to the unit 
step input

given that y0 = y1 = 1.

As a first attempt to model the national economy, 
it is assumed that the national income Ik at year k
is given by

Ik = Ck + Pk + Gk

where Ck is the consumer expenditure, Pk is private 
investment and Gk is government expenditure. 
It is also assumed that the consumer spending is 
proportional to the national income in the previous 
year, so that

Ck = aIk−1 (0 � a � 1)

It is further assumed that private investment is 
proportional to the change in consumer spending 
over the previous year, so that

Pk = b(Ck − Ck−1) (0 � b � 1)

Show that under these assumptions the national 
income Ik is determined by the difference equation

Ik+2 − a(1 + b)Ik+1 + abIk = Gk+2

If a = , b = 1, government spending is at a constant 
level (that is, Gk = G for all k) and I0 = 2G, 
I1 = 3G, show that

Ik = 2[1 + ( )k/2 sin kπ]G

Discuss what happens as k → ∞.

The difference equation for current in a particular 
ladder network of N loops is

R1in+1 + R2(in+1 − in) + R2(in+1 − in+2) = 0

(0 � n � N − 2)

where in is the current in the (n + 1)th loop, and R1

and R2 are constant resistors.

(a) Show that this may be written as

in+2 − 2 coshα in+1 + in = 0 (0 � n � N − 2)

where

(b) By solving the equation in (a), show that

17

18

uk = 
0 k � 0( )
1 k 0�( )⎩

⎨
⎧

19

1
2
----

1
2
---- 1

4
----

20

α = cosh 1– 1
R1

2R2

----------+⎝ ⎠
⎛ ⎞

in = 
i1 nαsinh i0 n 1–( )αsinh–

αsinh
----------------------------------------------------------------- 2 n N� �( )

Discrete linear systems: characterization
In this section we examine the concept of a discrete-time linear system and its difference
equation model. Ideas developed in Chapter 5 for continuous-time system modelling
will be seen to carry over to discrete-time systems, and we shall see that the z transform
is the key to the understanding of such systems.

6.6.1 z transfer functions

In Section 5.6, when considering continuous-time linear systems modelled by differential
equations, we introduced the concept of the system (Laplace) transfer function. This is a
powerful tool in the description of such systems, since it contains all the information

6.6 Discrete linear systems:
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on system stability and also provides a method of calculating the response to an
arbitrary input signal using a convolution integral. In the same way, we can identify a
z transfer function for a discrete-time linear time-invariant system modelled by a difference
equation, and we can arrive at results analogous to those of Chapter 5.

Let us consider the general linear constant-coefficient difference equation model for
a linear time-invariant system, with input sequence {uk} and output sequence {yk}. Both
{uk} and {yk} are causal sequences throughout. Such a difference equation model takes
the form

anyk+n + an−1yk+n−1 + an−2 yk+n−2 + . . . + a0yk

= bmuk+m + bm−1uk+m−1 + bm−2uk+m−2 + . . . + b0uk (6.32)

where k � 0 and n, m (with n � m) are positive integers and the ai and bj are constants.
The difference equation (6.32) differs in one respect from the examples considered in
Section 6.5 in that the possibility of delayed terms in the input sequence {uk} is also
allowed for. The order of the difference equation is n if an ≠ 0, and for the system
to be physically realizable, n � m.

Assuming the system to be initially in a quiescent state, we take z transforms
throughout in (6.32) to give

(anzn + an−1z
n−1 + . . . + a0)Y(z) = (bmzm + bm−1z

m−1
 + . . . + b0)U(z)

where Y(z) = �{yk} and U(z) = �{uk}. The system discrete or z transfer function G(z)
is defined as 

and is normally rearranged (by dividing numerator and denominator by an) so that the
coefficient of z n in the denominator is 1. In deriving G(z) in this form, we have assumed
that the system was initially in a quiescent state. This assumption is certainly valid for
the system (6.32) if

y0 = y1 = . . . = yn−1 = 0

u0 = u1 = . . . = um−1 = 0

This is not the end of the story, however, and we shall use the term ‘quiescent’ to mean
that no non-zero values are stored on the delay elements before the initial time.

On writing

P(z) = bmz m + bm−1z
m−1 + . . . + b0

Q(z) = anz n + an−1z
n−1 + . . . + a0

the discrete transfer function may be expressed as

As for the continuous model in Section 5.6.1, the equation Q(z) = 0 is called the
characteristic equation of the discrete system, its order, n, determines the order of the
system, and its roots are referred to as the poles of the discrete transfer function. Like-
wise, the roots of P(z) = 0 are referred to as the zeros of the discrete transfer function.

(6.33)G z( ) = Y z( )
U z( )
-----------  = 

bmzm bm−1zm−1 … b0+ + +
anzn an−1zn−1 … a0+ + +

--------------------------------------------------------------

G z( ) = P z( )
Q z( )
-----------
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Draw a block diagram to represent the system modelled by the difference equation

yk+2 + 3yk+1 − yk = uk (6.34)

and find the corresponding z transfer function.

Solution The difference equation may be thought of as a relationship between adjacent members
of the solution sequence {yk}. Thus at each time step k we have from (6.34)

yk+2 = −3yk+1 + yk + uk (6.35)

which provides a formula for yk+2 involving yk, yk+1 and the input uk. The structure shown
in Figure 6.7(a) illustrates the generation of the sequence {yk} from {yk+2} using two
delay blocks.

We now use (6.35) as a prescription for generating the sequence {yk+2} and arrange
for the correct combination of signals to be formed at each step k at the input summing
junction S of Figure 6.7(a). This leads to the structure shown in Figure 6.7(b), which is
the required block diagram.

We can of course produce a block diagram in the z-transform domain, using a similar
process. Taking the z transform throughout in (6.34), under the assumption of a quiescent
initial state, we obtain

z 2Y(z) + 3zY(z) − Y(z) = U(z) (6.36)

or

z 2Y(z) = −3zY(z) + Y(z) + U(z) (6.37)

The representation (6.37) is the transform-domain version of (6.35), and the z-transform
domain basic structure corresponding to the time-domain structure of Figure 6.7(a) is
shown in Figure 6.8(a).

The unit delay blocks, labelled D in Figure 6.7(a), become ‘1/z’ elements in the
z-transform domain diagram, in line with the first shift property (6.15), where a number
k0 of delay steps involves multiplication by .

It is now a simple matter to construct the ‘signal’ transform z 2Y(z) from (6.37) and
arrange for it to be available at the input to the summing junction S in Figure 6.8(a).
The resulting block diagram is shown in Figure 6.8(b).

Example 6.18

Figure 6.7
(a) The basic second-
order block diagram 
substructure; (b) block 
diagram representation 
of (6.34).

z
−k0

Figure 6.8 (a) The 
z-transform domain 
basic second-order 
block diagram 
substructure; 
(b) the z-transform 
domain block 
diagram representation 
of (6.34).
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The z transfer function follows at once from (6.36) as

(6.38)

A system is specified by its z transfer function

What is the order n of the system? Can it be implemented using only n delay elements?
Illustrate this.

Solution If {uk} and {yk} denote respectively the input and output sequences to the system
then

so that

(z 2 + 3z + 2)Y(z) = (z − 1)U(z)

Taking inverse transforms, we obtain the corresponding difference equation model
assuming the system is initially in a quiescent state

yk+2 + 3yk+1 + 2yk = uk+1 − uk (6.39)

The difference equation (6.39) has a more complex right-hand side than the difference
equation (6.34) considered in Example 6.18. This results from the existence of z
terms in the numerator of the transfer function. By definition, the order of the
difference equation (6.39) is still 2. However, realization of the system with two
delay blocks is not immediately apparent, although this can be achieved, as we shall
now illustrate.

Introduce a new signal sequence {rk} such that

(z 2 + 3z + 2)R(z) = U(z) (6.40)

where R(z) = �{rk}. In other words, {rk} is the output of the system having transfer
function 1/(z 2 + 3z + 2).

Multiplying both sides of (6.40) by z, we obtain

z(z 2 + 3z + 2)R(z) = zU(z)

or

(z 2 + 3z + 2)zR(z) = zU(z) (6.41)

Subtracting (6.40) from (6.41) we have

(z 2 + 3z + 2)zR(z) − (z 2 + 3z + 2)R(z) = zU(z) − U(z)

giving

(z 2 + 3z + 2)[zR(z) − R(z)] = (z − 1)U(z)

G z( ) = Y z( )
U z( )
-------------  = 1

z2 3z 1–+
--------------------------

Example 6.19

G z( ) = z 1–

z2 3z 2+ +
-------------------------

G z( ) = Y z( )
U z( )
-------------  = z 1–

z2 3z 2+ +
-------------------------
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Finally, choosing

Y(z) = zR(z) − R(z) (6.42)

(z 2 + 3z + 2)Y(z) = (z − 1)U(z)

which is a realization of the given transfer function.
To construct a block diagram realization of the system, we first construct a block

diagram representation of (6.40) as in Figure 6.9(a). We now ‘tap off’ appropriate
signals to generate Y (z) according to (6.42) to construct a block diagram representation
of the specified system. The resulting block diagram is shown in Figure 6.9(b).

In order to implement the system, we must exhibit a physically realizable time-domain
structure, that is one containing only D elements. Clearly, since Figure 6.9(b) contains
only ‘1/z’ blocks, we can immediately produce a realizable time-domain structure as
shown in Figure 6.9(c), where, as before, D is the unit delay block.

A system is specified by its z transfer function

Draw a block diagram to illustrate a time-domain realization of the system. Find a
second structure that also implements the system.

Solution We know that if �{uk} = U{z} and �{ yk} = Y(z) are the z transforms of the input and
output sequences respectively then, by definition,

(6.43)

Figure 6.9 The z-transform block diagrams for (a) the system (6.40), (b) the system (6.39), and (c) the time-domain 
realization of the system in Example 6.19.

Example 6.20

G z( ) = z

z2 0.3z 0.02+ +
-------------------------------------

G z( ) = Y z( )
U z( )
-------------  = z

z2 0.3z 0.02+ +
-------------------------------------
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which may be rewritten as

(z 2 + 0.3z + 0.02)Y(z) = zU(z)

Noting the presence of the factor z on the right-hand side, we follow the procedure of
Example 6.19 and consider the system

(z 2 + 0.3z + 0.02)R(z) = U(z) (6.44)

Multiplying both sides by z, we have

(z 2 + 0.3z + 0.02)zR(z) = zU(z)

and so, if the output Y(z) = zR(z) is extracted from the block diagram corresponding to
(6.44), we have the block diagram representation of the given system (6.43). This is
illustrated in Figure 6.10(a), with the corresponding time-domain implementation
shown in Figure 6.10(b).

To discover a second form of time-domain implementation, note that

We may therefore write

so that

Y(z) = R1(z) − R2(z)

where

(6.45a)

(6.45b)

From (6.45a), we have

(z + 0.2)R1(z) = 2U(z)

Figure 6.10 (a) The z-transform block diagram for the system of Example 6.20; and (b) the time-domain 
implementation of (a).

G z( ) = z

z2 0.3z 0.02+ +
-------------------------------------  = 2

z 0.2+
---------------- 1

z 0.1+
----------------–

Y z( ) = G z( )U z( ) = 2
z 0.2
----------------- 1

+ z 0.1+
-----------------–⎝ ⎠

⎛ ⎞ U z( )

R1 z( ) = 2
z 0.2+
-----------------U z( )

R2 z( ) = 1
z 0.1+
-----------------U z( )
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which can be represented by the block diagram shown in Figure 6.11(a). Likewise,
(6.45b) may be represented by the block diagram shown in Figure 6.11(b).

Recalling that Y(z) = R1(z) − R2(z), it is clear that the given system can be represented
and then implemented by an obvious coupling of the two subsystems represented by
(6.45a, b). The resulting z-transform block diagram is shown in Figure 6.11(c). The
time-domain version is readily obtained by replacing the ‘1/z’ blocks by D and the
transforms U(z) and Y(z) by their corresponding sequences {uk} and { yk} respectively. 

6.6.2 The impulse response

In Example 6.20 we saw that two quite different realizations were possible for the
same transfer function G(z), and others are possible. Whichever realization of the
transfer function is chosen, however, when presented with the same input sequence
{uk}, the same output sequence {yk} will be produced. Thus we identify the system as
characterized by its transfer function as the key concept, rather than any particular
implementation. This idea is reinforced when we consider the impulse response sequence
for a discrete-time linear time-invariant system, and its role in convolution sums.

Consider the sequence

{δk} = {1, 0, 0, . . . }

that is, the sequence consisting of a single ‘pulse’ at k = 0, followed by a train of zeros.
As we saw in Section 6.2.1, the z transform of this sequence is easily found from the
definition (6.1) as

�{δk} = 1 (6.46)

The sequence {δk} is called the impulse sequence, by analogy with the continuous-
time counterpart δ(t), the impulse function. The analogy is perhaps clearer on con-
sidering the transformed version (6.46). In continuous-time analysis, using Laplace
transform methods, we observed that �{δ(t)} = 1, and (6.46) shows that the ‘entity’

Figure 6.11 The block
diagrams for (a) the 
subsystem (6.45a), 
(b) the subsystem 
(6.45b), and (c) an 
alternative z-transform 
block diagram for 
the system of 
Example 6.20.
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with z transform equal to unity is the sequence {δk}. It is in fact the property that
�{δk} = 1 that makes the impulse sequence of such great importance.

Consider a system with transfer function G(z), so that the z transform Y(z) of the
output sequence { yk} corresponding to an input sequence {uk} with z transform U(z) is

Y(z) = G(z)U(z) (6.47)

If the input sequence {yk} is the impulse sequence {δk} and the system is initially
quiescent, then the output sequence  is called the impulse response of the system.
Hence

= Yδ (z) = G(z) (6.48)

That is, the z transfer function of the system is the z transform of the impulse response.
Alternatively, we can say that the impulse response of a system is the inverse z trans-
form of the system transfer function. This compares with the definition of the impulse
response for continuous systems given in Section 5.6.3.

Substituting (6.48) into (6.47), we have

Y(z) = Yδ (z)U(z) (6.49)

Thus the z transform of the system output in response to any input sequence {uk} is the
product of the transform of the input sequence with the transform of the system impulse
response. The result (6.49) shows the underlying relationship between the concepts of
impulse response and transfer function, and explains why the impulse response (or the
transfer function) is thought of as characterizing a system. In simple terms, if either of
these is known then we have all the information about the system for any analysis we
may wish to do.

Find the impulse response of the system with z transfer function

Solution Using (6.48),

Resolving Yδ (z)/z into partial fractions gives

which on inversion gives the impulse response sequence

yδk
{ }

� yδ k
{ }

Example 6.21

G z( ) = z

z2 3z 2+ +
-------------------------

Yδ z( ) = z

z2 3z 2+ +
------------------------- = z

z 2+( ) z 1+( )
---------------------------------

Yδ z( )
z

------------  = 1
z 2+( ) z 1+( )

---------------------------------- 1
z 1+
----------- 1

z 2+
-----------–=

Yδ k
{ } = � 1– z

z 1+
----------- z

z 2+
-----------–

= 1–( )k 2–( )k–{ } k � 0( )
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A system has the impulse response sequence

= {ak − 0.5k}

where a � 0 is a real constant. What is the nature of this response when (a) a = 0.4,
(b) a = 1.2? Find the step response of the system in both cases.

Solution When a = 0.4

= {0.4k − 0.5k}

and, since both 0.4k → 0 as k → ∞ and 0.5k → 0 as k → ∞, we see that the terms of the
impulse response sequence go to zero as k → ∞.

On the other hand, when a = 1.2, since (1.2)k → ∞ as k → ∞, we see that in this case
the impulse response sequence terms become unbounded, implying that the system
‘blows up’.

In order to calculate the step response, we first determine the system transfer function
G(z), using (6.48), as

G(z) = Yδ(z) = �{ak − 0.5k}

giving

The system step response is the system response to the unit step sequence {hk} =
{1, 1, 1, . . . } which, from Figure 6.3, has z transform

Since the impulse response of a system is the inverse z transform of its transfer func-
tion G(z) it can be obtained in MATLAB using the command

syms k z

iztrans(G(z),k)

so for the G(z) of Example 6.21

syms k z

iztrans(z/(z^2+3*z+2),k)

returns

ans=(-1)^k–(-2)^k

A plot of the impulse response is obtained using the commands

z=tf(‘z’,1);

G=G(z);

impulse(G)

Likewise in MAPLE the command

invztrans(z/(z^2+3*z+2),z,k);

returns the same answer
(−1)k − (−2)k

Example 6.22

yδ k
{ }

yδ k
{ }

G z( ) = z
z a
------------ z

– z 0.5–
---------------–
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Hence, from (6.46), the step response is determined by

so that

giving

which on taking inverse transforms gives the step response as

(6.50)

Considering the output sequence (6.50), we see that when a = 0.4, since (0.4)k → 0
as k → ∞ (and (0.5)k → 0 as k → ∞), the output sequence terms tend to the constant
value

In the case of a = 1.2, since (1.2)k → ∞ as k → ∞, the output sequence is unbounded,
and again the system ‘blows up’.

6.6.3 Stability

Example 6.22 illustrated the concept of system stability for discrete systems. When
a = 0.4, the impulse response decayed to zero with increasing k, and we observed
that the step response remained bounded (in fact, the terms of the sequence
approached a constant limiting value). However, when a = 1.2, the impulse response
became unbounded, and we observed that the step response also increased without
limit. In fact, as we saw for continuous systems in Section 5.6.3, a linear constant-
coefficient discrete-time system is stable provided that its impulse response goes to zero
as t → ∞. As for the continuous case, we can relate this definition to the poles of the
system transfer function

As we saw in Section 6.6.1, the system poles are determined as the n roots of its charac-
teristic equation

Q(z) = anzn + an−1z
n−1 + . . . + a0 = 0 (6.51)

� hk{ } = z
z 1–
------------

Y z( ) = G z( )� hk{ } = 
z

z a
------------ z

– z 0.5–
---------------–⎝ ⎠

⎛ ⎞ z
z 1–
------------

Y z( )
z

----------  = z
z a–( ) z 1–(

-------------------------------- z
) z 0.5–( ) z 1–( )

--------------------------------------–

= a
a 1–
------------- 1

z a
------------ 1

– z 0.5–
--------------- −2 1

1 a–
-------------+⎝ ⎠

⎛ ⎞ 1
z 1–
------------+–

Y z( ) = a
a 1–
------------- z

z a
------------ z

– z 0.5–
--------------- −2 1

1 a–
-------------+⎝ ⎠

⎛ ⎞ z
z 1–
------------+–

yk{ } = a
a 1–
-------------ak 0.5( )k −2 1

1 a–
-------------+⎝ ⎠

⎛ ⎞+–
⎩ ⎭
⎨ ⎬
⎧ ⎫

−2 1
1 0.4
----------------

–
+  = 0.3333

G z( ) = P z( )
Q z( )
-----------
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For instance, in Example 6.19 we considered a system with transfer function

having poles determined by z 2 + 3z + 2 = 0, that is poles at z = −1 and z = −2. Since the
impulse response is the inverse transform of G(z), we expect this system to ‘blow up’
or, rather, be unstable, because its impulse response sequence would be expected to
contain terms of the form (−1)k and (−2)k, neither of which goes to zero as k → ∞.
(Note that the term in (−1)k neither blows up nor goes to zero, simply alternating
between +1 and −1; however, (−2)k certainly becomes unbounded as k → ∞.) On
the other hand, in Example 6.20 we encountered a system with transfer function

having poles determined by

Q(z) = z 2 + 0.3z + 0.02 = (z + 0.2)(z + 0.1) = 0

that is poles at z = −0.2 and z = −0.1. Clearly, this system is stable, since its impulse
response contains terms in (−0.2)k and (−0.1)k, both of which go to zero as k → ∞.

Both of these illustrative examples gave rise to characteristic polynomials Q(z)
that were quadratic in form and that had real coefficients. More generally, Q(z) = 0
gives rise to a polynomial equation of order n, with real coefficients. From the theory
of polynomial equations, we know that Q(z) = 0 has n roots αi (i = 1, 2, . . . , n), which
may be real or complex (with complex roots occurring in conjugate pairs).

Hence the characteristic equation may be written in the form

Q(z) = an(z − α1)(z − α2) . . . (z − αn) = 0 (6.52)

The system poles αi (i = 1, 2, . . . , n) determined by (6.52) may be expressed in the polar
form

αi = (i = 1, 2, . . . , n)

where θi = 0 or π if αi is real. From the interpretation of the impulse response as the
inverse transform of the transfer function G(z) = P(z)/Q(z), it follows that the impulse
response sequence of the system will contain terms in

r1
k , r2

k , . . . , rn
k

Since, for stability, terms in the impulse response sequence must tend to zero as
k → ∞, it follows that a system having characteristic equation Q(z) = 0 will be stable
provided that

ri � 1 for i = 1, 2, . . . , n

G z( ) = z 1–

z2 3z 2+ +
-------------------------

G z( ) = z

z2 0.3z 0.02+ +
---------------------------------------

ri ejθ i

ejkθ 1 ejkθ 2 ejkθ n

Therefore a linear constant-coefficient discrete-time system with transfer function
G(z) is stable if and only if all the poles of G(z) lie within the unit circle |z | � 1 in
the complex z plane, as illustrated in Figure 6.12. If one or more poles lie outside
this unit circle then the system will be unstable. If one or more distinct poles lie on
the unit circle |z | = 1, with all the other poles inside, then the system is said to be
marginally stable.
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Which of the following systems, specified by their transfer function G(z), are stable?

Solution (a) The single pole is at z = −0.25, so r1 = 0.25 � 1, and the system is stable.

(b) The system poles are determined by

z 2 − z + 0.5 = [z − 0.5(1 + j)][z − 0.5(1 − j)] = 0

giving the poles as the conjugate pair z1 = 0.5(1 + j), z2 = 0.5(1 − j). The ampli-
tudes r1 = r2 = 0.707 � 1, and again the system is stable.

(c) The system poles are determined by

z 3 − 3z 2 + 2.5z − 1 = (z − 2)[z − 0.5(1 + j)][z − 0.5(1 − j)]

giving the poles as z1 = 2, z2 = 0.5(1 + j), z3 = 0.5(1 − j), and so their amplitudes
are r1 = 2, r2 = r3 = 0.707. Since r1 � 1, it follows that the system is unstable.

According to our definition, it follows that to prove stability we must show that all
the roots of the characteristic equation

Q(z) = z n + an−1z
n−1 + . . . + a0 = 0 (6.53)

lie within the unit circle |z | = 1 (note that for convenience we have arranged for the
coefficient of z n to be unity in (6.53) ). Many mathematical criteria have been developed
to test for this property. One such method, widely used in practice, is the Jury stability
criterion introduced by E. I. Jury in 1963. This procedure gives necessary and suffi-
cient conditions for the polynomial equation (6.53) to have all its roots inside the unit
circle |z | = 1.

The first step in the procedure is to set up a table as in Figure 6.13 using information
from the given polynomial equation (6.53) and where

. . . ,

Example 6.23

Figure 6.12 Region of
stability in the z plane.

a( ) G z( ) = 1
z 0.25+
-------------------- b( ) G z( ) = z

z2 z 0.5+–
-------------------------- c( ) G z( ) = z2

z3 3z2 2.5z 1–+–
-------------------------------------------

bk = 
1   ak

a0 an−k

, ck = 
b0 bn−1−k

bn−1 bk

, dk = 
c0 cn−2−k

cn−2 ck

,

t0 = 
r0 r2

r2 r0
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Note that the elements of row 2j + 2 consist of the elements of row 2j + 1 written in the
reverse order for j = 0, 1, 2, . . . , n; that is, the elements of the even rows consist of the
elements of the odd rows written in reverse order. Necessary and sufficient conditions
for the polynomial equation (6.53) to have all its roots inside the unit circle | z | = 1 are
then given by

(i) Q(1) � 0, (−1)nQ(−1) � 0
(6.54)

(ii) Δ1 � 0, Δ2 � 0, Δ3 � 0, . . . , Δn−2 � 0, Δn−1 � 0

Show that all the roots of the polynomial equation

F(z) = z 3 + z 2 − z −  = 0

lie within the unit circle |z | = 1.

Solution The corresponding Jury stability table is shown in Figure 6.14. In this case

(i) F(1) = 1 +  −  −  � 0

(−1)nF(−1) = (−1)3(−1 +  +  − ) � 0

(ii) Δ1 = � 0, Δ2 = � 0

Thus, by the criteria (6.54), all the roots lie within the unit circle. In this case this is
readily confirmed, since the polynomial F(z) may be factorized as

F(z) = (z − )(z + )(z + ) = 0

So the roots are z1 = , z2 = −  and z3 = − .

Row z n zn−1 zn−2 . . . zn−k . . . z2 z1 z0

1

2

3

4

5

6

7

8

�
�
2n − 5

2n − 4

2n − 3

2n − 2

2n − 1

1

a0

Δ1 = b0

bn−1

Δ2 = c0

cn−2

Δ3 = d0

dn−3

Δn−3 = s0

s3

Δn−2 = r0

r2

Δn−1 = t0

an−1

a1

b1

bn−2

c1

cn−3

d1

dn−4

s1

s2

r1

r1

an−2

a2

b2

bn−3

c2

cn−4

d2

dn−5

s2

s1

r2

r0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

s3

s0

an−k

ak

bk

bn−1−k

ck

cn−2−k

dk

dn−3−k

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

a2

an−2

bn−2

b1

cn−2

c0

a1

an−1

bn−1

b0

a0

1

Figure 6.13 Jury 
stability table for the 
polynomial equation 
(6.53).

Example 6.24

1
3
---- 1

4
---- 1

12
-------

1
3
---- 1

4
---- 1

12
-------

1
3
---- 1

4
---- 1

12
-------

143
144
---------- 143

144
----------( )2 − 4

81
-------

1
2
---- 1

2
---- 1

3
----

1
2
---- 1

2
---- 1

3
----
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The Jury stability table may also be used to determine how many roots of the
polynomial equation (6.53) lie outside the unit circle. The number of such roots is
determined by the number of changes in sign in the sequence

1, Δ1, Δ2, . . . , Δn−1

Show that the polynomial equation

F(z) = z 3 − 3z 2 − z + = 0

has roots that lie outside the unit circle |z | = 1. Determine how many such roots there are.

Solution The corresponding Jury stability table is shown in Figure 6.15. Hence, in this case

F(z) = 1 − 3 −  + = 

(−1)nF(−1) = (−1)3(−1 − 3 +  + ) = 3

As F(1) � 0, it follows from (6.54) that the polynomial equation has roots outside the
unit circle |z | = 1. From Figure 6.15, the sequence 1, Δ1, Δ2 is 1, , , and since
there is only one sign change in the sequence, it follows that one root lies outside the
unit circle. Again this is readily confirmed, since F(z) may be factorized as

F(z) = (z − )(z + )(z − 3) = 0

showing that there is indeed one root outside the unit circle at z = 3.

Figure 6.14 Jury 
stability table for 
Example 6.24.

Row z3 z2 z1 z0

1

2

3

4

5

1

= 0.936 78

11
12
-------–

Δ1

1 1
12
-------–

1
12
-------– 1

=

143
144
----------=

2
9
----–

Δ2

143
144
---------- 2

9
----–

2
9
----– 143

144
----------

=

1
3
----

1
4
----–

1 1
4
----–

1
12
-------– 1

3
----

5
16
-------=
5
16
-------

1
4
----–
1
3
----

1 1
3
----

1
12
-------– 1

4
----–

2
9
----–=

143
144
----------

1
12
-------–

Example 6.25
1
4
---- 3

4
----

Figure 6.15 Jury 
stability table for 
Example 6.25.

Row z 3 z 2 z1 z0

1

2

3

4

5

1

2

−3

−3

2

13
4
----

Δ1
7
16
-------=

Δ2
5
16
-------–=

1
4
----–
45
16
-------–
45
16
-------–

1
4
----–

7
16
-------

3
4
----

1
4
---- 3

4
---- 3

2
----–

1
4
---- 3

4
----

7
16
-------

15
16
-------–

1
2
---- 1

2
----
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Consider the discrete-time feedback system of Figure 6.16, for which T is the sampling
period and k � 0 is a constant gain:

(a) Determine the z transform G(z) corresponding to the Laplace transform G(s).

(b) Determine the characteristic equation of the system when T = 1 and k = 6 and
show that the discrete-time system is unstable.

(c) For T = 1 show that the system is stable if and only if 0 � k � 4.33.

(d) Removing the sampler show that the corresponding continuous-time feedback
system is stable for all k � 0.

Solution (a) First invert the Laplace transform to give the corresponding time-domain func-
tion f (t) and then determine the z transform of f (t):

f (t) = k − ke−t

Gd(z) = Z{k} − Z{ke−t} = 

(b) With k = 6 and T = 1

Gd(z) = 

The closed loop transfer function is

giving the characteristic equation

1 + Gd(z) = 0 as (z − 1)(z − e−1) + 6(1 − e−1)z = 0

or

z 2 + z[6(1 − e−1) − (1 + e−1)] + e−1 = 0

which reduces to

z 2 + 2.324z + 0.368 = 0

The roots of this characteristic equation are z1 = −0.171 and z2 = −2.153. Since
one of the roots lies outside the unit circle | z | = 1 the system is unstable.

Example 6.26

Figure 6.16
Discrete-time system 
of Example 6.26.

G s( ) k
s s 1+( )
-------------------- k

s
-- k

s 1+
-----------–= =

kz
z 1
------------ kz

– z e T––
----------------– kz 1 e T––( )

z 1–( ) z e T––( )
------------------------------------=

6 1 e 1––( )z

z 1–( ) z e 1––( )
-------------------------------------

Gd z( )
1 Gd z( )+
------------------------
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(c) For T = 1 and general gain k � 0 the characteristic equation of the system is

F(z) = (z − 1)(z − e−1) + k (1 − e−1)z = 0

which reduces to

F(z) = z 2 + (0.632k − 1.368)z + 0.368 = 0

By Jury’s procedure conditions for stability are:

F(1) = 1 + (0.632k − 1.368) + 0.368 � 0 since k � 0

(−1)2F(−1) = 2.736 − 0.632k � 0 provided k � 

Δ1 =  � 0

Thus F(1) � 0, (−1)2F(−1) � 0 and Δ1 � 0 and system stable if and only if k � 4.33.

(d) In the absence of the sampler the characteristic equation of the continuous-time
feedback system is 1 + G(s) = 0, which reduces to

s2 + s + k = 0

All the roots are in the negative half of the s-plane, and the system is stable, for
all k � 0.

6.6.4 Convolution

Here we shall briefly extend the concept of convolution introduced in Section 5.6.6 to
discrete-time systems. From (6.45), for an initially quiescent system with an impulse
response sequence with z transform Yδ(z), the z transform Y(z) of the output
sequence {yk} in response to an input sequence {uk} with z transform U(z) is given by

Y(z) = Yδ(z)U(z) (6.49)

For the purposes of solving a particular problem, the best approach to determining {yk}
for a given {uk} is to invert the right-hand side of (6.49) as an ordinary z transform with
no particular thought as to its structure. However, to understand more of the theory of
linear systems in discrete time, it is worth exploring the general situation a little further.
To do this, we revert to the time domain.

Suppose that a linear discrete-time time-invariant system has impulse response
sequence ,  and suppose that we wish to find the system response {yk} to an input
sequence {uk}, with the system initially in a quiescent state. First we express the
input sequence

{uk} = {u0, u1, u2, . . . un, . . . } (6.55)

as

{uk} = u0{δk} + u1{δk−1} + u2{δk−2} + . . . + un{δk−n} + . . . (6.56)

where

2.736
0.632
------------- 4.33=

  1   0.368

0.568 1

yδ k
{ }

yδ k
{ }

δk−j = 
0 k j≠( )
1 k  =  j( )⎩

⎨
⎧
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In other words, {δk−j} is simply an impulse sequence with the pulse shifted to k = j.
Thus, in going from (6.55) to (6.56), we have decomposed the input sequence {uk}
into a weighted sum of shifted impulse sequences. Under the assumption of an ini-
tially quiescent system, linearity allows us to express the response {yk} to the input
sequence {uk} as the appropriately weighted sum of shifted impulse responses. Thus,
since the impulse response is ,  the response to the shifted impulse sequence
{δk−j} will be ,  and the response to the weighted impulse sequence uj{δk−j}
will be simply uj .  Summing the contributions from all the sequences in (6.56),
we obtain

(6.57)

as the response of the system to the input sequence {uk}. Expanding (6.57), we have

{yk} = u0  + u1  + . . . + uj  + . . . 

= u0 ,  ,  , . . . , , . . . }

+ u1{0, , , . . . , , . . . }

+ u2{0, 0, , . . . , , . . . }

7

+ uh{0, 0, 0, . . . , 0, , , . . . }

↑
+ . . . hth position

From this expansion, we find that the hth term of the output sequence is deter-
mined by

(6.58)

That is,

(6.59)

The expression (6.58) is called the convolution sum, and the result (6.59) is analogous
to (5.83) for continuous systems.

A system has z transfer function

What is the system step response? Verify the result using (6.59).

yδ k
{ }

yδ k−j
{ }

yδ k−j
{ }

yk{ } = uj yδ k−j
{ }

j=0

∞

∑

yδ k
{ } yδ k−1

{ } yδ k−j
{ }

{yδ 0
yδ 1

yδ 2
yδ h

yδ 0
yδ 1

yδ h−1

yδ 0
yδ h−2

yδ 0
yδ 1

yh = ujyδ h−j

j=0

h

∑

yk{ } = ujyδ k−j

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

Example 6.27

G z( ) = z
z 1

2
----+

----------
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Solution From (6.46), the system step response is

Y(z) = G(z)�{hk}

where {hk} = {1, 1, 1, . . . }. From Figure 6.3, �{hk} = z /(z − 1), so

Resolving Y(z)/z into partial fractions gives

so

Taking inverse transforms then gives the step response as

Using (6.59), we first have to find the impulse response, which, from (6.48), is given by

= �−1[G(z)] = �−1

so that

Taking {uk} to be the unit step sequence {hk}, where hk = 1 (k � 0), the step response
may then be determined from (6.59) as

Recognizing the sum as the sum to k + 1 terms of a geometric series with common ratio
−2, we have

which concurs with the sequence obtained by direct evaluation.

Example 6.27 reinforces the remark made earlier that the easiest approach to
obtaining the response is by direct inversion of (6.32). However, (6.59), together with
the argument leading to it, provides a great deal of insight into the way in which the
response sequence {yk} is generated. It also serves as a useful ‘closed form’ for the
output of the system, and readers should consult specialist texts on signals and systems

Y z( ) = z
z 1

2
----+

---------- z
z 1–
-----------

Y z( )
z

----------  = z
z 1

2
----+( ) z 1–( )

------------------------------- 2
3
----

1
z 1–
------------ 1

3
----

1
z 1

2
----+

----------+=

Y z( ) = 2
3
----

z
z 1–
------------ 1

3
----

z
z 1

2
----+

----------+

yk{ } = 2
3
---- 1

3
---- 1

2
----–( )k+{ }

yδ k
{ }

z
z 1

2
----+

----------

yδ k
{ } = 1

2
----–( )k{ }

yk{ } = ujyδ k−j

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 1 1
2
----–( )k−j⋅

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

= 1
2
----–( )k 1

2
----–( )−j

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 1
2
----–( )k 2–( ) j

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

yk{ } 1
2
----–( )k 1 2–( )k+1–

1 2–( )–
---------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

3
---- 1

2
----–( )k 2+( ){ } 2

3
---- 1

3
---- 1

2
----–( )k+{ }= = =
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for a full discussion (P. Kraniauskas, Transforms in Signals and Systems, Addison-
Wesley, Wokingham, 1992).

The astute reader will recall that we commenced this section by suggesting that we
were about to study the implications of the input–output relationship (6.49), namely

Y(z) = Yδ(z)U(z)

We have in fact explored the time-domain input–output relationship for a linear system,
and we now proceed to link this approach with our work in the transform domain. By
definition,

so

Yδ(z)U(z) = u0  + (u0  + u1 )  + (u0  + u1  + u2 )  + . . . (6.60)

Considering the kth term of (6.60), we see that the coefficient of z−k is simply

However, by definition, since Y(z) = Yδ(z)U(z), this is also y(k), the kth term of the
output sequence, so that the latter is

as found in (6.59). We have thus shown that the time-domain and transform-domain
approaches are equivalent, and, in passing, we have established the z transform of the
convolution sum as

where

�{uk} = U(z), �{vk} = V(z)

Putting p = k − j in (6.61) shows that

(6.62)

confirming that the convolution process is commutative.

(6.61)

U z( ) = ukz
k–

k=0

∞

∑  = u0
u1

z
------

u2

z2
------ . . .

uk

zk
---- . . .+ + + + +

Yδ z( ) = yδ k
z k–  = yδ 0

yδ 1

z
-------

yδ 2

z2
------- . . .

yδ k

zk
----- . . .+ + + + +

k=0

∞

∑

yδ 0
yδ 1

yδ 0

1
z
---- yδ 2

yδ 1
yδ 0

1

z2
-----

ujyδ k−j

j=0

k

∑

yk{ } = ujyδ k−j

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

� ujvk−j

j=0

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = U z( )V z( )

ujvk−j

j=0

k

∑  = uk−pvp

p=0

k

∑
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Check your answers using MATLAB or MAPLE whenever possible.

Find the transfer functions of each of the following 
discrete-time systems, given that the system is 
initially in a quiescent state:

(a) yk+2 − 3yk+1 + 2yk = uk

(b) yk+2 − 3yk+1 + 2yk = uk+1 − uk

(c) yk+3 − yk+2 + 2yk+1 + yk = uk + uk−1

Draw a block diagram representing the discrete-
time system

yk+2 + 0.5yk+1 + 0.25yk = uk

Hence find a block diagram representation of the 
system

yk+2 + 0.5yk+1 + 0.25yk = uk − 0.6uk+1

Find the impulse response for the systems with 
z transfer function

(a) (b)

(c) (d)

Obtain the impulse response for the systems of 
Exercises 21(a, b).

Which of the following systems are stable?

(a) 9yk+2 + 9yk+1 + 2yk = uk

(b) 9yk+2 − 3yk+1 − 2yk = uk

(c) 2yk+2 − 2yk+1 + yk = uk+1 − uk

(d) 2yk+2 + 3yk+1 − yk = uk

(e) 4yk+2 − 3yk+1 − yk = uk+1 − 2uk

Use the method of Example 6.27 to calculate 
the step response of the system with transfer 
function

Verify the result by direct calculation.

Following the same procedure as in Example 6.26 
show that the closed-loop discrete-time system of 
Figure 6.17, in which k � 0 and τ � 0, is stable if 
and only if

0 � k � 2 coth( )

A sampled data system described by the difference 
equation

yn+1 − yn = un

is controlled by making the input un proportional to 
the previous error according to

where K is a positive gain. Determine the range of 
values of K for which the system is stable. Taking 
K = , determine the response of the system given 
y0 = y1 = 0.

Show that the system

yn+2 + 2yn+1 + 2yn = un+1 (n � 0)

has transfer function

Show that the poles of the system are at z = −1 + j 
and z = −1 − j. Hence show that the impulse 
response of the system is given by

hn = �−1D(z) = 2n /2 sin nπ

6.6.5 Exercises

21

22

23

z

8z2 6z 1+ +
------------------------------ z2

z2 3z 3+–
--------------------------

z2

z2 0.2z 0.08––
-------------------------------------- 5z2 12z–

z2 6z 8+–
--------------------------

24

25

26

z
z 1

2
----–

-----------

27

Figure 6.17 Discrete-time system of Exercise 27.

T
2τ
-------

28

un = K 1

2n
------ yn 1––⎝ ⎠

⎛ ⎞

2
9
----

29

D z( ) = z

z2 2z 2+ +
-------------------------

3
4
----
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The relationship between Laplace and z transforms
Throughout this chapter we have attempted to highlight similarities, where they occur,
between results in Laplace transform theory and those for z transforms. In this section
we take a closer look at the relationship between the two transforms. In Section 6.2.2
we introduced the idea of sampling a continuous-time signal f (t) instantaneously at
uniform intervals T to produce the sequence

{ f (nT )} = { f (0), f (T ), f (2T ), . . . , f(nT ), . . . } (6.63)

An alternative way of representing the sampled function is to define the continuous-
time sampled version of f (t) as f (t) where

(6.64)

The representation (6.64) may be interpreted as defining a row of impulses located at
the sampling points and weighted by the appropriate sampled values (as illustrated in
Figure 6.18). Taking the Laplace transform of f (t), following the results of Section 5.5.10,
we have

giving

(6.65)

Making the change of variable z = esT in (6.65) leads to the result

(6.66)

6.7

f t( ) = f t( )δ t nT–( )
n=0

∞

∑ = f nT( )δ t nT–( )
n=0

∞

∑

Figure 6.18 Sampled 
function f(t).

� f t( ){ } = �
0−

∞

f kT( )δ t kT–( )
k=0

∞

∑ e st– td

= f kT( )
k=0

∞

∑ �
0−

∞

δ t kT–( ) e st– td

� f t( ){ } f kT( ) e ksT–

k=0

∞

∑=

� f t( ){ } = f kT( ) z k–  = F z( )
k=0

∞

∑
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where, as in (6.10), F(z) denotes the z transform of the sequence { f (kT )}. We can
therefore view the z transform of a sequence of samples in discrete time as the Laplace
transform of the continuous-time sampled function f (t) with an appropriate change of
variable

z = esT or

In Chapter 4 we saw that under this transformation the left half of the s plane, Re(s) � 0,
is mapped onto the region inside the unit circle in the z plane, | z | � 1. This is
consistent with our stability criteria in the s and z domains.

Solution of discrete-time state-space equations
The state-space approach to the analysis of continuous time dynamic systems, developed
in Section 5.7, can be extended to the discrete-time case. The discrete form of the state-
space representation is quite analagous to the continuous form.

6.8.1 State-space model

Consider the nth-order linear time-invariant discrete-time system modelled by the
difference equation

yk+n + an−1yk+n−1 + an−2yk+n−2 + . . . + a0yk = b0uk (6.67)

which corresponds to (6.32), with bi = 0 (i � 0). Recall that {yk} is the output sequence,
with general term yk, and {uk} the input sequence, with general term uk. Following the
procedure of Section 1.9.1, we introduce state variables x1(k), x2(k), . . . , xn(k) for the
system, defined by

x1(k) = yk, x2(k) = yk+1, . . . , xn(k) = yk+n−1 (6.68)

Note that we have used the notation xi(k) rather than the suffix notation xi,k for clarity.
When needed, we shall adopt the same convention for the input term and write u(k) for
uk in the interests of consistency. We now define the state vector corresponding to this
choice of state variables as x(k) = [x1(k) x2(k) . . . xn(k)]T. Examining the system
of equations (6.68), we see that

x1(k + 1) = yk+1 = x2(k)

x2(k + 1) = yk+2 = x3(k)

7

xn−1(k + 1) = yk+n−1 = xn(k)

xn(k + 1) = yk+n

= −an−1yk+n−1 − an−2yk+n−2 − . . . − a0yk + b0uk

= −an−1xn(k) − an−2xn−1(k) − . . . − a0x1(k) + b0u(k)

using the alternative notation for uk.

s = 1
T
---- zln

6.8
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We can now write the system in the vector–matrix form

(6.69)

which corresponds to (1.60) for a continuous-time system. Again, we can write this
more concisely as

x(k + 1) = Ax(k) + bu(k) (6.70)

where A  and b are defined as in (6.69). The output of the system is the sequence {yk},
and the general term yk = x1(k) can be recovered from the state vector x(k) as

y(k) = x1(k) = [1 0 0 . . . 0]x (k) = cTx(k) (6.71)

As in the continuous-time case, it may be that the output of the system is a combination
of the state and the input sequence {u(k)}, in which case (6.71) becomes

y(k) = cTx(k) + du(k) (6.72)

Equations (6.70) and (6.72) constitute the state-space representation of the system,
and we immediately note the similarity with (1.63a, b) derived for continuous-time
systems. Likewise, for the multi-input–multi-output case the discrete-time state-space
model corresponding to (1.69a, b) is

x(k + 1) = Ax(k) + Bu(k) (6.73a)

y(k) = Cx(k) + Du(k) (6.73b)

Determine the state-space representation of the system modelled by the difference
equation

yk+2 + 0.2yk+1 + 0.3yk = uk (6.74)

Solution We choose as state variables

x1(k) = yk, x2(k) = yk+1

Thus

x1(k + 1) = x2(k)

and from (6.74),

x2(k + 1) = −0.3x1(k) − 0.2x2(k) + u(k)

The state-space representation is then

x(k + 1) = Ax(k) + bu(k), y(k) = cTx(k)

x k 1+( ) = 

x1 k 1+( )
x2 k 1+( )

7

xn k 1+( )

= 

0 1  0 0 6  0

0 0  1 0 6  0

7 7  7 7  7

0 0  0 0 6  1

−a0 −a1 −a2 −a3 6 −an−1

x1 k( )
x2 k( )

7

xn k( )

0

0

7

b0

u k( )+

Example 6.28
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with

A  = , b = , cT = [1 0]

We notice, from reference to Section 6.6.1, that the procedure used in Example 6.28
for establishing the state-space form of the system corresponds to labelling the output
of each delay block in the system as a state variable. In the absence of any reason for
an alternative choice, this is the logical approach. Section 6.6.1 also gives a clue
towards a method of obtaining the state-space representation for systems described by
the more general form of (6.32) with m � 0. Example 6.19 illustrates such a system,
with z transfer function

The block diagram for this system is shown in Figure 6.9(c) and reproduced for
convenience in Figure 6.19. We choose as state variables the outputs from each delay
block, it being immaterial whether we start from the left- or the right-hand side of the
diagram (obviously, different representations will be obtained depending on the choice
we make, but the different forms will yield identical information on the system).
Choosing to start on the right-hand side (that is, with x1(k) the output of the right-hand
delay block and x2(k) that of the left-hand block), we obtain

x1(k + 1) = x2(k)

x2(k + 1) = −3x2(k) − 2x1(k) + u(k)

with the system output given by

y(k) = −x1(k) + x2(k)

Thus the state-space form corresponding to our choice of state variables is

x(k + 1) = Ax(k) + bu(k), y(k) = cTx(k)

with

A  = , b = , cT = [−1 1]

We notice that, in contrast with the system of Example 6.28, the row vector cT = [−1 1]
now combines contributions from both state variables to form the output y(k).

0  1

−0.3 −0.2

0

1

G z( ) = z 1–

z2 3z 2+ +
-------------------------

Figure 6.19 Block 
diagram of system 
with transfer 
function G(z) = 
(z − 1)/(z 2 + 3z + 2).

0 1

−2 −3

0

1
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6.8.2 Solution of the discrete-time state equation

As in Section 1.10.1 for continuous-time systems, we first consider the unforced or
homogeneous case

x(k + 1) = Ax(k) (6.75)

in which the input u(k) is zero for all time instants k. Taking k = 0 in (6.75) gives

x(1) = Ax(0)

Likewise, taking k = 1 in (6.75) gives

x(2) = Ax(1) = A 2x(0)

and we readily deduce that in general

Equation (6.76) represents the solution of (6.75), and is analogous to (1.80) for the
continuous-time case. We define the transition matrix ΦΦΦ(k) of the discrete-time
system (6.75) by

ΦΦΦ(k) = A k

and it is the unique matrix satisfying

ΦΦΦ(k + 1) = AΦΦΦ(k), ΦΦΦ(0) = I

where I is the identity matrix.
Since A  is a constant matrix, the methods discussed in Section 1.7 are applicable for

evaluating the transition matrix. From (1.34a),

A k = α 0(k)I + α 1(k)A  + α 2(k)A 2 + . . . + α n−1(k)An−1 (6.77)

where, using (1.34b), the α i(k) (k = 0, . . . , n − 1) are obtained by solving simultane-
ously the n equations

λk
j = α 0(k) + α 1(k)λ j + α 2(k)λ2

j + . . . + α n−1(k)λ j
n−1 (6.78)

where λ j ( j = 1, 2, . . . , n) are the eigenvalues of A . As in Section 1.7, if A  has repeated
eigenvalues then derivatives of λk with respect to λ will have to be used. The method
for determining A k is thus very similar to that used for evaluating eA t in Section 1.10.3.

Obtain the response of the second-order unforced discrete-time system

x(k + 1) = 

subject to x(0) = [1 1]T.

Solution In this case the system matrix is

x(k) = A kx(0) (k � 0) (6.76)

Example 6.29

x1 k( )

x2 k( )
= 

1
2
---- 0

−1 1
3
----

x k( )

A = 
1
2
---- 0

−1 1
3
----
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having eigenvalues λ 1 =  and λ 2 = . Since A  is a 2 × 2 matrix, it follows from (6.77)
that

A k = α 0(k)I + α 1(k)A

with α 0(k) and α 1(k) given from (6.78),

λ k
j = α 0(k) + α 1(k)λ j ( j = 1, 2)

Solving the resulting two equations

( )k = α 0(k) + ( )α 1(k), ( )k = α 0(k) + ( )α 1(k)

for α 0(k) and α 1(k) gives

α 0(k) = 3( )k − 2( )k, α 1(k) = 6[( )k − ( )k]

Thus the transition matrix is

ΦΦΦ (k) = A k =

Note that ΦΦΦ (0) = I, as required.
Then from (6.76) the solution of the unforced system is

x(k + 1) =

Having determined the solution of the unforced system, it can be shown that the
solution of the state equation (6.73a) for the forced system with input u(k), analogous
to the solution given in (1.81) for the continuous-time system

t = Ax + Bu

is

Having obtained the solution of the state equation, the system output or response y (k)
is obtained from (6.73b) as

In Section 5.7.1 we saw how the Laplace transform could be used to solve the state-
space equations in the case of continuous-time systems. In a similar manner, z trans-
forms can be used to solve the equations for discrete-time systems.

1
2
---- 1

3
----

1
2
---- 1

2
---- 1

3
---- 1

3
----

1
3
---- 1

2
---- 1

2
---- 1

3
----

1
2
----( )k

0

6 1
3
----( )k 1

2
----( )k–[ ] 1

3
----( )k

1
2
----( )k

0

6 1
3
----( )k 1

2
----( )k–[ ] 1

3
----( )k

1

1
 = 

1
2
----( )k

7 1
3
----( )k

6 1
2
----( )k–

x(k) = A kx(0) + (6.79)Ak−j−1 Bu j( )
j=0

k−1

∑

y(k) = CA kx(0) + (6.80)C Ak−j−1 Bu j( ) Du k( )+
j=0

k−1

∑
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Defining �{x(k)} = X(z) and �{u(k)} = U(z) and taking z transforms throughout in
the equation

x(k + 1) = Ax(k) + Bu(k)

gives

zX(z) − zx(0) = AX(z) + BU(z)

which, on rearranging, gives

(zI − A )X(z) = zx(0) + BU(z)

where I is the identity matrix. Premultiplying by (zI − A )−1 gives

X(z) = z(zI − A )−1x(0) + (zI − A )−1BU(z) (6.81)

Taking inverse z transforms gives the response as

which corresponds to (5.89) in the continuous-time case.
On comparing the solution (6.82) with that given in (6.79), we see that the transition

matrix ΦΦΦ(t) = A k may also be written in the form

This is readily confirmed from (6.81), since on expanding z(zI − A )−1 by the binomial
theorem, we have

z(zI − A )−1 = 

Using the z-transform approach, obtain an expression for the state x(k) of the system
characterized by the state equation

x(k + 1) = (k � 0)

when the input is the unit step function

and subject to the initial condition x(0) = [1 −1]T.

x(k) = �−1{X(z)} = �−1{z(zI − A)−1}x(0) + �−1{(zI − A )−1BU(z)} (6.82)

ΦΦΦ(t) = A k = �−1{z(zI − A )−1}

I  + A
z
-----  + A

2

z2
-------  + . . . + A

r

zr
-----  + . . .

= Ar

zr
-----

r=0

∞

∑ � Ak{ }=

Example 6.30

2 5

−3 −6
x k( ) + 

1

1
u k( )

u k( ) = 0 k � 0( )
1 k � 0( )⎩

⎨
⎧

www.20file.org

www.semeng.ir


536 THE Z  TRANSFORM

Solution In this case

giving

(zI − A )−1 =

=

Then

�−1{z(zI − A )−1} = �−1 

=

so that, with x(0) = [1 −1]T, the first term in the solution (6.82) becomes

�−1{z(zI − A )−1}x(0) = (6.83)

Since U(z) = �{u(k)} = z /(z − 1),

(zI − A )−1BU(z) = 

= 

= 

A = 
2 5

−3 −6
so zI A–  = z − 2 −5

3 z + 6

1
z + 1( ) z + 3( )

------------------------------------- z + 6 5

−3 z − 2

5
2
----

z + 1
-------------- − 

3
2
----

z + 3
--------------

5
2
----

z + 1
-------------- − 

5
2
----

z + 3
--------------

−3
2
----

z + 1
-------------- + 

3
2
----

z + 3
--------------

−3
2
----

z + 1
-------------- + 

5
2
----

z + 3
--------------

5
2
----

z
z + 1
-------------- − 3

2
----

z
z + 3
-------------- 5

2
----

z
z + 1
-------------- − 5

2
----

z
z + 3
--------------

−3
2
----

z
z + 1
-------------- + 3

2
----

z
z + 3
-------------- −3

2
----

z
z + 1
-------------- + 5

2
----

z
z + 3
--------------

5
2
---- −1( )k − 3

2
---- −3( )k 5

2
---- −1( )k − 5

2
---- −3( )k

−3
2
---- −1( )k + 3

2
---- −3( )k −3

2
---- −1( )k + 5

2
---- −3( )k

−3( )k

− −3( )k

1
z + 1( ) z + 3( )

------------------------------------- z + 6 5

−3 z − 2

1

1

z
z − 1
--------------

z
z − 1( ) z + 1( ) z + 3(

-------------------------------------------------------
z + 11

) z − 5

3
2
----

z
z − 1
-------------- − 5

2
----

z
z + 1
-------------- + z

z + 3
--------------

−1
2
----

z
z − 1
-------------- + 3

2
----

z
z + 1
-------------- − z

z + 3
--------------
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so that the second term in the solution (6.82) becomes

�−1{(zI − A )−1BU(z)} = (6.84)

Combining (6.83) and (6.84), the response x(k) is given by

x(k) =

Having obtained an expression for a system’s state x(t), its output, or response, y(t) may
be obtained from the linear transformation (6.73b).

3
2
---- − 5

2
---- −1( )k + −3( )k

−1
2
---- + 3

2
---- −1( )k − −3( )k

3
2
---- − 5

2
---- −1( )k + 2 −3( )k

−1
2
---- + 3

2
---- −1( )k − 2 −3( )k

Check your answers using MATLAB or MAPLE whenever possible.

Use z transforms to determine A k for the matrices

Solve the discrete-time system specified by

x(k + 1) = −7x(k) + 4y(k)

y(k + 1) = −8x(k) + y(k)

with x(0) = 1 and y(0) = 2, by writing it in the form 
x(k + 1) = Ax(k). Use your answer to calculate x(1) 
and x(2), and check your answers by calculating 
x(1), y(1), x(2), y(2) directly from the given 
difference equations.

Using the z-transform approach, obtain an 
expression for the state x(k) of the system 
characterized by the state equation

u(k)

when the input is the unit step function

and subject to the initial condition x(0) = [1 −1]T.

The difference equation

y(k + 2) = y(k + 1) + y(k)

with y(0) = 0, and y(1) = 1, generates the Fibonacci 
sequence { y(k)}, which occurs in many practical 
situations. Taking x1(k) = y(k) and x2(k) = y(k + 1), 
express the difference equation in state-space form 
and hence obtain a general expression for y(k). 
Show that as k → ∞ the ratio y(k + 1)/y(k) tends 
to the constant (�5 + 1). This is the so-called 
Golden Ratio, which has intrigued mathematicians 
for centuries because of its strong influence on art 
and architecture. The Golden Rectangle, that is one 
whose two sides are in this ratio, is one of the most 
visually satisfying of all geometric forms.

6.8.3 Exercises

30

a( ) 
0 1

4 0
b( ) 

−1 3

3 −1
c( ) 

−1 1

0 −1

31

32

x k + 1( ) = 
0 1

−0.16 −1
x k( ) + 1

1

u k( ) = 
0 k � 0( )
1 k � 0( )⎩

⎨
⎧

33

1
2
----
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Discretization of continuous-time state-space models
In Sections 1.10 and 5.7 we considered the solutions of the continuous-time state-space
model

G(t) = Ax(t) + Bu(t) (6.85a)

y(t) = Cx(t) (6.85b)

If we wish to compute the state x(t) digitally then we must first approximate the continuous
model by a discrete-time state-space model of the form

x[(k + 1)T ] = Gx(kT) + Hu(kT) (6.86a)

y(kT) = Cx(kT ) (6.86b)

Thus we are interested in determining matrices G and H such that the responses to the
discrete-time model (6.86) provide a good approximation to sampled-values of the
continuous-time model (6.85). We assume that sampling occurs at equally spaced
sampling instances t = kT, where T � 0 is the sampling interval. For clarification we
use the notation x(kT ) and x[(k + 1)T ] instead of k and (k + 1) as in (6.73).

6.9.1 Euler’s method

A simple but crude method of determining G and H is based on Euler’s method con-
sidered in Section 10.6 of Modern Engineering Mathematics. Here the derivative of the
state is approximated by

G(t) ≅ 

which on substituting in (6.85a) gives

≅ Ax(t) + Bu(t)

which reduces to

x(t + T ) ≅ (TA + I )x(t) + TBu(t) (6.87)

Since t is divided into equally spaced sampling intervals of duration T we take t = kT,
where k is the integer index k = 0, 1, 2, . . . , so that (6.87) becomes

x[(k + 1)T ] ≅ (TA + I )x(kT ) + TBu(kT ) (6.88)

Defining

G = G1 = (TA + I ) and H = H1 = TB (6.89)

(6.86) then becomes the approximating discrete-time model to the continuous-time
model (6.85). This approach to discretization is known as Euler’s method and simply
involves a sequential series of calculations.

6.9

x t T+( ) x T( )–
T

--------------------------------------

x t T+( ) x t( )–
T

-----------------------------------
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Consider the system modelled by the second-order differential equation

ÿ(t) + 3I(t) + 2y = 2u(t)

(a) Choosing the state-vector x = [ y I]T express this in a state-space form.

(b) Using Euler’s method, determine the approximating discrete-time state-space
model.

(c) Illustrate by plotting the responses y(t), for both the exact continuous response
and the discretized responses, for a step input u(t) = 1 and zero initial conditions,
taking T = 0.2

Solution (a) Since x1 = y, x2 = I we have that

E1 = I = x2

E2 = ÿ = −2x1 − 3x2 + 2u

so the state-space model is

(b) From (6.89)

G1 = TA + I = 

H1 = TB = 

so the discretized state-space model is

(c) Using the MATLAB commands:

A = [0,1;-2,-3]; B = [0;2]; C = [1,0];

K = 0;

for T = 0.2

k = k + 1;

G1 = [1,T;-2*T,-3*T+1]; H1 = [0;2*T];

Example 6.31

E1

E2

0 1

2– 3–

x1

x2

0

2
u t( )+=

y 1 0[ ] x1

x2

=

1 T

2T– 3T– 1+

0

2T

x1 k 1+( )T[ ]
x2 k 1+( )T[ ]

1 T

2T– 3T– 1+

x1 kT( )
x2 kT( )

0

2T
u kT( )+=

y kT( ) 1 0[ ] x1 kT( )
x2 kT( )

=

www.20file.org

www.semeng.ir


540 THE Z  TRANSFORM

T = T*[0:30];

y = step(A,B,C,0,1,t); yd = dstep(G1,H1,C,0,1,31);

plot(t,y,t,yd,’x’)

end

step responses for both the continuous model and the Euler discretized model are
displayed in Figure 6.20 with ‘×’ denoting the discretized response.

6.9.2 Step-invariant method

To determine the matrices G and H in the discrete-time model (6.86), use is made of
the explicit solution to the state equation (6.85a). From (1.81) the solution of (6.85a) is
given by

(6.90)

Taking t0 = kT and t = (k + 1)T in (6.90) gives

Making the substitution τ = τ1 − kT in the integral gives

(6.91)

Figure 6.20
Discretization using 
Euler’s method.

x t( ) e
A t−t0( )

x t0( ) �
t0

t

e
A t−τ 1( )

Bu τ1( )  dτ1 +=

x k 1+( )T[ ] eATx kT( ) �
kT

k+1( )T

e
A k+1( )T−τ 1[ ]

Bu τ1( )  dτ1 +=

x k 1+( )T[ ] eATx kT( ) �
0

T

eA T−τ( )Bu kT τ+( )  dτ +=
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The problem now is: How do we approximate the integral in (6.91)? The simplest
approach is to assume that all components of u(t) are constant over intervals between
two consecutive sampling instances so

u(kT + τ) = u(kT ), 0 � τ � T, k = 0, 1, 2, . . .

The integral in (6.91) then becomes

Defining

G = eAT (6.92a)

and H =  = , using substitution t = (T − τ) (6.92b)

then (6.91) becomes the discretized state equation

x[(k + 1)T] = Gx(kT ) + Hu(kT) (6.93)

The discretized form (6.93) is frequently referred to as the step-invariant method.

Comments

1. From Section (5.7.1) we can determine G using the result

eAt = � −1{(sI − A)−1} (6.94)

2. If the state matrix A is invertible then from (1.37)

H =  = A−1(G − I )B = (G − I )A−1B (6.95)

3. Using the power series expansion of eAt given in (1.27) we can express G and H
as the power series

G = I  + TA  +  + . . . = (6.96)

H = (TI +  + . . .)B = (6.97)

We can approximate G and H by neglecting higher-order terms in T. In the par-
ticular case when we neglect terms of order two or higher in T results (6.97) give

G = I + TA and H = TB

which corresponds to Euler’s discretization.

 �
0

T

eA T−τ( )B dτ u kτ( )

�
0

T

e T−τ( )B dτ �
0

T

eAtB dt

�
0

T

eAtB dτ

T 2A2

2!
------------- T rAr

r!
------------

r=0

∞

∑

T 2A
2!

-----------
T rAr−1

r!
---------------

r=1

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

B
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Using the step-invariant method, obtain the discretized form of the state equation for
the continuous-time system

considered in Example 6.31. Plot the response y(kT) = [1 0]x(kT), for a step input
u(t) = 1 and zero initial conditions, taking T = 0.2.

Solution Using (6.93) G = eAT and H = . From (6.94)

G = � −1{(sI − A)−1} = � −1

= � −1

so that

G = eAT = 

and

H =  = 

= 

Thus, the discrete form of the state equation is

x[(k + 1)T ] = 

In the particular case T = 0.2 the state equation is

x[(k + 1)0.2] = 

Using MATLAB step responses for both the continuous-time model and the discretized
step-invariant model are displayed in Figure 6.21, with ‘×’ denoting the discretized
response.

Example 6.32

G
G1

G2

0 1

2– 3–

x1

x2

0

2
u t( )+= =

�
0

T

eAtB dt

1
Δ
---

s 3 + 1

2– 5⎩ ⎭
⎨ ⎬
⎧ ⎫

Δ, s 2+( ) s 1+( )=

1
s + 2
-------------–  + 2

s + 1
------------- 1

s + 2
-------------–  + 1

s + 1
-------------

2
s + 2
------------- 2

s + 1
-------------– 2

s + 2
------------- 1

s + 1
-------------–

e 2T––  + 2e T– e 2T––  + e T–

2e 2T– 2e T–– 2e 2T– e T––

�
0

T

eAtB dt
1
2
----e 2t– 2e t–– 1

2
----e 2t– e t––

e 2t–– 2e t–+ e 2t–– e t–+

T

0

0

2

e 2T– 2e T–– 1+

2e 2T–– 2e T–+

e 2T–– 2e T–+ e 2T–– e T–+

2e 2T– 2e T–– 2e 2T– e T––
x kT( ) e 2T– 2e T–– 1+

2e 2T–– e T–+
u kT( )+

0.9671 0.1484

0.2968– 0.5219
x k0.2( ) 0.0329

0.2968–
u k0.2( )+
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Figure 6.21
Discretization using the 
step-invariant method.

For a given value of T the matrices G and H may be determined by the step-invariant
method using the MATLAB function c2d (continuous to discrete). Thus, for the
system of Example 6.32 with T = 0.2, the commands

A = [0,1;-2,-3];
B = [0; 2];
[G,H] = c2d(A,B,0.2)

return

G = 0.9671 0.1484
-0.2968 0.5219

H = 0.0329
-0.2968

which checks with the answers given in Example 6.32.

Using the step-invariant method obtain the discretized 
form of the continuous-time state-equation

Check your answer using MATLAB for the 
particular case when the sampling period is T = 1.

An LCR circuit, with L = C = R = 1, may be 
modelled by the continuous-time state-space model

y = [1 0]x

(a) Determine the Euler form of the discretized 
state-space model.

(b) Determine the discretized state-space model 
using the step-invariant method.
(Hint: Use (6.95) to determine the H matrix.)

6.9.3 Exercises

34

G
E1

E2

0 1

0 2–

x1

x2

0

1
u t( )+= =

35

G
E1

E2

0 1

1– 1–

x1

x2

0

1
u t( )+= =
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Engineering application: design of discrete-time 
systems

An important development in many areas of modern engineering is the replacement
of analogue devices by digital ones. Perhaps the most widely known example is the
compact disc player, in which mechanical transcription followed by analogue signal
processing has been superseded by optical technology and digital signal processing.
Also, as stated in the introduction, DVD players and digital radios are setting new
standards in home entertainment. There are other examples in many fields of engineering,
particularly where automatic control is employed.

6.10 Engineering application:

(c) Using MATLAB plot, for each of the three 
models, responses to a unit step input u(t) = 1 
with zero initial conditions, taking the 
sampling period T = 0.1.

A linear continuous-time system is characterized by 
the state matrix

(a) Show that the system is stable.

(b) Show that the state matrix of the corresponding 
Euler discrete-time system is

(c) Show that stability of the discretized system 
requires T � 1.

A simple continuous-time model of a production 
and inventory control system may be represented by 
the state-space model

where x1(t) represents the actual production rate and 
x2(t) represents the current inventory level; u1(t) 

represents the scheduled production rate, u2(t) 
represents the sales rate and k1 is a constant 
gain factor.

(a) Determine, using the step-invariant method, 
the discretized form of the model. Express the 
model in the particular case when the sampling 
period T = 1.

(b) Suppose the production schedule is determined 
by the feedback policy

u1(kT ) = kc − x2(kT )

where kc is the desired inventory level. The 
system is originally in equilibrium with x1(0) 
equal to the sales rate and x2(0) = kc. At time 
t = 0 the sales rate suddenly increases by 
10%; that is, u2(t) = 1.1x1(0) for t ≥ 0. Find 
the resulting discrete-time state model, with 
sampling rate T = 1 and taking k1 = .

(c) Find the response of the given continuous-time 
model, subject to the same feedback control 
policy

u1(t) = kc − x2(t)

and the same initial conditions.

The exercise may be extended to include simulation 
studies using MATLAB.

(This exercise is adapted from an illustrative 
problem in William L. Brogan, Modern Control 
Theory, 2nd edition, Prentice-Hall, 1985.)

36

A
1– 1

1– 2–
=

Ad
1 T– T

T– 1 2T–
=

37

G t( )
E1 t( )
E2 t

=
( )

1  –  0

1 0

x1 t( )
x2 t( )

k1   0

0   1–

u1 t( )
u2 t( )

+=

3
16
-------
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6.10.1 Analogue filters

At the centre of most signal processing applications are filters. These have the effect
of changing the spectrum of input signals; that is, attenuating components of signals
by an amount depending on the frequency of the component. For example, an analogue
ideal low-pass filter passes without attenuation all signal components at frequencies
less than a critical frequency ω = ωc say. The amplitude of the frequency response
|G( jω) | (see Section 5.8) of such an ideal filter is shown in Figure 6.22.

One class of analogue filters whose frequency response approximates that of the
ideal low-pass filter comprises those known as Butterworth filters. As well as having
‘good’ characteristics, these can be implemented using a network as illustrated in
Figure 6.23 for the second-order filter.

It can be shown (see M. J. Chapman, D. P. Goodall and N. C. Steele, Signal Processing
in Electronic Communication, Horwood Publishing, Chichester, 1997) that the transfer
function Gn(s) of the nth-order filter is

where

with

Using these relations, it is readily shown that

(6.98)

(6.99)

and so on. On sketching the amplitudes of the frequency responses Gn( jω), it becomes
apparent that increasing n improves the approximation to the response of the ideal
low-pass filter of Figure 6.22.

Figure 6.22
Amplitude response 
for an ideal low-pass 
filter.

Figure 6.23
LCR network for 
implementing a 
second-order 
Butterworth filter.

Gn s( ) = 1
Bn x( )
------------- Bn x( ) = ak xk

k=0

n

∑

x = s
ωc

----- , ak = r 1–( )αcos
rαsin

------------------------------ , α = π
2n
-------

r=1

k

∏

G2 s( ) = 
ω c

2

s2 �2ωcs ω c
2+ +

----------------------------------------

G3 s( ) = 
ω c

3

s3 2ωcs
2 2ω c

2s ω+ c
3+ +

---------------------------------------------------------
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6.10.2 Designing a digital replacement filter

Suppose that we now wish to design a discrete-time system, to operate on samples
taken from an input signal, that will operate in a similar manner to a Butterworth filter.
We shall assume that the input signal u(t) and the output signal y(t) of the analogue filter
are both sampled at the same intervals T to generate the input sequence {u(kT )} and
the output sequence {y(kT )} respectively. Clearly, we need to specify what is meant
by ‘operate in a similar manner’. In this case, we shall select as our design strategy a
method that matches the impulse response sequence of the digital design with a
sequence of samples, drawn at the appropriate instants T from the impulse response of
an analogue ‘prototype’. We shall select the prototype from one of the Butterworth
filters discussed in Section 6.10.1, although there are many other possibilities.

Let us select the first-order filter, with cut-off frequency ωc, as our prototype. Then
the first step is to calculate the impulse response of this filter. The Laplace transfer
function of the filter is

So, from (5.71), the impulse response is readily obtained as

(t � 0) (6.100)

Next, we sample this response at intervals T to generate the sequence

{h(kT )} = 

which on taking the z transform, gives

Finally, we choose H(z) to be the transfer function of our digital system. This means
simply that the input–output relationship for the design of the digital system will be

Y(z) = H(z)U(z)

where Y(z) and U(z) are the z transforms of the output and input sequences {y(kT )}
and {u(kT )} respectively. Thus we have

(6.101)

Our digital system is now defined, and we can easily construct the corresponding
difference equation model of the system as

(z − )Y(z) = ωczU(z)

that is

zY(z) − Y(z) = ωczU(z)

Under the assumption of zero initial conditions, we can take inverse transforms to obtain
the first-order difference equation model

y(k + 1) − y(k) = ωcu(k + 1) (6.102)

G s( ) = 
ωc

s ωc+
--------------

h t( ) = ωc e
ω cT–

ωc e
ω ckT–

{ }

� h kT( ){ } = H z( ) = ωc
z

z e
ωcT–

–
--------------------

Y z( ) = ωc
z

z e
ωcT–

–
-------------------- U z( )

e
ω cT–

e
ω cT–

e
ω cT–
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A block diagram implementation of (6.102) is shown in Figure 6.24.

6.10.3 Possible developments

The design method we have considered is called the impulse invariant technique,
and is only one of many available. The interested reader may develop this study in
various ways:

(1) Write a computer program to evaluate the sequence generated by (6.102) with
ωc = 1, and compare with values obtained at the sampling instants for the impulse
response (6.100) of the prototype analogue filter.

(2) Repeat the design process for the second-order Butterworth filter.

(3) By setting s = jω in the Laplace transfer function of the prototype, and z = e jωT

in the z transfer function of the digital design, compare the amplitude of the
frequency responses in both cases. For an explanation of the results obtained,
see Chapter 8.

(4) An alternative design strategy is to replace s in the Laplace transfer function
with

(this is a process that makes use of the trapezoidal method of approximate
integration). Design alternative digital filters using this technique, which is
commonly referred to as the Tustin (or bilinear transform) method (see
Section 6.11.3).

(5) Show that filters designed using either of these techniques will be stable provided
that the prototype design is itself stable.

Engineering application: the delta operator and 
the � transform

6.11.1 Introduction

In recent years, sampling rates for digital systems have increased many-fold, and tradi-
tional model formulations based on the z transform have produced unsatisfactory

Figure 6.24 Block 
diagram for the digital 
replacement filter, 
α = kωc, β = e−ωct.

2
T
---- z 1–

z 1+
-----------

6.11 Engineering application:
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results in some applications. It is beyond the scope of this text to describe this situation
in detail, but it is possible to give a brief introduction to the problem and to suggest an
approach to the solution. For further details see R. M. Middleton and G. C. Goodwin,
Digital Control and Estimation, A Unified Approach (Prentice Hall, Englewood Cliffs,
NJ, 1990) or W. Forsythe and R. M. Goodall, Digital Control (Macmillan, London, 1991).
The contribution of Colin Paterson to the development of this application is gratefully
acknowledged.

6.11.2 The q or shift operator and the δδδ operator

In the time domain we define the shift operator q in terms of its effect on a sequence
{xk} as

q{xk} = {xk+1}

That is, the effect of the shift operator is to shift the sequence by one position, so that
the k th term of the new sequence is the (k + 1)th term of the original sequence. It is then
possible to write the difference equation

yk+2 + 2yk+1 + 5yk = uk+1
 − uk

as

q2yk + 2q yk + 5yk = quk − uk

or

(q2 + 2q + 5)yk = (q − 1)uk (6.103)

Note that if we had taken the z transform of the difference equation, with an initially
quiescent system, we would have obtained

(z 2 + 2z + 5)Y(z) = (z − 1)U(z)

We see at once the correspondence between the time-domain q operator and the
z-transform operator �.

The next step is to introduce the δ operator, defined as

where Δ has the dimensions of time and is often chosen as the sampling period T. Note
that

so that if Δ = T then, in the limit of rapid sampling,

Solving for q we see that

q = 1 + Δδ

δ = 
q 1–

Δ
-------------

δyk = 
q 1–( )yk

Δ
---------------------  = 

yk+1 yk–
Δ

--------------------

δyk � dy
dt
-------
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The difference equation (6.103) can thus be written as

((1 + Δδ )2 + 2(1 + Δδ ) + 5)yk = [(1 + Δδ ) − 1]uk

or

[(Δδ )2 + 4Δδ  + 8] yk = Δδuk

or, finally, as

6.11.3 Constructing a discrete-time system model

So far, we have simply demonstrated a method of rewriting a difference equation in an
alternative form. We now examine the possible advantages of constructing discrete-
time system models using the δ operator. To do this, we consider a particular example,
in which we obtain two different discrete-time forms of the second-order Butterworth
filter, both based on the bilinear transform method, sometimes known as Tustin’s
method. This method has its origins in the trapezoidal approximation to the integra-
tion process; full details are given in M. J. Chapman, D. P. Goodall and N. C. Steele,
Signal Processing in Electronic Communication (Horwood Publishing, Chichester,
1997).

The continuous-time second-order Butterworth filter with cut-off frequency ωc = 1
is modelled, as indicated by (6.98), by the differential equation

(6.104)

where u(t) is the input and y(t) the filter response. Taking Laplace transforms through-
out on the assumption of quiescent initial conditions, that is y(0) = (dy/dt)(0) = 0, we
obtain the transformed equation

(s2 + 1.414 21s + 1)Y(s) = U(s) (6.105)

This represents a stable system, since the system poles, given by

s2 + 1.414 21s + 1 = 0

are located at s = −0.70710 ± j0.70710 and thus lie in the left half-plane of the complex
s plane.

We now seek a discrete-time version of the differential equation (6.104). To do this,
we first transform (6.105) into the z domain using the bilinear transform method,
which involves replacing s by

Equation (3.74) then becomes

δ2 4δ
Δ
------ 8

Δ2
-----+ +⎝ ⎠

⎛ ⎞ yk = δ
Δ
---uk

d2y

dt2
--------- 1.414 21dy

dt
------- y u t( )=+ +

2
T
---- z 1–

z 1+
-----------

4

T 2
------- z 1–

z 1+
-----------⎝ ⎠

⎛ ⎞ 2

1.414 212
T
---- z 1–

z 1+
-----------⎝ ⎠

⎛ ⎞ 1+ + Y z( ) = U z( )

www.20file.org

www.semeng.ir


550 THE Z  TRANSFORM

or

[( T 2 + 1.414 21 × T + 4)z2 + ( T 2 − 8)z + T 2 − 1.414 21 × T + 4]Y(z)

= T 2(z2 + 2z + 1)U(z) (6.106)

We can now invert this transformed equation to obtain the time-domain model

( T 2 + 1.414 21 × T + 4)yk+2 + ( T 2 − 8)yk+1 + ( T 2 − 1.414 21 × T + 4)yk

= T 2(uk+2 + 2uk+1 + uk) (6.107)

For illustrative purposes we set T = 0.1 s in (6.107) to obtain

4.07321yk+2 − 7.995 00yk+1 + 3.93179yk = 0.025 00(uk+2 + 2uk+1 + uk)

Note that the roots of the characteristic equation have modulus of about 0.9825, and are
thus quite close to the stability boundary.

When T = 0.01 s, (6.107) becomes

4.007 10yk+2 − 7.999 95yk+1 + 3.992 95yk = 0.000 03(uk+2 + 2uk+1 + uk)

In this case the roots have modulus of about 0.9982, and we see that increasing the
sampling rate has moved them even closer to the stability boundary, and that high
accuracy in the coefficients is essential, thus adding to the expense of implementation.

An alternative method of proceeding is to avoid the intermediate stage of obtaining
the z-domain model (6.106) and to proceed directly to a discrete-time representation
from (6.104), using the transformation

leading to the same result as in (6.107). Using the δ operator instead of the shift operator
q, noting that q = 1 + Δδ, we make the transformation

or, if T = Δ, the transformation

in (6.105), which becomes

[δ2 + 1.414 21 × δ(2 + Δδ) + (2 + Δδ )2]yk = (2 + Δδ )2uk

Note that in this form it is easy to see that in the limit as Δ → 0 (that is, as sampling
becomes very fast) we regain the original differential equation model. Rearranging this
equation, we have

(6.108)

1
4
---- 1

2
---- 1

2
---- 1

4
---- 1

2
----

1
4
----

1
4
---- 1

2
---- 1

2
---- 1

4
---- 1

2
----

1
4
----

s 2
T
---- q 1–

q 1+
-------------→

s 2
T
---- Δδ

2 Δδ+
-----------------→

s 2δ
2 Δδ+
-----------------→

1
2
---- 1

4
---- 1

4
----

δ2 1.414 21 Δ+( )
1 1.414 21 1

2
----Δ 1

4
----Δ2+×+( )

------------------------------------------------------------- δ +  1

1 1.414 21 1
2
----Δ 1

4
----Δ2+×+( )

-------------------------------------------------------------+ yk

= 2 Δδ+( )2

4 1 1.414 21 1
2
----Δ 1

4
----Δ2+×+( )

------------------------------------------------------------------ uk

www.20file.org

www.semeng.ir


6.11  ENGINEERING APPLICATION:  THE DELTA OPERATOR AND THE � TRANSFORM 551

In order to assess stability, it is helpful to introduce a transform variable γ  associated
with the δ operator. This is achieved by defining γ in terms of z as

The region of stability in the z plane, |z | � 1, thus becomes

|1 + Δγ | � 1

or

(6.109)

This corresponds to a circle in the γ domain, centre (−1/Δ, 0) and radius 1/Δ. As
Δ → 0, we see that this circle expands in such a way that the stability region is the
entire open left half-plane, and coincides with the stability region for continuous-time
systems.

Let us examine the pole locations for the two cases previously considered, namely
T = 0.1 and T = 0.01. With Δ = T = 0.1, the characteristic equation has the form

γ2 + 1.410 92γ  + 0.93178 = 0

with roots, corresponding to poles of the system, at −0.705 46 ± j0.658 87. The centre
of the circular stability region is now at −1/0.1 = −10, with radius 10, and these roots
lie at a radial distance of about 9.3178 from this centre. Note that the distance of
the poles from the stability boundary is just less than 0.7. The poles of the original
continuous-time model were also at about this distance from the appropriate boundary,
and we observe the sharp contrast from our first discretized model, when the discretiza-
tion process itself moved the pole locations very close to the stability boundary. In
that approach the situation became exacerbated when the sampling rate was increased,
to T = 0.01, and the poles moved nearer to the boundary. Setting T = 0.01 in the new
formulation, we find that the characteristic equation becomes

γ 2 + 1.414 13γ  + 0.992 95 = 0

with roots at −0.707 06 ± j0.70214. The stability circle is now centred at −100, with
radius 100, and the radial distance of the poles is about 99.2954. Thus the distance from
the boundary remains at about 0.7. Clearly, in the limit as Δ → 0, the pole locations
become those of the continuous-time model, with the stability circle enlarging to
become the entire left half of the complex γ plane.

6.11.4 Implementing the design

The discussion so far serves to demonstrate the utility of the δ operator formulation, but
the problem of implementation of the design remains. It is possible to construct a δ−1

block based on delay or 1/z blocks, as shown in Figure 6.25. Systems can be realized

γ  = z 1–
Δ

------------

1
Δ
--- γ+  � 1

Δ
---

Figure 6.25
The δ−1 block.
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using these structures in cascade or otherwise, and simulation studies have produced
successful results. An alternative approach is to make use of the state-space form of
the system model (see Section 6.18). We demonstrate this approach again for the case
T = 0.01, when, with T = Δ = 0.01, (6.108) becomes

(δ2 + 1.414 13δ + 0.992 95)yk 

= (0.000 02δ2 + 0.009 30δ + 0.992 95)uk (6.110a)

Based on (6.110a) we are led to consider the equation

(δ2 + 1.414 13δ + 0.992 95)pk = uk (6.110b)

Defining the state variables

x1,k = pk, x2,k = δpk

equation (6.110b) can be represented by the pair of equations

δx1,k = x2,k

δx2,k = −0.992 95x1,k − 1.414 13x2,k + uk

Choosing

yk = 0.992 95pk + 0.009 30δpk + 0.000 002δ2pk (6.110c)

equations (6.110b) and (6.110c) are equivalent to (6.110a). In terms of the state
variables we see that

yk = 0.992 93x1,k + 0.009 72x2,k + 0.000 02uk

Defining the vectors xk = [x1,k x2,k]
T and δxk = [δx1,k δx2,k]

T, equation (6.111a) can be
represented in matrix form as

(6.111a)

with

yk = [0.992 93 0.009 72]xk + 0.000 02uk (6.111b)

We now return to the q form to implement the system. Recalling that δ = (q − 1)/Δ,
(6.111a) becomes

(6.112)

with (6.111b) remaining the same and where Δ = 0.01, in this case. Equations (6.112)
and (6.111b) may be expressed in the vector–matrix form

xk+1 = xk + Δ[A(Δ)xk + buk]

y = cT(Δ)xk + d(Δ)uk

δ xk = 
0 1

0.992 95– 1.414 13–
xk

0

1
uk+

qxk = xk+1 = xk Δ 0 1

0.992 95– 1.414 13–
xk

0

1
uk+

⎝ ⎠
⎜ ⎟
⎛ ⎞

+
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This matrix difference equation can now be implemented without difficulty using
standard delay blocks, and has a form similar to the result of applying a simple Euler
discretization of the original continuous-time model expressed in state-space form.

6.11.5 The � transform

In Section 6.11.3 we introduced a transform variable

The purpose of this was to enable us to analyse the stability of systems described in the
δ form. We now define a transform in terms of the z transform using the notation given
by R. M. Middleton and G. C. Goodwin, Digital Control and Estimation, A Unified
Approach (Prentice Hall, Englewood Cliffs, NJ, 1990). Let the sequence { fk} have z
transform F(z); then the new transform is given by

 = F(z) | z=Δγ +1

The � transform is formally defined as a slight modification to this form, as

The purpose of this modification is to permit the construction of a unified theory of
transforms encompassing both continuous- and discrete-time models in the same
structure. These developments are beyond the scope of the text, but may be pursued
by the interested reader in the reference given above. We conclude the discussion
with an example to illustrate the ideas. The ramp sequence {uk} = {kΔ} can be
obtained by sampling the continuous-time function f (t) = t at intervals Δ. This sequence
has z transform

and the corresponding � transform is then

Note that on setting Δ = 0 and γ = s one recovers the Laplace transform of f (t).

γ  = z 1–
Δ

------------

F ′Δ γ( )

= 
fk

1 Δγ+( )k
----------------------

k=0

∞

∑

� fk( ) = FΔ γ( ) = Δ FΔ′ γ( ) 

= Δ
k=0

∞

∑ fk

1 Δγ+( )k
----------------------

U z( ) = Δz

z 1–( )2
-------------------

ΔUΔ′ γ( ) = 1 Δγ+
γ 2

-----------------
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A continuous-time system having input y(t) and 
output y(t) is defined by its transfer function

Use the methods described above to find the q and 
δ form of the discrete-time system model obtained 
using the transformation

where Δ is the sampling interval. Examine the 
stability of the original system and that of the 
discrete-time systems when Δ = 0.1 and when 
Δ = 0.01.

Use the formula in equation (6.99) to obtain the 
transfer function of the third-order Butterworth 
filter with ωc = 1, and obtain the corresponding 
δ form discrete-time system when T = Δ.

Make the substitution

x1(t) = y(t)

in Exercise 38 to obtain the state-space form of the 
system model,

y(t) = cTx(t) + du(t)

The Euler discretization technique replaces t(t) by

Show that this corresponds to the model obtained 
above with A = A(0), c = c(0) and d = d(0).

The discretization procedure used in Section 6.11.3 
has been based on the bilinear transform method, 
derived from the trapezoidal approximation to the 
integration process. An alternative approximation 
is the Adams–Bashforth procedure, and it can be 
shown that this means that we should make the 
transformation

where Δ is the sampling interval (see W. Forsythe 
and R. M. Goodall, Digital Control, Macmillan, 
London, 1991). Use this transformation to 
discretize the system given by

when Δ = 0.1 in

(a) the z form, and
(b) the γ form.

6.11.6 Exercises

38

H s( ) = 1
s 1+( ) s 2+( )

----------------------------------

s 2
Δ
--- z 1–

z 1+
-----------→

39

40

x2 t( ) = 
dy t( )

dt
------------

t t( ) = Ax t( ) bu t( )+

x k 1+( )Δ( ) x kΔ( )–
Δ

-------------------------------------------------

41

s 12

Δ
------- z2 z–

5z2 8z 1–+
----------------------------→

H s( ) = s
s 1+
-----------

Check your answers using MATLAB or MAPLE whenever possible.

The signal f(t) = t is sampled at intervals T to 
generate the sequence { f(kT )}. Show that

Show that

Show that

Find the impulse response for the system with 
transfer function

Calculate the step response for the system with 
transfer function

A process with Laplace transfer function 
H(s) = 1/(s + 1) is in cascade with a zero-order 
hold device with Laplace transfer function 

6.12 Review exercises (1–18)

1

� f kT( ){ } = Tz

z 1–( )2
-------------------

2

� ak kωsin{ } = az ωsin

z2 2az cos ω a2+–
--------------------------------------------- a � 0( )

3

� k2{ } = z z 1+( )
z 1–( )3

--------------------

4

H z( ) = 3z2 z–( )
z2 2z 1+–
--------------------------

5

H z( ) = 1

z2 3z 2+ +
-------------------------

6
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G(s) = (1 − e−sT )/s. The overall transfer function 
is then

Write F(s) = 1/s(s + 1), and find f(t) = � −1{F(s)}. 
Sample f(t) at intervals T to produce the 
sequence { f(kT )} and find F(z) = �{ f(kT )}. 
Deduce that

e−sTF(s) → (z)

and hence show that the overall z transfer function 
for the process and zero-order hold is

A system has Laplace transfer function

Calculate the impulse response, and obtain the 
z transform of this response when sampled at 
intervals T.

It can be established that if X(z) is the z transform 
of the sequence {xn} then the general term of that 
sequence is given by

where C is any closed contour containing all 
the singularities of X(z). If we assume that all the 
singularities of X(z) are poles located within a circle 
of finite radius then it is an easy application of the 
residue theorem to show that

xn = ∑ [residues of X(z)zn−1 at poles of X(z)]

(a) Let X(z) = z/(z − a)(z − b), with a and b real. 
Where are the poles of X(z)? Calculate the 
residues of zn−1X(z), and hence invert the 
transform to obtain {xn}.

(b) Use the residue method to find

The impulse response of a certain discrete-time 
system is {(−1)k − 2k}. What is the step response?

A discrete-time system has transfer function

Find the response to the sequence {1, −1, 0, 0, . . .}.

Show that the response of the second-order 
system with transfer function

to the input (1, −(α + β), αβ, 0, 0, 0, . . . } is

{δk} = {1, 0, 0, . . . }

Deduce that the response of the system

to the same input will be

{δk−1} = {0, 1, 0, 0, . . . }

A system is specified by its Laplace transfer 
function

Calculate the impulse response yδ(t) = � −1{H(s)}, 
and show that if this response is sampled at 
intervals T to generate the sequence {yδ(nT )} 
(n = 0, 1, 2, . . . ) then

A discrete-time system is now constructed so that

Y(z) = TD(z)X(z)

where X(z) is the z transform of the input 
sequence {xn} and Y(z) that of the output 
sequence {yn}, with xn = x(nT ) and yn = y(nT ). 
Show that if T = 0.5 s then the difference 
equation governing the system is

yn+2 − 0.9744yn+1 + 0.2231yn

= 0.5xn+2 − 0.4226xn+1

Sketch a block diagram for the discrete-time 
system modelled by the difference equation

pn+2 − 0.9744pn+1 + 0.2231pn = xn

and verify that the signal yn, as defined above, is 
generated by taking yn = 0.5pn+2 − 0.4226pn+1 as 
output.

1 e sT––
s s 1+( )
--------------------

1
z
----F

1 e T––

z e T––
---------------

7

H s( ) = s 1+
s 2+( ) s 3+( )

----------------------------------

8

xn = 1
j2π
-------- �

C

X z( )zn−1 dz

i( ) � 1– z

z 3–( )2
-------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

ii( ) � 1– z

z2 z– 1+
-----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

9

10

H z( ) = z2

z 1+( ) z 1–( )
----------------------------------

11

z2

z α–( ) z β–( )
---------------------------------

z
z α–( ) z β–( )

---------------------------------

12

H s( ) = s
s 1+( ) s 2+( )

----------------------------------

D z( ) = � yδ nT( ){ } = 2z

z e 2T–
------------------ z

– z e T––
----------------–
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556 THE Z  TRANSFORM

In a discrete-time position-control system the 
position yn satisfies the difference equation

yn+1 = yn + avn (a constant)

where vn and un satisfy the difference equations

vn+1 = vn + bun (b constant)

un = k1(xn − yn) − k2vn (k1, k2 constants)

(a) Show that if k1 = 1/4ab and k2 = 1/b then the 
z transfer function of the system is

where Y(z) = �{yn} and X(z) = �{xn}.

(b) If also xn = A (where A is a constant), 
determine the response sequence {yn} given 
that y0 = y1 = 0.

The step response of a continuous-time system is 
modelled by the differential equation

with y(0) = s(0) = 0. Use the backward-difference 
approximation

to show that this differential equation may be 
approximated by

Take the z transform of this difference equation, 
and show that the system poles are at

Deduce that the general solution is thus

Show that γ  =  and, noting that the initial 
conditions y(0) = 0 and s(0) = 0 imply 
y0 = y−1 = 0, deduce that

Note that the z-transform method could be used to 
obtain this result if we redefine �{yk} = (yj/z

j), 
with appropriate modifications to the formulae for 
�{yk+1} and �{yk+2}.

Explain why the calculation procedure is 
always stable in theory, but note the pole 
locations for very small T.

Finally, verify that the solution of the 
differential equation is

y(t) = (e−2t − 2e−t + 1)

and plot graphs of the exact and approximate 
solutions with T = 0.1 s and T = 0.05 s.

Again consider the step response of the system 
modelled by the differential equation

with y(0) = s(0) = 0. Now discretize using the 
bilinear transform method; that is, take the 
Laplace transform and make the transformation

where T is the sampling interval. Show that the 
poles of the resulting z transfer function are at

Deduce that the general solution is then 

Deduce that γ  = and, using the conditions
y0 = y−1 = 0, show that

Plot graphs to illustrate the exact solution and 
the approximate solution when T = 0.1 s and 
T = 0.05 s.

Show that the z transform of the sampled version 
of the signal f(t) = t 2 is

where Δ is the sampling interval. Verify that 
the � transform is then

13

Y z( )
X z( )
------------  = 1

1 2z–( )2
---------------------

14

d2y

dt2
--------- 3 dy

dt
------- 2y = 1 t � 0( )+ +

dy
dt
------- � 

yk yk−1–
T

--------------------

d2y

dt2
---------  � 

yk 2yk−1 yk−2+–
-------------------------------------

T 2

yk 2yk−1 yk−2+–

T 2
------------------------------------- 3

yk yk−1–

T
-------------------- 2yk = 1+ +

z = 1
1 T+
------------ , z = 1

1 2T+
---------------

yk = α 1
1 T+
------------⎝ ⎠

⎛ ⎞ k

β 1
1 2T+
---------------⎝ ⎠

⎛ ⎞ k

γ+ +

1
2
----

yk = 1
2
----

1
1 2T+
---------------⎝ ⎠

⎛ ⎞ k

2 1
1 T+
------------⎝ ⎠

⎛ ⎞ k

1+–

∑j= 1–
∞

1
2
----

15

d2y

dt2
--------- 3 dy

dt
------- 2y = 1 t � 0( )+ +

s 2
T
---- z 1–

z 1+
-----------→

z = 1 T–
1 T+
------------ , z = 2 T–

2 T+
------------

yk = α 1 T–
1 T+
------------⎝ ⎠

⎛ ⎞ k

β 2 T–
2 T+
------------⎝ ⎠

⎛ ⎞ k

γ+ +

1
2
----

yk = 1
2
---- 1 T–( ) 1 T–

1 T+
------------⎝ ⎠

⎛ ⎞ k

2 T–( ) 2 T–
2 T+
------------⎝ ⎠

⎛ ⎞ k

1+–

16

F z( ) = z z 1+( )Δ2

z 1–( )3
--------------------------
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Show that the eigenvalues of the matrix

are 2, 1 and −1, and find the corresponding 
eigenvectors. Write down the modal matrix M and 
spectral matrix ΛΛΛ of A, and verify that MΛΛΛ = AM.

Deduce that the system of difference equations

x(k + 1) = Ax(k)

where x(k) = [x1(k) x2(k) x3(k)]T, has a solution

x(k) = My(k)

where y(k) = ΛΛΛky(0). Find this solution, given 
x(0) = [1 0 0]T.

The system shown in Figure 6.26 is a realization 
of a discrete-time system. Show that, with state 
variables x1(k) and x2(k) as shown, the system may 
be represented as

x(k + 1) = Ax(k) + bu(k)

y(k) = cTx(k)

where

Calculate the z transfer function of the system, 
D(z), where

D(z) = c(zI − A)−1b

Reduce the system to control canonical form by 
the following means:

(i) calculate the controllability matrix Mc, where 
Mc = [b Ab] is the matrix with columns b
and Ab;

(ii) show that rank (Mc) = 2, and calculate M c
−1;

(iii) write down the vector vT corresponding to 
the last row of M c

−1;

(iv) form the matrix T = [vT vTA]T, the matrix 
with rows vT and vTA ;

(v) calculate T −1 and using this matrix T, 
show that the transformation z(k) = Tx(k) 
produces the system

z(k + 1) = TAT −1z(k) + T bu(k)

= Cz(k) + bcu(k)

where C is of the form

and bc = [0 1]T. Calculate α  and β , and 
comment on the values obtained in relation 
to the transfer function D(z).

1 Δv+( ) 2 Δv+( )
v3

-------------------------------------------

17

A = 

1 1 −2

−1 2 1

0 1 −1

18

Figure 6.26 Discrete-time system of Review 
exercise 19.

A = 
−3 −4

−2 −1
, b = 

1

0
, c = 

1

−1

0 1

−α −β
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560 FOURIER SERIES

Introduction
The representation of a function in the form of a series is fairly common practice in
mathematics. Probably the most familiar expansions are power series of the form

in which the resolved components or base set comprise the power functions 

1, x, x2, x3, . . . , xn, . . .

For example, we recall that the exponential function may be represented by the infinite
series

There are frequently advantages in expanding a function in such a series, since the first
few terms of a good approximation are easy to deal with. For example, term-by-term inte-
gration or differentiation may be applied or suitable function approximations can be made.

Power functions comprise only one example of a base set for the expansion of func-
tions: a number of other base sets may be used. In particular, a Fourier series is an
expansion of a periodic function f (t) of period T = 2π/ω in which the base set is the set
of sine functions, giving an expanded representation of the form 

f (t) = A0 + sin(nω t + φn)

Although the idea of expanding a function in the form of such a series had been used
by Bernoulli, D’Alembert and Euler (c. 1750) to solve problems associated with the
vibration of strings, it was Joseph Fourier (1768–1830) who developed the approach to
a stage where it was generally useful. Fourier, a French physicist, was interested in
heat-flow problems: given an initial temperature at all points of a region, he was con-
cerned with determining the change in the temperature distribution over time. When
Fourier postulated in 1807 that an arbitrary function f (x) could be represented by a
trigonometric series of the form

(An cos nkx + Bn sin nkx)

the result was considered so startling that it met considerable opposition from the
leading mathematicians of the time, notably Laplace, Poisson and, more significantly,
Lagrange, who is regarded as one of the greatest mathematicians of all time. They ques-
tioned his work because of its lack of rigour, and it was probably this opposition that
delayed the publication of Fourier’s work, his classic text Théorie Analytique de la
Chaleur (The Analytical Theory of Heat) not appearing until 1822. This text has since
become the source for the modern methods of solving practical problems associated
with partial differential equations subject to prescribed boundary conditions. In addi-
tion to heat flow, this class of problems includes structural vibrations, wave propagation
and diffusion, which are discussed in Chapter 9. The task of giving Fourier’s work a

7.1

f x( ) anxn

n=0

∞

∑=

ex 1 x x2

2!
------ x3

3!
------ . . . xn

n!
------ . . .+ + + + + + xn

n!
------

n=0

∞

∑= =

An

n=1

∞

∑

n=0

∞

∑
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7.2  FOURIER SERIES EXPANSION 561

more rigorous mathematical underpinning was undertaken later by Dirichlet (c. 1830)
and subsequently Riemann, his successor at the University of Göttingen.

In addition to its use in solving boundary-value problems associated with partial
differential equations, Fourier series analysis is central to many other applications in
engineering. In Chapter 5 we saw how the frequency response of a dynamical system,
modelled by a linear differential equation with constant coefficients, is readily determined
and the role that it plays in both system analysis and design. In such cases the frequency
response, being the steady-state response to a sinusoidal input signal A sin ωt, is also a
sinusoid having the same frequency as the input signal. As mentioned in Section 5.5.6,
periodic functions, which are not purely sinusoidal, frequently occur as input signals in
engineering applications, particularly in electrical engineering, since many electrical
sources of practical value, such as electronic rectifiers, generate non-sinusoidal periodic
waveforms. Fourier series provide the ideal framework for analysing the steady-state
response to such periodic input signals, since they enable us to represent the signals as
infinite sums of sinusoids. The steady-state response due to each sinusoid can then be
determined as in Section 5.8, and, because of the linear character of the system, the
desired steady-state response can be determined as the sum of the individual responses.
As the Fourier series expansion will consist of sinusoids having frequencies nω that are
multiples of the input signal frequency ω, the steady-state response will also have com-
ponents having such frequencies. If one of the multiple frequencies nω happens to be
close in value to the natural oscillating frequency of the system, then it will resonate with
the system, and the component at this frequency will dominate the steady-state response.
Thus a distinction of significant practical interest between a non-sinusoidal periodic input
signal and a sinusoidal input signal is that although the signal may have a frequency
considerably lower than the natural frequency of the system, serious problems can still
arise owing to resonance. A Fourier series analysis helps to identify such a possibility.

In Chapter 8 we shall illustrate how Fourier series analysis may be extended to
aperiodic functions by the use of Fourier transforms. The discrete versions of such
transforms provide one of the most advanced methods for discrete signal analysis,
and are widely used in such fields as communications theory and speech and image
processing. Applications to boundary-value problems are considered in Chapter 9.

Fourier series expansion
In this section we develop the Fourier series expansion of periodic functions and dis-
cuss how closely they approximate the functions. We also indicate how symmetrical
properties of the function may be taken advantage of in order to reduce the amount
of mathematical manipulation involved in determining the Fourier series. First the
properties of periodic functions are briefly reviewed.

7.2.1 Periodic functions

A function f (t) is said to be periodic if its image values are repeated at regular intervals
in its domain. Thus the graph of a periodic function can be divided into ‘vertical strips’
that are replicas of each other, as illustrated in Figure 7.1. The interval between two
successive replicas is called the period of the function. We therefore say that a function
f (t) is periodic with period T if, for all its domain values t,

7.2
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562 FOURIER SERIES

f (t + mT ) = f (t)

for any integer m.
To provide a measure of the number of repetitions per unit of t, we define the frequency

of a periodic function to be the reciprocal of its period, so that 

frequency =

The term circular frequency is also used in engineering, and is defined by

circular frequency = 2π × frequency = 

and is measured in radians per second. It is common to drop the term ‘circular’ and refer
to this simply as the frequency when the context is clear.

7.2.2 Fourier’s theorem

This theorem states that a periodic function that satisfies certain conditions can be
expressed as the sum of a number of sine functions of different amplitudes, phases and
periods. That is, if f(t) is a periodic function with period T then

f (t) = A0 + A1 sin(ω t + φ1) + A2 sin(2ω t + φ2) + . . .

+ An sin(nω t + φn) + . . . (7.1)

where the As and φs are constants and ω = 2π/T is the frequency of f (t). The term
A1 sin(ω t + φ1) is called the first harmonic or the fundamental mode, and it has the
same frequency ω as the parent function f (t). The term An sin(nω t + φn) is called the
nth harmonic, and it has frequency nω, which is n times that of the fundamental. An

denotes the amplitude of the nth harmonic and φn is its phase angle, measuring the lag
or lead of the nth harmonic with reference to a pure sine wave of the same frequency.

Since

An sin(nω t + φn) ≡ (An cos φn)sin nω t + (An sin φn) cos nω t

≡ bn sin nωt + an cos nω t

where

bn = An cos φn, an = An sin φn (7.2)

the expansion (7.1) may be written as 

Figure 7.1 A periodic 
function with period T.

1
period
---------------- 1

T
----=

2π
T

------
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7.2  FOURIER SERIES EXPANSION 563

where a0 = 2A0 (we shall see later that taking the first term as a0 rather than a0 is a
convenience that enables us to make a0 fit a general result). The expansion (7.3) is called
the Fourier series expansion of the function f (t), and the as and bs are called the Fourier
coefficients. In electrical engineering it is common practice to refer to an and bn respect-
ively as the in-phase and phase quadrature components of the nth harmonic, this
terminology arising from the use of the phasor notation e jnω t = cos nω t + jsin nωt.
Clearly, (7.1) is an alternative representation of the Fourier series with the amplitude
and phase of the nth harmonic being determined from (7.2) as

An = �(a2
n + b2

n), φn = tan−1
 

with care being taken over choice of quadrant.
The Fourier coefficients are given by

an =  cos nω t dt (n = 0, 1, 2, . . . ) (7.4)

bn =  sin nω t dt (n = 1, 2, 3, . . . ) (7.5)

which are known as Euler’s formulae.
Before proceeding to verify (7.4) and (7.5), we first state the following integrals, in

which T = 2π/ω :

(7.6)

sin nω t dt = 0 (all n) (7.7)

sin mω t sin nω t dt = (7.8)

cos mω t cos nω t dt = (7.9)

cos mω t sin nω t dt = 0 (all m and n) (7.10)

The results (7.6)–(7.10) constitute the orthogonality relations for sine and cosine
functions, and show that the set of functions

{1, cos ω t, cos 2ω t, . . . , cos nω t, sin ω t, sin 2ω t, . . . , sin nω t}

is an orthogonal set of functions on the interval d � t � d + T. The choice of d is
arbitrary in these results, it only being necessary to integrate over a period of duration T.

f (t) = a0 + an cos nω t + bn sin nω t (7.3)1
2
----

n=1

∞

∑
n=1

∞

∑

1
2
----

an

bn

------⎝ ⎠
⎛ ⎞

2
T
----�

d

d+T

f t( )

2
T
----�

d

d+T

f t( )

�
d

d+T

nωt dt
0 n ≠ 0( )
T n = 0( )⎩

⎨
⎧

=cos

d+T

�
d

�
d

d+T 0 m ≠ n( )
1
2
----T m = n ≠ 0( )⎩

⎨
⎧

�
d

d+T 0 m ≠ n( )
1
2
----T m = n ≠ 0( )⎩

⎨
⎧

�
d

d+T
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Integrating the series (7.3) with respect to t over the period t = d to t = d + T, and
using (7.6) and (7.7), we find that each term on the right-hand side is zero except for
the term involving a0; that is, we have

Thus

and we can see that the constant term a0 in the Fourier series expansion represents the
mean value of the function f (t) over one period. For an electrical signal it represents the
bias level or DC (direct current) component. Hence

(7.11)

To obtain this result, we have assumed that term-by-term integration of the series (7.3)
is permissible. This is indeed so because of the convergence properties of the series –
its validity is discussed in detail in more advanced texts.

To obtain the Fourier coefficient an (n ≠ 0), we multiply (7.3) throughout by cos mω t
and integrate with respect to t over the period t = d to t = d + T, giving

f (t) cos mω t dt = cos mω t dt + cos nω t cos mω t dt

+ cos mω t sin nω t dt

Assuming term-by-term integration to be possible, and using (7.6), (7.9) and (7.10), we
find that, when m ≠ 0, the only non-zero integral on the right-hand side is the one that
occurs in the first summation when n = m. That is, we have

f (t) cos mω t dt = am cos mω t cos mω t dt = amT

giving

am = f (t) cos mω t dt

which, on replacing m by n, gives

an = f (t) cos nω t dt (7.12)

�
d

d+T

f t( ) dt 1
2
----a0�

d

d+T

dt
n=1

∞

∑ an�
d

d+T

nω t dtcos bn�
d

d+T

nωt dtsin+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

1
2
----a0 T( )=

n=1

∞

∑ an 0( ) bn 0( )+[ ]+

1
2
----Ta0=

1
2
----a0

1
T
----�

d

d+T

f t( ) dt=

1
2
----

a0
2
T
----�

d

d+T

f t( ) dt=

�
d

d+T

1
2
----a0�

d

d+T

n=1

∞

∑ an�
d

d+T

n=1

∞

∑ bn�
d

d+T

�
d

d+T

�
d

d+T

1
2
----

2
T
----�

d

d+T

2
T
----�

d

d+T
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The value of a0 given in (7.11) may be obtained by taking n = 0 in (7.12), so that we
may write

an = f (t) cos mω t dt (n = 0, 1, 2, . . . )

which verifies formula (7.4). This explains why the constant term in the Fourier series
expansion was taken as a0 and not a0, since this ensures compatibility of the results
(7.11) and (7.12). Although a0 and an satisfy the same formula, it is usually safer to
work them out separately.

Finally, to obtain the Fourier coefficients bn, we multiply (7.3) throughout by
sin mω t and integrate with respect to t over the period t = d to t = d + T, giving

f (t) sin mω t dt = sin mω t dt

Assuming term-by-term integration to be possible, and using (7.7), (7.8) and (7.10), we
find that the only non-zero integral on the right-hand side is the one that occurs in the
second summation when m = n. That is, we have

f (t) sin mω t dt = bm sin mω t sin mω t dt = bmT

giving, on replacing m by n,

bn = f (t) sin nω t dt (n = 1, 2, 3, . . . )

which verifies formula (7.5).

Summary

2
T
---- �

d

d+T

1
2
----

�
d

d+T

1
2
----a0�

d

d+T

n=1

∞

∑ an�
d

d+T

mω t nω t dtcossin bn�
t

d+T

mω t nω t dtsinsin+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+

�
d

d+T

�
d

d+T

1
2
----

2
T
---- �

d

d+T

In summary, we have shown that if a periodic function f (t) of period T = 2π/ω can
be expanded as a Fourier series then that series is given by

f (t) = a0 + an cos nω t + bn sin nω t (7.3)

where the coefficients are given by the Euler formulae

an = f (t) cos nω t dt (n = 0, 1, 2, . . . ) (7.4)

bn = f (t) sin nω t dt (n = 1, 2, 3, . . . ) (7.5)

1
2
----

n=1

∞

∑
n=1

∞

∑

2
T
---- �

d

d+T

2
T
---- �

d

d+T
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The limits of integration in Euler’s formulae may be specified over any period, so that
the choice of d is arbitrary, and may be made in such a way as to help in the calculation of
an and bn. In practice, it is common to specify f (t) over either the period − T � t � T or
the period 0 � t � T, leading respectively to the limits of integration being − T and

T (that is, d = − T ) or 0 and T (that is, d = 0).
It is also worth noting that an alternative approach may simplify the calculation of

an and bn. Using the formula

e jnω t = cos nωt + j sin nω t

we have

Evaluating this integral and equating real and imaginary parts on each side gives the
values of an and bn. This approach is particularly useful when only the amplitude
|an + jbn | of the nth harmonic is required.

7.2.3 Functions of period 2πππ

While a unit frequency may rarely be encountered in practice, consideration of this par-
ticular case reduces the amount of mathematical manipulation involved in determining
the coefficients an and bn. Also, there is no loss of generality in considering this case,
since if we have a function f (t) of period T, we may write t1 = 2πt/T, so that 

f (t) ≡ f ≡ F(t1)

where F(t1) is a function of period 2π. That is, by a simple change of variable, a periodic
function f (t) of period T may be transformed into a periodic function F(t1) of period 2π.
Thus, in order to develop an initial understanding and to discuss some of the properties
of Fourier series, we shall first consider functions of period 2π, returning to functions
of period other than 2π in Section 7.2.7.

an + jbn = f (t) e jnω t dt (7.13)

1
2
---- 1

2
----

1
2
----

1
2
---- 1

2
----

2
T
---- �

d

d+T

If the period T of the periodic function f (t) is taken to be 2π then ω = 1, and the
series (7.3) becomes

f (t) = a0 + an cos nt + bn sin nt (7.14)

with the coefficients given by

an = f (t) cos nt dt (n = 0, 1, 2, . . . ) (7.15)

bn = f (t) sin nt dt (n = 1, 2, . . . ) (7.16)

1
2
----

n=1

∞

∑
n=1

∞

∑

1
π
----�

d

d+2π

1
π
----�

d

d+2π

Tt1

2π
--------⎝ ⎠

⎛ ⎞
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Obtain the Fourier series expansion of the periodic function f (t) of period 2π defined by

f (t) = t (0 � t � 2π), f (t) = f (t + 2π)

Solution A sketch of the function f (t) over the interval −4π � t � 4π is shown in Figure 7.2.
Since the function is periodic we only need to sketch it over one period, the pattern
being repeated for other periods. Using (7.15) to evaluate the Fourier coefficients a0 and
an gives

and 

an = f (t) cos nt dt (n = 1, 2, . . . )

= t cos nt dt

which, on integration by parts, gives

since sin 2nπ = 0 and cos 2nπ = cos 0 = 1. Note the need to work out a0 separately from
an in this case. The formula (7.16) for bn gives

bn = f (t) sin nt dt (n = 1, 2, . . . )

= t sin nt dt

which, on integration by parts, gives

bn = 

= (since sin 2nπ = sin 0 = 0)

= (since cos 2nπ = 1)

Example 7.1

Figure 7.2 Sawtooth 
wave of Example 7.1.

a0
1
π
----�

0

2π

f t( ) dt 1
π
----�

0

2π

t dt 1
π
---- t2

2
---

0

2π

2π= = = =

1
π
----�

0

2π

1
π
----�

0

2π

an
1
π
---- t ntsin

n

cos------------- nt

n2
--------------+

0

2π
1
π
---- 2π

n
------ 2nπsin 1

n2
------ 2nπcos 0cos

n2
------------–+⎝ ⎠

⎛ ⎞ 0= = =

1
π
----�

0

2π

1
π
----�

0

2π

1
π
---- − t

n
---- ntcos ntsin

n2
-------------+

0

2π

1
π
---- −2π

n
------ 2nπcos⎝ ⎠

⎛ ⎞

−2
n
----
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Hence from (7.14) the Fourier series expansion of f (t) is

f (t) = π − 

or, in expanded form,

A periodic function f (t) with period 2π is defined by

f (t) = t 2 + t (−π � t � π), f (t) = f (t + 2π)

Sketch a graph of the function f (t) for values of t from t = −3π to t = 3π and obtain a
Fourier series expansion of the function.

Solution A graph of the function f (t) for −3π � t � 3π is shown in Figure 7.3. From (7.15)
we have

and 

which, on integration by parts, gives

2
n
----

n=1

∞

∑ ntsin

f t( ) π 2 tsin 2tsin
2

------------- 3tsin
3

------------- . . . ntsin
n

------------- . . . + + + + +⎝ ⎠
⎛ ⎞–=

Example 7.2

Figure 7.3 Graph of 
the function f(t) of 
Example 7.2.

a0
1
π
----�

−π

π

f t( ) dt 1
π
----�

−π

π

t2 t+( ) dt 2
3
---- π2= = =

an
1
π
----�

−π

π

f t( ) nt dcos t n = 1, 2, 3, . . . ( )=

1
π
----�

−π

π

t2 t+( ) nt dcos t=

an
1

π
--- t2

n
--- ntsin 2t

n2
------ ntcos 2

n3
------ ntsin– t

n
--- ntsin 1

n2
------ ntcos+ + +

−π

π

=

1

π
--- 4π

n2
------ nπ since nπ 0 and 1

n2
------ ntcos

−π

π

0==sin
⎝ ⎠
⎜ ⎟
⎛ ⎞

cos=

4

n2
------ −1( )n    since nπ −1( )n=cos( )=
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From (7.16)

which, on integration by parts, gives

(since cos nπ = (−1)n)

Hence from (7.14) the Fourier series expansion of f (t) is

or, in expanded form,

To illustrate the alternative approach, using (7.13) gives

Since

e jnπ = cos nπ + j sin nπ = (−1)n

e−jnπ = cos nπ − j sin nπ = (−1)n 

and

1/j = − j

bn
1
π
----�

−π

π

f t( ) sin nt dt n = 1, 2, 3, . . . ( )=

1
π
----�

−π

π

t2 t+( ) nt dsin t=

bn
1
π
---- −t2

n
--- ntcos 2t

n2
------ ntsin 2

n3
------ ntcos   t

n
--- ntcos– 1

n2
------ ntsin+ + +

−π

π

=

−2
n
---- nπcos= −2

n
---- −1( )n=

f t( ) 1
3
----π2

n=1

∞

∑ 4

n2
------ −1( )n ntcos

n=1

∞

∑ 2
n
---- −1( )n ntsin–+=

f t( ) 1
3
----π2 + 4 −cos t + cos 2t

22
---------------  − cos 3t

32
---------------  + . . .⎝ ⎠

⎛ ⎞  + 2 sin t − sin 2t
2

--------------  + sin 3t
3

--------------  . . .⎝ ⎠
⎛ ⎞=

an jbn+ 1
π
----�

−π

π

f t( ) ejnt dt 1
π
----�

−π

π

t2 t+( ) ejnt dt= =

1
π
---- t2 t+

jn
-----------ejnt

−π

π

�
−π

π
2t 1+

jn
---------------ejntdt–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
π
---- t2 t+

jn
-----------ejnt 2t 1+

jn( )2
---------------ejnt–

2ejnt

jn( )3
-----------+

−π

π

=

an jbn+ −1( )n

π
------------- − jπ

2 π+
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-------------- 2π 1+
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--------------- j2

n3
------ jπ

2 π–

n
-------------- 1 2π–

n2
--------------- j2
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------––+ + +⎝ ⎠

⎛ ⎞=

−1( )n 4
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------ j 2
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---–⎝ ⎠
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Equating real and imaginary parts gives, as before,

an = (−1)n, bn = − (−1)n

A periodic function f (t) may be specified in a piecewise fashion over a period, or,
indeed, it may only be piecewise-continuous over a period, as illustrated in Figure 7.4.
In order to calculate the Fourier coefficients in such cases, it is necessary to break up
the range of integration in the Euler formulae to correspond to the various components
of the function. For example, for the function shown in Figure 7.4, f (t) is defined in the
interval −π � t � π by

and is periodic with period 2π. The Euler formulae (7.15) and (7.16) for the Fourier
coefficients become

A periodic function f (t) of period 2π is defined within the period 0 � t � 2π by

Sketch a graph of f (t) for −2π � t � 3π and find a Fourier series expansion of it.

4

n2
------ 2

n
----

f t( )
f1 t( ) −π � t � −p( )
f2 t( ) −p � t � q( )
f3 t( ) q � t � π( )⎩

⎪
⎨
⎪
⎧

=

an
1
π
---- �

−π

−p

f1 t( ) nt dtcos �
−p

q

f2 t( ) nt dtcos �
q

π

f3 t( ) nt dtcos+ +=

bn
1
π
---- �

−π

−p

f1 t( ) nt dtsin �
−p

q

f2 t( ) nt dtsin �
q

π

f3 t( ) nt dtsin+ +=

Figure 7.4 Piecewise-
continuous function 
over a period.

Example 7.3

f t( )

t 0 � t � 1
2
----π( )

1
2
----π 1

2
----π � t � π( )

π 1
2
----t– π � t � 2π( )⎩

⎪
⎨
⎪
⎧

=
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Solution A graph of the function f (t) for −2π � t � 3π is shown in Figure 7.5. From (7.15),

and

(n = 1, 2, 3, . . . )

that is,

From (7.16),

(n = 1, 2, 3, . . . )

a0
1
π
----�

0

2π

f t( ) dt
1
π
---- �

0

π/2

t dt �
π/2

π

1
2
----π dt �

π

2π

π 1
2
----t–( )dt+ + 5

8
----π= = =

Figure 7.5 Graph of
the function f(t) of 
Example 7.3.
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Hence from (7.14) the Fourier series expansion of f (t) is

A major use of the MATLAB Symbolic Math Toolbox and MAPLE, when dealing with
Fourier series, is to avoid the tedious and frequently error prone integration involved in
determining the coefficients an and bn. It is therefore advisable to use them to check
the accuracy of integration. To illustrate we shall consider Examples 7.2 and 7.3.

In MAPLE n may be declared to be an integer using the command

assume(n,integer);

which helps with simplification of answers. There is no comparable command in
MATLAB so, when using the Symbolic Math Toolbox, we shall use the command

maple(‘assume (n,integer)’)

Considering Example 7.2 the MATLAB commands

syms t n

maple(‘assume (n,integer)’);

int((t^2 + t)*cos(n*t),–pi,pi)/pi

return the value of an as

4*(–1)^n/n^2

Entering the command pretty(ans) gives an in the form , where n~ indicates

that n is an integer. Likewise the commands

int((t^2 + t)*sin(n*t),–pi,pi)/pi;

pretty(ans)

return bn as

thus checking with the values given in the solution.

1

π
--- − π

2n
------ 1

2
----nπcos 1

n2
------ 1

2
----nπsin π

2n
------ nπcos– π

2n
------ 1

2
----nπcos π

2n
------ nπcos+ + +⎝ ⎠

⎛ ⎞=

1

πn2
-------- 1

2
----nπsin=

0 even n( )

−1( ) n−1( )/2

πn2
----------------------- odd n( )

⎩
⎪
⎨
⎪
⎧

=

f t( ) 5
16
-------π − 2

π
--- tcos  + 3tcos

32
--------------  + 5tcos

52
------------- . . . +⎝ ⎠

⎛ ⎞=

2

π
--- 2tcos

22
--------------  + 6tcos

62
--------------  + 10tcos

102
-----------------  + . . . ⎝ ⎠

⎛ ⎞–

1

π
--- tsin  − 3tsin

32
-------------  + 5tsin

52
-------------  − 7tsin

72
-------------  + . . . ⎝ ⎠

⎛ ⎞+

4
( 1)–

n~

n~
2

------------

2
( 1)–

n~

-
n~

-----------–
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7.2.4 Even and odd functions
Noting that a particular function possesses certain symmetrical properties enables us
both to tell which terms are absent from a Fourier series expansion of the function and
to simplify the expressions determining the remaining coefficients. In this section we
consider even and odd function symmetries.

The corresponding commands in MAPLE are

assume(n,integer);

int((t^2 + t)*cos(n*t), t = –Pi..Pi)/Pi;

returning the value of an as

with the further command

int((t^2 + t)*sin(n*t), t = –Pi..Pi)/Pi;

returning the value of bn as

again checking with the values given in the solution.
In Example 7.3 we are dealing with a piecewise function, which can be specified

using the piecewise command. In MATLAB the commands

syms t n

maple(‘assume (n,integer)’);

f = (‘PIECEWISE([t,t<= 1/2*pi], [1/2*pi,1/2*pi–t<= 0 and 

t–pi< = 0],[pi–1/2t*t,pi<=t])’);

int(f*cos(n*t),0,2*pi)/pi;

pretty(ans)

return the value of an as

with the further commands

int(f*sin(n*t),0,2*pi)/pi;

pretty(ans)

returning the value of bn as

In MAPLE the commands

f:= simplify(piecewise(t<= Pi/2,t,(t>= Pi/2 and 

t<= Pi),Pi/2,t>= Pi,Pi–t/2));

ff:= unapply(f,t);

assume(n,integer);

an:= int(ff(t)*cos(n*t), t = 0..Pi)/Pi;

bn:= int(ff(t)*sin(n*t), t = 0..Pi)/Pi;

return the same values as MATLAB above for an and bn.
An alternative approach to using the piecewise command is to express the

function in terms of Heavyside functions.

4
( 1)–

n~

n~
2

------------

2
( 1)–

n~

n~
------------–

1/2
-3 2 (1/2 pi n~) ( 1)– n~

+cos+

n~
2
 pi

---------------------------------------------------------

(1/2 pi n~)sin

n~
2
 pi

-------------------------------
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First we review the properties of even and odd functions that are useful for deter-
mining the Fourier coefficients. If f(t) is an even function then f(t) = f(−t) for all t, and
the graph of the function is symmetrical about the vertical axis as illustrated in Figure
7.6(a). From the definition of integration, it follows that if f(t) is an even function then

f (t) dt = 2 f (t) dt

If f (t) is an odd function then f (t) = − f (− t) for all t, and the graph of the function is
symmetrical about the origin; that is, there is opposite-quadrant symmetry, as illustrated
in Figure 7.6(b). It follows that if f (t) is an odd function then

f (t) dt = 0

The following properties of even and odd functions are also useful for our purposes:

(a) the sum of two (or more) odd functions is an odd function;

(b) the product of two even functions is an even function;

(c) the product of two odd functions is an even function;

(d) the product of an odd and an even function is an odd function;

(e) the derivative of an even function is an odd function;

(f) the derivative of an odd function is an even function.

(Noting that t even is even and t odd is odd helps one to remember (a)–(f ).)
Using these properties, and taking d = − T in (7.11) and (7.12), we have the following:

(i) If f (t) is an even periodic function of period T then

an = f (t) cos nω t dt = f (t) cos nω t dt

using property (b), and

bn = f (t) sin nω t dt = 0

using property (d).

Figure 7.6 Graphs of 
(a) an even function 
and (b) an odd 
function.

�
−a

a

�
0

a

�
−a

a

1
2
----

2
T
----�

−T/2

T/2
4
T
----�

0

T/2

2
T
----�

−T/2

T/2

Thus the Fourier series expansion of an even periodic function f (t) with period
T consists of cosine terms only and, from (7.3), is given by

f (t) = a0 + an cos nω t (7.17)

with

an = f (t) cos nω t (n = 0, 1, 2, . . . ) (7.18)

1
2
----

n=1

∞

∑

4
T
----�

0

T/2
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(ii) If f (t) is an odd periodic function of period T then

an = f (t) cos nω t dt = 0

using property (d), and

bn = f (t) sin nω t dt = f (t) sin nω t dt

using property (c). 

A periodic function f (t) with period 2π is defined within the period −π � t � π by

Find its Fourier series expansion.

Solution A sketch of the function f (t) over the interval −4π � t � 4π is shown in Figure 7.7.
Clearly f (t) is an odd function of t, so that its Fourier series expansion consists of sine
terms only. Taking T = 2π, that is ω = 1, in (7.19) and (7.20), the Fourier series expan-
sion is given by

f (t) = bn sin nt

with

2
T
----�

−T/2

T/2

2
T
----�

−T/2

T/2
4
T
----�

0

T/2

Thus the Fourier series expansion of an odd periodic function f (t) with period T
consists of sine terms only and, from (7.3), is given by

f (t) = bn sin nω t (7.19)

with

bn = f (t) sin nω tdt (n = 1, 2, 3, . . . ) (7.20)

n=1

∞

∑

4
T
----�

0

T/2

Example 7.4

f t( ) −1 −π � t � 0( )
1 0 � t � π( )⎩

⎨
⎧

=

Figure 7.7 Square 
wave of Example 7.4.
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bn = f (t) sin nt dt (n = 1, 2, 3, . . . )

Thus the Fourier series expansion of f (t) is

f (t) = (7.21)

A periodic function f (t) with period 2π is defined as

f (t) = t 2 (−π � t � π), f (t) = f (t + 2π)

Obtain a Fourier series expansion for it.

Solution A sketch of the function f (t) over the interval −3π � t � 3π is shown in Figure 7.8.
Clearly, f (t) is an even function of t, so that its Fourier series expansion consists of
cosine terms only. Taking T = 2π, that is ω = 1, in (7.17) and (7.18), the Fourier series
expansion is given by

f (t) = a0 + an cos nt

with

a0 = f (t) dt = t 2 dt = π2

2
π
---- �

0

π

2
π
---- �

0

π

1 nt dtsin= 2
π
---- −1

n
---- ntcos

0

π

=

2
nπ
------ 1 − nπcos( )= 2

nπ
------ 1 − −1( )n[ ]=

4/nπ  odd n( )
0  even n( )⎩

⎨
⎧

=

4
π
---- tsin 1

3
---- 3tsin 1

5
---- 5tsin . . . + + +( ) 4

π
----

n=1

∞

∑ 2n 1–( )tsin
2n 1–

--------------------------------=

Example 7.5

Figure 7.8 The 
function f(t) of 
Example 7.5.

1
2
----

n=1

∞

∑

2
π
---- �

0

π
2
π
---- �

0

π
2
3
----
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and 

an =  f (t) cos nt dt (n = 1, 2, 3, . . . )

since sin nπ = 0 and cos nπ = (−1)n. Thus the Fourier series expansion of f (t) = t 2 is 

f (t) = (7.22)

or, writing out the first few terms,

f (t) = π2 − 4 cos t + cos 2t − cos 3t + . . . 

7.2.5 Linearity property

The linearity property as applied to Fourier series may be stated in the form of the
following theorem.

If f (t) = lg(t) + mh(t), where g(t) and h(t) are periodic functions of period T and l and m
are arbitrary constants, then f (t) has a Fourier series expansion in which the coefficients
are the sums of the coefficients in the Fourier series expansions of g(t) and h(t) multi-
plied by l and m respectively.

Proof Clearly f (t) is periodic with period T. If the Fourier series expansions of g(t) and h(t) are

g (t) = a0 + an cos nω t + bn sin nω t

h (t) = α0 + αn cos nω t + βn sin nω t

then, using (7.4) and (7.5), the Fourier coefficients in the expansion of f (t) are

An = f (t) cos nω t dt = [lg (t) + mh(t)] cosnω t dt

= g (t) cos nω t dt + h (t) cos nω t dt = lan + mαn

2
π
---- �

0

π

2
π
---- �

0

π

t2 nt dtcos= 2

π
--- t2

n
--- ntsin 2t

n2
------ ntcos 2

n3
------ ntsin–+

0

π

=

2

π
--- 2π

n2
------ nπcos⎝ ⎠

⎛ ⎞= 4

n2
------ −1( )n=

1
3
----π2 4

−1( )n

n2
------------- ntcos

n=1

∞

∑+

1
3
---- 4

9
----

Theorem 7.1

1
2
----

n=1

∞

∑
n=1

∞

∑

1
2
----

n=1

∞

∑
n=1

∞

∑

2
T
----�

d

d+T
2
T
----�

d

d+T

2l
T
------�

d

d+T
2m
T

-------�
d

d+T
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and 

Bn = f (t)sinnω t dt = g(t) sin nω t dt + h(t) sin nω t dt

= lbn + mβn

confirming that the Fourier series expansion of f (t) is

f (t) = (la0 + mα0) + (lan + mαn) cos nω t + (lbn + mβn) sin nω t

Suppose that g(t) and h(t) are periodic functions of period 2π and are defined within the
period −π � t � π by

g(t) = t 2, h(t) = t

Determine the Fourier series expansions of both g(t) and h(t) and use the linearity
property to confirm the expansion obtained in Example 7.2 for the periodic function f (t)
defined within the period −π � t � π by f (t) = t 2 + t.

Solution The Fourier series of g(t) is given by (7.22) as 

Recognizing that h(t) = t is an odd function of t, we find, taking T = 2π and ω = 1 in
(7.19) and (7.20), that its Fourier series expansion is

where

bn = h (t) sin nt dt (n = 1, 2, 3, . . . )

recognizing again that cos nπ = (−1)n and sin nπ = 0. Thus the Fourier series expansion
of h(t) = t is

(7.23)

2
T
----�

d

d+T
2l
T
------�

d

d+T
2m
T

-------�
d

d+T

1
2
----

n=1

∞

∑
n=1

∞

∑

end of theorem

Example 7.6

g t( ) 1
3
----π2 4

n=1

∞

∑ −1( )n

n2
------------- ntcos+=

h t( )
n=1

∞

∑ bn ntsin=

2
π
---- �

0

π

2

π
--- �

0

π

t nt dtsin= 2

π
--- − t

n
--- ntcos ntsin

n2
-------------+

0

π

=

−2
n
---- −1( )n=

h t( ) −2
n=1

∞

∑ −1( )n

n
------------- ntsin=
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Check evaluation of the integrals using MATLAB or MAPLE whenever possible.

In each of the following a periodic function f(t) of 
period 2π is specified over one period. In each case 
sketch a graph of the function for −4π � t � 4π and 
obtain a Fourier series representation of the function.

(a)

(b)

(c) f(t) = 1 − (0 � t � 2π)

(d)

(e) f(t) = cos t (−π � t � π)

(f ) f(t) = |t | (−π � t � π)

(g)

(h)

Obtain the Fourier series expansion of the periodic 
function f(t) of period 2π defined over the 
period 0 � t � 2π by

f(t) = (π − t)2 (0 � t � 2π)

Use the Fourier series to show that

The charge q(t) on the plates of a capacitor at time 
t is as shown in Figure 7.9. Express q(t) as a Fourier 
series expansion.

The clipped response of a half-wave rectifier is the 
periodic function f(t) of period 2π defined over 
the period 0 � t � 2π by

Express f(t) as a Fourier series expansion.

Show that the Fourier series representing the 
periodic function f(t), where

f(t + 2π) = f(t)

is

7.2.6 Exercises

1

f t( ) −π −π � t � 0( )
t 0 � t � π( )⎩

⎨
⎧

=

f t( ) t π+ −π � t � 0( )
0 0 � t � π( )⎩

⎨
⎧

=

t
π
----

f t( )

0 −π � t � −1
2
----π( )

2 t −1
2
----π � t � 1

2
----π( )cos

0 1
2
----π � t � π( )⎩

⎪
⎨
⎪
⎧

=

1
2
----

f t( ) 0 −π � t � 0( )
2t π 0 � t � π( )–⎩

⎨
⎧

=

f t( ) −t et+ −π � t � 0( )
t et+ 0 � t � π( )⎩

⎨
⎧

=

2

1
12
-------π2

n=1

∞

∑ −1( )n+1

n2
-----------------=

3

Figure 7.9 Plot of the charge q(t) in Exercise 3.

4

f t( ) 5 tsin 0 � t � π( )
0 π � t � 2π( )⎩

⎨
⎧

=

5

f t( ) π2 −π � t � 0( )
t π–( )2 0 � t � π( )⎩

⎨
⎧

=

f t( ) 2
3
----π2

n=1

∞

∑ 2

n2
------ ntcos −1( )n

n
------------- π ntsin++=

4

π
---

n=1

∞

∑ 2n 1–( )tsin

2n 1–( )3
-------------------------------–

Using the linearity property, we find, by combining (7.22) and (7.23), that the Fourier
series expansion of f (t) = g(t) + h(t) = t 2 + t is

which conforms to the series obtained in Example 7.2. 

f t( ) 1
3
----π2 4

n=1

∞

∑ −1( )n

n2
------------- ntcos 2

n=1

∞

∑ −1( )n

n
------------- ntsin–+=
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Use this result to show that

(a) (b)

A periodic function f(t) of period 2π is defined 
within the domain 0 � t � π by

Sketch a graph of f(t) for −2π � t � 4π for the two 
cases where

(a) f(t) is an even function
(b) f(t) is an odd function

Find the Fourier series expansion that represents the 
even function for all values of t, and use it to show that

A periodic function f(t) of period 2π is defined 
within the period 0 � t � 2π by

Draw a graph of the function for −4π � t � 4π
and obtain its Fourier series expansion.

By replacing t by t − π in your answer, 
show that the periodic function f(t − π) −  is 
represented by a sine series of odd harmonics.

n=1

∞

∑ 1

n2
------ 1

6
----π2=

n=1

∞

∑ −1( )n+1

n2
----------------- 1

12
-------π2=

6

f t( )
t 0 � t � 1

2
----π( )

π t– 1
2
----π � t � π( )⎩

⎨
⎧

=

1
8
----π2

n=1

∞

∑ 1

2n 1–( )2
-----------------------=

7

f t( )
2 t/π– 0 � t � π( )

t/π π � t � 2π( )⎩
⎨
⎧

=

1
2
----

1
2
---- 3

2
----

7.2.7 Functions of period T

Although all the results have been related to periodic functions having period T, all the
examples we have considered so far have involved periodic functions of period 2π. This
was done primarily for ease of manipulation in determining the Fourier coefficients
while becoming acquainted with Fourier series. As mentioned in Section 7.2.3, functions
having unit frequency (that is, of period 2π) are rarely encountered in practice, and in
this section we consider examples of periodic functions having periods other than 2π.

A periodic function f (t) of period 4 (that is, f (t + 4) = f (t)) is defined in the range
−2 � t � 2 by

Sketch a graph of f (t) for −6 � t � 6 and obtain a Fourier series expansion for the
function.

Solution A graph of f (t) for −6 � t � 6 is shown in Figure 7.10. Taking T = 4 in (7.4) and (7.5),
we have

Example 7.7

f t( ) 0 −2 � t � 0( )
1 0 � t � 2( )⎩

⎨
⎧

=

Figure 7.10
The function f(t) 
of Example 7.7.

a0
1
2
----�

−2

2

= f t( )dt 1
2
---- �

−2

0

0 dt �
0

2

1 dt+
⎝ ⎠
⎜ ⎟
⎛ ⎞

1= =
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(n = 1, 2, 3, . . . )

and

(n = 1, 2, 3, . . . )

Thus, from (7.3), the Fourier series expansion of f (t) is 

A periodic function f (t) of period 2 is defined by

f (t + 2) = f (t)

Sketch a graph of f (t) for − 4 � t � 4 and determine a Fourier series expansion for the
function.

Solution A graph of f (t) for − 4 � t � 4 is shown in Figure 7.11. Taking T = 2 in (7.4) and (7.5),
we have

an
1
2
----�

−2

2

= f t( ) 1
2
----nπt dcos t

1
2
---- �

−2

0

0 dt �
0

2

1
2
----nπt dcos t+

⎝ ⎠
⎜ ⎟
⎛ ⎞

= 0=

bn
1
2
----�

−2

2

= f t( ) 1
2
----nπt dsin t

1
2
---- �

−2

0

0 dt �
0

2

1
2
----nπt dsin t+

⎝ ⎠
⎜ ⎟
⎛ ⎞

= 1
nπ
------ 1 nπcos–( ) 1

nπ
------ 1 −1( )n–[ ]= =

1
nπ
------ 1 nπcos–( ) 1

nπ
------ 1 −1( )n–[ ]==

0 even n( )
2/nπ odd n( )⎩

⎨
⎧

=

f t( ) 1
2
----

2
π
---- 1

2
---- πtsin 1

3
---- 3

2
---- πtsin 1

5
---- 5

2
----πtsin . . . + + +( )+=

= 1
2
----

2
π
----

n=1

∞

∑ 1
2n 1–
---------------- 1

2
---- 2n 1–( )πtsin+

Example 7.8

f t( ) 3t 0 � t � 1( )
3 1 � t � 2( )⎩

⎨
⎧

=

Figure 7.11
The function f(t) 
of Example 7.8.

a0
2
2
----�

0

2

=  f t( )dt �
0

1

3t dt �
1

2

3 dt+ 9
2
----= =

www.20file.org

www.semeng.ir


582 FOURIER SERIES

(n = 1, 2, 3, . . . )

and

(n = 1, 2, 3, . . . )

Thus, from (7.3), the Fourier series expansion of f (t) is

Obtain the Fourier series expansion of the rectified sine wave 

f (t) = |sin t |

Solution A sketch of the wave over the interval −π � t � 2π is shown in Figure 7.12. Clearly,
f (t) is periodic with period π. Taking T = π, that is, ω = 2, in (7.3)−(7.5) the Fourier
series expansion is given by

f (t) = a0 + 

a0 = sin t dt  = 

an
2
2
----�

0

2

=  f t( ) nπt
1

-------- dcos t

�
0

1

3t nπt dtcos �
1

2

3 nπt dcos t 3t nπtsin

nπ
cos----------------------- 3 nπt

nπ( )2
----------------------+

0

1

= 3 nπtsin

nπ
--------------------

1

2

++=

3

nπ( )2
------------- nπcos 1–( )= 0 even n( )

−6/ nπ( )2 odd n( )⎩
⎨
⎧

=

bn
2
2
----�

0

2

=  f t( ) nπt
1

-------- dsin t

�
0

1

3t nπt dtsin �
1

2

3 nπt dsin t+=

−3 nπtcos

nπ
sin---------------------- 3 nπt

nπ( )2
---------------------+

0

1

= −3 nπtcos

nπ
-----------------------

1

2

+ − 3
nπ
------ 2nπcos= − 3

nπ
------=

f t( ) 9
4
----

6

π2
------ πtcos 1

9
---- 3πtcos 1

25
------- 5πtcos . . . + + +( )–=

3
π
---- πtsin 1

2
---- 2πtsin 1

3
---- 3πtsin . . . + + +( )–

9
4
----= 6

π2
------

n=1

∞

∑ 2n 1–( )πtcos

2n 1–( )2
----------------------------------– 3

π
----

n=1

∞

∑ nπtsin

n
-----------------–

Example 7.9

Figure 7.12 Rectified 
wave f(t) = |sin t |.

1
2
---- an 2ntcos

n=1

∞

∑

2
π
---- �

0

π
4
π
----
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an = sin t cos 2nt dt

= [sin(2n + 1)t − sin(2n − 1)t] dt

= 

Thus the Fourier series expansion of f (t) is

f (t) 

or, writing out the first few terms,

2
π
---- �

0

π

1
π
---- �

0

π

1
π
---- − 2 n 1+( )tcos

2n 1+
------------------------------- 2 n 1–( )tcos

2n 1–
--------------------------------+

0

π

1
π
---- 1

2n 1+
----------------- 1

2n 1–
---------------–⎝ ⎠

⎛ ⎞ − 1

2n 1+
-----------------  + 1

2n 1–
-----------------⎝ ⎠

⎛ ⎞– − 4

π
--- 1

4n2 1–
------------------==

2

π
---= 4

π
---

n=1

∞

∑ 1

4n2 1–
------------------ 2ntcos–

f t( ) 2
π
---- 4

π
---- 1

3
---- 2tcos 1

15
------- 4tcos 1

35
------- 6tcos . . . + + +( )–=

Find a Fourier series expansion of the periodic 
function

f(t) = t (−l � t � l)

f(t + 2l) = f(t)

A periodic function f(t) of period 2l is defined over 
one period by

Determine its Fourier series expansion and illustrate 
graphically for −3l � t � 3l.

A periodic function of period 10 is defined within 
the period −5 � t � 5 by

Determine its Fourier series expansion and illustrate 
graphically for −12 � t � 12.

Passing a sinusoidal voltage A sin ωt through a 
half-wave rectifier produces the clipped sine wave 

shown in Figure 7.13. Determine a Fourier series 
expansion of the rectified wave.

Obtain a Fourier series expansion of the periodic 
function

f(t) = t 2 (−T � t � T)

f(t + 2T) = f(t)

and illustrate graphically for −3T � t � 3T.

Determine a Fourier series representation of the 
periodic voltage e(t) shown in Figure 7.14.

7.2.8 Exercises

8

9

f t( )
−K

l
----- l t+( ) −l � t � 0( )

K
l
----- l t–( ) 0 � t � l( )⎩

⎪
⎨
⎪
⎧

=

10

f t( ) 0 −5 � t � 0( )
3 0 � t � 5( )⎩

⎨
⎧

=

11

Figure 7.13 Rectified sine wave of Exercise 11.

12

13

Figure 7.14 Voltage e(t) of Exercise 13.
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7.2.9 Convergence of the Fourier series

So far we have concentrated our attention on determining the Fourier series expan-
sion corresponding to a given periodic function f (t). In reality, this is an exercise in
integration, since we merely have to compute the coefficients an and bn using Euler’s
formulae (7.4) and (7.5) and then substitute these values into (7.3). We have not yet
considered the question of whether or not the Fourier series thus obtained is a valid
representation of the periodic function f (t). It should not be assumed that the existence
of the coefficients an and bn in itself implies that the associated series converges to the
function f (t).

A full discussion of the convergence of a Fourier series is beyond the scope of
this book and we shall confine ourselves to simply stating a set of conditions which
ensures that f (t) has a convergent Fourier series expansion. These conditions, known as
Dirichlet’s conditions, may be stated in the form of Theorem 7.2.

Dirichlet’s conditions

If f (t) is a bounded periodic function that in any period has

(a) a finite number of isolated maxima and minima, and

(b) a finite number of points of finite discontinuity

then the Fourier series expansion of f (t) converges to f (t) at all points where f (t) is
continuous and to the average of the right- and left-hand limits of f (t) at points where
f (t) is discontinuous (that is, to the mean of the discontinuity).

Give reasons why the functions

(a) (b)

do not satisfy Dirichlet’s conditions in the interval 0 � t � 2π.

Solution (a) The function f (t) = 1/(3 − t) has an infinite discontinuity at t = 3, which is within
the interval, and therefore does not satisfy the condition that f (t) must only have
finite discontinuities within a period (that is, it is bounded).

(b) The function f (t) = sin[1/(t − 2)] has an infinite number of maxima and minima
in the neighbourbood of t = 2, which is within the interval, and therefore does not
satisfy the requirement that f (t) must have only a finite number of isolated
maxima and minima within one period.

The conditions of Theorem 7.2 are sufficient to ensure that a representative Fourier
series expansion of f(t) exists. However, they are not necessary conditions for convergence,

Theorem 7.2

end of theorem

Example 7.10

1
3 t–
---------- 1

t 2–
----------⎝ ⎠

⎛ ⎞sin
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and it does not follow that a representative Fourier series does not exist if they are not
satisfied. Indeed, necessary conditions on f(t) for the existence of a convergent Fourier
series are not yet known. In practice, this does not cause any problems, since for almost
all conceivable practical applications the functions that are encountered satisfy the
conditions of Theorem 7.2 and therefore have representative Fourier series.

Another issue of importance in practical applications is the rate of convergence of
a Fourier series, since this is an indication of how many terms must be taken in the
expansion in order to obtain a realistic approximation to the function f (t) it represents.
Obviously, this is determined by the coefficients an and bn of the Fourier series and the
manner in which these decrease as n increases.

In an example, such as Example 7.1, in which the function f (t) is only piecewise-
continuous, exhibiting jump discontinuities, the Fourier coefficients decrease as 1/n,
and it may be necessary to include a large number of terms to obtain an adequate
approximation to f (t). In an example, such as Example 7.3, in which the function
is a continuous function but has discontinuous first derivatives (owing to the sharp
corners), the Fourier coefficients decrease as 1/n2, and so one would expect the series
to converge more rapidly. Indeed, this argument applies in general, and we may
summarize as follows:

These observations are not surprising, since they simply tell us that the smoother the
function f (t), the more rapidly will its Fourier series representation converge.

To illustrate some of these issues related to convergence we return to Example 7.4,
in which the Fourier series (7.21) was obtained as a representation of the square wave
of Figure 7.7.

Since (7.21) is an infinite series, it is clearly not possible to plot a graph of the result.
However, by considering finite partial sums, it is possible to plot graphs of approxima-
tions to the series. Denoting the sum of the first N terms in the infinite series by fN (t),
that is

(7.24)

the graphs of fN(t) for N = 1, 2, 3 and 20 are as shown in Figure 7.15. It can be seen
that at points where f (t) is continuous the approximation of f (t) by fN(t) improves as
N increases, confirming that the series converges to f (t) at all such points. It can also
be seen that at points of discontinuity of f (t), which occur at t = ±nπ (n = 0, 1, 2, . . . ),
the series converges to the mean value of the discontinuity, which in this particular

(a) if f (t) is only piecewise-continuous then the coefficients in its Fourier series
representation decrease as 1/n;

(b) if f (t) is continuous everywhere but has discontinuous first derivatives then the
coefficients in its Fourier series representation decrease as 1/n2;

(c) if f (t) and all its derivatives up to that of the rth order are continuous but the
(r + 1)th derivative is discontinuous then the coefficients in its Fourier series
representation decrease as 1/nr+2.

fN t( ) 4
π
----

n=1

N

∑ 2n 1–( )tsin
2n 1–

-------------------------------=
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example is (−1 + 1) = 0. As a consequence, the equality sign in (7.21) needs to be
interpreted carefully. Although such use may be acceptable, in the sense that the series
converges to f (t) for values of t where f (t) is continuous, this is not so at points of
discontinuity. To overcome this problem, the symbol ~ (read as ‘behaves as’ or ‘repre-
sented by’) rather than = is frequently used in the Fourier series representation of a
function f (t), so that (7.21) is often written as

In Section 7.7.3 it is shown that the Fourier series converges to f (t) in the sense that the
integral of the square of the difference between f (t) and fN(t) is minimized and tends to
zero as N → ∞.

We note that convergence of the Fourier series is slowest near a point of discontinu-
ity, such as the one that occurs at t = 0. Although the series does converge to the mean
value of the discontinuity (namely zero) at t = 0, there is, as indicated in Figure 7.15(d),
an undershoot at t = 0− (that is, just to the left of t = 0) and an overshoot at t = 0+ (that
is, just to the right of t = 0). This non-smooth convergence of the Fourier series leading
to the occurrence of an undershoot and an overshoot at points of discontinuity of f (t) is
a characteristic of all Fourier series representing discontinuous functions, not only that
of the square wave of Example 7.4, and is known as Gibbs’ phenomenon after the
American physicist J. W. Gibbs (1839–1903). The magnitude of the undershoot/over-
shoot does not diminish as N → ∞ in (7.24), but simply gets ‘sharper’ and ‘sharper’,
tending to a spike. In general, the magnitude of the undershoot and overshoot together
amount to about 18% of the magnitude of the discontinuity (that is, the difference in the
values of the function f (t) to the left and right of the discontinuity). It is important that
the existence of this phenomenon be recognized, since in certain practical applications
these spikes at discontinuities have to be suppressed by using appropriate smoothing
factors.

1
2
----

f t( ) ~ 4
π
----

n=1

∞

∑ 2n 1–( )tsin
2n 1–

-------------------------------

Figure 7.15 Plots of fN(t) for a square wave: (a) N = 1; (b) 2; (c) 3; (d) 20.
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Theoretically, we can use the series (7.21) to obtain an approximation to π. This is
achieved by taking t = π, when f(t) = 1; (7.21) then gives

leading to 

For practical purposes, however, this is not a good way of obtaining an approximation
to π, because of the slow rate of convergence of the series.

Functions defined over a finite interval
One of the requirements of Fourier’s theorem is that the function to be expanded be
periodic. Therefore a function f (t) that is not periodic cannot have a Fourier series
representation that converges to it for all values of t. However, we can obtain a Fourier
series expansion that represents a non-periodic function f (t) that is defined only over
a finite time interval 0 � t � τ. This is a facility that is frequently used to solve
problems in practice, particularly boundary-value problems involving partial dif-
ferential equations, such as the consideration of heat flow along a bar or the vibrations
of a string. Various forms of Fourier series representations of f (t), valid only in the
interval 0 � t � τ, are possible, including series consisting of cosine terms only or
series consisting of sine terms only. To obtain these, various periodic extensions of f (t)
are formulated.

7.3.1 Full-range series

Suppose the given function f (t) is defined only over the finite time interval 0 � t � τ.
Then, to obtain a full-range Fourier series representation of f (t) (that is, a series

To reproduce the plots of Figure 7.15 and see how the series converges as N
increases use the following MATLAB commands:

t=pi/100*[300:300];

f=0;

T=[-3*pi -2*pi -2*pi -pi -pi 0 0 pi pi 2*pi 2*pi 3*pi];

y=[-1 –1 1 1 –1 –1 1 1 –1 –1 1 1];

for n=1:20

f=f+4/pi*sin((2*n-1)*t)/(2*n-1);

plot(T,y,t,f,[-3*pi 3*pi],[0,0],’k-‘,[0,0],[-1.3 1.3],’k-‘)

axis([-3*pi,3*pi,-inf,inf]),pause

end

The pause command has been included to give you an opportunity to view the
plots at the end of each step. Press any key to proceed.

1
2
----

1 4
π
----

n=1

∞

∑
1
2
---- 2n 1–( )πsin

2n 1–
------------------------------------=

π 4 1 1
3
----– 1

5
---- 1

7
----– . . . + +( ) 4

n=1

∞

∑ −1( )n+1

2n 1–
-----------------= =
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consisting of both cosine and sine terms), we define the periodic extension φ(t) of
f (t) by 

φ (t) = f (t) (0 � t � τ)

φ (t + τ) = φ (t)

The graphs of a possible f (t) and its periodic extension φ (t) are shown in Figures 7.16(a)
and (b) respectively.

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 � t � τ, the
new function φ (t), of period τ, will have a convergent Fourier series expansion.
Since, within the particular period 0 � t � τ, φ (t) is identical with f (t), it follows
that this Fourier series expansion of φ (t) will be representative of f (t) within this
interval.

Find a full-range Fourier series expansion of f (t) = t valid in the finite interval 0 � t � 4.
Draw graphs of both f (t) and the periodic function represented by the Fourier series
obtained.

Solution Define the periodic function φ (t) by

φ (t) = f (t) = t (0 � t � 4)

φ (t + 4) = φ (t)

Then the graphs of f (t) and its periodic extension φ (t) are as shown in Figures 7.17(a)
and (b) respectively. Since φ (t) is a periodic function with period 4, it has a convergent
Fourier series expansion. Taking T = 4 in (7.4) and (7.5), the Fourier coefficients are
determined as 

Figure 7.16 Graphs of 
a function defined only 
over (a) a finite interval 
0 � t � τ and (b) its 
periodic extension.

Example 7.11

Figure 7.17
The functions f(t) and 
φ (t) of Example 7.11.

a0
1
2
----�

0

4

=  f t( ) dt 1
2
----�
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t dt 4= =

www.20file.org

www.semeng.ir


7.3  FUNCTIONS DEFINED OVER A FINITE INTERVAL 589

(n = 1, 2, 3, . . . )

and

(n = 1, 2, 3, . . . )

Thus, by (7.3), the Fourier series expansion of φ (t) is

Since φ (t) = f (t) for 0 � t � 4, it follows that this Fourier series is representative of f (t)
within this interval, so that

(7.25)

It is important to appreciate that this series converges to t only within the interval
0 � t � 4. For values of t outside this interval it converges to the periodic extended
function φ (t). Again convergence is to be interpreted in the sense of Theorem 7.2, so
that at the end points t = 0 and t = 4 the series does not converge to t but to the mean
of the discontinuity in φ (t), namely the value 2. 

7.3.2 Half-range cosine and sine series

Rather than develop the periodic extension φ (t) of f (t) as in Section 7.3.1, it is possible
to formulate periodic extensions that are either even or odd functions, so that the result-
ing Fourier series of the extended periodic functions consist either of cosine terms only
or sine terms only.

For a function f (t) defined only over the finite interval 0 � t � τ its even periodic
extension F(t) is the even periodic function defined by

F(t + 2τ) = f (t)

an
1
2
----�

0

4

=  f t( ) 1
2
----nπt dcos t

1
2
----�

0

4

t 1
2
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2
---- nπtsin 4
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------------- 1

2
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0

4

0= =
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1
2
----�

0

4

= f t( ) 1
2
---- nπtsin dt

1
2
----�

0

4

t 1
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2
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2
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∞
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As an illustration, the even periodic extension F(t) of the function f (t) shown in
Figure 7.16(a) (redrawn in Figure 4.18(a)) is shown in Figure 4.18(b).

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 � t � τ, since it is
an even function of period 2τ, it follows from Section 7.2.4 that the even periodic
extension F(t) will have a convergent Fourier series representation consisting of cosine
terms only and given by

Since, within the particular interval 0 � t � τ, F(t) is identical with f (t), it follows that
the series (7.26) also converges to f (t) within this interval.

For a function f (t) defined only over the finite interval 0 � t � τ, its odd periodic
extension G(t) is the odd periodic function defined by

G(t + 2τ) = G(t)

Again, as an illustration, the odd periodic extension G(t) of the function f (t) shown in
Figure 7.16(a) (redrawn in Figure 7.19(a)) is shown in Figure 7.19(b).

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 � t � τ, since it is
an odd function of period 2τ, it follows from Section 7.2.4 that the odd periodic exten-
sion G(t) will have a convergent Fourier series representation consisting of sine terms
only and given by

Figure 7.18
(a) A function f(t); 
(b) its even periodic 
extension F(t).

where

(n = 0, 1, 2, . . . )

(7.26)

(7.27)

F t( ) 1
2
---- a0

n=1

∞

∑ an
nπt

τ
--------cos+=

an
2
τ
---- �

0

τ

f t( ) nπt
τ

--------cos dt=

G t( )  f t( ) 0 � t � τ( )
− f −t( ) −τ � t � 0( )⎩

⎨
⎧

=

Figure 7.19
(a) A function f(t); 
(b) its odd periodic 
extension G(t).

(7.28)G t( )
n=1

∞
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Again, since, within the particular interval 0 � t � τ, G(t) is identical with f (t), it
follows that the series (7.28) also converges to f (t) within this interval.

We note that both the even and odd periodic extensions F(t) and G(t) are of period
2τ, which is twice the length of the interval over which f (t) is defined. However, the
resulting Fourier series (7.26) and (7.28) are based only on the function f (t), and for this
reason are called the half-range Fourier series expansions of f (t). In particular, the
even half-range expansion F(t), (7.26), is called the half-range cosine series expan-
sion of f (t), while the odd half-range expansion G(t), (7.28), is called the half-range
sine series expansion of f (t).

For the function f (t) = t defined only in the interval 0 � t � 4, and considered in
Example 7.11, obtain

(a) a half-range cosine series expansion

(b) a half-range sine series expansion.

Draw graphs of f (t) and of the periodic functions represented by the two series obtained
for −20 � t � 20.

Solution (a) Half-range cosine series. Define the periodic function F(t) by

F(t + 8) = F(t)

Then, since F(t) is an even periodic function with period 8, it has a convergent
Fourier series expansion given by (7.26). Taking τ = 4 in (7.27), we have

(n = 1, 2, 3, . . . )

where

(n = 1, 2, 3, . . . ) (7.29)bn
2
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Then, by (7.26), the Fourier series expansion of F(t) is

or

Since F(t) = f (t) for 0 � t � 4, it follows that this Fourier series is representative
of f (t) within this interval. Thus the half-range cosine series expansion of f (t) is

(0 � t � 4) (7.30)

(b) Half-range sine series. Define the periodic function G(t) by

G(t + 8) = G(t)

Then, since G(t) is an odd periodic function with period 8, it has a convergent
Fourier series expansion given by (7.28). Taking τ = 4 in (7.29), we have

(n = 1, 2, 3, . . . )

Thus, by (7.28), the Fourier series expansion of G(t) is

or

Since G (t) = f (t) for 0 � t � 4, it follows that this Fourier series is repres-
entative of f (t) within this interval. Thus the half-range sine series expansion of
f (t) is

(0 � t � 4) (7.31)
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7.3  FUNCTIONS DEFINED OVER A FINITE INTERVAL 593

Graphs of the given function f (t) and of the even and odd periodic expansions
F(t) and G(t) are given in Figures 7.20(a), (b) and (c) respectively.

It is important to realize that the three different Fourier series representations
(7.25), (7.30) and (7.31) are representative of the function f (t) = t only within the
defined interval 0 � t � 4. Outside this interval the three Fourier series converge
to the three different functions φ (t), F(t) and G(t), illustrated in Figures 7.17(b),
7.20(b) and 7.20(c) respectively.

Figure 7.20
The functions f(t), 
F(t) and G(t) of 
Example 7.12.

Show that the half-range Fourier sine series 
expansion of the function f(t) = 1, valid for 
0 � t � π, is

(0 � t � π)

Sketch the graphs of both f(t) and the periodic 
function represented by the series expansion 
for −3π � t � 3π.

Determine the half-range cosine series expansion of 
the function f(t) = 2t − 1, valid for 0 � t � 1. Sketch 
the graphs of both f(t) and the periodic function 
represented by the series expansion for 
−2 � t � 2.

The function f(t) = 1 − t2 is to be represented by 
a Fourier series expansion over the finite interval 
0 � t � 1. Obtain a suitable

(a) full-range series expansion,
(b) half-range sine series expansion,
(c) half-range cosine series expansion.

Draw graphs of f(t) and of the periodic functions 
represented by each of the three series for 
−4 � t � 4.

A function f(t) is defined by

f(t) = πt − t 2 (0 � t � π)

and is to be represented by either a half-range 
Fourier sine series or a half-range Fourier cosine 

7.3.3 Exercises
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Differentiation and integration of Fourier series
It is inevitable that the desire to obtain the derivative or the integral of a Fourier series
will arise in some applications. Since the smoothing effects of the integration pro-
cess tend to eliminate discontinuities, whereas the process of differentiation has the
opposite effect, it is not surprising that the integration of a Fourier series is more likely
to be possible than its differentiation. We shall not pursue the theory in depth here;
rather we shall state, without proof, two theorems concerned with the term-by-term
integration and differentiation of Fourier series, and make some observations on their
use.

7.4

series. Find both of these series and sketch the 
graphs of the functions represented by them for 
−2π � t � 2π.

A tightly stretched flexible uniform string has its 
ends fixed at the points x = 0 and x = l. The midpoint 
of the string is displaced a distance a, as shown in 
Figure 7.21. If f(x) denotes the displaced profile of 
the string, express f(x) as a Fourier series expansion 
consisting only of sine terms.

Repeat Exercise 18 for the case where the displaced 
profile of the string is as shown in Figure 7.22.

A function f(t) is defined on 0 � t � π by

Find a half-range Fourier series expansion 
of f(t) on this interval. Sketch a graph of 
the function represented by the series for 
−2π � t � 2π.

A function f(t) is defined on the interval 
−l � x � l by

Obtain a Fourier series expansion of f(x) and sketch 
a graph of the function represented by the series for 
−3l � x � 3l.

The temperature distribution T(x) at a distance x, 
measured from one end, along a bar of length 
L is given by

T(x) = Kx(L − x) (0 � x � L), K = constant

Express T(x) as a Fourier series expansion 
consisting of sine terms only.

Find the Fourier series expansion of the function 
f(t) valid for −1 � t � 1, where

To what value does this series converge when 
t = 1?

18

Figure 7.21 Displaced string of Exercise 18.

19

Figure 7.22 Displaced string of Exercise 19.
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7.4.1 Integration of a Fourier series

A Fourier series expansion of a periodic function f (t) that satisfies Dirichlet’s con-
ditions may be integrated term by term, and the integrated series converges to the
integral of the function f (t).

Because of the presence of the term a0t on the right-hand side, this is clearly not a
Fourier series expansion of the integral on the left-hand side. However, the result can
be rearranged to be a Fourier series expansion of the function

g(t) = f (t) dt − a0t

Example 7.13 serves to illustrate this process. Note also that the Fourier coefficients in
the new Fourier series are −bn/n and an/n, so, from the observations made in Section 7.2.9,
the integrated series converges faster than the original series for f(t). If the given function
f (t) is piecewise-continuous, rather than continuous, over the interval −π � t � π then
care must be taken to ensure that the integration process is carried out properly over the
various subintervals. Again, Example 7.14 serves to illustrate this point.

From Example 7.5, the Fourier series expansion of the function

f (t) = t 2 (−π � t � π), f (t + 2π) = f (π)

is

(−π � t � π)

Integrating this result between the limits −π and t gives

Theorem 7.3

end of theorem

According to this theorem, if f (t) satisfies Dirichlet’s conditions in the interval
−π � t � π and has a Fourier series expansion

f (t) = a0 + (an cos nt + bn sin nt)

then for −π � t 1
 � t � π

1
2
----

n=1

∞

∑

�
t1

t

f t( ) dt �
t1

t

1
2
----a0 dt �

t1

t

an ncos t bn ntsin+( ) dt
n=1

∞

∑+=

1
2
----a0 t t1–( )=

n=1

∞

∑ bn

n
------ nt1cos ntcos–( ) an

n
------ ntsin nt1sin–( )++

1
2
----

�
t1

t

1
2
----

Example 7.13
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that is,

(−π � t � π)

Because of the term π 2t on the right-hand side, this is clearly not a Fourier series
expansion. However, rearranging, we have

and now the right-hand side may be taken to be the Fourier series expansion of the
function

g(t ) = t 3 − π 2t (−π � t � π)

g(t + 2π) = g(t )

Integrate term by term the Fourier series expansion obtained in Example 7.4 for the
square wave

f (t + 2π) = f (t)

illustrated in Figure 7.7.

Solution From (7.21), the Fourier series expansion for f (t) is

We now need to integrate between the limits −π and t and, owing to the discontinuity
in f (t) at t = 0, we must consider separately values of t in the intervals −π � t � 0 and
0 � t � π.

Case (i), interval −π � t � 0. Integrating (7.21) term by term, we have

that is,

1
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It can be shown that

(see Exercise 6), so that the above simplifies to

(−π � t � 0) (7.32)

Case (ii ), interval 0 � t � π. Integrating (7.21) term by term, we have

giving

(0 � t � π) (7.33)

Taking (7.32) and (7.33) together, we find that the function

g(t + 2π) = g(t)

has a Fourier series expansion

7.4.2 Differentiation of a Fourier series

If f (t) is a periodic function that satisfies Dirichlet’s conditions then its derivative f ′(t),
wherever it exists, may be found by term-by-term differentiation of the Fourier series
of f (t) if and only if the function f (t) is continuous everywhere and the function f ′(t) has
a Fourier series expansion (that is, f ′(t) satisfies Dirichlet’s conditions).

It follows from Theorem 7.4 that if the Fourier series expansion of f(t) is differenti-
able term by term then f (t) must be periodic at the end points of a period (owing to the
condition that f (t) must be continuous everywhere). Thus, for example, if we are deal-
ing with a function f (t) of period 2π and defined in the range −π � t � π then we must
have f (−π) = f (π). To illustrate this point, consider the Fourier series expansion of
the function
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------------------------------- dt=

t 1
2
----π 4

π
---

n=1

∞

∑ 2n 1–( )cos t

2n 1–( )2
--------------------------------–=

g t( ) | t |
−t −π � t � 0( )

t 0 � t � π( )⎩
⎨
⎧

= =

g t( ) | t | 1
2
----π 4

π
---

n=1

∞

∑ 2n 1–( )cos t

2n 1–( )2
--------------------------------–= =

Theorem 7.4

end of theorem
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f (t) = t (−π � t � π)

f (t + 2π) = f (t)

which, from Example 7.7, is given by

f (t) = 2(sin t − sin 2t + sin 3t − sin 4t + . . . )

Differentiating term by term, we have

f ′(t) = 2(cos t − cos 2t + cos 3t − cos 4t + . . . )

If this differentiation process is valid then f ′(t) must be equal to unity for −π � t � π.
Clearly this is not the case, since the series on the right-hand side does not converge
for any value of t. This follows since the nth term of the series is 2(−1)n+1 cos nt and
does not tend to zero as n → ∞.

In this case the Fourier coefficients of the derived expansion are nbn and nan, so, in
contrast to the integrated series, the derived series will converge more slowly than the
original series expansion for f (t).

Consider the process of differentiating term by term the Fourier series expansion of the
function

f (t) = t 2 (−π � t � π), f (t + 2π) = f (t)

Solution From Example 7.5, the Fourier series expansion of f (t) is

(−π � t � π)

Since f (t) is continuous within and at the end points of the interval −π � t � π, we may
apply Theorem 7.4 to obtain

(−π � t � π)

which conforms with the Fourier series expansion obtained for the function

f (t) = t (−π � t � π), f (t + 2π) = f (t)

in Example 7.7.

1
2
---- 1

3
---- 1

4
----

If f (t) is continuous everywhere and has a Fourier series expansion

f (t) = a0 + (an cos nt + bn sin nt)

then, from Theorem 7.4, provided that f ′(t) satisfies the required conditions, its Fourier
series expansion is

f ′(t) = (nbn cos nt − nan sin nt)

1
2
----

n=1

∞

∑

n=1

∞

∑

Example 7.15

t2 1
3
----π2 4

n=1

∞

∑ −1( )n ntcos

n2
----------------------------+=

t 2
n=1

∞

∑ −1( )n+1 ntsin
n

---------------------------------=
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7.4.3 Coefficients in terms of jumps at discontinuities

For periodic functions that, within a period, are piecewise polynomials and exhibit jump
discontinuities, the Fourier coefficients may be determined in terms of the magnitude of
the jumps and those of derived functions. This method is useful for determining describ-
ing functions (see Section 7.8) for nonlinear characteristics in control engineering,
where only the fundamental component of the Fourier series is important; this applies
particularly to the case of multivalued nonlinearities.

Consider a periodic function f (t), of period T, having within the time interval
− T � t � T a finite number (m + 1) of jump discontinuities d0, d1, . . . , dm

at times t0, t1, . . . tm, with t0 = T and tm = T. Furthermore, within the interval
ts−1 � t � ts (s = 1, 2, . . . , m) let f (t) be represented by polynomial functions Ps(t)
(s = 1, 2, . . . , m), as illustrated in Figure 7.23. If f (t) is to be represented in terms of
the Fourier series

f (t) = a0 + an cos nω t + bn sin nω t

then, from (7.4),

an = Ps(t) cos nω t dt

Defining the magnitude of the jump discontinuities as in Section 5.5.11, namely

di = f (ti + 0) − f (ti − 0)

and noting that t0 = − T and tm = T, integration by parts and summation gives

(7.34)

where P s
(1)(t) denotes the piecewise components of the derivative f (1)(t) ≡ f ′(t) in the

generalized sense of (5.59).
In a similar manner the integral terms of (7.34) may be expressed as 

1
2
---- 1

2
----

1
2
---- 1

2
----

1
2
----

n=1

∞

∑
n=1

∞

∑

2
T
----

s=1

m

∑ �
ts−1

ts

Figure 7.23 Piecewise 
polynomial periodic 
function exhibiting 
jump discontinuities.

1
2
---- 1

2
----

an − 1
nπ
------

s=1

m

∑ ds nωtssin �
ts−1

ts

P s
1( ) t( ) nω t dtsin+=

s=1

m

∑ �
ts−1

ts

P s
1( ) nω t dtsin 1

nω
--------

s=1

m

∑ d s
1( ) cos nω t �

ts−1

ts

P s
2( ) t( ) nω t dtcos+=
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where d (1)
s  (s = 1, 2, . . . , m) denotes the magnitude of the jump discontinuities in the

derivative f (1)(t).
Continuing in this fashion, integrals involving higher derivatives may be obtained.

However, since all Ps(t) (s = 1, 2, . . . , m) are polynomials, a stage is reached when all
the integrals vanish. If the degree of Ps(t) is less than or equal to N for s = 1, 2, . . . , m
then

an = (−1)r+1(nω)−2r[d s
(2r) sin nω ts + (nω)−1d s

(2r+1) cos nω ts]

(n ≠ 0) (7.35)

where d s
(r) denotes the magnitudes of the jump discontinuities in the r th derivative of

f (t) according to (5.59).
Similarly, it may be shown that

bn = (−1)r (nω)−2r [d s
(2r) cos nω ts − (nω)−1d s

(2r+1) sin nω ts] (7.36)

and the coefficient a0 is found by direct integration of the corresponding Euler formula

a0 = f (t) dt (7.37)

Using (7.35)–(7.37), obtain the Fourier series expansion of the periodic function f (t)
defined by

f (t + 2π) = f (t)

Solution In this case N = 2, and the graphs of f (t) together with those of its first two derivatives
are shown in Figure 7.24.

1
nπ
------

s=1

m

∑
r=0

N

∑

1
nπ
------

s=1

m

∑
r=0

N

∑

2
T
---- �

−T/2

T/2

Example 7.16

f t( ) t2 −π � t � 0( )
−2 0 � t � π( )⎩

⎨
⎧

=

Figure 7.24 f(t), f (1)(t), f (2)(t) of Example 7.16.
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Jump discontinuities occur at t = −π, 0 and π, so that m = 2. The piecewise poly-
nomials involved and the corresponding jump discontinuities are 

(a) P1(t) = t 2, P2(t) = −2
d1 = −2, d2 = π 2 + 2

(b) P 1
(1)(t) = 2t P (1)

2 (t) = 0
d 1

(1) = 0 d (1)
2 = −2π

(c) P 1
(2)(t) = 2, P (2)

2 (t) = 0
d (2)

1  = −2 d (2)
2 = 2

with d 1
(r) = d 2

(r) = 0 for r � 2.
Taking ω = 1 (since T = 2π) in (7.35) gives

Since t1 = 0, t2 = π, sin 0 = sin nπ = 0, cos 0 = 1 and cos nπ = (−1)n, we have

an = (−1)n (n = 1, 2, 3, . . . )

Likewise, from (7.36),

(n = 1, 2, 3, . . . )

and, from (7.37),

Thus the Fourier expansion for f (t) is

an
1

nπ
-------- −

s=1

2

∑ ds ntssin 1

n
---

s=1

2

∑ d s
1( ) ntscos– 1

n2
------

s=1

2

∑ d s
2( ) ntssin+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

2

n2
------

bn
1

nπ
--------

s=1

2

∑ ds ntscos 1

n
---

s=1

2

∑ d s
1( ) ntssin– 1

n2
------

s=1

2

∑ d s
2( ) ntscos–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1

nπ
-------- −2 π2 2+( ) −1( )n 1

n2
------ −2 2 −1( )n+[ ]–+

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

1

nπ
-------- 2

n2
------ 2–⎝ ⎠

⎛ ⎞ 1 −1( )n–[ ] π2 −1( )n+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

a0
1
π
---- �

−π

0

t2 dt �
0

π

−2( ) dt+ 1
3
----π2 2–= =

1
3
----π2 2–=

f t( ) 1
6
----π2 1–( )

n=1

∞

∑ 2

n2
------ −1( )n ntcos+=

n=1

∞

∑ 1
nπ
------ 2

n2
------ 2–⎝ ⎠

⎛ ⎞ 1 −1( )n–[ ] π2 −1( )n+
⎩ ⎭
⎨ ⎬
⎧ ⎫

ntsin+
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Show that the periodic function

f(t) = t (−T � t � T )

f(t + 2T ) = f(t)

has a Fourier series expansion

By term-by-term integration of this series, show 
that the periodic function

g(t) = t 2 (−T � t � T )

g(t + 2T ) = g(t)

has a Fourier series expansion

(Hint: A constant of integration must be introduced; 
it may be evaluated as the mean value over a period.)

The periodic function

h(t) = π2 − t 2 (−π � t � π)

h(t + 2π) = h(t)

has a Fourier series expansion

By term-by-term differentiation of this series, 
confirm the series obtained for f(t) in Exercise 24 
for the case when T = π.

(a) Suppose that the derivative f ′(t) of a periodic 
function f(t) of period 2π has a Fourier series 
expansion

f ′(t) = A0 + An cos nt + Bn sin nt

Show that

A0 = [ f(π−) − f(−π+)]

An = (−1)nA0 + nbn

Bn = −nan

where a0, an and bn are the Fourier coefficients 
of the function f(t).

(b) In Example 7.6 we saw that the periodic function

f(t) = t 2 + t (−π � t � π)

f(t + 2π) = f(t)

has a Fourier series expansion

f(t) = π2 + (−1)n cos nt

− (−1)n sin nt

Differentiate this series term by term, and 
explain why it is not a Fourier expansion of the 
periodic function

g(t) = 2t + 1 (−π � t � π)

g(t + 2π ) = g(t)

(c) Use the results of (a) to obtain the Fourier 
series expansion of g(t) and confirm your 
solution by direct evaluation of the coefficients 
using Euler’s formulae.

Using (7.35)–(7.37), confirm the following Fourier 
series expansions:

(a) (7.21) for the square wave of Example 7.4;
(b) the expansion obtained in Example 7.1 for the 

sawtooth wave;
(c) the expansion obtained for the piecewise- 

continuous function f(t) of Example 7.3.

Consider the periodic function

f(t + 2π) = f(t)

(a) Sketch a graph of the function for −4π � t � 4π.
(b) Use (7.35)–(7.37) to obtain the Fourier series 

expansion

7.4.4 Exercises

24

f t( ) 2T
π

------ πt
T
------sin  − 1

2
----

2πt
T

--------sin⎝
⎛ 1

3
----

3πt
T

--------sin+=

1
4
----

4πt
T

--------sin– . . .+ ⎠
⎞

g t( ) 1
3
----T 2 4T 2

π2
---------- πt

T
------cos 1

22
------ 2πt

T
--------cos–⎝

⎛–=

1

32
------ 3πt

T
--------cos 1

42
------ 4πt

T
--------cos– . . .+ + ⎠

⎞

25

h t( ) 2
3
----π2 4 tcos 1

22
------ 2tcos–⎝

⎛+=

1

32
------ 3t . . .cos ⎠

⎞+

26

1
2
----

n=1

∞

∑
n=1

∞

∑

1
n
----

1
3
----

n=1

∞

∑ 4

n2
------

n=1

∞

∑ 2
n
----

27

28

f t( )

0 −π � t � −1
2
----π( )

π 2t+ −1
2
----π � t � 0( )

π 2t– 0 � t � 1
2
----π( )

0 1
2
----π � t � π( )⎩

⎪
⎪
⎨
⎪
⎪
⎧

=
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and write out the first 10 terms of this series.
(Note: Although the function f(t) itself has no 
jump discontinuities, the method may be used 
since the derivative does have jump 
discontinuities.)

Use the method of Section 7.4.3 to obtain the 
Fourier series expansions for the following periodic 
functions:

(a)

f(t + 2π) = f(t)

(b)

f(t + 2π) = f(t)

(c)

f(t + 2) = f(t)

(d)

f(t + 1) = f(t)

f t( ) 1
4
----π − 4

π
----

n=1

∞

∑ 1

n2
------ cos 1

2
----nπ 1–( ) ntcos=

29

f t( )
0 −π � t � 0( )
t2 0 � t � π( )⎩

⎨
⎧

=

f t( )

2 −π � t � −1
2
----π( )

t3 −1
2
----π � t � 1

2
----π( )

−2 1
2
----π � t � π( )⎩

⎪
⎨
⎪
⎧

=

f t( ) t 0 � t � 1( )
1 t– 1 � t � 2( )⎩

⎨
⎧

=

f t( )
1
2
---- t+ −1

2
---- � t � 0( )

1
2
---- − t 0 � t � 1

2
----( )⎩

⎨
⎧

=

Engineering application: frequency response and 
oscillating systems

7.5.1 Response to periodic input

In Section 5.7 we showed that the frequency response, defined as the steady-state
response to a sinusoidal input A sin ω t, of a stable linear system having a transfer func-
tion G(s) is given by (5.101) as

By employing a Fourier series expansion, we can use this result to determine the
steady-state response of a stable linear system to a non-sinusoidal periodic input. For a
stable linear system having a transfer function G(s), let the input be a periodic function
P(t) of period 2T (that is, one having frequency ω = π/T in rad s−1). P(t) may be
expressed in the form of the Fourier series expansion

P(t) = a0 + An sin(nω t + φn) (7.39)

where An and φn are defined as in Section 7.2.1. The steady-state response to each term
in the series expansion (7.39) may be obtained using (7.38). Since the system is linear,
the principle of superposition holds, so that the steady-state response to the periodic
input P(t) may be obtained as the sum of the steady-state responses to the individual
sinusoids comprising the sum in (7.39). Thus the steady-state response to the input P(t) is

7.5 Engineering application:

xss(t) = A |G( jω) | sin [ω t + arg G( jω)] (7.38)

xss(t) = a0G(0) + An |G( jnω) | sin [nω t + φn + arg G( jnω)] (7.40)

1
2
----

n=1

∞

∑

1
2
----

n=1

∞

∑
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There are two issues related to this steady-state response that are worthy of note.

(a) For practical systems |G( jω) | → 0 as ω → ∞, so that |G( jnω) | → 0 as n → ∞ in
(7.40). As a consequence, the Fourier series representation of the steady-state
response xss(t) converges more rapidly than the Fourier series representation of
the periodic input P(t). From a practical point of view, this is not surprising, since
it is a consequence of the smoothing action of the system (that is, as indicated in
Section 7.4, integration is a ‘smoothing’ operation).

(b) There is a significant difference between the steady-state response (7.40) to a
non-sinusoidal periodic input of frequency ω and the steady-state response (7.37)
to a pure sinusoid at the same frequency. As indicated in (7.38), in the case of a
sinusoidal input at frequency ω the steady-state response is also a sinusoid at the
same frequency ω. However, for a non-sinusoidal periodic input P(t) at frequency
ω the steady-state response (7.40) is no longer at the same frequency; rather it
comprises an infinite sum of sinusoids having frequencies nω that are integer
multiples of the input frequency ω. This clearly has important practical implica-
tions, particularly when considering the responses of oscillating or vibrating sys-
tems. If the frequency nω of one of the harmonics in (7.40) is close to the natural
oscillating frequency of an underdamped system then the phenomenon of reson-
ance will arise.

To someone unfamiliar with the theory, it may seem surprising that a practical
system may resonate at a frequency much higher than that of the input. As indicated
in Example 5.30, the phenomenon of resonance is important in practice, and it is there-
fore important that engineers have some knowledge of the theory associated with
Fourier series, so that the possible dominance of a system response by one of the higher
harmonics, rather than the fundamental, may be properly interpreted.

The mass–spring–damper system of Figure 7.25(a) is initially at rest in a position of
equilibrium. Determine the steady-state response of the system when the mass is sub-
jected to an externally applied periodic force P(t) having the form of the square wave
shown in Figure 7.25(b).

Solution From Newton’s law, the displacement x(t) of the mass at time t is given by

(7.41)

Example 7.17

Figure 7.25 (a) System 
and (b) input for 
Example 7.17.

M d2x

dt2
--------- Bdx

dt
------- Kx+ + P t( )=
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so that the system may be represented by the block diagram of Figure 7.26. Thus the
system transfer function is

(7.42)

From Example 7.4, the Fourier series expansion for the square wave P(t) is

that is,

P(t) = u1(t) + u2(t) + u3(t) + . . . + un(t) + . . . (7.43)

where

(7.44)

Substituting the given values for M, B and K, the transfer function (7.42) becomes

Thus

where D = (250 − 10ω2)2 + 0.25ω2, so that

(7.45)

arg G( jω) = −tan−1 (7.46)

Using (7.38), the steady-state response of the system to the nth harmonic un(t) given by
(7.44) is

xssn(t) = |G( j(2n − 1)) | sin[(2n − 1)t + arg G( j(2n − 1))] (7.47)

where |G( jω) | and arg G( jω) are given by (7.45) and (7.46) respectively. The steady-
state response xss(t) of the system to the square-wave input P(t) is then determined as
the sum of the steady-state responses due to the individual harmonics in (7.43); that is,

xss(t) = xssn(t) (7.48)

where xssn(t) is given by (7.47).

Figure 7.26 Block 
diagram for the system 
of Figure 7.26.

G s( ) 1

Ms2 Bs K+ +
--------------------------------=

P t( ) 40
π
------- tsin 3tsin

3
------------- 5tsin

5
------------- . . . 2n 1–( )tsin

2n 1–
------------------------------- . . . + + + + +=

un t( ) 40
π
------- 2n 1–( )tsin

2n 1–
-------------------------------=

G s( ) 1

10s2 0.5s 250+ +
------------------------------------------=

G jω( ) 1

−10ω2 0.5 jω 250+ +
--------------------------------------------------- 250 10ω2–--------------------------- j0.5ω

D D
-----------–= =

G jω( ) � 250 10ω2–( )2 0.25ω2+
D2

---------------------------------------------------------=

1

�D
------- 1

� 250 10ω2–( )2 0.25ω2+[ ]
-----------------------------------------------------------------==

0.5ω
250 10ω2–
---------------------------⎝ ⎠

⎛ ⎞

40
π 2n 1–( )
-----------------------

n=1

∞

∑
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Evaluating the first few terms of the response (7.48), we have 

Thus a good approximation to the steady-state response (7.48) is

xss(t) � 0.053 sin(t − 0.003) + 0.027 sin(3t − 0.54) + 1.02 sin(5t − π) 

+ 0.0076 sin(7t − 3.127) (7.49)

The graph of this displacement is shown in Figure 7.27, and it appears from this that
the response has a frequency about five times that of the input. This is because the term
1.02 sin(5t − π) dominates in the response (7.49); this is a consequence of the fact that
the natural frequency of oscillation of the system is �(K /M ) = 5 rad s−1, so that it is in
resonance with this particular harmonic.

In conclusion, it should be noted that it was not essential to introduce transfer func-
tions to solve this problem. Alternatively, by determining the particular integral of the
differential equation (7.41), the steady-state response to an input A sin ωt is determined as

giving xssn(t) as in (7.48). The solution then proceeds as before.

xss1 t( ) 40
π
------- 1

� 250 10–( )2 0.25+[ ]
---------------------------------------------------- t 0.5

240
----------⎝ ⎠

⎛ ⎞−1tan–sin=

0.053 t 0.003–( )sin=

xss2 t( ) 40
3π
------ 1

� 250 90–( )2 2.25+[ ]
---------------------------------------------------- 3t 1.5

160
----------⎝ ⎠

⎛ ⎞−1tan–sin=

0.027 3t 0.009–( )sin=

xss3 t( ) 40
5π
------ 1

� 6.25( )
------------------- 5t 2.5

0
-------⎝

⎛ ⎞
⎠

−1tan–sin=

1.02 5t 1
2
----π–( )sin=

xss4 t( ) 40
7π
------ 1

� 250 490–( )2 12.25+[ ]
---------------------------------------------------------- 7t 3.5

−240
------------⎝ ⎠

⎛ ⎞−1tan–sin=

0.0076 7t 3.127–( )sin=

1
2
----

1
2
----

Figure 7.27
Steady-state response 
of system of 
Figure 7.25.

xss t( ) A ωt α–( )sin

� K Mω2–( )2 B2ω2+[ ]
------------------------------------------------------ , αtan ωB

K Mω2–
---------------------= =
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Determine the steady-state current in the circuit of 
Figure 7.28(a) as a result of the applied periodic 
voltage shown in Figure 7.28(b).

Determine the steady-state response of the mass–
spring–damper system of Figure 7.29(a) when the 
mass is subjected to the externally applied periodic 
force f(t) shown in Figure 7.29(b).

What frequency dominates the response, and 
why?

Determine the steady-state motion of the mass of 
Figure 7.30(a) when it is subjected to the externally 
applied force of Figure 7.30(b).

Determine the steady-state current in the circuit 
shown in Figure 7.31(a) when the applied voltage is 
of the form shown in Figure 7.31(b).

7.5.2 Exercises

30

Figure 7.28 (a) Circuit of Exercise 30; 
(b) applied voltage.

31

Figure 7.29 (a) Mass–spring–damper system of 
Exercise 31; (b) applied force.

32

Figure 7.30 (a) Mass–spring–damper system of 
Exercise 32; (b) applied force.

33

Figure 7.31 (a) Circuit of Exercise 33; (b) applied 
voltage.
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Complex form of Fourier series
An alternative to the trigonometric form of the Fourier series considered so far is the
complex or exponential form. As a result of the properties of the exponential function,
this form is easily manipulated mathematically. It is widely used by engineers in prac-
tice, particularly in work involving signal analysis, and provides a smoother transition
from the consideration of Fourier series for dealing with periodic signals to the con-
sideration of Fourier transforms for dealing with aperiodic signals, which will be dealt
with in Chapter 8.

7.6.1 Complex representation

To develop the complex form of the Fourier series

f (t) = a0 + an cos nω t + bn sin nω t (7.50)

representing a periodic function f (t) of period T, we proceed as follows. Substituting
the results

sin nω t = (e jnω t − e−jnω t)

cos nω t = (e jnω t + e−jnω t)

into (7.50) gives

(7.51)

Writing

c0 = a0, cn = (an − jbn), c−n = cn* = (an + jbn) (7.52)

(7.51) becomes

f (t) = c0 + cn e jnω t + c−n e −jnω t 

= c0 + cn e jnω t + cn e jnω t

= cn e jnω t, since c0 e0 = c0

7.6
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∞

∑ an
ejnωt e− jnωt+
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∞
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∞
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∞
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∞
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1
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∞

∑
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−∞

∑
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∞
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Thus the Fourier series (7.50) becomes simply

f (t) = cn e jnω t (7.53)

which is referred to as the complex or exponential form of the Fourier series expan-
sion of the function f (t).

In order that we can apply this result directly, it is necessary to obtain a formula for
calculating the complex coefficients cn. To do this, we incorporate the Euler formulae
(7.4) and (7.5) into the definitions given in (7.52), leading to

(7.54)

= f (t)(cos nω t − j sin nω t) dt

= f (t) e− jnω t dt (7.55)

c−n = (an + jbn) = f (t)(cos nω t + j sin nω t) dt

= f (t) e jnω t dt (7.56)

From (7.54)–(7.56), it is readily seen that for all values of n

cn = f (t) e− jnω t dt (7.57)

Summary

In general the coefficients cn (n = 0, ±1, ±2, . . . ) are complex, and may be expressed
in the form

cn = |cn | e jφn

n=−∞

∞

∑

c0
1
2
----a0

1
T
----�

d

d+T

f t( ) dt= =

cn
1
2
---- an jbn–( ) 1

T
---- �

d

d+T

f t( ) nω tcos dt j�
d

d+T

f t( ) nω t dtsin–= =

1
T
---- �

d

d+T

1
T
---- �

d

d+T

1
2
----

1
T
---- �

d

d+T

1
T
---- �

d

d+T

1
T
---- �

d

d+T

In summary, the complex form of the Fourier series expansion of a periodic function
f (t), of period T, is

f (t) = c ne jnω t (7.53)

where

cn = f (t) e− jnω t dt (n = 0, ±1, ±2, . . . ) (7.57)

n=−∞

∞

∑

1
T
---- �

d

d+T
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where |cn|, the magnitude of cn, is given from the definitions (7.52) by

|cn | = �[( an)
2 + ( bn)

2] = �(an
2 + bn

2)

so that 2|cn | is the amplitude of the nth harmonic. The argument φn of cn is related to the
phase of the nth harmonic.

Find the complex form of the Fourier series expansion of the periodic function f (t)
defined by

f (t) = cos t (−π � t � π), f (t + 2π) = f (t)

Solution A graph of the function f (t) over the interval −3π � t � 3π is shown in Figure 7.32.
Here the period T is 2π, so from (7.57) the complex coefficients cn are given by

Now e jπ/2 = cos π + j sin π = j, e−jπ/2 = −j and e jnπ = e−jnπ = cos nπ = (−1)n, so that

Note that in this case cn is real, which is as expected, since the function f (t) is an even
function of t.

From (7.53), the complex Fourier series expansion for f (t) is

This may readily be converted back to the trigonometric form, since, from the defini-
tions (7.52),

1
2
---- 1

2
---- 1

2
----

Example 7.18

1
2
----

Figure 7.32 Function 
f(t) of Example 7.18.
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a0 = 2c0, an = cn + c*n, bn = j(cn − c*n)

so that in this particular case

Thus the trigonometric form of the Fourier series is

which corresponds to the solution to Exercise 1(e).

Obtain the complex form of the Fourier series of the sawtooth function f (t) defined by

f (t) = (0 � t � 2T ), f (t + 2T ) = f (t)

Solution A graph of the function f (t) over the interval −6T � t � 6T is shown in Figure 7.33.
Here the period is 2T, that is ω = π/T, so from (7.57) the complex coefficients cn are
given by

(n ≠ 0)

Now e−jn2π = e−j0 = 1, so

(n ≠ 0)

In the particular case n = 0

Thus from (7.53) the complex form of the Fourier series expansion of f (t) is

a0
4
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---- , an 2 2
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----------------- , bn 0= = = =

f t( ) 2

π
--- 4
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∞

∑+=

Example 7.19
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Figure 7.33 Function f(t) 
of Example 7.19.
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Noting that j = e jπ/2, this result may also be written in the form

f (t) = 2 + e j(nπt/T+π/2)

As in Example 7.18, the Euler coefficients in the corresponding trigonometric series are

a0 = 2c0 = 4, an = cn + c*n = 0, bn = j(cn + c*n) = 

so that the corresponding trigonometric Fourier series expansion of f (t) is

which corresponds to the solution of Example 7.11 when T = 2.

7.6.2 The multiplication theorem and Parseval’s theorem

Two useful results, particularly in the application of Fourier series to signal analysis,
are the multiplication theorem and Parseval’s theorem. The multiplication theorem
enables us to write down the mean value of the product of two periodic functions over
a period in terms of the coefficients of their Fourier series expansions, while Parseval’s
theorem enables us to write down the mean square value of a periodic function, which,
as we will see in Section 7.6.4, determines the power spectrum of the function.

The multiplication theorem

Proof Let f (t) and g(t) have complex Fourier series given by

f (t) = cn e jn2πt/T (7.59a)

with

cn = f (t) e − jn2πt/T dT (7.59b)

2
π
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n
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T
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n=1

∞

∑–=

Theorem 7.5

If f (t) and g(t) are two periodic functions having the same period T then

f (t)g(t) dt = cnd*n (7.58)

where the cn and dn are the coefficients in the complex Fourier series expansions of
f (t) and g(t) respectively.
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and

g(t) = dn e jn2πt/T (7.60a)

with

dn = g(t) e − jn2πt/T dt (7.60b)

Then

Since d−n = d*n, the complex conjugate of dn, this reduces to the required result:

f ( t )g(t) dt = cnd*n

In terms of the real coefficients an, bn and αn, βn of the corresponding trigonometric
Fourier series expansions of f (t) and g(t),

and using the definitions (7.52), the multiplication theorem result (7.58) reduces to

f ( t )g(t) dt = c−ndn + c0d0 + cnd−n

= α0a0 + [(an − jbn)(αn + jβn) + (an + jbn)(αn − jβn)]

giving

n=−∞

∞

∑

1
T
---- �

c

c+T

using (7.59a)

assuming term-by-term 
integration is possible 
using (7.59b)
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Parseval’s theorem

Proof This result follows from the multiplication theorem, since, taking g(t) = f (t) in (7.58),
we obtain

[ f (t)]2 dt = c n c*n = |cn |2

Using (7.60), Parseval’s theorem may be written in terms of the real coefficients an

and bn of the trigonometric Fourier series expansion of the function f (t) as

The root mean square (RMS) value fRMS of a periodic function f (t) of period T, defined
by 

f 2
RMS = [ f (t)]2 dt

may therefore be expressed in terms of the Fourier coefficients using (7.61) or (7.62).

By applying Parseval’s theorem to the function

f (t) = (0 � t � T ), f (t + 2T ) = f (t)

considered in Example 7.19, show that

Solution From Example 7.19, the coefficients of the complex Fourier series expansion of f (t) are

c0 = 2, cn = (n ≠ 0)

Theorem 7.6

If f (t) is a periodic function with period T then

[ f (t)]2 dt = c n c*n = |cn |2 (7.61)

where the cn are the coefficients in the complex Fourier series expansion of f (t).
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Thus, applying the Parseval’s theorem result (7.61), noting that the period in this case
is 2T, we obtain

[ f (t)]2 dt = c2
0 + |cn |2 + |cn |2

giving

which reduces to

leading to the required result

7.6.3 Discrete frequency spectra

In expressing a periodic function f (t) by its Fourier series expansion, we are decompos-
ing the function into its harmonic or frequency components. We have seen that if f (t)
is of period T then it has frequency components at frequencies

ω n =  = nω 0 (n = 1, 2, 3, . . . ) (7.63)

where ω 0 is the frequency of the parent function f (t). (All frequencies here are meas-
ured in rad s−1.)

A Fourier series may therefore be interpreted as constituting a frequency spectrum
of the periodic function f (t), and provides an alternative representation of the function
to its time-domain waveform. This frequency spectrum is often displayed by plotting
graphs of both the amplitudes and phases of the various harmonic components against
angular frequency ωn. A plot of amplitude against angular frequency is called the
amplitude spectrum, while that of phase against angular frequency is called the phase
spectrum. For a periodic function f (t), of period T, harmonic components only occur
at discrete frequencies ωn, given by (7.59), so that these spectra are referred to as dis-
crete frequency spectra or line spectra. In Chapter 8 Fourier transforms will be used
to define continuous spectra for aperiodic functions. With the growing ability to process
signals digitally, the representation of signals by their corresponding spectra is an
approach widely used in almost all branches of engineering, especially electrical engin-
eering, when considering topics such as filtering and modulation. An example of the
use of a discrete spectral representation of a periodic function is in distortion measure-
ments on amplifiers, where the harmonic content of the output, measured digitally, to a
sinusoidal input provides a measure of the distortion.
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If the Fourier series expansion of a periodic function f (t), with period T, has been
obtained in the trigonometric form

then, as indicated in Section 7.2.2, this may be expressed in terms of the various har-
monic components as

(7.64)

where

A0 = a0, An = �(a 2
n + b 2

n)

and the φn are determined by

sin φn = , cos φn = 

In this case a plot of An against angular frequency ωn will constitute the amplitude
spectrum and that of φn against ωn the phase spectrum. These may be incorporated in
the same graph by indicating the various phases on the amplitude spectrum as illus-
trated in Figure 7.34. It can be seen that the amplitude spectrum consists of a series
of equally spaced vertical lines whose lengths are proportional to the amplitudes of the
various harmonic components making up the function f (t). Clearly the trigonometric
form of the Fourier series does not in general lend itself to the plotting of the discrete
frequency spectrum, and the amplitudes An and phases φn must first be determined from
the values of an and bn previously determined.

In work on signal analysis it is much more common to use the complex form of the
Fourier series. For a periodic function f (t), of period T, this is given by (7.53), with the
complex coefficients being given by

cn = |cn | e jφ n (n = 0, ±1, ±2, . . . )

in which |cn | and φn denote the magnitude and argument of cn respectively. Since in
general cn is a complex quantity, we need two line spectra to determine the discrete
frequency spectrum; the amplitude spectrum being a plot of |cn | against ωn and the
phase spectrum that of φn against ωn. In cases where cn is real a single spectrum may be
used to represent the function f (t). Since |c−n | = |c*n | = |cn |, the amplitude spectrum will
be symmetrical about the vertical axis, as illustrated in Figure 7.35.
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Figure 7.34 Real 
discrete frequency 
spectrum.
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Note that in the complex form of the discrete frequency spectrum we have com-
ponents at the discrete frequencies 0, ±ω0, ±2ω0, ±3ω0, . . . ; that is, both positive and
negative discrete frequencies are involved. Clearly signals having negative frequencies
are not physically realizable, and have been introduced for mathematical convenience.
At frequency nω 0 we have the component e jnω 0t, which in itself is not a physical signal;
to obtain a physical signal, we must consider this alongside the corresponding com-
ponent e−jnω 0t at the frequency −nω 0, since then we have

e jnω 0t + e−jnω 0t = 2 cos nω 0t (7.65)

Plot the discrete amplitude and phase spectra for the periodic function

f (t) = (0 � t � 2T ), f (t + 2T ) = f (t)

of Example 7.19. Consider both complex and real forms.

Solution In Example 7.19 the complex coefficients were determined as

c0 = 2, cn = (n = ±1, ±2, ±3, . . . )

Thus

The corresponding amplitude and phase spectra are shown in Figures 7.36(a) and (b)
respectively.

In Example 7.19 we saw that the coefficients in the trigonometric form of the Fourier
series expansion of f (t) are

a0 = 4, an = 0, bn = −

Figure 7.35 Complex 
form of the amplitude 
spectrum.
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so that the amplitude coefficients in (7.63) are

A0 = 2, An = (n = 1, 2, 3, . . . )

leading to the real discrete frequency spectrum of Figure 7.37.

Since |cn | = �(a2
n + b2

n) = An, the amplitude spectrum lines in the complex form
(Figure 7.36) are, as expected, halved in amplitude relative to those in the real repre-
sentation (Figure 7.37), the other half-value being allocated to the corresponding
negative frequency. In the complex representation the phases at negative frequencies
(Figure 7.36b) are the negatives of those at the corresponding positive frequencies. In
our particular representation (7.64) of the real form the phases at positive frequencies
differ by π between the real and complex form. Again this is not surprising, since from
(7.65) we see that combining positive and negative frequencies in the complex form
leads to a cosinusoid at that frequency rather than a sinusoid. In order to maintain equal-
ity of the phases at positive frequencies between the complex and real representations,
a cosinusoidal expansion

(7.66)

4
nπ
------

Figure 7.36 Complex discrete frequency spectra for Example 7.21, with ω0 = π/T: (a) amplitude spectrum; 
(b) phase spectrum.

Figure 7.37 Real 
discrete frequency 
spectrum for 
Example 7.21 
(corresponding to 
sinusoidal expansion).
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of the real Fourier series is frequently adopted as an alternative to the sinusoidal series
expansion (7.64). Taking (7.66), the amplitude spectrum will remain the same as for
(7.68), but the phase spectrum will be determined by 

sin φn = − , cos φn = 

showing a phase shift of π from that of (7.64). Adopting the real representation (7.66),
the corresponding real discrete frequency spectrum for the function f (t) of Example
7.21 is as illustrated in Figure 7.38.

Determine the complex form of the Fourier series expansion of the periodic (period 2T )
infinite train of identical rectangular pulses of magnitude A and duration 2d illustrated
in Figure 7.39. Draw the discrete frequency spectrum in the particular case when d =
and T = .

Solution Over one period −T � t � T the function f (t) representing the train is expressed as

From (7.57), the complex coefficients cn are given by

 (n ≠ 0)

(n = ±1, ±2, . . . )
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Figure 7.38 Real 
discrete frequency 
spectrum for 
Example 7.21 
(corresponding 
to cosinusoidal 
expansion).

Example 7.22
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Figure 7.39
Infinite train of 
rectangular pulses 
of Example 7.22.
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In the particular case when n = 0

so that

(n = 0, ±1, ±2, . . . )

where the sinc function is defined by

Thus from (7.53) the complex Fourier series expansion for the infinite train of pulses
f (t) is

As expected, since f (t) is an even function, cn is real, so we need only plot the discrete
amplitude spectrum to represent f (t). Since the amplitude spectrum is a plot of |cn |
against frequency nω 0, with ω 0 = π/T, it will only take values at the discrete frequency
values

In the particular case d = , T = , ω0 = 2π the amplitude spectrum will only exist at
frequency values

0, ±2π, ±4π, . . . 

Since in this case

cn = A sinc nπ (n = 0, ±1, ±2, . . . )

noting that sinc nπ = 0 when nπ = mπ or n = 5m (m = ±1, ±2, . . . ), the spectrum is
as shown in Figure 7.40.

c0
1

2T
------ �

−T

T

f t( ) dt 1
2T
------ �

−d

d

A dt Ad
T

--------= = =

cn
Ad-------- sinc nπd
T T

-----------⎝ ⎠
⎛ ⎞=

sinc t
tsin

t
----------- t ≠ 0( )

1 t = 0( )⎩
⎪
⎨
⎪
⎧

=

f t( ) Ad-------- sinc nπd
T T

-----------⎝ ⎠
⎛ ⎞ ejnπt/T

n=−∞

∞

∑=

0, ±π
T
---- , ±2π

7
------ , ±3π

7
------ , . . .

1
10
------- 1

2
----

1
5
---- 1

5
----

1
5
---- 1

5
----

Figure 7.40 Discrete 
amplitude spectrum 
for an infinite train of 
pulses when d =  and 
T = .

1
10
-------

1
2
----
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7.6  COMPLEX FOR M OF  FOURIER SERIES 621

As we will see in Chapter 8, the sinc function sinc t = (sin t)/t plays an important role
in signal analysis, and it is sometimes referred to as the sampling function. A graph of
sinc t is shown in Figure 7.41, and it is clear that the function oscillates over intervals
of length 2π and decreases in amplitude with increasing t. Note also that the function
has zeros at t = ±nπ (n = 1, 2, 3, . . . ).

7.6.4 Power spectrum

The average power P associated with a periodic signal f (t), of period T, is defined as
the mean square value; that is,

P = [ f (t)]2 dt (7.67)

For example, if f(t) represents a voltage waveform applied to a resistor then P represents
the average power, measured in watts, dissipated by a 1 Ω resistor.

By Parseval’s theorem (Theorem 7.6),

(7.68)

Since

the power in the nth harmonic is

Pn = (a 2
n + b 2

n) (7.69)

and it follows from (7.68) that the power of the periodic function f (t) is the sum of the
power of the individual harmonic components contained in f (t).

In terms of the complex Fourier coefficients, Parseval’s theorem gives

P = |cn |2 (7.70)

As discussed in Section 7.6.3, the component e jnω 0t at frequency ωn = nω 0, ω 0 = 2π/T,
must be considered alongside the component e−jnω 0t at the corresponding negative fre-
quency −ωn in order to form the actual nth harmonic component of the function f (t).
Since |c−n |2 = |c*n |2 = |cn |2, it follows that the power associated with the nth harmonic is
the sum of the power associated with e jnω 0t and e−jnω 0t; that is,

Figure 7.41
Graph of sinc t.

1
T
---- �

d

d+T

P 1
4
----a0

2 1
2
---- an

2 bn
2+( )

n=1

∞

∑+=

1
T
---- �

d

d+T

an
2nπt

T
-------------⎝ ⎠

⎛ ⎞cos
2

dt 1
2
----an

2, 1
T
---- �

d

d+T

bn
2nπt

T
-------------⎝ ⎠

⎛ ⎞sin
2

dt 1
2
----bn

2= =

1
2
----

n=−∞

∞

∑
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622 FOURIER SERIES

Pn = 2|cn |2 (7.71)

which, since |cn | = �(a 2
n + b 2

n), corresponds to (7.69). Thus in the complex form half
the power of the nth harmonic is associated with the positive frequency and half with
the negative frequency.

Since the total power of a periodic signal is the sum of the power associated with
each of the harmonics of which the signal is composed, it is again useful to consider a
spectral representation, and a plot of |cn |2 against angular frequency ωn is called the
power spectrum of the function f (t ). Clearly such a spectrum is readily deduced from
the discrete amplitude spectrum of |cn | against angular frequency ωn.

For the spectrum of the infinite train of rectangular pulses shown in Figure 7.39, deter-
mine the percentage of the total power contained within the frequency band up to the
first zero value (called the zero crossing of the spectrum) at 10π rad s−1.

Solution From (7.67), the total power associated with the infinite train of rectangular pulses f (t) is

which in the particular case when d =  and T =  becomes

P = A2 dt = A2

The power contained in the frequency band up to the first zero crossing at 10π rad s−1 is

P1 = c2
0 + 2(c2

1 + c2
2 + c2

3 + c2
4)

where

cn = 

That is,

= A2 [1 + 2(0.875 + 0.756 + 0.255 + 0.055)] = A2(0.976)

Thus P1 = 0.976P, so that approximately 97.6% of the total power associated with f (t)
is contained in the frequency band up to the first zero crossing at 10π rad s−1.

Suppose that a periodic voltage v(t), of period T, applied to a linear circuit, results
in a corresponding current i(t), having the same period T. Then, given the Fourier series
representation of both the voltage and current at a pair of terminals, we can use the
multiplication theorem (Theorem 7.5) to obtain an expression for the average power P
at the terminals. Thus, given

v(t) = cne j2nπt/T, i(t) = dne j2nπt/T

1
2
----

Example 7.23

P 1
2T
------ �

−T

T

f t( )[ ]2 dt 1
2T
------ �

−d

d

A2 dt= =

1
10
------- 1

2
----

�
−1/10

1/10

1
5
----

1
5
---- A sinc 1

5
----nπ

P1
1
25
-------A2 2

25
-------A2 sinc2 1

5
----π sinc2 2

5
----π sinc2 3

5
----π sinc2 4

5
----π+ + +( )+=

1
25
------- 1

5
----

n=−∞

∞

∑
n=−∞

∞

∑
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the instantaneous power at the terminals is vi and the average power is

P = vi dt = cndn*

or, in terms of the corresponding trigonometric Fourier series coefficients an, bn and
αn, βn,

P = α0β0 + (anαn + bnβn)

1
T
---- �

d

d+T

n=−∞

∞

∑

1
4
----

1
2
----

n=1

∞

∑

Show that the complex form of the Fourier series 
expansion of the periodic function

f(t) = t 2 (−π � t � π)

f(t + 2π) = f(t)

is

Using (7.52), obtain the corresponding 
trigonometric series and check with the 
series obtained in Example 7.5.

Obtain the complex form of the Fourier series 
expansion of the square wave

f(t + 4) = f(t)

Using (7.52), obtain the corresponding 
trigonometric series and check with the 
series obtained in Example 7.7.

Obtain the complex form of the Fourier 
series expansion of the following periodic 
functions.

(a)

f(t + 2π) = f(t)

(b)

f(t + T) = f(t), T = 2π/ω

(c)

f(t + 2π) = f(t)

(d) f(t) = |sin t | (−π � t � π)

f(t + 2π) = f(t)

A periodic function f(t), of period 2π, is defined 
within the period −π � t � π by

Using the Fourier coefficients of f(t), together with 
Parseval’s theorem, show that

(Note: The Fourier coefficients may be deduced 
from Example 7.7 or Exercise 35.)

(a) Show that the Fourier series expansion of the 
periodic function

f(t) = 500πt (0 � t � )

f(t + ) = f(t)

may be expressed as 

(b) Using (7.62), estimate the RMS value of f(t) by
(i)  using the first four terms of the Fourier 

series;
(ii) using the first eight terms of the Fourier 

series.

7.6.5 Exercises

34

f t( ) π2

6
------ 2

n2
------ −1( )nejnt

n=0

∞

∑+=

35

f t( ) 0 −2 � t � 0( )
1 0 � t � 2( )⎩

⎨
⎧

=

36

f t( ) π −π � t � 0( )
t 0 � t � π( )⎩

⎨
⎧

=

f t( )
a ωtsin 0 � t � 1

2
----T( )

0 1
2
----T � t � T( )⎩

⎨
⎧

=

f t( ) 2 −π � t � 0( )
1 0 � t � π( )⎩

⎨
⎧

=

37

f t( ) 0 −π � t � 0( )
1 0 � t � π( )⎩

⎨
⎧

=

1

2n 1–( )2
-----------------------

n=1

∞

∑ 1
8
----π2=

38

1
50
-------

1
50
-------

f t( ) 5π 10 1
n
---- 100nπtsin

n=1

∞

∑–=
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Orthogonal functions
As was noted in Section 7.2.2, the fact that the set of functions {1, cos ω t, sin ω t,
. . . , cos nω t, sin nω t, . . . } is an orthogonal set of functions on the interval d � t � d
+ T was crucial in the evaluation of the coefficients in the Fourier series expansion of a
function f (t). It is natural to ask whether it is possible to express the function f (t) as a
series expansion in other sets of functions. In the case of periodic functions f (t) there
is no natural alternative, but if we are concerned with representing a function f (t) only
in a finite interval t1 � t � t2 then a variety of other possibilities exist. These possibil-
ities are drawn from a class of functions called orthogonal functions, of which the
trigonometric set {1, cos ω t, sin ω t, . . . , cos nω t, sin nω t} is a particular example.

7.7.1 Definitions

Two real functions f (t) and g(t) that are piecewise-continuous in the interval t1 � t � t2

are said to be orthogonal in this interval if

f (t)g(t) dt = 0

A set of real functions φ1(t), φ2(t), . . . ≡ {φn(t)}, each of which is piecewise-continuous
on t1 � t � t2, is said to be an orthogonal set on this interval if φn(t) and φm(t) are
orthogonal for each pair of distinct indices n, m; that is, if

φn(t)φm(t) dt = 0 (n ≠ m) (7.72)

We shall also assume that no member of the set {φn(t)} is identically zero except at a
finite number of points, so that

φ2
m(t) dt = γm (m = 1, 2, 3, . . . ) (7.73)

where γm (m = 1, 2, . . . ) are all non-zero constants.

7.7

�
t1

t2

�
t1

t2

�
t1

t2

(c) Obtain the true RMS value of f(t), and hence 
determine the percentage errors in the 
estimated values obtained in (b).

A periodic voltage v(t) (in V) of period 5 ms and 
specified by 

v(t + 5 ms) = v(t)

is applied across the terminals of a 15 Ω resistor.

(a) Obtain expressions for the coefficients cn of the 
complex Fourier series representation of v(t), 
and write down the values of the first five 
non-zero terms.

(b) Calculate the power associated with each of 
the first five non-zero terms of the Fourier 
expansion.

(c) Calculate the total power delivered to the 
15 Ω resistor.

(d) What is the percentage of the total power 
delivered to the resistor by the first five 
non-zero terms of the Fourier series?

39

v t( ) 60 0 � t � 1.25 ms( )
0 1.25 ms � t � 5 ms( )⎩

⎨
⎧

=
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7.7  OR THOGONAL FUNCTIONS 625

An orthogonal set {φn(t)} is said to be orthonormal if each of its components is also
normalized; that is, γm = 1 (m = 1, 2, 3, . . . ). We note that any orthogonal set {φn(t)}
can be converted into an orthonormal set by dividing each member φm(t) of the set by �γm.

Since (7.6)–(7.10) hold,

{1, cos t, sin t, cos 2t, sin 2t, . . . , cos nt, sin nt}

is an orthogonal set on the interval d � t � d + 2π, while the set

forms an orthonormal set on the same interval.
The latter follows since

(n = 1, 2, 3, . . . )

The definition of orthogonality considered so far applies to real functions, and has
to be amended somewhat if members of the set {φn(t)} are complex functions of the real
variable t. In such a case the set {φn(t)} is said to be an orthogonal set on the interval
t1 � t � t2 if

φn(t)φ*m(t) dt = (7.74)

where φ*m(t) denotes the complex conjugate of φ m(t).

Verify that the set of complex exponential functions

{e jnπt/T} (n = 0, ±1, ±2, ±3, . . . )

used in the complex representation of the Fourier series is an orthogonal set on the
interval 0 � t � 2T.

Solution First,

e jnπt/T 1 dt =  = 0 (n ≠ 0)

since e j2nπ = e0 = 1. Secondly,

e jnπt/T (e jmπt/T)* dt =  e
j(n−m)πt/T dt = = 0 (n ≠ m)

Example 7.24

1
� 2π( )
-------------- , tcos

�π
------------ , tsin

�π
----------- , . . . , ntcos sin-------------- , nt

�π �π
-------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

�
d

d+2π
1

� 2π( )
--------------

2

dt 1=

�
d

d+2π
ntcos

�π
--------------⎝ ⎠

⎛ ⎞ 2

dt �
d

d+2π
sin nt

�π
-------------⎝ ⎠

⎛ ⎞ 2

dt 1= =

�
t1

t2 0 n ≠ m( )
γ n = m( )⎩

⎨
⎧

Example 7.25

�
0

2T
T

jnπ
--------ejnπt/T

0

2T

�
0

2T

�
0

2T
T

j n m–( )π
-----------------------ej n−m( )πt/T

0

2T
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and, when n = m,

e jnπt/T (e jnπt/T)*dt = 1 dt = 2T

Thus

e jnπt/T 1 dt = 0 (n ≠ 0)

e jnπt/T (e jmπt/T )* dt = 

and, from (7.74), the set is an orthogonal set on the interval 0 � t � 2T.

The trigonometric and exponential sets are examples of orthogonal sets that we have
already used in developing the work on Fourier series. Examples of other sets of ortho-
gonal functions that are widely used in practice are Legendre polynomials, Bessel func-
tions, Hermite polynomials, Laguerre polynomials, Jacobi polynomials, Tchebyshev
(sometimes written as Chebyshev) polynomials and Walsh functions. Over recent years
wavelets are another set of orthogonal functions that have been widely used, particularly
in applications such as signal processing and data compression.

7.7.2 Generalized Fourier series

Let {φn(t)} be an orthogonal set on the interval t1 � t � t2 and suppose that we wish to
represent the piecewise-continuous function f (t) in terms of this set within this interval.
Following the Fourier series development, suppose that it is possible to express f (t) as
a series expansion of the form

f (t) = cnφn(t) (7.75)

We now wish to determine the coefficients cn, and to do so we again follow the Fourier
series development. Multiplying (7.75) throughout by φm(t) and integrating term by
term, we obtain

f (t)φm(t) dt = φm(t)φn(t) dt

which, on using (7.72) and (7.73), reduces to

f (t)φn(t) dt = cnγn

giving

cn = f (t)φn(t) dt (n = 1, 2, 3, . . . ) (7.76)

�
0

2T

�
0

2T

�
0

2T

�
0

2T
0 n ≠ m( )
2T n = m( )⎩

⎨
⎧

n=1

∞

∑

�
t1

t2

n=1

∞

∑ cn �
t1

t2

�
t1

t2

1
γ n

---- �
t1

t2
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Summary

A parallel can be drawn between a generalized Fourier series expansion of a function
f (t) with respect to an orthogonal basis set of functions {φn(t)} and the representation
of a vector f in terms of an orthogonal basis set of vectors v1, v2, . . . , vn as 

f = α1v1 + . . . + αnvn

where

There is clearly a similarity between this pair of results and the pair (7.75)–(7.76).

7.7.3 Convergence of generalized Fourier series

As in the case of a Fourier series expansion, partial sums of the form

FN(t) = cnφn(t) (7.77)

can be considered, and we wish this representation to be, in some sense, a ‘close
approximation’ to the parent function f (t). The question arises when considering such
a partial sum as to whether choosing the coefficients cn as the generalized Fourier
coefficients (7.76) leads to the ‘best’ approximation. Defining the mean square error
EN between the actual value of f (t) and the approximation FN(t) as 

EN = [ f (t) − FN(t)]2 dt

it can be shown that EN is minimized, for all N, when the coefficients cn are chosen
according to (7.76). Thus in this sense the finite generalized Fourier series gives the best
approximation.

To verify this result, assume, for convenience, that the set {φn(t)} is orthonormal,
and consider the Nth partial sum

FN(t) = cnφn(t)

Summarizing, if f (t) is a piecewise-continuous function on the interval t1 � t � t2

and {φn(t)} is an orthogonal set on this interval then the series

f (t) = cnφn(t)

is called the generalized Fourier series of f (t) with respect to the basis set {φn(t)},
and the coefficients cn, given by (7.76), are called the generalized Fourier coeffi-
cients with respect to the same basis set.

n=1

∞

∑

α i
f vi⋅
vi vi⋅
------------

f vi⋅
| vi |2
----------= =

n=1

N

∑

1
t2 t1–
-------------- �

t1

t2

n=1

N

∑
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where the cn are to be chosen in order to minimize the mean square error EN. Now

since {φn(t)} is an orthonormal set. That is,

(7.78)

which is clearly minimized when cn = cn.
Taking cn = cn in (7.78), the mean square error EN in approximating f (t) by FN(t) of

(7.73) is given by

if the set {φn(t)} is orthonormal, and is given by

(7.79)

if the set {φn(t)} is orthogonal.
Since, by definition, EN is non-negative, it follows from (7.79) that

(7.80)

a result known as Bessel’s inequality. The question that arises in practice is whether or
not EN → 0 as N → ∞, indicating that the sum

cnφn(t)

converges to the function f (t). If this were the case then, from (7.79),

(7.81)

which is the generalized form of Parseval’s theorem, and the set {φn(t)} is said to
be complete. Strictly speaking, the fact that Parseval’s theorem holds ensures that the
partial sum FN (t) converges in the mean to the parent function f (t) as N → ∞, and
this does not necessarily guarantee convergence at any particular point. In engineer-
ing applications, however, this distinction may be overlooked, since for the functions

t2 t1–( )EN �
t1

t2

f t( )
n=1

N

∑ cnφn t( )–
2

dt=

�
t1

t2

f 2 t( ) dt= 2
n=1

N

∑ cn�
t1

t2

f t( )φn t( ) dt–
n=1

N

∑ cn
2 �

t1

t2

φn
2 t( )+ dt

�
t1

t2

f 2 t( ) dt= 2
n=1

N

∑ cncn–
n=1

N

∑ cn
2+

t2 t1–( )En �
t1

t2

f 2 t( ) dt
n=1

N

∑ cn
2–

n=1

N

∑ cn cn–( )2+=

EN
1

t2 t1–
-------------- �

t1

t2

f 2 t( ) dt
n=1

N

∑ cn
2–=

EN
1

t2 t1–
-------------- �

t1

t2

f 2 t( ) dt
n=1

N

∑ γ ncn
2–=

�
t1

t2

f 2 t( ) dt � 
n=1

N

∑ γ ncn
2

n=1

N

∑

�
t1

t2

f 2 t( ) dt
n=1

∞

∑ γ ncn
2=
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7.7  OR THOGONAL FUNCTIONS 629

met in practice convergence in the mean also ensures pointwise convergence at points
where f (t) is convergent, and convergence to the mean of the discontinuity at points
where f (t) is discontinuous.

The set {1, cos t, sin t, . . . , cos nt, sin nt} is a complete orthogonal set in the interval
d � t � d + 2π. Following the same argument as above, it is readily shown that for a
function f (t) that is piecewise-continuous on d � t � d + 2π the mean square error
between f (t) and the finite Fourier series

is minimized when a0, an and bn (n = 1, 2, 3, . . . ) are equal to the corresponding Fourier
coefficients a0, an and bn (n = 1, 2, 3, . . . ) determined using (7.4) and (7.5). In this case
the mean square error EN is given by

Bessel’s inequality (7.80) becomes

and Parseval’s theorem (7.81) reduces to

which conforms with (7.62). Since, in this case, the basis set is complete, Parseval’s
theorem holds, and the Fourier series converges to f(t) in the sense discussed above.

Example 7.26

FN t( ) 1
2
----a0

n=1

N

∑ an ntcos
n=1

N

∑ bn ntsin+ +=

EN
1

2π
------ �

d

d+2π

f 2 t( ) dt π 1
2
---- a0

2

n=1

N

∑ an
2 bn

2+( )+–=

�
d

d+2π

f 2 t( ) dt � π 1
2
---- a0

2

n=1

N

∑ an
2 bn

2+( )+

1
2π
------ �

d

d+2π

f 2 t( ) 1
4
---- a0

2 1
2
----

n=1

∞

∑ an
2 bn

2+( )+=

The Fourier series expansion for the periodic square 
wave

f(t) = 

f(t + 2π) = f(t)

is

Determine the mean square error corresponding to 
approximations to f(t) based on the use of one term, 
two terms and three terms respectively in the series 
expansion.

The Legendre polynomials Pn(t) are generated by 
the formula 

Pn(t) = (t 2 − 1)n (n = 0, 1, 2, . . . )

and satisfy the recurrence relationship

nPn(t) = (2n − 1)tPn−1(t) − (n − 1)Pn−2(t)

7.7.4 Exercises

40

−1 −π � t � 0( )
1 0 � t � π( )⎩

⎨
⎧

f t( ) 4
π 2n 1–( )
----------------------- 2n 1–( )tsin

n=1

∞

∑=

41

1

2nn!
----------- dn

dtn
--------
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(a) Deduce that

P0(t) = 1, P1(t) = t

P2(t) = (3t 2 − 1), P3(t) = (5t3 − 3t)

(b) Show that the polynomials form an orthogonal 
set on the interval (−1, 1) and, in particular, that

Pm(t)Pn(t) dt

(c) Given that the function

f(t) = 

is expressed as a Fourier–Legendre series 
expansion

f(t) = crPr(t)

determine the values of c0, c1, c2 and c3.

(d) Plot graphs to illustrate convergence of the 
series obtained in (c), and compare the mean 
square error with that of the corresponding 
Fourier series expansion.

Repeat parts (c) and (d) of Exercise 41 for the 
function

f(x) = 

Laguerre polynomials Ln(t) are generated by the 
formula

Ln(t) = et (t ne−t) (n = 0, 1, 2, . . . )

and satisfy the recurrence relation

Ln(t) = (2n − 1 − t)Ln−1(t) − (n − 1)2Ln−2(t)

(n = 2, 3, . . . )

These polynomials are orthogonal on the 
interval 0 � t � ∞ with respect to the weighting 
function e−t, so that

e−tLn(t)Lm(t) dt = 

(a) Deduce that

L0(t) = 1, L1(t) = 1 − t

L2(t) = 2 − 4t + t 2

L3(t) = 6 − 18t + 9t 2 − t 3

(b) Confirm the above orthogonality result in the 
case of L0, L1, L2 and L3.

(c) Given that the function f(t) is to be 
approximated over the interval 0 � t � ∞ by 

f(t) = crLr(t)

show that

cr = f(t) e−tLr(t) dt

(r = 0, 1, 2, . . . )

(Note: Laguerre polynomials are of particular 
importance to engineers, since they can 
be generated as the impulse responses of 
relatively simple networks.)

Hermite polynomials Hn(t) are generated by the 
formula

(n = 0, 1, 2, . . . )

and satisfy the recurrence relationship

Hn(t) = tHn−1(t) − (n − 1)Hn−2(t)

(n = 2, 3, . . . )

The polynomials are orthogonal on the interval 
−∞ � t � ∞ with respect to the weighting 
function e−t2/2, so that

(a) Deduce that

H0(t) = 1, H1(t) = t

H2(t) = t 2 − 1, H3(t) = t 3 − 3t

H4(t) = t 4 − 6t 2 + 3

(b) Confirm the above orthogonality result for 
H0, H1, H2 and H3.

1
2
---- 1

2
----

�
−1

1

0 n ≠ m( )
2/ 2n 1+( ) n = m; m 0, 1, 2, . . . =( )⎩

⎨
⎧

=

−1 −1 � t � 0( )
0 t = 0( )
1 0 � t � 1( )⎩

⎪
⎨
⎪
⎧

r=0

∞

∑

42

0 −1 � x � 0( )
x 0 � x � 1( )⎩

⎨
⎧

43

dn

dtn
--------

�
0

∞
0 n ≠ m( )

n!( )2 n = m( )⎩
⎨
⎧

r=0

∞

∑

1

r!( )2
------------ �

0

∞

44

Hn t( ) −1( )n et
2
/2 dn

dtn
-------- e−t

2
/2=

�
−∞

∞

e−t
2
/2Hn t( )Hm t( ) dt

0 n ≠ m( )
� 2π( )n! n = m( )⎩

⎨
⎧

=
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(c) Given that the function f(t) is to be 
approximated over the interval −∞ � t � ∞ by

f(t) = crHr(t)

show that

(r = 0, 1, . . . )

Tchebyshev polynomials Tn(t) are generated by the 
formula

Tn(t) = cos (n cos−1 t) (n = 0, 1, 2, . . . )

or

Tn(t) = (1 − t 2)rt n−2r

(n = 0, 1, 2, . . . )

where

[n/2] = 

They also satisfy the recurrence relationship

Tn(t) = 2tTn−1(t) − Tn−2(t) (n = 2, 3, . . . )

and are orthogonal on the interval −1 � t � 1 
with respect to the weighting function 1/�(1 − t 2), 
so that

(a) Deduce that

T0(t) = 1, T1(t) = t

T2(t) = 2t 2 − 1, T3(t) = 4t 3 − 3t

T4(t) = 8t 4 − 8t 2 + 1

T5(t) = 16t 5 − 20t 3 + 5t

(b) Confirm the above orthogonality result for 
T0, T1, T2 and T3.

(c) Given that the function f(t) is to be 
approximated over the interval −1 � t � 1 by

f(t) = crTr(t)

show that

(r = 1, 2, . . . )

With developments in digital techniques, Walsh 
functions Wn(t) have become of considerable 
importance in practice, since they are so easily 
generated by digital logic circuitry. The first four 
Walsh functions may be defined on the interval 
0 � t � T by

W0(t) = (0 � t � T )

W1(t) = 

W2(t) = 

W3(t) = 

(a) Plot graphs of the functions W0(t), W1(t), W2(t) 
and W3(t), and show that they are orthonormal 
on the interval 0 � t � T. Write down an 
expression for Wn(t).

(b) The Walsh functions may be used to obtain 
a Fourier–Walsh series expansion for a 
function f(t), over the interval 0 � t � T, 
in the form

f(t) = crWr(t)

Illustrate this for the square wave of 
Exercise 40. What is the corresponding mean 
square error? Comment on your answer.

r=0

∞

∑

cr
1

r!�π
------------�

−∞

∞

e−t2/2f t( )Hr t( ) dt=

45

−1( )r n!
2r( )! n 2r–( )!

------------------------------------
r=0

n/2[ ]

∑

n/2 even n( )
n 1–( )/2 odd n( )⎩

⎨
⎧

�
−1

1
Tn t( )Tm t( )
� 1 t2–( )

------------------------- dt

0 m ≠ n( )
1
2
----π m = n ≠ 0( )

π m = n = 0( )⎩
⎪
⎨
⎪
⎧

=

r=0

∞

∑

c0
1
π
---- �

−1

1
f t( )T0 t( )
� 1 t2–( )
---------------------- dt=

cr
2
π
---- �

−1

1
f t( )Tr t( )
� 1 t2–( )
-------------------- dt=

46

1
�T
-------

1/�T 0 � t � 1
2
----T( )

−1/�T 1
2
----T � t � T( )⎩

⎨
⎧

1/�T 0 � t � 1
4
----T, 3

4
----T � t � T( )

−1/�T 1
4
----T � t � 3

4
----T( )⎩

⎨
⎧

1/�T 0 � t � 1
8
----T, 3

8
----T � t � 5

8
----T, 7

8
----T � t � T( )

−1/�T 1
8
----T � t � 3

8
----T, 5

8
----T � t � 7

8
----T( )⎩

⎨
⎧
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∞

∑
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Engineering application: describing functions
Many control systems containing a nonlinear element may be represented by the block
diagram of Figure 7.42. In practice, describing function techniques are used to analyse
and design such control systems. Essentially the method involves replacing the non-
linearity by an equivalent gain N and then using the techniques developed for linear
systems, such as the frequency response methods of Section 5.8. If the nonlinear ele-
ment is subjected to a sinusoidal input e(t) = X sin ω t then its output z(t) may be repre-
sented by the Fourier series expansion

with An = �(a2
n + b2

n) and φn = tan−1(an/bn).
The describing function N(X ) of the nonlinear element is then defined to be the

complex ratio of the fundamental component of the output to the input; that is,

with N(X ) being independent of the input frequency ω if the nonlinear element is
memory-free.

Having determined the describing function, the behaviour of the closed-loop system
is then determined by the characteristic equation

1 + N(X )G( jω) = 0

If a combination of X and ω can be found to satisfy this equation then the system is
capable of sustained oscillations at that frequency and magnitude; that is, the system
exhibits limit-cycle behaviour. In general, more than one combination can be found,
and the resulting oscillations can be a stable or unstable limit cycle.

Normally the characteristic equation is investigated graphically by plotting G( jω)
and −1/N(X ), for all values of X, on the same polar diagram. Limit cycles then occur at
frequencies and amplitudes corresponding to points of intersection of the curves. Some-
times plotting can be avoided by calculating the maximum value of N(X ) and hence the
value of the gain associated with G(s) that will just cause limit cycling to occur.

Using this background information, the following investigation is left as an exercise
for the reader to develop.

7.8 Engineering application:

Figure 7.42 Nonlinear 
control system.

z t( ) 1
2
----a0 an nω tcos

n=1

∞

∑ bn nω tsin
n=1

∞

∑+ +=

1
2
----a0 An nω t φn+( )sin

n=1

∞

∑+=

N X( ) = A1

X
----- e

jφ 1
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(a) Show that the describing functions N1(X ) and N2(X ) corresponding respectively
to the relay (on–off nonlinearity) of Figure 7.43(a) and the relay with dead zone
of Figure 7.43(b) are

(b) For the system of Figure 7.44 show that a limit cycle exists when the nonlinearity
is the relay of Figure 7.43(a) with L = 1. Determine the amplitude and frequency
of this limit cycle.

In an attempt to eliminate the limit-cycle oscillation, the relay is replaced by
the relay with dead zone illustrated in Figure 7.43(b), again with L = 1. Show that
this allows our objective to be achieved provided that h � 10/3π.

N1 X( ) 4L
πX
-------- , N2 X( ) 4L

πX
--------� 1 h

X
---⎝ ⎠

⎛ ⎞ 2

–= =

Figure 7.44 Nonlinear 
system of exercise.

Figure 7.43 (a) Relay; 
(b) relay with dead 
zone.

A periodic function f(t) is defined by

f(t) = 

f(t + 2π) = f(t)

Obtain a Fourier series expansion of f(t) and 
deduce that

Determine the full-range Fourier series expansion 
of the even function f(t) of period 2π defined by

To what value does the series converge at t = π?

A function f(t) is defined for 0 � t � T by

f(t) = 

7.9 Review exercises (1–20)

1

t2 0 � t � π( )
0 π � t �  2π( )⎩

⎨
⎧

1
6
----π2

r=1

∞

∑ 1

r2
-----=

2

f t( )
2
3
----t 0 � t � 1

3
----π( )

1
3
---- π t–( ) 1

3
----π � t � π( )⎩

⎨
⎧

=

1
3
----

3 1
2
----

t 0 � t � 1
4
----T( )

1
2
----T t– 1

4
----T � t �  1

2
----T( )⎩

⎨
⎧
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634 FOURIER SERIES

Sketch odd and even functions that have a period 
T and are equal to f(t) for 0 � t � T.

(a) Find the half-range Fourier sine series of f(t).
(b) To what value will the series converge for 

t = − T ?
(c) What is the sum of the following series?

Prove that if g(x) is an odd function and f(x) an even 
function of x, the product g(x)[c + f(x)] is an odd 
function if c is a constant.

A periodic function with period 2π is defined by

F(θ ) = θ (π2 − θ2)

in the interval −π � θ � π. Show that the Fourier 
series representation of the function is

A repeating waveform of period 2π is described by

Sketch the waveform over the range t = −2π to 
t = 2π and find the Fourier series representation 
of f(t), making use of any properties of the 
waveform that you can identify before any 
integration is performed.

A function f(x) is defined in the interval 
−1 � x � 1 by

Sketch a graph of f(x) and show that a Fourier 
series expansion of f(x) valid in the interval 
−1 � x � 1 is given by

Show that the half-range Fourier sine series for the 
function

(0 � t � π)

is

Find a half-range Fourier sine and Fourier cosine 
series for f(x) valid in the interval 0 � x � π
when f(x) is defined by

Sketch the graph of the Fourier series obtained 
for −2π � x � 2π.

A function f(x) is periodic of period 2π and is 
defined by f(x) = ex (−π � x � π). Sketch the 
graph of f(x) from x = −2π to x = 2π and prove 
that

A function f(t) is defined on 0 � t � π by

f(t) = π − t

Find

(a) a half-range Fourier sine series, and
(b) a half-range Fourier cosine series for f(t) 

valid for 0 � t � π.

Sketch the graphs of the functions represented 
by each series for −2π � t � 2π.

Show that the Fourier series

represents the function f(t), of period 2π, 
given by

Deduce that, apart from a transient component 
(that is, a complementary function that dies away 
as t → ∞), the differential equation

1
2
----

1
4
----

S
r=1

∞

∑ 1

2r 1–( )2
---------------------=

4

1
12
-------

F θ( )
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∞
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----------------- nθsin=

5
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2
----π( )
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2
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t π– 1
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⎪
⎨
⎪
⎧
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f x( ) 1/2ε −ε  � x � ε( )
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⎨
⎧

=
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2
----
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-------------------+= nπxcos
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f t( ) 1 t
π
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-------- 1 2
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⎧ ⎫
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2
----π( )

π x– 1
2
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⎨
⎧

=
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π
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2
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∞
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10
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1
2
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has the solution

Show that if f(t) is a periodic function of period 
2π and

then

Show also that, when ω is not an integer,

satisfies the differential equation

subject to the initial conditions y = dy/dt = 0 at 
t = 0.

(a) A periodic function f(t), of period 2π, is 
defined in −π � t � π by

Obtain a Fourier series expansion for f(t), and 
from it, using Parseval’s theorem, deduce that 

(b) By formally differentiating the series obtained 
in (a), obtain the Fourier series expansion of 
the periodic square wave

g(t + 2π) = g(t)

Check the validity of your result by 
determining directly the Fourier series 
expansion of g(t).

A periodic function f(t), of period 2π, is defined 
in the range −π � t � π by

Show that the complex form of the Fourier series 
expansion for f(t) is

(a) Find the Fourier series expansion of the 
voltage v(t) represented by the half-wave 
rectified sine wave

v(t + T ) = v(t)

(b) If the voltage v(t) in (a) is applied to a 
10 Ω resistor, what is the total average power 
delivered to the resistor? What percentage 
of the total power is carried by the second-
harmonic component of the voltage?

The periodic waveform f(t) shown in Figure 7.45 
may be written as

f(t) = 1 + g(t)

where g(t) represents an odd function.

(a) Sketch the graph of g(t).
(b) Obtain the Fourier series expansion for g(t), 

and hence write down the Fourier series 
expansion for f(t).

Show that the complex Fourier series expansion 
for the periodic function

f(t) = t (0 � t � 2π)

f(t + 2π) = f(t)

x 1
2
----π 4

π
---
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∞
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y 1
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--------- 1 ωtcos–( )=
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∞
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Figure 7.45 Waveform f(t) of Review 
exercise 16.
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is

(a) A square-wave voltage v(t) of period T is 
defined by 

v(t + T ) = v(t)

Show that its Fourier series expansion is 
given by

(b) Find the steady-state response of the circuit 
shown in Figure 7.46 to the sinusoidal input 
voltage 

vω(t) = sin ω t

and hence write down the Fourier series 
expansion of the circuit’s steady-state response 
to the square-wave voltage v(t) in (a).

(a) Defining the nth Tchebyshev polynomial by

Tn(t) = cos(n cos−1 t)

use Euler’s formula cos θ = (e jθ  + e− jθ ) 
to obtain the expansions of t 2k and t 2k+1

in Tchebyshev polynomials, where k is a 
positive integer.

(b) Establish the recurrence relation

Tn(t) = 2tTn−1(t) − Tn−2(t)

(c) Write down the values of T0(t) and T1(t) from 
the definition, and then use (b) to find T2(t) and 
T3(t).

(d) Express t 5 − 5t 4 + 7t 3 + 6t − 8 in Tchebyshev 
polynomials.

(e) Find the cubic polynomial that approximates 
to

t5 − 5t 4 + 7t 3 + 6t − 8

over the interval (−1, 1) with the smallest 
maximum error. Give an upper bound for 
this error. Is there a value of t for which this 
upper bound is attained?

The relationship between the input and output of 
a relay with a dead zone Δ and no hysteresis is 
shown in Figure 7.47. Show that the describing 
function is

for an input amplitude xi.

If this relay is used in the forward path of 
the on–off positional control system shown in 
Figure 7.48, where the transfer function

characterizes the time constant of the servo-motor, 
and the inertia and viscous damping of the load, 
show that a limit-cycle oscillation will not occur 
provided that the dead zone in the relay is such 
that

f t( ) π
n=−∞

∞

∑ j ejnt

n
-----------+=

n≠0

18

v t( )
−1 −1

2
----T � t � 0( )

1 0 � t � 1
2
----T( )⎩

⎨
⎧

=

v t( ) 4
π
----

n=1

∞

∑ 4n 2–( )πt/T[ ]sin
2n 1–

----------------------------------------------=

Figure 7.46 Circuit of Review exercise 18.
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=

Figure 7.47 Relay with dead zone of Review
exercise 20.
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π
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Figure 7.48 Positional control system of Review 
exercise 20.
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Introduction
In Chapter 7 we saw how Fourier series provided an ideal framework for analysing the
steady-state response of systems to a periodic input signal. In this chapter we extend
the ideas of Fourier analysis to deal with non-periodic functions. We do this through
the introduction of the Fourier transform. As the theory develops, we shall see how the
complex exponential form of the Fourier series representation of a periodic function
emerges as a special case of the Fourier transform. Similarities between the transform
and the Laplace transform, discussed in Chapter 5, will also be highlighted.

While Fourier transforms first found most application in the solution of partial
differential equations, it is probably true to say that today Fourier transform methods
are most heavily used in the analysis of signals and systems. This chapter is therefore
developed with such applications in mind, and its main aim is to develop an understand-
ing of the underlying mathematics as a preparation for a specialist study of application
areas in various branches of engineering.

Throughout this book we draw attention to the impact of digital computers on engin-
eering and thus on the mathematics required to understand engineering concepts. While
much of the early work on signal analysis was implemented using analogue devices, the
bulk of modern equipment exploits digital technology. In Chapter 5 we developed the
Laplace transform as an aid to the analysis and design of continuous-time systems
while in Chapter 6 we introduced the z and � transforms to assist with the analysis and
design of discrete-time systems. In this chapter the frequency-domain analysis intro-
duced in Chapter 5 for continuous-time systems is consolidated and then extended to
provide a framework for the frequency-domain description of discrete-time systems
through the introduction of discrete Fourier transforms. These discrete transforms pro-
vide one of the most advanced methods for discrete signal analysis, and are widely used
in such fields as communications theory and speech and image processing. In practice,
the computational aspects of the work assume great importance, and the use of appro-
priate computational algorithms for the calculation of the discrete Fourier transform is
essential. For this reason we have included an introduction to the fast Fourier transform
algorithm, based on the pioneering work of J. W. Cooley and J. W. Tukey published
in 1965, which it is hoped will serve the reader with the necessary understanding for
progression to the understanding of specialist engineering applications.

An additional engineering application section has been included in this new edition.
In this we discuss the discrete-time Fourier transform to provide the means of describ-
ing the so-called direct design method for digital filters which is based on the use of the
desired frequency response, without using an analogue prototype design. This naturally
leads to considering ‘windowing’ and a brief introduction to this topic is included.

The Fourier transform

8.2.1 The Fourier integral

In Chapter 7 we saw how Fourier series methods provided a technique for the
frequency-domain representation of periodic functions. As indicated in Section 7.6.3,
in expressing a function as its Fourier series expansion we are decomposing the function

8.1

8.2
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8.2  THE FOURIER TRANSFORM 639

into its harmonic or frequency components. Thus a periodic function f (t), of period T ′,
has frequency components at discrete frequencies

ωn =  = nω 0 (n = 0, 1, 2, 3, . . . )

where ω 0 is the fundamental frequency, that is the frequency of the parent function f (t).
Consequently we were able to interpret a Fourier series as constituting a discrete fre-
quency spectrum of the periodic function f (t), thus providing an alternative frequency-
domain representation of the function to its time-domain waveform. However, not all
functions are periodic and so we need to develop an approach that will give a similar
representation for non-periodic functions, defined on −∞ � t � ∞. One way of achiev-
ing this is to look at a portion of a non-periodic function f (t) over an interval T, by
imagining that we are looking at a graph of f (t) through a ‘window’ of length T, and
then to consider what happens as T gets larger.

Figure 8.1 depicts this situation, with the window placed symmetrically about the
origin. We could now concentrate only on the ‘view through the window’ and carry out
a Fourier series development based on that portion of f (t) alone. Whatever the beha-
viour of f (t) outside the window, the Fourier series thus generated would represent the
periodic function defined by

( |t | � T )

( (2n − 1)T � | t | � (2n + 1)T )

Figure 8.2 illustrates g(t), and we can see that the graphs of f(t) and g(t) agree on the
interval (− T, T ). Note that this approach corresponds to the one adopted in Section
7.3 to obtain the Fourier series expansion of functions defined over a finite interval.

Using the complex or exponential form of the Fourier series expansion, we have
from (7.53) and (7.57) that

(8.1)

with

(8.2)

2πn
T ′

-----------

Figure 8.1 The view of f(t) through a window of 
length T.

Figure 8.2 The periodic function g(t) based on the
‘windowed’ view of f(t).

g t( ) = 
f t( )
f t − nT( )⎩

⎨
⎧ 1

2
----

1
2
---- 1

2
----

1
2
---- 1

2
----

g t( ) = Gn e
jnω 0t

n=−∞

∞

∑

Gn = 1
T
----�

−T/2

T/2

g t( ) e
−jnω 0t

dt
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and where

ω 0 = 2π/T (8.3)

Equation (8.2) in effect transforms the time-domain function g(t) into the associated
frequency-domain components Gn, where n is any integer ( positive, negative or zero).
Equation (8.1) can also be viewed as transforming the discrete components Gn in the
frequency-domain representation to the time-domain form g(t). Substituting for Gn in
(8.1), using (8.2), we obtain

(8.4)

The frequency of the general term in the expansion (8.4) is 

and so the difference in frequency between successive terms is 

Since Δω = ω 0, we can express (8.4) as

(8.5)

Defining G( jω) as

(8.6)

we have

(8.7)

As T → ∞, our window widens, so that g(t) = f (t) everywhere and Δω → 0. Since we
also have

it follows from (8.7) and (8.6) that

The result (8.8) is known as the Fourier integral representation of f(t). A set of
conditions that are sufficient for the existence of the Fourier integral is a revised form

(8.8)

g t( ) = 1
T
---- �

−T/2

T/2

g τ( ) e
−jnω 0τ dτ e

jnω 0t

n=−∞

∞

∑

2πn----------- = nω 0 = ω nT

2π
T

------ n + 1( ) − n[ ] = 2π
T

------  = ωΔ

g t( ) = 1
2π
------�

−T/2

T/2

g τ( ) e
−jωnτ dτ e

jωnt ωΔ
n=−∞

∞

∑

G jω( ) = �
−T/2

T/2

g τ( ) e−jω t dτ

g t( ) = 1
2π
------ e

−jωnt
G jωn( ) ωΔ

n=−∞

∞

∑

1
2π
------ e

jωnt
G jωn( ) ωΔ

n=−∞

∞

∑ω→0Δ
lim  = 1

2π
------�

−∞

∞

ejωtG jω( ) dω

f t( ) = �
−∞

∞
1

2π
------ ejωt�

−∞

∞

f (τ ) e−jω τ dτ dω
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of Dirichlet’s conditions for Fourier series, contained in Theorem 7.2. These conditions
may be stated in the form of Theorem 8.1.

Dirichlet’s conditions for the Fourier integral

If the function f (t) is such that

(a) it is absolutely integrable, so that

(that is, the integral is finite), and

(b) it has at most a finite number of maxima and minima and a finite number of
discontinuities in any finite interval

then the Fourier integral representation of f (t), given in (8.8), converges to f (t) at all
points where f (t) is continuous and to the average of the right- and left-hand limits of
f (t) where f (t) is discontinuous (that is, to the mean of the discontinuity).

As was indicated in Section 7.2.9 for Fourier series, the use of the equality sign in
(8.8) must be interpreted carefully because of the non-convergence to f (t) at points of
discontinuity. Again the symbol ~ (read as ‘behaves as’ or ‘represented by’) rather than
= is frequently used.

The absolute integrable condition (a) of Theorem 8.1 implies that the absolute area
under the graph of y = f (t) is finite. Clearly this is so if f (t) decays sufficiently fast with
time. However, in general the condition seems to imply a very tight constraint on
the nature of f (t), since clearly functions of the form f (t) = constant, f (t) = eat, f (t) = e−at,
f (t) = sin ω t, and so on, defined for −∞ � t � ∞, do not meet the requirement. In
practice, however, signals are usually causal and do not last for ever (that is, they only
exist for a finite time). Also, in practice no signal amplitude goes to infinity, so con-
sequently no practical signal f (t) can have an infinite area under its graph y = f (t). Thus
for practical signals the integral in (8.8) exists.

To obtain the trigonometric (or real) form of the Fourier integral, we substitute

e−jω(τ−t ) = cos ω(τ − t) − j sin ω(τ − t)

in (8.8) to give

Since sin ω(τ − t) is an odd function of ω , this reduces to

which, on noting that the integrand is an even function of ω, reduces further to

(8.9)

Theorem 8.1

�
−∞

∞

| f t( ) | dt � ∞

end of theorem

f t( ) = 1
2π
------�

−∞

∞

�
−∞

∞

f τ( ) ω τ − t( ) − j sin ω τ − t( )cos[ ] dτ dω

f t( ) = 1
2π
------�

−∞

∞

�
−∞

∞

f τ( ) ω τ − t( ) dτ dωcos

f t( ) = 1
π
---- �

0

∞

dω�
−∞

∞

f τ( ) ω τ − t( ) dτcos
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The representation (8.9) is then the required trigonometric form of the Fourier
integral.

If f (t) is either an odd function or an even function then further simplifications of (8.9)
are possible. Detailed calculations are left as an exercise for the reader, and we shall
simply quote the results.

In the case of the Fourier series representation of a periodic function it was a matter
of some interest to determine how well the first few terms of the expansion represented
the function. The corresponding problem in the non-periodic case is to investigate how
well the Fourier integral represents a function when only the components in the lower
part of the (continuous) frequency range are taken into account. To illustrate, consider
the rectangular pulse of Figure 8.3 given by 

This is clearly an even function, so from (8.10) its Fourier integral is

An elementary evaluation of this integral is not possible, so we consider frequencies
ω � ω 0, when

(a) If f (t) is an even function then (8.9) reduces to

(8.10)

which is referred to as the Fourier cosine integral.

(b) If f (t) is an odd function then (8.9) reduces to

(8.11)

which is referred to as the Fourier sine integral.

f t( ) = 2
π
---- �

0

∞

�
0

∞

f τ( ) ωτ ω t dτ dωcoscos

f t( ) = 2
π
---- �

0

∞

�
0

∞

f τ( ) sin ωτ sin ω t dτ dω

Figure 8.3 Rectangular 
pulse

.
f t( ) 1 t  �  1( )

0 t  �  1( )⎩
⎨
⎧

=

f t( ) = 
1 | t | � 1( )
0 | t | � 1( )⎩

⎨
⎧

f t( ) = 2
π
----�

0

∞

�
0

1

1 ωτ ω t dτ dω  = 2
π
----�

0

∞
cos ωt sin ω

ω
---------------------------- dωcoscos

f t( ) � 2
π
----�

0

ω 0
cos ωt sin ω

ω
---------------------------- dω

= 1
π
----�

0

ω 0
sin ω t + 1( )

ω
------------------------------- dω  − 1

π
----�

0

ω 0
sin ω t − 1( )

ω
------------------------------- dω

= 1
π
----�

0

ω 0 t+1( )
sin u

u
------------ du − 1

π
----�

0

ω 0 t−1( )
sin u

u
------------ du
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Its values have been tabulated (see for example L. Rade and B. Westergren, Beta
Mathematics Handbook, Chartwell-Bratt Ltd, Bromley, Kent, 1990). Thus

f (t) � Si(ω 0(t + 1)) − Si(ω 0(t − 1)) (8.12)

This has been plotted for ω 0 = 4, 8 and 16, and the responses are shown in Figures 8.4(a),
(b) and (c) respectively. Physically, these responses describe the output of an ideal
low-pass filter, cutting out all frequencies ω � ω 0, when the input signal is the rectan-
gular pulse of Figure 8.3. The reader will no doubt note the similarities with the
Fourier series discussion of Section 7.2.9 and the continuing existence of the Gibbs
phenomenon. 

The integral

occurs frequently, and it can be shown that

Si x( ) = �
0

x

sin u
u

------------ du x � 0( )

Si x( ) = −1( )nx2n+1

2n + 1( ) 2n + 1( )!
----------------------------------------------

n=0

∞

∑

Figure 8.4
Plot of (8.12): 
(a) ω 0 = 4; (b) ω 0 = 8; 
(c) ω 0 = 16.
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8.2.2 The Fourier transform pair

We note from (8.6) and (8.7) that the Fourier integral (8.8) may be written in the form
of the pair of equations

F( jω) as defined by (8.13) is called the Fourier transform of f(t), and it provides
a frequency-domain representation of the non-periodic function f (t), whenever the
integral in (8.13) exists. Note that we have used the notation F( jω) for the Fourier trans-
form of f (t) rather than the alternative F(ω), which is also in common use. The reason
for this choice is a consequence of the relationship between the Fourier and Laplace
transforms, which will emerge later in Section 8.4.1. We stress that this is a choice that
we have made, but the reader should have no difficulty in using either form, provided
that once the choice has been made it is then adhered to. Equation (8.14) then provides
us with a way of reconstructing f (t) if we know its Fourier transform F( jω).

A word of caution is in order here regarding the scaling factor 1/2π in (8.14).
Although the convention that we have adopted here is fairly standard, some authors
associate the factor 1/2π with (8.13) rather than (8.14), while others associate a factor
of (2π)−1/2 with each of (8.13) and (8.14). In all cases the pair combine to give the
Fourier integral (8.8). We could overcome this possible confusion by measuring the
frequency in cycles per second or hertz rather than in radians per second, this being
achieved using the substitution f = ω /2π, where f is in hertz and ω is in radians per
second. We have not adopted this approach, since ω is so widely used by engineers.

In line with our notation for Laplace transforms in Chapter 5, we introduce the
symbol � to denote the Fourier transform operator. Then from (8.13) the Fourier transform
�{ f (t)} of a function f (t) is defined by

whenever the integral exists. Similarly, using (8.14), we define the inverse Fourier
transform of G( jω) as

whenever the integral exists. The relations (8.15) and (8.16) together constitute the
Fourier transform pair, and they provide a pathway between the time- and frequency-
domain representations of a function. Equation (8.15) expresses f (t) in the frequency
domain, and is analogous to resolving it into harmonic components with a continuously
varying frequency ω. This contrasts with a Fourier series representation of a periodic
function, where the resolved frequencies take discrete values.

(8.13)

(8.14)

(8.15)

(8.16)

F jω( ) = �
−∞

∞

f t( ) e−jωt dt

f t( ) = 1
2π
------�

−∞

∞

F jω( ) ejωt dω

� f t( ){ } = F jω( ) = �
−∞

∞

f t( ) e−jωt dt

�−1 G jω( ){ } = g t( ) = 1
2π
------�

−∞

∞

G jω( ) ejω t dω
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The conditions for the existence of the Fourier transform F( jω) of the function f (t)
are Dirichlet’s conditions (Theorem 8.1). Corresponding trigonometric forms of the
Fourier transform pair may be readily written down from (8.9), (8.10) and (8.11).

Does the function

f (t) = 1 (−∞ � t � ∞)

have a Fourier transform representation?

Solution Since the area under the curve of y = f (t) (−∞ � t � ∞) is infinite, it follows that
| f (t) |dt is unbounded, so the conditions of Theorem 8.1 are not satisfied. We can

confirm that the Fourier transform does not exist from the definition (8.15). We have

Since this last limit does not exist, we conclude that f (t) = 1 (−∞ � t � ∞) does not
have a Fourier transform representation.

It is clear, using integration by parts, that f (t) = t (−∞ � t � ∞) does not have a
Fourier transform, nor indeed does f (t) = t n (n � 1, an integer; −∞ � t � ∞). While
neither eat nor e−at (a � 0) has a Fourier transform, when we consider the causal signal
f (t) = H(t) e−at (a � 0), we do obtain a transform.

Find the Fourier transform of the one-sided exponential function

f (t) = H(t) e−at (a � 0)

where f (t) is the Heaviside unit step function.

Solution The graph of f (t) is shown in Figure 8.5, and we can show that the area under the graph
is bounded. Hence, by Theorem 8.1, a Fourier transform exists. Using the definition
(8.15), we have

Example 8.1

�−∞
∞

�
−∞

∞

1 e−jω t dt = �
−α

α

α→∞
lim e−jωt dt

= − 1
jω
------- e−jωα  − ejωα( )

α→∞
lim

= 2 sin ωα
ω

--------------------α→∞
lim

Example 8.2

� f t( ){ } = �
−∞

∞

H t( ) e−at e−jω t dt a � 0( )

= �
0

∞

e− a+ jω( )t dt = − e− a+ jω( )t

a + jω
-----------------

0

∞
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so that

(8.17)

Calculate the Fourier transform of the rectangular pulse

Solution The graph of f(t) is shown in Figure 8.6, and since the area under it is finite, a Fourier
transform exists. From the definition (8.15), we have

= 2AT sinc ωT

where sinc x is defined, as in Example 7.22, by

Figure 8.5
The ‘one-sided’ 
exponential function 
f(t) = H(t) e−at 
(a � 0).

� H t( ) e−at{ } = 1
a + jω
----------------

Example 8.3

f t( ) = 
A | t | � T( )
0 | t | � T( )⎩

⎨
⎧

f (t)

e−atH(t) (a � 0)

t e−atH(t) (a � 0)

e−a|t | (a � 0)

2AT sinc ωT

� f t( ){ } = �
−T

T

A e−jωt dt = 
− A

jω
------- e−jω t

−T

T

ω ≠ 0

2A ω = 0⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

Figure 8.6 The 
rectangular pulse 

.
f t( )  =  

A | t |  �  T( )
0 | t |  �  T( )⎩

⎨
⎧

sinc x = 
sin x

x
---------- x ≠ 0( )

1 x = 0( )⎩
⎪
⎨
⎪
⎧

� f t( ){ }  =  �
−∞

∞

f t( ) e−jω t dt

A | t |  �  T( )
0 | t |  �  T( )⎩

⎨
⎧

1
a  +  jω
------------------

1

a  +  jω( )2
-----------------------

2a

a2 +  ω2
--------------------

Figure 8.7
A brief table of 
Fourier transforms.
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By direct use of the definition (8.15), we can, as in Examples 8.2 and 8.3, determine
the Fourier transforms of some standard functions. A brief table of transforms is given
in Figure 8.7.

In MATLAB, incorporating the Symbolic Math Toolbox, the Fourier transform F( jω)
of f (t) is obtained using the commands

syms w t

F=fourier(f(t),t,w)

whilst the inverse Fourier transform f (t) of F( jω) is obtained using the command

f=ifourier(F(jw),w,t)

Corresponding commands in MAPLE are

with(inttrans):

F=fourier(f(t),t,w);

f=invfourier(F(jw),w,t);

Returning to Example 8.2, and considering the particular case of a = 2, the
commands

syms w t

H=sym(‘Heaviside(t)’);

F=fourier(H*exp(-2*t))

in MATLAB return

F=1/(2+i*w)

as expected. In MATLAB there is an assume command (as in MAPLE) to enable
us to specify that a > 0. However, since abs(a) = a for a > 0, the following commands
in MATLAB can be used to deal with the general case

syms w t a

H=sym(‘Heaviside(t)’);

F=fourier(H*exp(-abs(a)*t),t,w)

As another illustration, consider the function f (t) = e−a|t | , a > 0, given in the
table of Figure 8.7. Considering the particular case a = 2 then the MATLAB
commands

syms w t

F=fourier(exp(-2*abs(t),t,w)

return

F=4/(4+w^2)

as specified in the table. It is left as an exercise to consider the general case of a. To
illustrate the use, in MATLAB, of the ifourier command this transform can be
inverted using the commands

syms w t

f=ifourier(4/(4+w^2),w,t)

which return

f=Heaviside(t)*exp(-2*t)+exp(2*t)*Heaviside(-t)

which corresponds to the expected answer f = exp(−2*abs(t)).
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8.2.3 The continuous Fourier spectra

From Figure 8.7, it is clear that Fourier transforms are generally complex-valued func-
tions of the real frequency variable ω. If �{ f (t)} = F( jω) is the Fourier transform of
the signal f (t) then F ( jω) is also known as the (complex) frequency spectrum of f(t).
Writing F ( jω) in the exponential form

plots of |F ( jω) | and arg F( jω), which are both real-valued functions of ω, are called the
amplitude and phase spectra respectively of the signal f (t). These two spectra repres-
ent the frequency-domain portrait of the signal f (t). In contrast to the situation when
f (t) was periodic, where (as shown in Section 7.6.3) the amplitude and phase spectra
were defined only at discrete values of ω, we now see that both spectra are defined for
all values of the continuous variable ω.

Determine the amplitude and phase spectra of the causal signal

f (t) = e−at H(t) (a � 0)

and plot their graphs.

Solution From (8.17),

�{ f (t)} = F( jω) = 

Thus the amplitude and argument of F ( jω) are

As another illustration consider the Fourier transform F(ω) = 1/(a + jω)2 given in
the second entry of the table in Figure 8.7. The MATLAB commands

syms w t a

f=ifourier(1/(a+i*w)^2,w,t)

return

f=t*exp(-a*t)*Heaviside(t)

as given in the table.
Considering the rectangular pulse f (t) of Example 8.3, we first express the pulse

in terms of Heaviside functions as

f (t) = A(H(t + T ) − H(t − T ))

and then use the MATLAB commands

syms w t T A

H=sym(‘Heaviside(t+T)-Heaviside(t-T)’);

F=fourier(A*H,t,w);

F=simple(F)

which return

F=2*A*sin(T*w)/w

F( jω) = |F ( jω) | e j arg F ( jω)

Example 8.4

1
a + jω
----------------
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| F( jω) | = (8.18)

arg F( jω) = tan−1(1) − tan−1  = − tan−1 (8.19)

These are the amplitude and phase spectra of f (t), and are plotted in Figure 8.8.

Generally, as we have observed, the Fourier transform and thus the frequency spec-
trum are complex-valued quantities. In some cases, as for instance in Example 8.3, the
spectrum is purely real. In Example 8.3 we found that the transform of the pulse illus-
trated in Figure 8.6 was

F( jω) = 2AT sinc ωT

where

is an even function of ω, taking both positive and negative values. In this case the
amplitude and phase spectra are given by

|F( jω) | = 2AT |sinc ωT | (8.20)

(8.21)

with corresponding graphs shown in Figure 8.9.

1

� a2 + ω2( )
--------------------------

ω
a
-----⎝ ⎠

⎛ ⎞ ω
a
-----⎝ ⎠

⎛ ⎞

Figure 8.8
(a) Amplitude and 
(b) phase spectra of the 
one-sided exponential 
function f(t) = e−atH(t) 
(a � 0).

sinc ωT = 
sin ωT

ωT
----------------- ω  ≠ 0( )

1 ω  = 0( )⎩
⎪
⎨
⎪
⎧

arg F jω( ) = 
0 sinc ωT � 0( )
π sinc ωT � 0( )⎩

⎨
⎧
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In fact, when the Fourier transform is a purely real-valued function, we can plot all
the information on a single frequency spectrum of F( jω) versus ω. For the rectangular
pulse of Figure 8.6 the resulting graph is shown in Figure 8.10.

From Figure 8.7, we can see that the Fourier transforms discussed so far have
two properties in common. First, the amplitude spectra are even functions of the
frequency variable ω. This is always the case when the time signal f (t) is real; that
is, loosely speaking, a consequence of the fact that we have decomposed, or analysed
f (t), relative to complex exponentials rather than real-valued sines and cosines. The
second common feature is that all the amplitude spectra decrease rapidly as ω increases.
This means that most of the information concerning the ‘shape’ of the signal f (t)
is contained in a fairly small interval of the frequency axis around ω = 0. From another
point of view, we see that a device capable of passing signals of frequencies up to
about ω = 3π /T would pass a reasonably accurate version of the rectangular pulse of
Example 8.3.

Figure 8.9
(a) Amplitude and 
(b) spectra of the pulse

.
f t( )

A t  �  T( )
0 t  �  T( )⎩

⎨
⎧

=

Figure 8.10
Frequency spectrum 
(real-valued) of the pulse

.
f t( ) A t  � T( )

0 t  � T( )⎩
⎨
⎧

=
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Whenever possible check your answers using MATLAB or MAPLE.

Calculate the Fourier transform of the two-sided 
exponential pulse given by

(a � 0)

Determine the Fourier transform of the ‘on–off ’ 
pulse shown in Figure 8.11.

A triangular pulse is defined by

Sketch f(t) and determine its Fourier transform. 
What is the relationship between this pulse and 
that of Exercise 2?

Determine the Fourier transforms of

Sketch the function h(t) = f(t) − g(t) and determine 
its Fourier transform.

Calculate the Fourier transform of the ‘off–on–off ’ 
pulse f(t) defined by

f(t) = 

Show that the Fourier transform of

is

Calculate the Fourier transform of

f(t) = e−at sin ω 0t H(t)

Based on (8.10) and (8.11), define the Fourier sine 
transform as

and the Fourier cosine transform as

Show that

has Fourier cosine transform

Show that the Fourier sine and cosine transforms of

are

respectively.

Find the sine and cosine transforms of 
f(t) = e−at H(t) (a � 0).

8.2.4 Exercises

1

f t( ) = 
eat  t � 0( )
e−at t � 0( )⎩

⎨
⎧

2

Figure 8.11 The ‘on–off’ pulse.

3

f t( ) = 
A/T( )t + A −T � t � 0( )
−A/T( )t + A 0 � t � T( )⎩

⎨
⎧

4

f t( ) = 
2K | t | � 2( )
0 | t | � 2( )⎩

⎨
⎧

g t( ) = 
K | t | � 1( )
0 | t | � 1( )⎩

⎨
⎧

5

0 t � −2( )
−1 −2 � t � −1( )

1 −1 � t � 1( )
−1 1 � t � 2( )

0 t � 2( )

1
4
4
2
4
4
3

6

f t( ) = 
sin at | t | � π/a( )
0  | t | � π/a( )⎩

⎨
⎧

j2a sin πω /a( )
ω2 − a2

------------------------------------

7

8

Fs x( ) = �
0

∞

f t( ) sin xt dt

Fc x( ) = �
0

∞

f t( ) cos xt dt

f t( ) = 

0 t � 0( )
cos at 0 � t � a( )
0 t � a( )⎩

⎪
⎨
⎪
⎧

1
2
----

sin 1 + x( )a
1 + x

------------------------------  + sin 1 − x( )a
1 − x

------------------------------

9

f t( ) = 

0 t � 0( )
1 0 � t � a( )
0 t � a( )⎩

⎪
⎨
⎪
⎧

1 − cos xa
x

--------------------------- , sin xa
x

---------------

10
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Properties of the Fourier transform

In this section we establish some of the properties of the Fourier transform that allow
its use as a practical tool in system analysis and design.

8.3.1 The linearity property

Linearity is a fundamental property of the Fourier transform, and may be stated 
as follows.

As a consequence of this, we say that the Fourier transform operator � is a linear
operator. The proof of this property follows readily from the definition (8.15), since

= αF( jω) + βG( jω)

Clearly the linearity property also applies to the inverse transform operator �−1.

8.3.2 Time-differentiation property

If the function f (t) has a Fourier transform F( jω) then, by (8.16),

Differentiating with respect to t gives

implying that the time signal d f /dt is the inverse Fourier transform of ( jω)F( jω). In
other words

 = ( jω)F ( jω)

Repeating the argument n times, it follows that

8.3

If f (t) and g(t) are functions having Fourier transforms F( jω) and G( jω) respect-
ively, and if α and β are constants, then

�{α f (t) + βg(t)} = α�{ f (t)} + β�{g(t)} = αF( jω) + βG( jω) (8.22)

� α f t( ) + βg t( ){ } = �
−∞

∞

α f t( ) + βg t( )[ ] e−jω t dt

= α�
−∞

∞

f t( ) e−jω t dt + β�
−∞

∞

g t( ) e−jω t dt

f t( ) = 1
2π
------�

−∞

∞

F jω( ) ejω t dω

df
dt
------ = 1

2π
------�

−∞

∞
∂
∂t
---- F jω( ) ejω t[ ] dω = 1

2π
------�

−∞

∞

jω( )F jω( ) ejω t dω

� df
dt
------

⎩ ⎭
⎨ ⎬
⎧ ⎫
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The result (8.23) is referred to as the time-differentiation property, and may be used
to obtain frequency-domain representations of differential equations.

Show that if the time signals y(t) and u(t) have Fourier transforms Y( jω) and U( jω)
respectively, and if

(8.24)

then Y( jω) = G( jω)U( jω) for some function G( jω).

Solution Taking Fourier transforms throughout in (8.24), we have

which, on using the linearity property (8.22), reduces to

Then, from (8.23),

( jω)2Y( jω) + 3( jω)Y( jω) + 7Y( jω) = 3( jω)U( jω) + 2U( jω)

that is,

(−ω2 + j3ω + 7)Y ( jω) = ( j3ω + 2)U( jω)

giving

Y ( jω) = G( jω)U( jω)

where

G( jω) = 

The reader may at this stage be fearing that we are about to propose yet another
method for solving differential equations. This is not the idea! Rather, we shall show
that the Fourier transform provides an essential tool for the analysis (and synthesis) of
linear systems from the viewpoint of the frequency domain.

8.3.3 Time-shift property

If a function f (t) has Fourier transform F( jω) then what is the Fourier transform of the
shifted version g(t) = f (t − τ ), where τ  is a constant? From the definition (8.15),

 = ( jω)nF( jω) (8.23)� dnf

dtn
--------

⎩ ⎭
⎨ ⎬
⎧ ⎫

Example 8.5

d2y t( )
dt2

--------------  + 3dy t( )
dt

------------  + 7y t( ) = 3du t( )
dt

--------------  + 2u t( )

� d2y t( )
dt2

--------------  + 3dy t( )
dt

------------  + 7y t( )
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = � 3du t( )
dt

--------------  + 2u t( )
⎩ ⎭
⎨ ⎬
⎧ ⎫

� d2y t( )
dt2

--------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

 + 3� dy t( )
dt

------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

 + 7� y t( ){ } = 3� du t( )
dt

--------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

 + 2� u t( ){ }

2 + j3ω
7 − ω2 + j3ω
-----------------------------------
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Making the substitution x = t − τ , we have

that is,

The result (8.25) is known as the time-shift property, and implies that delaying a signal
by a time τ  causes its Fourier transform to be multiplied by e− jωτ .

Since

| e−jω τ | = | cos ωτ − j sin ωτ | = | | = 1

we have

| e−jωτ F ( jω) | = | F ( jω) |

indicating that the amplitude spectrum of f (t − τ) is identical with that of f (t). However,

arg[e− jω t F ( jω)] = arg F ( jω) − arg e jωτ = arg F ( jω) − ωτ

indicating that each frequency component is shifted by an amount proportional to its
frequency ω.

Determine the Fourier transform of the rectangular pulse f (t) shown in Figure 8.12.

Solution This is just the pulse of Example 8.3 (shown in Figure 8.6), delayed by T. The pulse of
Example 8.3 had a Fourier transform 2AT sinc ωT, and so, using the shift property
(8.25) with τ = T, we have

�{ f (t)} = F ( jω) = e−jωT 2AT sinc ωT = 2AT e−jωT sinc ωT 

8.3.4 Frequency-shift property

Suppose that a function f (t) has Fourier transform F ( jω). Then, from the definition
(8.15), the Fourier transform of the related function g(t) = f (t) is

�{ f (t − τ)} = e−jωτ F ( jω) (8.25)

� g t( ){ } = �
−∞

∞

g t( ) e−jω t dt = �
−∞

∞

f t − τ( ) e−jω t dt

� g t( ){ } = �
−∞

∞

f x( ) e−jω x+τ( ) dx = e−jωτ�
−∞

∞

f x( ) e−jω x dx = e−jωτ F jω( )

(cos2ωτ sin2ωτ)+

Example 8.6

Figure 8.12
Rectangular pulse 
of Example 8.6.

ejω 0t
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= F ( j8), by definition

Thus

The result (8.26) is known as the frequency-shift property, and indicates that multi-
plication by simply shifts the spectrum of f (t) so that it is centred on the point
ω = ω 0 in the frequency domain. This phenomenon is the mathematical foundation
for the process of modulation in communication theory, illustrated in Example 8.7.

Determine the frequency spectrum of the signal g(t ) = f (t ) cos ωct.

Solution Since cos ωct = , it follows, using the linearity property (8.22), that

�{g(t)} =

= 

If �{ f (t)} = F ( jω) then, using (8.26),

�{ f (t) cos ω ct} = �{g(t)} = F ( j(ω − ωc)) + F ( j(ω + ωc))

The effect of multiplying the signal f (t) by the carrier signal cos ωct is thus to produce
a signal whose spectrum consists of two (scaled) versions of F ( jω), the spectrum of
f (t): one centred on ω = ωc and the other on ω = −ωc. The carrier signal cos ωct is said
to be modulated by the signal f (t).

Demodulation is considered in Exercise 5, Section 8.10, and the ideas of modulation
and demodulation are developed in Section 8.8.

8.3.5 The symmetry property

From the definition of the transform pair (8.15) and (8.16) it is apparent that there is
some symmetry of structure in relation to the variables t and ω. We can establish the
exact form of this symmetry as follows. From (8.16),

or, equivalently, by changing the ‘dummy’ variable in the integration,

�{ f (t)} = F ( j(ω − ω 0)) (8.26)

� g t( ){ } = �
−∞

∞

e
jω 0t

f t( ) e−jω t dt = �
−∞

∞

f t( ) e
−j ω −ω 0( )t

dt

= �
−∞

∞

f t( ) e−j8t dt,  where 8 = ω − ω0

e
jω 0t

ejω 0t

Example 8.7

1
2
---- ejω ct + e−jω ct( )

� 1
2
---- f t( ) ejω ct + e−jω ct( ){ }

1
2
----� f t( ) ejω ct{ } + 1

2
----� f t( ) e−jω ct{ }

1
2
---- 1

2
----

f t( ) = 1
2π
------�

−∞

∞

F jω( ) ejω t dω

2π f t( ) = �
−∞

∞

F jy( ) e jyt dy
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so that

or, on replacing t by ω,

(8.27)

The right-hand side of (8.27) is simply the definition (8.15) of the Fourier transform
of F ( jt), with the integration variable t replaced by y. We therefore conclude that

�{F ( jt)} = 2π f (−ω) (8.28a)

given that

�{ f (t)} = F ( jω) (8.28b)

Determine the Fourier transform of the signal

(8.29)

Solution From Example 8.3, we know that if

(8.30)

then

�{ f (t)} = F ( jω) = 2AT sinc ωT

Thus, by the symmetry property (8.28), F ( jt) and 2π f ( −ω) are also a Fourier transform
pair. In this case

F ( jt) = 2AT sinc tT

and so, choosing T = a and A = C/2a to correspond to (8.29), we see that

F ( jt) = C sinc at = g(t)

has Fourier transform 2π f (−ω). Rewriting (8.30), we find that, since |ω | = |−ω |,

�{C sinc at} = 

2π f −t( ) = �
−∞

∞

F jy( ) e−jyt dy

2π f −ω( ) = �
−∞

∞

F jy( ) e−jyω dy

What (8.28) tells us is that if f (t) and F( jω) form a Fourier transform pair then F ( jt)
and 2π f (−ω) also form a Fourier transform pair. This property is referred to as the
symmetry property of Fourier transforms. It is also sometimes referred to as the
duality property.

Example 8.8

g t( )  = C sinc at = 
C sin at

at
------------------- t ≠ 0( )

C t = 0( )⎩
⎪
⎨
⎪
⎧

f t( ) = 
A | t | � T( )
0 | t | � T( )⎩

⎨
⎧

2πC/2a |ω | � a( )
 0  |ω | � a( )⎩

⎨
⎧ πC/a |ω | � a( )

 0 |ω | � a( )⎩
⎨
⎧

=
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A graph of g(t) and its Fourier transform G( jω) = 2πf (−ω) is shown in Figure 8.13.

Figure 8.13
The Fourier 
transform pair 
g(t) and G( jω) of 
Example 8.8.

Using the MATLAB commands

syms w t a C

F=fourier(C*sin(a*t)/(a*t),t,w);

F=simple(F)

returns

F=C*pi*(-Heaviside(w-a)+Heaviside(w+a))/a

which is the answer given in the solution expressed in terms of Heaviside functions.

Whenever possible check your answers using MATLAB or MAPLE.

Use the linearity property to verify the result in 
Exercise 4.

If y(t) and u(t) are signals with Fourier transforms 
Y( jω) and U( jω) respectively, and 

show that Y( jω) = H( jω)U( jω) for some function 
H( jω). What is H( jω)?

Use the time-shift property to calculate the Fourier 
transform of the double pulse defined by

Calculate the Fourier transform of the windowed 
cosine function

f(t) = cosω 0t[H(t + T ) − H(t − T )]

Find the Fourier transform of the shifted form of 
the windowed cosine function

g(t) = cosω 0t[H(t) − H(t − T )]

Calculate the Fourier transform of the windowed 
sine function

f(t) = sin 2t[H(t + 1) − H(t − 1)]

8.3.6 Exercises

11

12

d2y t( )
dt2

--------------  + 3dy t( )
dt

------------  + y t( ) = u t( )

13

f t( ) = 
1 1 � | t | � 2( )
0 otherwise( )⎩

⎨
⎧

14

1
2
---- 1

2
----

15

16
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The frequency response
In this section we first consider the relationship between the Fourier and Laplace transforms,
and then proceed to consider the frequency response in terms of the Fourier transform.

8.4.1 Relationship between Fourier and Laplace transforms

The differences between the Fourier and Laplace transforms are quite subtle. At first
glance it appears that to obtain the Fourier transform from the Laplace transform we
merely write jω for s, and that the difference ends there. This is true in some cases, but
not in all. Strictly, the Fourier and Laplace transforms are distinct, and neither is a
generalization of the other.

Writing down the defining integrals, we have

The Fourier transform

(8.31)

The bilateral Laplace transform

(8.32)

The unilateral Laplace transform

(8.33)

There is an obvious structural similarity between (8.31) and (8.32), while the connec-
tion with (8.33) is not so clear in view of the lower limit of integration. In the Laplace
transform definitions recall that s is a complex variable, and may be written as

s = σ + jω (8.34)

where σ and ω are real variables. We can then interpret (8.31), the Fourier transform of
f (t), as a special case of (8.32), when σ = 0, provided that the Laplace transform exists
when σ = 0, or equivalently when s = jω (that is, s describes the imaginary axis in the
s plane). If we restrict our attention to causal functions, that is functions (or signals) that
are zero whenever t � 0, the bilateral Laplace transform (8.32) is identical with the
unilateral Laplace transform (8.33). The Fourier transform can thus be regarded as a
special case of the unilateral Laplace transform for causal functions, provided again that
the unilateral Laplace transform exists on the imaginary axis s = jω.

The next part of the story is concerned with a class of time signals f (t) whose
Laplace transforms do exist on the imaginary axis s = jω. Recall from (5.71) that a
causal linear time-invariant system with Laplace transfer function G(s) has an impulse
response h(t) given by

8.4

� f t( ){ } = �
−∞

∞

f t( ) e−jω t dt

�B f t( ){ } = �
−∞

∞

f t( ) e−st dt

� f t( ){ } = �
0−

∞

f t( ) e−st dt
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h(t) = �−1{G(s)} = g(t)H(t), say (8.35)

Furthermore, if the system is stable then all the poles of G(s) are in the left half-plane,
implying that g(t)H(t) → 0 as t → ∞. Let the pole locations of G(s) be

p1, p2, . . . , pn

where

pk = −  + jbk

in which ak, bk are real and ak ≠ 0 for k = 1, 2, . . . , n. Examples of such poles are
illustrated in Figure 8.14, where we have assumed that G(s) is the transfer function of
a real system so that poles that do not lie on the real axis occur in conjugate pairs. As
indicated in Section 5.2.3, the Laplace transfer function G(s) will exist in the shaded
region of Figure 8.14 defined by

Re(s) � −c 2

where −c 2 is the abscissa of convergence and is such that

0 � c 2 � min a2
k

The important conclusion is that for such systems G(s) always exists on the imaginary
axis s = jω, and so h(t) = g(t)H(t) always has a Fourier transform. In other words, we
have demonstrated that the impulse response function h(t) of a stable causal, linear
time-invariant system always has a Fourier transform. Moreover, we have shown that
this can be found by evaluating the Laplace transform on the imaginary axis; that is,
by putting s = jω in the Laplace transform. We have thus established that Fourier
transforms exist for a significant class of useful signals; this knowledge will be used
in Section 8.4.2.

Which of the following causal time-invariant systems have impulse responses that
possess Fourier transforms? Find the latter when they exist.

(a)

(b)

(c)

ak
2

Figure 8.14
Pole locations for 
G(s) and the region 
of existence of 
G(s).

Example 8.9

d2y t( )
dt2

--------------  + 3dy t( )
dt

------------  + 2y t( ) = u t( )

d2y t( )
dt2

--------------  + ω2y t( ) = u t( )

d2y t( )
dt2

--------------  + dy t( )
dt

------------  + y t( ) = 2u t( ) + du t( )
dt

--------------
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Solution Assuming that the systems are initially in a quiescent state when t � 0, taking Laplace
transforms gives

(a)

(b)

(c)

In case (a) the poles of G1(s) are at s = −1 and s = −2, so the system is stable and the
impulse response has a Fourier transform given by

In case (b) we find that the poles of G2(s) are at s = jω and s = − jω ; that is, on the
imaginary axis. The system is not stable (notice that the impulse response does not
decay to zero), and the impulse response does not possess a Fourier transform.

In case (c) the poles of G3(s) are at s =  and s = . Since these are
in the left half-plane, Re(s) � 0, we conclude that the system is stable. The Fourier
transform of the impulse response is then

8.4.2 The frequency response

For a linear time-invariant system, initially in a quiescent state, having a Laplace transfer
function G(s), the response y(t) to an input u(t) is given in (5.66) as

Y (s) = G(s)U(s) (8.36)

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t) respectively. In
Section 5.8 we saw that, subject to the system being stable, the steady-state response
yss(t) to a sinusoidal input u(t) = A sin ω t is given by (5.101) as

yss(t) = A |G( jω) | sin[ω t + arg G( jω)] (8.37)

That is, the steady-state response is also sinusoidal, with the same frequency as the
input signal but having an amplitude gain |G( jω) | and a phase shift argG( jω).

More generally, we could have taken the input to be the complex sinusoidal signal

u(t) = A e jω t

and, subject to the stability requirement, showed that the steady-state response is

yss(t) = AG( jω) e jω t (8.38)

or

yss(t) = A |G( jω) | e j[ω t+arg G( jω)] (8.39)

Y s( ) = 1

s2 + 3s + 2
----------------------------U s( ) = G1 s( )U s( )

Y s( ) = 1

s2 + ω2
-------------------U s( ) = G2 s( )U s( )

Y s( ) = s + 2

s2 + s + 1
------------------------- U s( ) = G3 s( )U s( )

G1 jω( ) = 1

s2 + 3s + 2
-----------------------------

s=jω

 = 1

2 − ω2 + j3ω
----------------------------------

= 2 − ω2 − j3ω
2 − ω2( )2 + 9ω2

----------------------------------------  = 2 − ω2( ) − j3ω
ω4 + 5ω2  + 4

---------------------------------------

−1
2
---- + j1

2
----�3 −1

2
---- − j1

2
----�3

G3 jω( ) = 2 + jω
1 − ω2 + jω
------------------------------

www.20file.org

www.semeng.ir


8.4  THE FREQUENCY RESPONSE 661

As before, |G( jω) | and argG( jω) are called the amplitude gain and phase shift
respectively. Both are functions of the real frequency variable ω, and their plots versus
ω constitute the system frequency response, which, as we saw in Section 5.8, charac-
terizes the behaviour of the system. Note that taking imaginary parts throughout in (8.39)
leads to the sinusoidal response (8.37).

We note that the steady-state response (8.38) is simply the input signal Ae jω t multi-
plied by the Fourier transform G( jω) of the system’s impulse response. Consequently
G( jω) is called the frequency transfer function of the system. Therefore if the system
represented in (8.36) is stable, so that G( jω) exists as the Fourier transform of its
impulse response, and the input u(t) = �−1{U(s)} has a Fourier transform U( jω), then
we may represent the system in terms of the frequency transfer function as 

Equation (8.40) thus determines the Fourier transform of the system output, and can
be used to determine the frequency spectrum of the output from that of the input. This
means that both the amplitude and phase spectra of the output are available, since

We shall now consider an example that will draw together both these and some earlier ideas
which serve to illustrate the relevance of this material in the communications industry.

A signal f (t) consists of two components:

(a) a symmetric rectangular pulse of duration 2π (see Example 8.3) and

(b) a second pulse, also of duration 2π (that is, a copy of (a)), modulating a signal with
carrier frequency ω 0 = 3 (the process of modulation was introduced in Section 8.3.4).

Write down an expression for f (t) and illustrate its amplitude spectrum. Describe the
amplitude spectrum of the output signal if f (t) is applied to a stable causal system with
a Laplace transfer function

Solution Denoting the pulse of Example 8.3, with T = π, by Pπ(t), and noting the use of the term
‘carrier signal’ in Example 8.7, we have

f (t) = Pπ(t) + (cos 3t )Pπ(t)

From Example 8.3,

�{Pπ(t)} = 2π sinc ωπ

so, using the result of Example 8.7, we have

�{ f (t)} = F ( jω) = 2π sinc ωπ + [2π sinc(ω − 3)π + 2π sinc(ω + 3)π]

The corresponding amplitude spectrum obtained by plotting |F( jω) | versus ω is illus-
trated in Figure 8.15.

Y ( jω) = G( jω)U( jω) (8.40)

|Y ( jω) | = |G( jω) | |U( jω) |

arg Y ( jω) = arg G( jω) + arg U( jω)

(8.41a)

(8.41b)

Example 8.10

G s( ) = 1

s2 + �2s + 1
-------------------------------

1
2
----
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Since the system with transfer function

is stable and causal, it has a frequency transfer function

so that its amplitude gain is

The amplitude spectrum of the output signal |Y( jω) | when the input is f (t) is then
obtained from (8.41a) as the product of |F( jω) | and |G( jω) |. Plots of both the amplitude
gain spectrum |G( jω) | and the output amplitude spectrum |Y( jω) | are shown in Figures
8.16(a) and (b) respectively. Note from Figure 8.16(b) that we have a reasonably good
copy of the amplitude spectrum of Pπ(t) (see Figure 8.9 with A = π, T = 1). However,
the second element of f (t) has effectively vanished. Our system has ‘filtered out’ this
latter component while ‘passing’ an almost intact version of the first. Examination of
the time-domain response would show that the first component does in fact experience
some ‘smoothing’, which, roughly speaking, consists of rounding of the sharp edges.
The system considered here is a second-order ‘low-pass’ Butterworth filter (introduced
in Section 6.10.1).

Figure 8.15
Amplitude spectrum 
of the signal 
Pπ(t) + (cos 3t)Pπ(t).

G s( ) = 1

s2 + �2s + 1
-------------------------------

G jω( ) = 1

1 − ω2 +  j�2ω
-------------------------------------

|G jω( ) | = 1

� ω4 + 1( )
------------------------

Figure 8.16 (a) Amplitude gain spectrum of the system with G(s) = 1/(s2 + �2 s + 1); (b) amplitude spectrum of the output 
signal | Y( jω) | of Example 8.10.
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Transforms of the step and impulse functions
In this section we consider the application of Fourier transforms to the concepts of
energy, power and convolution. In so doing, we shall introduce the Fourier transform
of the Heaviside unit step function H(t) and the impulse function δ(t).

8.5.1 Energy and power

In Section 7.6.4 we introduced the concept of the power spectrum of a periodic signal
and found that it enabled us to deduce useful information relating to the latter. In this
section we define two quantities associated with time signals f (t), defined for −∞ � t � ∞,
namely signal energy and signal power. Not only are these important quantities in them-
selves, but, as we shall see, they play an important role in characterizing signal types.

The total energy associated with the signal f (t) is defined as

(8.42)

8.5

E = �
−∞

∞

f t( )[ ]2 dt

8.4.3 Exercises

Find the impulse response of systems (a) and (c) 
of Example 8.9. Calculate the Fourier transform 
of each using the definition (8.15), and verify the 
results given in Example 8.9.

Use the time-shift property to calculate the Fourier 
transform of the double rectangular pulse f(t) 
illustrated in Figure 8.17.

The system with transfer function

was discussed in Example 8.10. Make a 
transformation

and write down G(s′ ). Examine the frequency 
response of a system with transfer function G(s′ ) 
and in particular find the amplitude response 
when ω = 0 and as ω → ∞. How would you 
describe such a system?

Use the symmetry property, and the result of 
Exercise 1, to calculate the Fourier transform of

Sketch f(t) and its transform (which is real).

Using the results of Examples 8.3 and 8.7, calculate 
the Fourier transform of the pulse-modulated signal

f(t) = PT (t) cos ω 0t

where

is the pulse of duration 2T.

17

18

Figure 8.17 The double rectangular pulse of 
Exercise 18.

19

G s( ) = 1

s2 + �2s + 1
-------------------------------

s → 1
s′
-----

20

f t( ) = 1

a2 + t2
----------------

21

PT t( ) = 
1 | t | � T( )
0 | t | � T( )⎩

⎨
⎧
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If f (t) has a Fourier transform F ( jω), so that, from (8.16),

then (8.42) may be expressed as

On changing the order of integration, this becomes

(8.43)

From the defining integral (8.15) for F ( jω), we recognize the part of the integrand
within the square brackets as F(−jω), which, if f (t) is real, is such that F (−jω) =
F*( jω), where F*( jω) is the complex conjugate of F ( jω). Thus (8.43) becomes

so that

Equation (8.44) relates the total energy of the signal f (t) to the integral over all fre-
quencies of |F ( jω) |2. For this reason, |F ( jω) |2 is called the energy spectral density,
and a plot of |F ( jω) |2 versus ω is called the energy spectrum of the signal f (t). The
result (8.44) is called Parseval’s theorem, and is an extension of the result contained
in Theorem 7.6 for periodic signals.

Determine the energy spectral densities of

(a) the one-sided exponential function f (t) = e−atH(t) (a � 0),

(b) the rectangular pulse of Figure 8.6.

Solution (a) From (8.17), the Fourier transform of f (t) is

The energy spectral density of the function is therefore

that is,

(8.44)

f t( ) = 1
2π
------�

−∞

∞

F jω( ) ejω t dω

E = �
−∞

∞

f t( ) f t( ) dt = �
−∞

∞

f t( ) 1
2π
------�

−∞

∞

F jω( ) e jω t dω dt

E = 1
2π
------�

−∞

∞

F jω( ) �
−∞

∞

f t( ) ejω t dt dω

E = 1
2π
------�

−∞

∞

F jω( )F* jω( ) dω

E = �
−∞

∞

f t( )[ ]2 dt = 1
2π
------�

−∞

∞

| F jω( ) |2 dω

Example 8.11

F jω( ) = a − jω
a2 + ω2
------------------

| F jω( ) |2 = F jω( )F* jω( ) = a − jω
a2 + ω2
------------------ a + jω

a2 + ω2
------------------
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(b) From Example 8.3, the Fourier transform F ( jω) of the rectangular pulse is

F ( jω) = 2AT sinc ωT

Thus the energy spectral density of the pulse is

|F ( jω) |2 = 4A2T 2 sinc2ωT

There are important signals f (t), defined in general for −∞ � t � ∞, for which the
integral [ f (t)]2dt in (8.42) either is unbounded (that is, it becomes infinite) or does
not converge to a finite limit; for example, sin t. For such signals, instead of considering
energy, we consider the average power P, frequently referred to as the power of the
signal. This is defined by

Note that for signals that satisfy the Dirichlet conditions (Theorem 8.1) the integral
in (8.42) exists and, since in (8.45) we divide by the signal duration, it follows that
such signals have zero power associated with them.

We now pose the question: ‘Are there other signals which possess Fourier transforms?’
As you may expect, the answer is ‘Yes’, although the manner of obtaining the transforms
will be different from our procedure so far. We shall see that the transforms so obtained,
on using the inversion integral (8.16), yield some very ‘ordinary’ signals so far excluded
from our discussion.

We begin by considering the Fourier transform of the generalized function δ (t), the
Dirac delta function introduced in Section 5.5.8. Recall from (5.49) that δ (t) satisfies
the sifting property; that is, for a continuous function g(t),

Using the defining integral (8.15), we readily obtain the following two Fourier
transforms:

These two transforms are, by now, unremarkable, and, noting that , we illustrate
the signals and their spectra in Figure 8.18.

(8.45)

(8.46)

(8.47)

| F jω( ) |2 = 1

a2 + ω2
------------------

�−∞
∞

P = 1
T
---- �

−T/2

T/2

f t( )[ ]2 dt
T→∞
lim

�
a

b

g t( )δ t − c( ) dt = 
g c( ) a � c � b( )

0 otherwise⎩
⎨
⎧

� δ t( ){ } = �
−∞

∞

δ t( ) e−jω t dt = 1

� δ t − t0( ){ } = �
−∞

∞

δ t − t0( ) e−jω t dt = e
−jω t0

| e
−jωt0 | = 1
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We now depart from the definition of the Fourier transform given in (8.15) and seek
new transform pairs based on (8.46) and (8.47). Using the symmetry (duality) property
of Section 8.3.5, we deduce from (8.46) that

1 and 2πδ(−ω) = 2πδ(ω) (8.48)

is another Fourier transform pair. Likewise, from (8.47), we deduce that

and 2πδ(−ω − t0)

is also a Fourier transform pair. Substituting t0 = −ω 0 into the latter, we have

and 2πδ(ω 0 − ω) = 2πδ(ω − ω 0) (8.49)

as another Fourier transform pair.
We are thus claiming that in (8.48) and (8.49) that f1(t) = 1 and f2(t) = , which

do not have ‘ordinary’ Fourier transforms as defined by (8.15), actually do have
‘generalized’ Fourier transforms given by

F1( jω) = 2πδ(ω) (8.50)

These results may be confirmed in MATLAB. Using the commands

syms w t

D=sym(‘Dirac(t)’);

F=fourier(D,t,w)

returns

F=1

in agreement with (8.46); whilst the commands

syms w t T

D1=sym(‘Dirac(t-T)’);

F1=fourier(D1,t,w)

return

F1=exp(-i*T*w)

which confirms (8.47), with T replacing t0.
Likewise in MAPLE the commands

with(inttrans):

fourier(Dirac(t),t,w);

return the answer 1.

Figure 8.18
(a) δ(t) and its 
amplitude spectrum; 
(b) δ(t − t0) and its 
amplitude spectrum.

e
−jt0t

e
jω 0t

e
jω 0t
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F2( jω) = 2πδ(ω − ω 0) (8.51)

respectively.
The term ‘generalized’ has been used because the two transforms contain the gener-

alized functions δ(ω) and δ (ω  − ω 0). Let us now test our conjecture that (8.50) and (8.51)
are Fourier transforms of f1(t) and f2(t) respectively. If (8.50) and (8.51) really are Fourier
transforms then their time-domain images f1(t) and f2(t) respectively should reappear via
the inverse transform (8.16). Substituting F1( jω) from (8.50) into (8.16), we have

so f1(t) = 1 is recovered.
Similarly, using (8.51), we have

so that f2(t) =  is also recovered.
Our approach has therefore been successful, and we do indeed have a way of gener-

ating new pairs of transforms. We shall therefore use the approach to find generalized
Fourier transforms for the signals

f3(t) = cos ω 0t, f4(t) = sin ω 0t

Since

f3(t) = cos ω 0t = 

the linearity property (8.22) gives

�{ f3(t)} = 

which, on using (8.49), leads to the generalized Fourier transform pair

Likewise, we deduce the generalized Fourier transform pair

The development of (8.53) and the verification that both (8.52) and (8.53) invert
correctly using the inverse transform (8.16) is left as an exercise for the reader.

It is worth noting at this stage that defining the Fourier transform �{ f (t)} of f (t)
in (8.15) as

whenever the integral exists does not preclude the existence of other Fourier transforms,
such as the generalized one just introduced, defined by other means.

It is clear that the total energy

�{cos ω 0t} = π [δ(ω − ω 0) + δ(ω + ω 0)] (8.52)

�{sin ω 0t} = jπ[δ(ω + ω 0) − δ(ω − ω 0)] (8.53)

� −1 F1 jω( ){ } = 1
2π
------�

−∞

∞

F1 jω( ) e jω t dω = 1
2π
------�

−∞

∞

2πδ ω( ) ejω t dω = 1

� −1 F2 jω( ){ } = 1
2π
------�

−∞

∞

2πδ ω − ω 0( ) e jω t dω = e
jω 0t

e
jω 0t

1
2
---- e

jω 0t
 + e

−jω 0t( )

1
2
----� e

jω 0t{ } + 1
2
----� e

−jω 0t{ }

� f t( ){ } = �
−∞

∞

f t( ) e−jωt dt

E = �
−∞

∞

cos2ω 0t dt
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associated with the signal f3(t) = cos ω 0t is unbounded. However, from (8.45), we can
calculate the power associated with the signal as

Thus, while the signal f3(t) = cosω0t has unbounded energy associated with it, its
power content is . Signals whose associated energy is finite, for example f (t) = e−atH(t)
(a � 0), are sometimes called energy signals, while those whose associated energy is
unbounded but whose total power is finite are known as power signals. The concepts
of power signals and power spectral density are important in the analysis of random
signals, and the interested reader should consult specialized texts.

Suppose that a periodic function f (t), defined on −∞ � t � ∞, may be expanded in a
Fourier series having exponential form

What is the (generalized) Fourier transform of f (t)?

Solution From the definition,

which, on using (8.49), gives

That is,

where Fn (−∞ � n � ∞) are the coefficients of the exponential form of the Fourier series
representation of f (t).

Use the result of Example 8.12 to verify the Fourier transform of f (t) = cos ω 0t given in (8.52).

Solution Since

f (t) = cos ω 0t = 

the Fn of Example 8.12 are

F−1 = F1 = 

Fn = 0 (n ≠ ±1)

P = 1
T
---- �

−T/2

T/2

cos2ω0t dt = 1
T
---- t + 1

2ω 0

--------- sin 2ω 0t
−T/2

T/2

= 1
2
----

T→∞
lim

T→∞
lim

1
2
----

Example 8.12

f t( ) = Fn e
jnω 0t

n=−∞

∞

∑

� f t( ){ } = � Fn e
jnω 0t

n=−∞

∞

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = Fn� e
jnω 0t{ }

n=−∞

∞

∑

� f t( ){ } = Fn2πδ ω − nω0( )
n=−∞

∞

∑

� f t( ){ } = 2π Fnδ ω − nω0( )
n=−∞

∞

∑

Example 8.13

1
2
---- e

jω 0t
 + 1

2
---- e

−jω 0t

1
2
----
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Thus, using the result

we have

�{cos ω 0t} = 2πF−1δ (ω + ω0) + 2πF1δ(ω − ω0)

= π[δ(ω + ω0) + δ(ω − ω0)]

in agreement with (8.52).

Determine the (generalized) Fourier transform of the periodic ‘sawtooth’ function,
defined by

f (t) = (0 � t � 2T )

f (t + 2T ) = f (t)

Solution In Example 7.19 we saw that the exponential form of the Fourier series representation
of f (t) is

with

F0 = 2

Fn = (n ≠ 0)

It follows from Example 8.12 that the Fourier transform �{ f (t)} is

Confirm this answer using the MATLAB commands

syms w t a

F=fourier(cos(a*t),t,w)

where a has been used to represent ω 0.

� f t( ){ } = 2π Fnδ ω − ω0( )
n=−∞

∞

∑

Example 8.14

2t
T
------

f t( ) = Fn e
jnω 0t

n=−∞

∞

∑

ω 0 = 2π------  = π
2T

----
T

j2
nπ
------

� f t( ){ } = F jω( ) = 4πδ ω( ) + j4
n
----δ ω − nω0( )

n=−∞
n≠0

∞

∑

= 4πδ ω( ) + j4 1
n
----δ ω − nπ

T
------⎝ ⎠

⎛ ⎞
n=−∞
n≠0

∞

∑
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Thus we see that the amplitude spectrum simply consists of pulses located at integer
multiples of the fundamental frequency ω 0 = π/T. The discrete line spectra obtained via
the exponential form of the Fourier series for this periodic function is thus reproduced,
now with a scaling factor of 2π.

Determine the (generalized) Fourier transform of the unit impulse train f (t) = δ(t − nT )
shown symbolically in Figure 8.19.

Solution Although f (t) is a generalized function, and not a function in the ordinary sense, it
follows that since

= f (t)

it is periodic, with period T. Moreover, we can formally expand f (t) as a Fourier series

with

It follows from Example 8.12 that

Thus we have shown that

(8.54)

where ω 0 = 2π /T. That is, the time-domain impulse train has another impulse train as
its transform. We shall see in Section 8.6.4 that this result is of particular importance in
dealing with sampled time signals.

Example 8.15 ∑n=−∞
∞

Figure 8.19
Unit impulse train 
f(t) = ∑ ∞

n=−∞ δ(t − nT ).

f t + kT( ) = δ t + k − n( )T( ) k an integer( )
n=−∞

∞

∑

= δ t − mT( ) m = n − k( )
m=−∞

∞

∑

f t( ) = Fn e
jnω 0t ω 0 = 2π

T
------⎝ ⎠

⎛ ⎞
n=−∞

∞

∑

Fn = 1
T
----�

−T/2

T/2

f t( ) e
−jnω 0t

dt = 1
T
----�

−T/2

T/2

δ t( ) e
−jnω 0t

dt = 1
T
---- for all n

� f t( ){ } = 2π 1
T
---- δ ω − nω 0( ) = ω 0 δ ω − nω 0( )

n=−∞

∞

∑
n=−∞

∞

∑

� δ t − nT( )
n=−∞

∞

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = ω 0 δ ω − nω 0( ) 
n=−∞

∞

∑
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Following our successful hunt for generalized Fourier transforms, we are led to con-
sider the possibility that the Heaviside unit step function H(t) defined in Section 5.5.1
may have a transform in this sense. Recall from (5.56) that if

f (t) = H(t)

then

From the time-differentiation property (8.23), we might expect that if

�{H(t)} = Y( jω)

then

( jω)Y( jω) = �{δ(t)} = 1 (8.55)

Equation (8.55) suggests that a candidate for Y( jω) might be 1/jω, but this is not the
case, since inversion using (8.16) does not give H(t) back. Using (8.16) and complex
variable techniques, it can be shown that

where sgn(t) is the signum function, defined by

However, we note that (8.55) is also satisfied by

(8.56)

where c is a constant. This follows from the equivalence property (see Definition 5.2,
Section 5.5.11) f (ω)δ(ω) = f (0)δ(ω) with f (ω) = jω, which gives

( jω)Y( jω) = 1 + ( jω)cδ(ω) = 1

(Note: This last result may be obtained in terms of Heaviside functions using the
MATLAB commands

syms w t

f=ifourier(1/(i*w))

or using the MAPLE commands 

with(inttrans): 

invfourier(1(I*w),w,t);

d f t( )
dt

--------------  = δ t( )

� −1 1
jω
-----

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 1
2π
------�

−∞

∞
ejωt

jω
--------- dω = 

1
2
---- t � 0( )

0 t = 0( )
− 1

2
---- t � 0( )⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= 1
2
---- sgn t( )

sgn t( ) = 

1 t � 0( )
0 t = 0( )

−1 t � 0( )⎩
⎪
⎨
⎪
⎧

Y jω( ) = 1
jω
-----  + cδ ω( )
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Inverting (8.56) using (8.16), we have

and, choosing c = π, we have

Thus we have (almost) recovered the step function H(t). Here g(t) takes the value  at
t = 0, but this is not surprising in view of the convergence of the Fourier integral at
points of discontinuity as given in Theorem 8.1. With this proviso, we have shown that

We must confess to having made an informed guess as to what additional term to add in
(8.56) to produce the Fourier transform (8.57). We could instead have chosen cδ(kω)
with k a constant as an additional term. While it is possible to show that this would not lead
to a different result, proving uniqueness is not trivial and is beyond the scope of this book.

(8.57)

Using the MATLAB commands

syms w t

H=sym(‘Heaviside(t)’);

F=fourier(h,t,w)

returns

F=pi*Dirac(w)-i/w

which, noting that –i = 1/ i, confirms result (8.57).
The same result is obtained in MAPLE using the commands.

with(inttrans):

fourier(Heaviside(t),t,w);

Likewise the MATLAB commands

syms w t T

H=sym(‘Heaviside(t-T)’);

F=fourier(H,t,w)

return

F=exp(-i*T*w)*(pi*Dirac(w)-i/w)

which gives us another Fourier transform

�{H(t − T )} = e− jωT(πδ(ω) + 1/jω)

g t( ) = � −1 1
jω
-----  + cδ ω( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 1
2π
------�

−∞

∞
1
jω
-----  + cδ ω( ) ejωt dω

= 

c/2π  + 1
2
---- t � 0( )

c/2π t = 0( )
c/2π −  1

2
---- t � 0( )⎩

⎪
⎨
⎪
⎧

g t( )  = 
1 t � 0( )
1
2
---- t = 0( )
0 t � 0( )⎩

⎪
⎨
⎪
⎧

1
2
----

Y jω( ) = � H t( ){ } = 1
jω
-----  + πδ ω( )
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8.5.2 Convolution

In Section 5.6.6 we saw that the convolution integral, in conjunction with the Laplace
transform, provided a useful tool for discussing the nature of the solution of a differ-
ential equation, although it was not perhaps the most efficient way of evaluating the
solution to a particular problem. As the reader may now have come to expect, in view
of the duality between time and frequency domains, there are two convolution results
involving the Fourier transform.

Convolution in time

Suppose that

then the Fourier transform of the convolution

(8.58)

is

Introducing the change of variables z → t − τ, τ → τ and following the procedure for
change of variable from Section 5.6.6, the transform can be expressed as

so that

Y( jω) = U( jω)V( jω) (8.59)

That is,

indicating that a convolution in the time domain is transformed into a product in the
frequency domain.

�{u(t) * v(t)} = �{v(t) * u(t)} = U( jω)V( jω) (8.60)

� u t( ){ } = U jω( ) = �
−∞

∞

u t( ) e−jω t dt

� v t( ){ } = V jω( ) = �
−∞

∞

v t( ) e−jω t dt

y t( ) = �
−∞

∞

u τ( )v t − τ( ) dτ = u t( ) * v t( )

� y t( ){ } = Y jω( ) = �
−∞

∞

e−jω t �
−∞

∞

u τ( )v t − τ( ) dτ dt

= �
−∞

∞

u τ( ) �
−∞

∞

e−jω tv t − τ( ) dt dτ

Y jω( ) = �
−∞

∞

u τ( ) �
−∞

∞

v z( ) e−jω z+τ( ) dz dτ

= �
−∞

∞

u τ( ) e−jωτ dτ�
−∞

∞

v z( ) e−jω z dz
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Convolution in frequency

If

�{u(t)} = U( jω), with  

�{v(t)} = V( jω), with  

then the inverse transform of the convolution

is given by

A change of variable z → ω − y, ω → ω leads to

= 2π u(t)v(t)

That is,

and thus multiplication in the time domain corresponds to convolution in the frequency
domain (subject to the scaling factor 1/(2π)).

Suppose that f(t) has a Fourier transform F ( jω). Find an expression for the Fourier
transform of g(t), where

�{u(t)v(t)} = U( jω) * V( jω) (8.61)

u t( ) = 1
2π
------�

−∞

∞

U jω( ) ejω t dω

v t( ) = 1
2π
------�

−∞

∞

V jω( ) ejω t dω

U jω( ) * V jω( ) = �
−∞

∞

U jy( )V j ω − y( )( ) dy

�−1 U jω( ) * V jω( ){ } = 1
2π
------�

−∞

∞

ejω t �
−∞

∞

U jy( )V j ω − y( )( ) dy dω

= 1
2π
------�

−∞

∞

U jy( ) �
−∞

∞

V j ω − y( )( ) ejω t dω dy

�−1 U jω( ) * V jω( ){ } = 1
2π
------�

−∞

∞

U jy( ) �
−∞

∞

V jz( ) ej z+y( )t dz dy

= 1
2π
------�

−∞

∞

U jy( ) ejyt dy �
−∞

∞

V jz( ) ejzt dz

1
2π
------

Example 8.16

g t( ) = �
−∞

t

f τ( ) dτ
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Solution Since

we can write

the convolution of g(t) and H(t). Then, using (8.60),

�{g(t)} = G( jω) = F( jω)Y( jω)

which, on using the expression for Y( jω) from (8.57), gives

so that

(8.62)

H t − τ( ) = 
1 τ � t( )
0 τ � t( )⎩

⎨
⎧

g t( ) = �
−∞

∞

f τ( )H t − τ( ) dτ = f t( ) * H t( )

G jω( ) = F jω( )
jω

----------------  + πF jω( )δ ω( )

G jω( ) = F jω( )
jω

----------------  + πF 0( )δ ω( )

8.5.3 Exercises

Verify that �−1{π[δ(ω − ω 0) + δ(ω + ω 0)]} 
= cos ω 0t.

Show that �{sin ω 0t} = jπ[δ(ω + ω 0) − δ(ω − ω 0)]. 
Use (8.16) to verify that

� −1{jπ [δ(ω + ω 0) − δ(ω − ω 0)]} = sin ω 0t

Suppose that f(t) and g(t) have Fourier transforms 
F( jω) and G( jω) respectively, defined in the 
‘ordinary’ sense (that is, using (8.15)), and 
show that

This result is known as Parseval’s formula.

Use the results of Exercise 24 and the symmetry 
property to show that

Use the convolution result in the frequency domain 
to obtain �{H(t) sinω 0t}.

Calculate the exponential form of the Fourier series 
for the periodic pulse train shown in Figure 8.20. 
Hence show that

(ω 0 = 2π /T ), and A is the height of the pulse.

22

23

24

�
−∞

∞

f t( )G jt( ) dt = �
−∞

∞

F jt( )g t( ) dt

25

�
−∞

∞

f t( )g t( ) dt = 1
2π
------�

−∞

∞

F jω( )G −jω( ) dω

26

27

� f t( ){ } = 2πAd--------------- sinc nπd
T T

-----------⎝ ⎠
⎛ ⎞ δ ω − nω 0( )

n=−∞

∞

∑

Figure 8.20 Periodic pulse train of Exercise 27.
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The Fourier transform in discrete time

8.6.1 Introduction

The earlier sections of this chapter have discussed the Fourier transform of signals
defined as functions of the continuous-time variable t. We have seen that a major area
of application is in the analysis of signals in the frequency domain, leading to the con-
cept of the frequency response of a linear system. In Chapter 7 we considered signals
defined at discrete-time instants, together with linear systems modelled by difference
equations. There we found that in system analysis the z transform plays a role similar
to that of the Laplace transform for continuous-time systems. We now attempt to
develop a theory of Fourier analysis to complement that for continuous-time systems,
and then consider the problem of estimating the continuous-time Fourier transform in
a form suitable for computer execution.

8.6.2 A Fourier transform for sequences

First we return to our work on Fourier series and write down the exponential form of
the Fourier series representation for the periodic function F(e jθ ) of period 2π. Writing
θ = ω t, we infer from (7.57) and (7.61) that

(8.63)

where

(8.64)

Thus the operation has generated a sequence of numbers { fn} from the periodic func-
tion F(e jθ ) of the continuous variable θ. Let us reverse the process and imagine that we
start with a sequence {gk} and use (8.63) to define a periodic function G ′(e jθ ) such that

(8.65)

We have thus defined a transformation from the sequence {gk} to G ′(e jθ ). This trans-
formation can be inverted, since, from (8.64),

(8.66)

and we recover the terms of the sequence {gk} from G ′(e jθ ).
It is convenient for our later work if we modify the definition slightly, defining the

Fourier transform of the sequence {gk} as

8.6

�{gk} = G(e jθ ) = (8.67)

F e jθ( ) = fn ejnθ

n=−∞

∞

∑

fn = 1
2π
------�

−π

π

F ejθ( ) e−jnθ dθ

G′ ejθ( ) = gn ejnθ

n=−∞

∞

∑

gk = 1
2π
------�

−π

π

G′ ejθ( ) e−jkθ dθ

gn e−jnθ

n=−∞

∞

∑
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8.6  THE FOURIER TRANSFORM IN DISCRETE TIME 677

whenever the series converges. The inverse transform is then given from (8.66), by

The results (8.67) and (8.68) thus constitute the Fourier transform pair for the sequence
{gk}. Note that G(e jθ ) is a function of the continuous variable θ, and since it is a func-
tion of e jθ  it is periodic (with a period of at most 2π), irrespective of whether or not the
sequence {gk} is periodic.

Note that we have adopted the notation G(e jθ ) rather than G(θ ) for the Fourier transform,
similar to our use of F( jω) rather than F(ω) in the case of continuous-time signals. In
the present case we shall be concerned with the relationship with the z transform of
Chapter 6, where z = r e jθ , and the significance of our choice will soon emerge.

Find the transform of the sequence , where g0 = 2, g2 = g−2 = 1 and gk = g−k = 0
for k ≠ 0 or 2.

Solution From the definition (8.67),

�{gk} = G(e jθ ) = 

= g−2 e j2θ  + g01 + g2 e − j2θ  = e j2θ  + 2 + e− j2θ

= 2(1 + cos 2θ ) = 4 cos2θ

In this particular case the transform is periodic of period π, rather than 2π. This is
because g1 = g−1 = 0, so that cos θ does not appear in the transform. Since G(e jθ ) is
purely real, we may plot the transform as in Figure 8.21.

Having defined a Fourier transform for sequences, we now wish to link it to
the frequency response of discrete-time systems. In Section 8.4.2 the link between
frequency responses and the Fourier transforms of continuous-time systems was estab-
lished using the Laplace transform. We suspect therefore that the z transform should
yield the necessary link for discrete-time systems. Indeed, the argument follows closely
that of Section 8.4.2.

(8.68)gk = 1
2π
------�

−π

π

G e jθ( ) e jkθ dθ

Example 8.17 gk{ }−∞
∞

gn e−jnθ

n=−∞

∞

∑

Figure 8.21
Transform of 
the sequence of 
Example 8.17.
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For a causal linear time-invariant discrete-time system with z transfer function G(z)
the relationship between the input sequence {uk} and output sequence {yk} in the trans-
form domain is given from Section 6.6.1 by

Y(z) = G(z)U(z) (8.69)

where U(z) = �{uk} and Y(z) = �{yk}.
To investigate the system frequency response, we seek the output sequence corre-

sponding to an input sequence

{uk} = {Ae jωkT} = {Ae jkθ}, θ = ωT (8.70)

which represents samples drawn, at equal intervals T, from the continuous-time com-
plex sinusoidal signal e jω t.

The frequency response of the discrete-time system is then its steady-state response
to the sequence {uk} given in (8.70). As for the continuous-time case (Section 8.4.2),
the complex form e jω t is used in order to simplify the algebra, and the steady-state
sinusoidal response is easily recovered by taking imaginary parts, if necessary.

From Figure 6.3, we saw that

�{Ae jkθ} = �{A(e jθ )k} = 

so, from (8.69), the response of the system to the input sequence (8.70) is determined by

Y(z) = G(z) (8.71)

Taking the system to be of order n, and under the assumption that the n poles pr

(r = 1, 2, . . . , n) of G (z) are distinct and none is equal to e jθ , we can expand Y(z)/z in
terms of partial fractions to give

(8.72)

where, in general, the constants cr (r = 1, 2, . . . , n) are complex. Taking inverse z trans-
forms throughout in (8.72) then gives the response sequence as

{yk} = �−1{Y (z )} = �−1

that is,

{yk} = c{e jkθ} + (8.73)

If the transfer function G(z) corresponds to a stable discrete-time system then all its
poles pr (r = 1, 2, . . . , n) lie within the unit circle |z | � 1, so that all the terms under the
summation sign in (8.73) tend to zero as k → ∞. This is clearly seen by expressing
pr in the form pr = | pr |  and noting that if | pr | � 1 then | pr |k → 0 as k → ∞. Con-
sequently, for stable systems the steady-state response corresponding to (8.73) is

= c{e jkθ}

Using the ‘cover-up’ rule for partial fractions, the constant c is readily determined from
(8.71) as

Az

z − e jθ
----------------

Az

z − e jθ
----------------

Y z( )
z

----------  = c

z − ejθ
---------------  + 

cr

z − pr

--------------
r=1

n

∑

zc

z − ejθ
---------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

 + �−1 zcr

z − pr

--------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

r=1

n

∑

cr pr
k{ }

r=1

n

∑

e
jφ r

ykss
{ }
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8.6  THE FOURIER TRANSFORM IN DISCRETE TIME 679

c = AG(e jθ )

so that the steady-state response becomes

= AG(e jθ ){e jkθ} (8.74)

We have assumed that the poles of G(z) are distinct in order to simplify the algebra.
Extending the development to accommodate multiple poles is readily accomplished,
leading to the same steady-state response as given in (8.74).

The result (8.74) corresponds to (8.38) for continuous-time systems, and indicates
that the steady-state response sequence is simply the input sequence with each term
multiplied by G(e jθ ). Consequently G(e jθ ) is called the frequency transfer function of
the discrete-time system and, as for the continuous case, it characterizes the system’s
frequency response. Clearly G(e jθ ) is simply G(z), the z transfer function, with z = e jθ ,
and so we are simply evaluating the z transfer function around the unit circle | z | = 1.
The z transfer function G(z) will exist on |z | = 1 if and only if the system is stable,
and thus the result is the exact analogue of the result for continuous-time systems in
Section 8.4.2, where the Laplace transfer function was evaluated along the imaginary
axis to yield the frequency response of a stable linear continuous-time system.

To complete the analogy with continuous-time systems, we need one further result.
From Section 6.6.2, the impulse response of the linear causal discrete-time system with
z transfer function G(z) is

= �−1{G(z)} = , say

Taking inverse transforms then gives

since gk = 0 (k � 0) for a causal system. Thus

G (e jθ ) = 

and we conclude from (8.67) that G(e jθ ) is simply the Fourier transform of the sequence
{gk}. Therefore the discrete-time frequency transfer function G(e jθ ) is the Fourier trans-
form of the impulse response sequence.

Determine the frequency transfer function of the causal discrete-time system shown in
Figure 8.22 and plot its amplitude spectrum.

ykss
{ }

ykδ
{ } gk{ }k=0

∞

G z( ) = gk z−k = gk z−k

k=−∞

∞

∑
k=0

∞

∑

gk e−jkθ

k=−∞

∞

∑

Example 8.18

Figure 8.22
Discrete-time system 
of Example 8.18.
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680 THE FOURIER TRANSFORM

Solution Using the methods of Section 6.6.1, we readily obtain the z transfer function as

Next we check for system stability. Since z 2 + 0.75z + 0.125 = (z + 0.5)(z + 0.25), the
poles of G(z) are at p1 = −0.5 and p2 = −0.25, and since both are inside the unit circle
|z | = 1, the system is stable. The frequency transfer function may then be obtained as
G(e jθ ), where

To determine the amplitude spectrum, we evaluate |G(e jθ ) | as

A plot of |G(e jθ ) | versus θ then leads to the amplitude spectrum of Figure 8.23.

In Example 8.18 we note the periodic behaviour of the amplitude spectrum, which
is inescapable when discrete-time signals and systems are concerned. Note, however,
that the periodicity is in the variable θ = ωT and that we may have control over the
choice of T, the time between samples of our input signal.

8.6.3 The discrete Fourier transform

The Fourier transform of sequences discussed in Section 8.6.2 transforms a sequence
{gk} into a continuous function G(e jθ ) of a frequency variable θ, where θ = ωT and T
is the time between signal samples. In this section, with an eye to computer require-
ments, we look at the implications of sampling G(e jθ ). The overall operation will have
commenced with samples of a time signal {gk} and proceeded via a Fourier transforma-
tion process, finally producing a sequence {Gk} of samples drawn from the frequency-
domain image G(e jθ ) of {gk}.

Suppose that we have a sequence {gk} of N samples drawn from a continuous-time
signal g(t), at equal intervals T; that is,

{gk} = 

G z( ) = 2z + 1

z2 + 0.75z + 0.125
---------------------------------------------

G e jθ( ) = 2 e jθ  + 1

ej2θ  + 0.75 e jθ  + 0.125
-----------------------------------------------------

G e jθ( )  = 2 e jθ  + 1

ej2θ  + 0.75 e jθ  + 0.125
-----------------------------------------------------------

= 
� 5 + 4 cos θ( )

� 1.578 + 1.688 cos θ + 0.25 cos 2θ( )
------------------------------------------------------------------------------------------

Figure 8.23
Amplitude spectrum 
of the system of 
Example 8.18.

g kT( ){ }k=0
N−1

www.20file.org

www.semeng.ir
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Using (8.67), the Fourier transform of this sequence is

�{gk} = G (e jθ ) = (8.75)

where gk = 0 (k ∉ [0, N − 1]). Then, with θ = ωT, we may write (8.75) as

G(e jωT) = (8.76)

We now sample this transform G(e jωT ) at intervals Δω in such a way as to create
N samples spread equally over the interval 0 � θ � 2π ; that is, over one period of the
essentially periodic function G(e jθ ). We then have

N Δθ = 2π

where Δθ is the normalized frequency spacing. Since θ = ωT and T is a constant such
that Δθ = T Δω, we deduce that

(8.77)

Sampling (8.76) at intervals Δω produces the sequence

, where Gk =  (8.78)

Since

it follows that the sequence  is periodic, with period N. We have therefore gen-
erated a sequence of samples in the frequency domain that in some sense represents
the spectrum of the underlying continuous-time signal. We shall postpone the question
of the exact nature of this representation for the moment, but as the reader will have
guessed, it is crucial to the purpose of this section. First, we consider the question of
whether, from knowledge of the sequence of (8.78), we can recover the
original sequence . To see how this can be achieved, consider a sum of the form

, (N − 1) � r � 0 (8.79)

Substituting for Gk from (8.78), we have

gn e−jnθ

n=−∞

∞

∑

gn e−jnωT

n=0

N−1

∑

ω = 2π
NT
-------Δ

Gk{ }k=0
N−1 gn e−jnk ω TΔ

n=0

N−1

∑

Gk+N = gn e−jn k+N( ) ωTΔ

n=0

N−1

∑

= gn e−jnk ωTΔ e−jn2π, using (8.77)
n=0

N−1

∑

= gn e−jnk ωTΔ = Gk

n=0

N−1

∑
Gk{ }−∞

∞

Gk{ }k=0
N−1

gn{ }n=0
N−1

Sr = Gk e−jkr ω TΔ

k =0

N−1

∑

Sr = gm e−jmk ωTΔ

m=0

N−1

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

e−jkr ωTΔ  = gm e−jk ω m+r( )TΔ

m=0

N−1

∑
k=0

N−1

∑
k=0

N−1

∑
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That is, on interchanging the order of integration,

(8.80)

Now

is a geometric progression with first term e0 = 1 and common ratio e−jΔω(m+r)T, and so the
sum to N terms is thus

When m = −r

Thus

(8.81)

where δij is the Kronecker delta defined by

Substituting (8.81) into (8.80), we have

Returning to (8.79) and substituting for Sr we see that

which on taking n = −r gives

(8.82)

Thus (8.82) allows us to determine the members of the sequence

that is, it enables us to recover the time-domain samples from the frequency-domain
samples exactly.

Sr = gm e−jk ω m+r( )TΔ

k =0

N−1

∑
m=0

N−1

∑

e−jk ω m+r( )TΔ

k =0

N−1

∑

e−jk ω m+r( )TΔ  = 1 − e−j ω m+r( )NTΔ

1 − e−j ω m+r( )TΔ
------------------------------------  = 1 − e−j m+r( )2π

1 − e−j ω m+r( )TΔ
-----------------------------------  = 0 m ≠ −r nN+( )

k=0

N−1

∑

e−jk ω m+r( )TΔ  = 1 = N
k=0

N−1

∑
k=0

N−1

∑

e−jk ω m+r( )TΔ  = Nδ m ,−r

k=0

N−1

∑

δ ij = 
1 i = j( )
0 i ≠ j( )⎩

⎨
⎧

Sr = N gmδ m ,−r = Ng−r

m=0

N−1

∑

g−r = 1
N
----- Gk e−jkr ωTΔ

k =0

N−1

∑

gn = 1
N
----- Gk e jkn ωTΔ

k=0

N−1

∑

gn{ }n=0
N−1
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The relations

with Δω = 2π /NT, between the time- and frequency-domain sequences  and
define the discrete Fourier transform (DFT) pair. The pair provide pathways

between time and frequency domains for discrete-time signals in exactly the same sense
that (8.15) and (8.16) defined similar pathways for continuous-time signals. It should
be stressed again that, whatever the properties of the sequences {gn} and {Gk} on the
right-hand sides of (8.78) and (8.82), the sequences generated on the left-hand sides
will be periodic, with period N.

The sequence = {1, 2, 1} is generated by sampling a time signal g(t) at intervals
with T = 1. Determine the discrete Fourier transform of the sequence, and verify that
the sequence can be recovered exactly from its transform.

Solution From (8.78), the discrete Fourier transform sequence is generated by

In this case T = 1 and, with N = 3, (8.77) gives

Thus

= g0 + g1 + g2 = 1 + 2 + 1 = 4

= g0 e0 + g1 e−j2π /3 + g2 e−j4π /3 = 1 + 2 e−j2π /3 + 1 e−j4π /3 

= e−j2π/3 (e j2π /3 + 2 + e−j2π /3) = 2 e−j2π /3 (1 + cos π) = e−j2π /3

= g0 e0 + g1 e−j4π /3 + g2 e−j8π /3

= e−j4π /3 [e j4π /3 + 2 + e−j4π /3] = 2 e−j4π /3 (1 + cos π) = e−j4π /3

Thus

= {4, e−j2π /3, e−j4π /3}

(8.78)

(8.82)

Gk = gn e−jnk ωTΔ

n=0

N−1

∑

gn = 1
N
----- Gk ejnk ωTΔ

k=0

N−1

∑

gn{ }n=0
N−1

Gk{ }k=0
N−1

Example 8.19 gk{ }k=0
2

Gk{ }k =0
2

Gk = gn e−jkn ωTΔ k = 0, 1, 2( )
n=0

2

∑

ω = 2π
3 1×
-------------  = 2

3
----πΔ

G0 = gn e−jn×0×2π /3 = gn

n=0

2

∑
n=0

2

∑

G1 = gn e−jn×1×2π /3

n=0

2

∑
2
3
----

G2 = gn e−jn×2×2π /3 = gn e−jn4π/3

n=0

2

∑
n=0

2

∑
4
3
----

Gk{ }k =0
2
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We must now show that use of (8.82) will recover the original sequence . From
(8.82), the inverse transform of is given by

again with T = 1, Δω = π and N = 3. Thus

= (4 + e−j2π /3 + e−j4π /3)

= [4 + e−jπ(e jπ /3 + e−jπ /3)] = (4 − 2 cos π) = 1

= (G0 + G1 e j2π /3 + G2 e j4π /3)

= (4 + 1 + 1) = 2

= (G0 + G1 e j4π /3 + G2 e j8π /3)

= [4 + e jπ(e jπ /3 + e−jπ /3)] = (4 − 2 cos π) = 1

That is

= {1, 2, 1} = 

and thus the original sequence has been recovered exactly from its transform.

We see from Example 8.19 that the operation of calculating N terms of the transformed
sequence involved N × N = N 2 multiplications and N(N − 1) summations, all of which
are operations involving complex numbers in general. The computation of the discrete
Fourier transform in this direct manner is thus said to be a computation of complexity
N 2. Such computations rapidly become impossible as N increases, owing to the time
required for this execution.

8.6.4 Estimation of the continuous Fourier transform

We saw in Section 8.4.2 that the continuous Fourier transform provides a means of
examining the frequency response of a stable linear time-invariant continuous-time
system. Similarly, we saw in Section 8.6.2 how a discrete-time Fourier transform could
be developed that allows examination of the frequency response of a stable linear time-
invariant discrete-time system. By sampling this latter transform, we developed the
discrete Fourier transform itself. Why did we do this? First we have found a way (at
least in theory) of involving the computer in our efforts. Secondly, as we shall now
show, we can use the discrete Fourier transform to estimate the continuous Fourier
transform of a continuous-time signal. To see how this is done, let us first examine
what happens when we sample a continuous-time signal.

Suppose that f (t) is a non-periodic continuous-time signal, a portion of which is
shown in Figure 8.24(a). Let us sample the signal at equal intervals T, to generate the
sequence

gk{ }k =0
2

Gk{ }k =0
2

mn = 1
N
----- Gk ejkn ω TΔ

k=0

N−1

∑
2
3
----

m0 = 1
3
---- Gk ejk×0×2π /3 = 1

3
---- Gk

k=0

2

∑
k=0

2

∑ 1
3
----

1
3
---- 1

3
---- 1

3
----

m1 = 1
3
---- Gk ejk×1×2π /3

k=0

2

∑ 1
3
----

1
3
----

m2 = 1
3
---- Gk ejk×2×2π /3

k=0

2

∑ 1
3
----

1
3
---- 1

3
---- 1

3
----

mn{ }n=0
2 gk{ }k=0

2
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{ f (0), f (T ), . . . , f(nT ), . . . }

as shown in Figure 8.24(b). Imagine now that each of these samples is presented in turn,
at the appropriate instant, as the input to a continuous linear time-invariant system with
impulse response h(t). The output would then be, from Section 5.6.6,

Thus

(8.83)

where

(8.84)

which we identify as a ‘continuous-time’ representation of the sampled version of f (t).
We are thus led to picture fs(t) as in Figure 8.25.

Figure 8.24
(a) Continuous-
time signal f(t); 
(b) samples drawn 
from f(t).

y t( ) = �
−∞

∞

h t − τ( ) f 0( )δ τ( ) dτ + �
−∞

∞

h t − τ( ) f τ( )δ τ − T( ) dτ

+ 6 + �
−∞

∞

h t − τ( ) f nT( )δ τ − nT( ) dτ + 6

= �
−∞

∞

h t − τ( ) f kT( )δ τ − kT( ) dτ
k =0

∞

∑

y t( ) = �
−∞

∞

h t − τ( ) fs τ( ) dτ

fs t( ) = f kT( )δ t − kT( ) =  f t( ) δ t − kT( )
k=0

∞

∑
k=0

∞

∑
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In order to admit the possibility of signals that are non-zero for t � 0, we can
generalize (8.84) slightly by allowing in general that

(8.85)

We can now use convolution to find the Fourier transform Fs( jω) of fs(t). Using the
representation (8.85) for fs(t), we have

Fs( jω) = �{ fs(t)} =

which, on using (8.61), leads to

(8.86)

where

�{ f (t)} = F ( jω)

From (8.54),

so that, assuming the interchange of the order of integration and summation to be
possible, (8.86) becomes

Figure 8.25
Visualization of fs(t) 
defined in (8.84).

fs t( ) = f t( ) δ t − kT( )
k=−∞

∞

∑

� f t( ) δ t − kT( )
k=−∞

∞

∑⎩ ⎭
⎨ ⎬
⎧ ⎫

Fs jω( ) = 1
2π
------ F jω( ) * � δ t − kT( )

k=−∞

∞

∑⎩ ⎭
⎨ ⎬
⎧ ⎫

� δ t − kT( )
k=−∞

∞

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 2π------ δ ω − 2πk
T T

---------⎝ ⎠
⎛ ⎞

k=−∞

∞

∑

Fs jω( ) = 1
2π
------ F jω( ) *

2π------ δ ω − 2πk
T T

---------⎝ ⎠
⎛ ⎞

k =−∞

∞

∑

= 1
T
----�

−∞

∞

F j ω − ω′[ ]( ) δ ω′ − 2πk
T

---------⎝ ⎠
⎛ ⎞

k =−∞

∞

∑ dω′

= 1
T
----

k =−∞

∞

∑ �
−∞

∞

F j ω − ω′[ ]( )δ ω′ − 2πk
T

---------⎝ ⎠
⎛ ⎞ dω′

= 1
T
----

k =−∞

∞

∑ F j ω − 2πk
T

---------⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞
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Thus

(8.87)

Examining (8.87), we see that the spectrum Fs( jω) of the sampled version fs(t) of
f (t) consists of repeats of the spectrum F( jω) of f(t) scaled by a factor 1/T, these repeats
being spaced at intervals ω 0 = 2π /T apart. Figure 8.26(a) shows the amplitude spectrum

Fs jω( ) = 1
T
---- F j ω − kω0[ ]( ), ω 0 = 2π

T
------

k=−∞

∞

∑

Figure 8.26
(a) Amplitude 
spectrum of a band-
limited signal f(t); 
(b)–(e) amplitude 
spectrum | Fs ( jω) |
of fs(t), showing 
periodic repetition 
of | Fs ( jω) | and 
interaction effects 
as T increases.
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688 THE FOURIER TRANSFORM

|F( jω) | of a band-limited signal f (t); that is, a signal whose spectrum is zero for |ω | � ωm.
Figures 8.26(b−e) show the amplitude spectrum |Fs( jω) | of the sampled version for
increasing values of the sampling interval T. Clearly, as T increases, the spectrum of
F( jω), as observed using |Fs( jω) | in −ωm� ω �ωm, becomes more and more misleading
because of ‘interaction’ from neighbouring copies.

As we saw in Section 8.6.2, the periodicity in the amplitude spectrum |Fs( jω) | of fs(t)
is inevitable as a consequence of the sampling process, and ways have to be found to
minimize the problems it causes. The interaction observed in Figure 8.26 between the
periodic repeats is known as aliasing error, and it is clearly essential to minimize this
effect. This can be achieved in an obvious way if the original unsampled signal f (t) is
band-limited as in Figure 8.26(a). It is apparent that we must arrange that the periodic
repeats of |F( jω) | be far enough apart to prevent interaction between the copies. This
implies that we have

ω 0 � 2ω m

at an absolute (and impractical!) minimum. Since ω 0 = 2π /T, the constraint implies that

T � π /ω m

where T is the interval between samples. The minimum time interval allowed is

Tmin = π /ω m

which is known as the Nyquist interval and we have in fact deduced a form of the
Nyquist–Shannon sampling theorem. If T � Tmin then the ‘copies’ of F( jω) are
isolated from each other, and we can focus on just one copy, either for the purpose of
signal reconstruction, or for the purposes of the estimation of F( jω) itself. Here we are
concerned only with the latter problem. Basically, we have established a condition
under which the spectrum of the samples of the band-limited signal f (t), that is the
spectrum of fs(t), can be used to estimate F( jω).

Suppose we have drawn N samples from a continuous signal f (t) at intervals T, in
accordance with the Nyquist criterion, as in Figure 8.27. We then consider

Figure 8.27
Sampling of a 
continuous-time signal.

fs t( ) = f kT( )δ t − kT( )
k=0

N−1

∑
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or equivalently, the sequence

, where fk = f (kT )

Note that

fs(t) = 0 (t � (N − 1)T )

so that

fk = 0 (k � N − 1)

The Fourier transform of fs(t) is 

(8.88)

The transform in (8.88) is a function of the continuous variable ω, so, as in (8.78), we
must now sample the continuous spectrum Fs( jω) to permit computer evaluation.

We chose N samples to represent f (t) in the time domain, and for this reason we also
choose N samples in the frequency domain to represent F( jω). Thus we sample (8.88)
at intervals Δω, to generate the sequence

(8.89a)

where

(8.89b)

We must now choose the frequency-domain sampling interval Δω. To see how to do
this, recall that the sampled spectrum Fs( jω) consisted of repeats of F( jω), spaced at
intervals 2π /T apart. Thus to sample just one copy in its entirety, we should choose

NΔω = 2π /T

or

Δω = 2π /NT (8.90)

Note that the resulting sequence, defined outside 0 � n � N − 1, is periodic, as
we should expect. However, note also that, following our discussion in Section 8.6,
the process of recovering a time signal from samples of its spectrum will result in
a periodic waveform, whatever the nature of the original time signal. We should not be
surprised by this, since it is exactly in accordance with our introductory discussion in
Section 8.1.

In view of the scaling factor 1/T in (8.87), our estimate of the Fourier transform
F( jω) of f (t) over the interval

0 � t � (N − 1)T

fk{ }k =0
N−1

Fs jω( ) = �
−∞

∞

fs t( ) e−jω t dt = �
−∞

∞

f kT( )δ t − kT( ) e−jω t

k=0

N−1

∑ dt

= 
k=0

N−1

∑ �
−∞

∞

f kT( )δ t − kT( ) e−jω t dt

= f kT( ) e−jω kT = f k e−jω kT

k=0

N−1

∑
k=0

N−1

∑

Fs jn ωΔ( ){ }n=0
N−1

Fs jn ωΔ( ) = f k e−jkn ω TΔ

k=0

N−1

∑
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will, from (8.89), be the sequence of samples

where

which, from the definition of the discrete Fourier transform in (8.78), gives

TFs( jnΔω) = T × DFT { fk}

where DFT { fk} is the discrete Fourier transform of the sequence { fk}. We illustrate the
use of this estimate in Example 8.20.

The delayed triangular pulse f (t) is as illustrated in Figure 8.28. Estimate its Fourier
transform using 10 samples and compare with the exact values.

Solution Using N = 10 samples at intervals T = 0.2 s, we generate the sequence

= { f (0), f (0.2), f (0.4), f (0.6), f (0.8), f (1.0), f (1.2), f (1.4), f (1.6), f (1.8)}

Clearly, from Figure 8.28, we can express the continuous function f (t) as

and so

= {0, 0.2, 0.4, 0.4, 0.2, 0, 0, 0, 0, 0}

Using (8.78), the discrete Fourier transform of the sequence is
generated by

TFs jn ωΔ( ){ }n=0
N−1

TFs jn ωΔ( ) = T f k e−jkn ωTΔ

k=0

N−1

∑

Example 8.20

Figure 8.28
The delayed 
triangular pulse.

fk{ }k =0
9

f t( ) = 

t  0 � t � 0.5( )
1 − t 0.5 � t � 1( )

 0 t � 1( )⎩
⎪
⎨
⎪
⎧

fk{ }k=0
9

Fn{ }n=0
9 fk{ }k=0

9

Fn = f k e−jkn ω TΔ , where ω = 2π
NT
-------  = 2π

10 0.2×
-------------------  = πΔ

k=0

9

∑
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That is,

or, since f0 = f5 = f6 = f7 = f8 = f9 = 0,

The estimate of the Fourier transform, also based on N = 10 samples, is then the
sequence

We thus have 10 values representing the Fourier transform at

ω = n Δω (n = 0, 1, 2, . . . , 9)

or since Δω = 2π/NT

ω = 0, π, 2π, . . . , 9π

At ω = π, corresponding to n = 1, our estimate is

= 0.2[0.2 e−j(0.2π) + 0.4(e−j(0.4π) + e−j(0.6π)) + 0.2 e−j(0.8π)]

= −0.1992j

At ω = 2π, corresponding to n = 2, our estimate is

= 0.2[0.2 e−j(0.4π) + 0.4(e−j(0.8π) + e−j(1.2π)) + 0.2 e−j(1.6π)]

= −0.1047

Continuing in this manner, we compute the sequence

{0.2F0, 0.2F1, . . . , 0.2Fn}

as

{0.2400, −0.1992j, −0.1047, 0.0180j, −0.0153, 0, −0.0153, −0.0180j,
−0.1047, 0.1992j}

This then represents the estimate of the Fourier transform of the continuous function
f (t). The exact value of the Fourier transform of f (t) is easily computed by direct use of
the definition (8.15) as

F( jω) = �{ f (t)} = e−jω /2sinc2 ω

which we can use to examine the validity of our result. The comparison is shown in
Figure 8.29 and illustrated graphically in Figure 8.30.

Fn = f k e−jkn 0.2π( )

k=0

9

∑

Fn = f k e−jnk 0.2π( )

k=1

4

∑

TFn{ }n=0
9  = 0.2Fn{ }n=0

9

0.2F1 = 0.2 f k e−jk 0.2π( )

k=1

4

∑

0.2F2 = 0.2 f k e−jk 0.4π( )

k=1

4

∑

1
4
---- 1

4
----
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From the Nyquist–Shannon sampling theorem, with T = 0.2 s, we deduce that our
results will be completely accurate if the original signal f (t) is band-limited with a zero
spectrum for |ω | � |ωm| = 5π. Our signal is not strictly band-limited in this way, and
we thus expect to observe some error in our results, particularly near ω = 5π, because
of the effects of aliasing. The estimate obtained is satisfactory at ω = 0, π, 2π, but
begins to lose accuracy at ω = 3π. Results obtained above ω = 5π are seen to be images
of those obtained for values below ω = 5π, and this is to be expected owing to the
periodicity of the DFT. In our calculation the DFT sequence will be periodic, with
period N = 10; thus, for example,

|TF7| = |TF7−10 | = |TF−3 | = T |F−3 |

As we have seen many times, for a real signal the amplitude spectrum is symmetric about
ω = 0. Thus |F−3 | = |F3 |, |F−5 | = |F5 |, and so on, and the effects of the symmetry are
apparent in Figure 8.29. It is perhaps worth observing that if we had calculated (say)
{TF−4, TF−3, . . . , TF0, TF1, . . . , TF5}, we should have obtained a ‘conventional’ plot, with
the right-hand portion, beyond ω = 5π, translated to the left of the origin. However,
using the plot of the amplitude spectrum in the chosen form does highlight the source
of error due to aliasing.

In this section we have discussed a method by which Fourier transforms can be
estimated numerically, at least in theory. It is apparent, though, that the amount of labour
involved is significant, and as we observed in Section 8.6.3 an algorithm based on this
approach is in general prohibitive in view of the amount of computing time required.
The next section gives a brief introduction to a method of overcoming this problem.

ω Exact F( jω) DFT estimate |F( jω) | |DFT estimate | % error

0 0.2500 0.2400 0.2500 0.2400 4%
π −0.2026j −0.1992j 0.2026 0.1992 1.7%
2π −0.1013 −0.1047 0.1013 0.1047 3.2%
3π 0.0225j 0.0180j 0.0225 0.0180 20%
4π 0 −0.0153 0 0.0153 –
5π −0.0081j 0 0.0081 0 –
6π −0.0113 −0.0153 0.0113 0.0153 –
7π 0.0041 −0.0180j 0.0041 0.0180 –
8π 0 −0.1047 0 0.1047 –
9π −0.0025j 0.1992j 0.0025 0.1992 –

Figure 8.30
Exact result | F( jω) |
(*) and DFT 
estimate TFn (� ) 
of the Fourier 
transform in 
Example 8.20.

Figure 8.29
Comparison of 
exact results and 
DFT estimate for the 
amplitude spectrum 
of the signal of 
Example 8.20.
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8.6.5 The fast Fourier transform

The calculation of a discrete Fourier transform based on N sample values requires, as
we have seen, N 2 complex multiplications and N(N − 1) summations. For real signals,
symmetry can be exploited, but for large N, N 2 does not represent a significant improve-
ment over N 2 for the purposes of computation. In fact, a totally new approach to the
problem was required before the discrete Fourier transform could become a practical
engineering tool. In 1965 Cooley and Tukey introduced the fast Fourier transform
(FFT) in order to reduce the computational complexity (J. W. Cooley and J. W. Tukey,
An algorithm for the machine computation of complex Fourier series, Mathematics of
Computation 19 (1965) 297–301). We shall briefly introduce their approach in this
section: for a full discussion see E. E. Brigham, The Fast Fourier Transform (Prentice
Hall, Englewood Cliffs, NJ, 1974), whose treatment is similar to that adopted here.

We shall restrict ourselves to the situation where N = 2γ  for some integer γ, and,
rather than examine the general case, we shall focus on a particular value of γ. In
proceeding in this way, the idea should be clear and the extension to other values of
γ appear credible. We can summarize the approach as being in three stages:

(a) matrix formulation;
(b) matrix factorization; and, finally,
(c) rearranging.

We first consider a matrix formulation of the DFT. From (8.78), the Fourier trans-
form sequence of the sequence is generated by

(k = 0, 1, . . . , N − 1) (8.91)

We shall consider the particular case when γ = 2 (that is, N = 22 = 4), and define

W = e−j2π /N = e−jπ /2

so that (8.91) becomes

(k = 0, 1, 2, 3)

Writing out the terms of the transformed sequence, we have

G0 = g0W
0 + g1W

0 + g2W
0 + g3W

0

G1 = g0W
0 + g1W

1 + g2W
2 + g3W

3

G2 = g0W
0 + g1W

2 + g2W
4 + g3W

6

G3 = g0W
0 + g1W

3 + g2W
6 + g3W

9

which may be expressed in the vector–matrix form

(8.92)

1
2
----

Gk{ }k=0
N−1 gn{ }n=0

N−1

Gk = gn e−j2πnk/N

n=0

N−1

∑

Gk = gnW nk = gnW nk

n=0

3

∑
n=0

N−1

∑

G0

G1

G2

G3

  =  

W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3

W 0 W 2 W 4 W 6

W 0 W 3 W 6 W 9

g0

g1

g2

g3

G
H
H
H
I

J
K
K
K
L

J
K
K
K
L

G
H
H
H
I

G
H
H
H
I

J
K
K
K
L
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or, more generally, as

Gk = W nkgn

where the vectors Gk and gn and the square matrix W nk are defined as in (8.92). The
next step relates to the special properties of the entries in the matrix W nk. Note that
W nk = Wnk+pN, where p is an integer, and so

W 4 = W 0 = 1

W 6 = W 2

W 9 = W 1

Thus (8.92) becomes

(8.93)

Equation (8.93) is the end of the first stage of the development. In fact, we have so far
only made use of the properties of the N th roots of unity. Stage two involves the
factorization of a matrix, the details of which will be explained later.

Note that

(8.94)

where we have used W 5 = W 1 and W 0 = 1 (in the top row). The matrix on the right-hand
side of (8.94) is the coefficient matrix of (8.93), but with rows 2 and 3 interchanged.
Thus we can write (8.93) as

(8.95)

We now define a vector g′ as

(8.96)

It then follows from (8.96) that

g′0  = g0 + W 0g2

g′1 = g1 + W 0g3

G0

G1

G2

G3

=  

1  1  1  1

1 W 1 W 2 W 3

1 W 2 W 0 W 2

1 W 3 W 2 W 1

g0

g1

g2

g3

G
H
H
H
I

J
K
K
K
L

J
K
K
K
L

G
H
H
H
I

G
H
H
H
I

J
K
K
K
L

1 W 0 0  0

1 W 2 0  0

0  0 1 W 1

0  0 1 W 3

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

= 

1  1 1 1

1 W 2 W 0 W 2

1 W 1 W 2 W 3

1 W 3 W 2 W 1

G0

G2

G1

G3

  =  

1 W 0 0  0

1 W 2 0  0

0  0 1 W 1

0  0 1 W 3

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g0

g1

g2

g3

G
H
H
H
I

J
K
K
K
L

J
K
K
K
L

G
H
H
H
I

G
H
H
H
I

J
K
K
K
L

G
H
H
H
I

J
K
K
K
L

g′ = 

g′0
g′1
g′2
g′3

=  

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g0

g1

g2

g3

G
H
H
H
I

J
K
K
K
L

G
H
H
H
I

J
K
K
K
L

G
H
H
H
I

J
K
K
K
L
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so that g′0 and g′1 are each calculated by one complex multiplication and one addition. Of
course, in this special case, since W 0 = 1, the multiplication is unnecessary, but we are
attempting to infer the general situation. For this reason, W 0 has not been replaced by 1.

Also, it follows from (8.96) that

g′2 = g0 + W 2g2

g′3 = g1 + W 2g3

and, since W 2 = −W 0, the computation of the pair g′2 and g′3 can make use of the com-
putations of W 0g2 and W 0g3, with one further addition in each case. Thus the vector g′
is determined by a total of four complex additions and two complex multiplications.

To complete the calculation of the transform, we return to (8.95), and rewrite it in
the form

(8.97)

It then follows from (8.97) that

G0 = g′0 + W 0g′1
G2 = g′0 + W 2g′1

and we see that G0 is determined by one complex multiplication and one complex addition.
Furthermore, because W 2 = −W 0, G2 follows after one further complex addition.

Similarly, it follows from (8.97) that

G1 = g′2 + W 1g′3
G3 = g′2 + W 3g′3

and, since W 3 = −W 1, a total of one further complex multiplication and two further
additions are required to produce the re-ordered transform vector

[G0 G2 G1 G3]
T

Thus the total number of operations required to generate the (re-ordered) transform is four
complex multiplications and eight complex additions. Direct calculation would have
required N 2 = 16 complex multiplications and N(N − 1) = 12 complex additions. Even
with a small value of N, these savings are significant, and, interpreting computing time
requirements as being proportional to the number of complex multiplications involved,
it is easy to see why the FFT algorithm has become an essential tool for computational
Fourier analysis. When N = 2γ , the FFT algorithm is effectively a procedure for produc-
ing γ N × N matrices of the form (8.94). Extending our ideas, it is possible to see that
generally the FFT algorithm, when N = 2γ , will require Nγ (four, when N = 22 = 4)
complex multiplications and Nγ (eight, when N = 4) complex additions. Since

γ  = log2N

the demands of the FFT algorithm in terms of computing time, estimated on the basis
of the number of complex multiplications, are often given as about N log2 N, as opposed
to N 2 for the direct evaluation of the transform. This completes the second stage of our

G0

G2

G1

G3

  =  

1 W 0 0  0

1 W 2 0  0

0  0 1 W 1

0  0 1 W 3

g′0
g′1
g′2
g′3

G
H
H
H
I

J
K
K
K
L

J
K
K
K
L

G
H
H
H
I

G
H
H
H
I

J
K
K
K
L

1
2
----
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task, and we are only left with the problem of rearrangement of our transform vector
into ‘natural’ order.

The means by which this is achieved is most elegant. Instead of indexing G0, G1,
G2, G3 in decimal form, an alternative binary notation is used, and [G0 G1 G2 G3]

T

becomes

[G00 G01 G10 G11]
T

The process of ‘bit reversal’ means rewriting a binary number with its bits or digits in
reverse order. Applying this process to [G00 G01 G10 G11]

T yields

[G00 G10 G01 G11]
T = [G0 G2 G1 G3]

T

with decimal labelling. This latter form is exactly the one obtained at the end of the FFT
calculation, and we see that the natural order can easily be recovered by rearranging the
output on the basis of bit reversal of the binary indexed version.

We have now completed our introduction to the fast Fourier transform. We shall now
consider an example to illustrate the ideas discussed here. We shall then conclude by
considering in greater detail the matrix factorization process used in the second stage.

Use the method of the FFT algorithm to compute the Fourier transform of the sequence

= {1, 2, 1, 0}

Solution In this case N = 4 = 22, and we begin by computing the vector g ′n = [g ′0 g ′1 g ′2 g ′3]T,
which, from (8.96), is given by

For N = 4

W n = (e−j2π /4)n = e−jnπ /2

and so

Next, we compute the ‘bit-reversed’ order transform vector G ′, say, which from (8.97)
is given by

Example 8.21

gn{ }n=0
3

g′n  =  

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g0

g1

g2

g3

G
H
H
H
I

J
K
K
K
L

G
H
H
H
I

J
K
K
K
L

g′n = 

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

1

2

1

0

= 

2

2

0

2

G′ =  

1 W 0 0  0

1 W 2 0  0

0  0 1 W 1

0  0 1 W 3

g′0
g′1
g′2
g′3

G
H
H
H
I

J
K
K
K
L

G
H
H
H
I

J
K
K
K
L
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or, in this particular case,

(8.98)

Finally, we recover the transform vector G = [G0 G1 G2 G3]
T as

and we have thus established the Fourier transform of the sequence {1, 2, 1, 0} as the
sequence

{4, −2j, 0, 2j}

It is interesting to compare the labour involved in this calculation with that in
Example 8.19.

To conclude this section, we reconsider the matrix factorization operation, which is
at the core of the process of calculating the fast Fourier transform. In a book of
this nature it is not appropriate to reproduce a proof of the validity of the algorithm
for any N of the form N = 2γ . Rather, we shall illustrate how the factorization we intro-
duced in (8.94) was obtained. The factored form of the matrix will not be generated
in any calculation: what actually happens is that the various summations are performed
using their structural properties.

From (8.91), with W = e−j2π/N, we wish to calculate the sums

k = 0, 1, . . . , N − 1 (8.99)

In the case N = 4, γ = 2 we see that k and n take only the values 0, 1, 2 and 3, so we
can represent both k and n using two-digit binary numbers; in general γ -digit binary
numbers will be required.

We write k = k1k0 and n = n1n0, where k0, k1, n0 and n1 may take the values 0 or 1
only. For example, k = 3 becomes k = 11 and n = 2 becomes n = 10. The decimal form
can always be recovered easily as k = 2k1 + k0 and n = 2n1 + n0.

Using binary notation, we can write (8.99) as

(8.100)

The single summation of (8.99) is now replaced, when γ = 2, by two summations. Again
we see that for the more general case with N = 2γ  a total of γ summations replaces the
single sum of (8.99).

G ′ = 

G00

G10

G01

G11

1 1 0  0

1 −1 0  0

0 0 1 −j

0 0 1  j

2

2

0

2

= 

4

 0

−2j

2j

G = 

 4

−2j

 0

2j

Gk = gnW nk

n=0

N−1

∑

Gk1k0
 = gn1n0

W
2n1+n0( ) 2k1+k0( )

n1= 0

1

∑
n0=0

1

∑
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The matrix factorization operation with which we are concerned is now achieved by
considering the term

in (8.100). Expanding gives

 = 

= (8.101)

Since W = e−j2π/N, and N = 4 in this case, the leading term in (8.101) becomes

= = 

= = 1

Again we observe that in the more general case such a factor will always emerge.
Thus (8.101) can be written as

= 

so that (8.100) becomes

(8.102)

which is the required matrix factorization. This can be seen by writing

(8.103)

so that the sum in the square brackets in (8.102) defines the four relations

(8.104)

which, in matrix form, becomes

(8.105)

and we see that we have re-established the system of equations (8.96), this time with
binary indexing. Note that in (8.104) and (8.105) we distinguished between terms in W 0

depending on how the zero is generated. When the zero is generated through the value
of the summation index (that is, when n1 = 0 and thus a zero will always be generated
whatever the value of γ ) we replace W 0 by 1. When the index is zero because of the
value of k0, we maintain W 0 as an aid to generalization.

W
2n1+n0( ) 2k1+k0( )

W
2n1+n0( ) 2k1+k0( )

W
2k1+k0( )2n1W
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4n1k1 e

j2π/4–
( )

4n1k1 e
j2π–

( )
n1k1

1
n1k1

W
2n1+n0( ) 2k1+k0( )

W
2n1k0W

2k1+k0( )n0

Gk1k0
 = gn1n0

W
2n1k0

n1=0

1

∑ W
2k1+k0( )n0

n0=0

1

∑

g ′k0n0
 = gn1n0

W
2n1k0

n1=0

1

∑

g ′00 = g00W 2.0.0 + g10W 2.1.0 = g00 + g10W 0

g ′01 = g01W 2.0.0 + g11W 2.1.0 = g01 + g11W 0

g ′10 = g00W 2.0.1 + g10W 2.1.1 = g00 + g10W 2

g ′11 = g01W 2.0.1 + g11W 2.1.1 = g01 + g11W 2

⎭
⎪
⎪
⎬
⎪
⎪
⎫

g ′00

g ′01

g ′10

g ′11

=  

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g00

g01
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H
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I
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L

www.20file.org

www.semeng.ir


8.6  THE FOURIER TRANSFORM IN DISCRETE TIME 699

The final stage of the factorization appears when we write the outer summation of
(8.102) as

(8.106)

which, on writing out in full, gives

G′00 = g′00W
0.0 + g′01W

0.1 = g′00 + g′01W
0

G′01 = g′00W
2.0 + g′01W

2.1 = g′00 + g′01W
2

G′10 = g′10W
1.0 + g′11W

1.1 = g′10 + g′11W
1

G′11 = g′10W
3.0 + g′11W

3.1 = g′10 + g′11W
3

or, in matrix form,

(8.107)

The matrix in (8.107) is exactly that of (8.97), and we have completed the factorization
process as we intended. Finally, to obtain the transform in a natural order, we must
carry out the bit-reversal operation. From (8.102) and (8.105), we achieve this by simply
writing

(8.108)

The evaluation of these three relationships is equivalent to the matrix factorization
process together with the bit-reversal procedure discussed above.

The fast Fourier transform is essentially a computer-orientated algorithm and highly
efficient codes are available in MATLAB and other software libraries, usually requiring
a simple subroutine call for their implementation. The interested reader who would
prefer to produce ‘home-made’ code may find listings in the textbook by Brigham
quoted at the beginning of this section, as well as elsewhere.

G′k0k1
 = g ′k0n0

W
2k1+k0( )n0

n0=0

1

∑

G′00

G′01

G′10

G′11

=  

1 W 0 0  0

1 W 2 0  0

0  0 1 W 1

0  0 1 W 3

g ′00

g ′01

g ′10

g ′11

G
H
H
H
I

J
K
K
K
L

J
K
K
K
L

G
H
H
H
I

G
H
H
H
I 

J
K
K
K
L

Gk1k0
 = G′k0k1

We can therefore summarize the Cooley–Tukey algorithm for the fast Fourier trans-
form for the case N = 4 by the three relations (8.103), (8.106) and (8.108), that is

g ′k0n0
 = gn1n0

W
2n1k0

n1=0

1

∑

G′k0k1
 = g ′k0n0

W
2k1+k0( )n0

n0=0

1

∑

Gk1k0
 = G′k0k1
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Engineering application: the design of analogue filters

In this section we explore the ideas of mathematical design or synthesis. We shall
express in mathematical form the desired performance of a system, and, utilizing the
ideas we have developed, produce a system design.

This chapter has been concerned with the frequency-domain representation of
signals and systems, and the system we shall design will operate on input signals
to produce output signals with specific frequency-domain properties. In Figure 8.31 we
illustrate the amplitude response of an ideal low-pass filter. This filter passes perfectly
signals, or components of signals, at frequencies less than the cut-off frequency ωc.
Above ωc, attenuation is perfect, meaning that signals above this frequency are not
passed by this filter.

The amplitude response of this ideal device is given by

Such an ideal response cannot be attained by a real analogue device, and our design
problem is to approximate this response to an acceptable degree using a system that
can be constructed. A class of functions whose graphs resemble that of Figure 8.31 is
the set

and we see from Figure 8.32, which corresponds to ωc = 1, that, as n increases, the
graph approaches the ideal response. This particular approximation is known as the
Butterworth approximation, and is only one of a number of possibilities.

8.7 Engineering application:

Figure 8.31 Amplitude 
response of an ideal
low-pass filter. H′ jω( )  = 

1 ω  � ωc( )
0 ω  � ωc( )⎩

⎨
⎧

HB jω( )  = 1

� 1 + ω /ω c( )2n[ ]
-----------------------------------------

8.6.6 Exercises

Calculate directly the discrete Fourier transform of 
the sequence 

{1, 0, 1, 0}

using the methods of Section 8.6.3 (see Example 8.19).

Use the fast Fourier transform method to calculate 
the transform of the sequence of Exercise 28 
(follow Example 8.21).

Use the FFT algorithm in MATLAB (or an 
alternative) to improve the experiment with 
the estimation of the spectrum of the signal of 
Example 8.20.

Derive an FFT algorithm for N = 23 = 8 points. 
Work from (8.99), writing

k = 4k2 + 2k1 + k0, ki = 0 or 1 for all i

n = 4n2 + 2n1 + n0, ni = 0 or 1 for all i

to show that

28

29

30

31

g ′k0n1n0
 = gn2n1n0

W
4k0n2

n2=0

1

∑

g″k0k1n0
 = g ′k0n1n0

W
2k1+k0( )2n1

n1=0

1

∑

G′k0k1k2
 = g″k0k1n0

W
4k2+2k1+k0( )n0

n0=0

1

∑

Gk2k1k0
 = G′k0k1k2
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To explore this approach further, we must ask the question whether such a response
could be obtained as the frequency response of a realizable, stable linear system. We
assume that it can, although if our investigation leads to the opposite conclusion then
we shall have to abandon this approach and seek another. If HB( jω) is the frequency
response of such a system then it will have been obtained by replacing s with jω in the
system Laplace transfer function. This is at least possible since, by assumption, we are
dealing with a stable system. Now

where |HB( jω) |2 = HB( jω) . If HB(s) is to have real coefficients, and thus be
realizable, then we must have = H(− jω). Thus

and we see that the response could be obtained by setting s = jω in

Our task is now to attempt to separate HB(s) from HB(−s) in such a way that HB(s)
represents the transfer function of a stable system. To do this, we solve the equation

1 + (s/jωc )2n = 0

to give the poles of HB(s)HB(−s) as

s = ωc e j[(2k+1)π /2n+π /2] (k = 0, 1, 2, 3, . . . ) (8.109)

Figure 8.33 shows the pole locations for the cases n = 1, 2, 3 and 5. The important
observations that we can make from this figure are that in each case there are 2n poles
equally spaced around the circle of radius ωc in the Argand diagram, and that there are
no poles on the imaginary axis. If s = s1 is a pole of HB(s)HB(−s) then so is s = −s1, and
we can thus select as poles for the transfer function HB(s) those lying in the left half-
plane. The remaining poles are then those of HB(−s). By this procedure, we have
generated a stable transfer function HB(s) for our filter design.

The transfer function that we have generated from the frequency-domain specification
of system behaviour must now be related to a real system, and this is the next step

Figure 8.32
Amplitude responses 
of the Butterworth 
filters.

HB jω( ) 2 = 1

1 + jω /jω c( )2n
--------------------------------------

H*
B jω( )

H*
B jω( )

HB jω( )HB j– ω( ) = 1

1 + ω /ω c( )2n
---------------------------------  = 1

1 + jω /jω c( )2n
--------------------------------------

HB s( )HB s–( ) = 1

1 + s / jωc( )2n
--------------------------------
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in the design process. The form of the transfer function for the filter of order n can be
shown to be

where s1, s2, . . . , sn are the stable poles generated by (8.109). The reader is invited to
show that the second-order Butterworth filter has transfer function

Writing Y(s) = HB(s)U(s), with HB(s) as above, we obtain

or

(s 2 + �2ωcs + )Y(s) = U(s) (8.110)

If we assume that all initial conditions are zero then (8.110) represents the Laplace
transform of the differential equation

(8.111)

This step completes the mathematical aspect of the design exercise. It is possible to
show that a system whose behaviour is modelled by this differential equation can be
constructed using elementary circuit components, and the specification of such a circuit
would complete the design. For a fuller treatment of the subject the interested reader
could consult M. J. Chapman, D. P. Goodall and N. C. Steele, Signal Processing in
Electronic Communications, Horwood Publishing, Chichester, 1997.

To appreciate the operation of this filter, the use of the Signal Processing Toolbox in
MATLAB is recommended. After setting the cut-off frequency ωc, at 4 for example, the
output of the system y(t) corresponding to an input signal u(t) = sin t + sin 10t will demon-
strate the almost-perfect transmission of the low-frequency (ω = 1) term, with nearly total
attenuation of the high-frequency (ω = 10) signal. As an extension to this exercise, the
differential equation to represent the third- and fourth-order filters should be obtained,
and the responses compared. Using a simulation package and an FFT coding, it is possible
to investigate the operation of such devices from the viewpoint of the frequency domain
by examining the spectrum of samples drawn from both input and output signals.

HB s( ) = 
ω c

n

s − s1( ) s − s2( ) . . . s − sn( )
----------------------------------------------------------------------

Figure 8.33
Pole locations for the 
Butterworth filters: 
(�) n = 1; (+) n = 2; 
(5) n = 3; 
(*) n = 8.

HB s( ) = 
ω c

2

s2 + �2ω cs + ω c
2

-----------------------------------------

Y s( ) = 
ω c

2

s2 + �2ω cs + ω c
2

-----------------------------------------U s( )

ω c
2 ω c

2

d2y t( )
dt2

--------------  + �2ωc
dy t( )

dt
------------  + ω c

2 y t( ) = ω c
2u t( )
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Engineering application: modulation, demodulation and 
frequency-domain filtering

8.8.1 Introduction

In this section we demonstrate the practical implementation of modulation, demodula-
tion and frequency-domain filtering. These are the processes by which an information-
carrying signal can be combined with others for transmission along a channel, with
the signal subsequently being recovered so that the transmitted information can be
extracted. When a number of signals have to be transmitted along a single channel at
the same time, one solution is to use the method of amplitude modulation as described
in Section 8.3.4. We assume that the channel is ‘noisy’, so that the received signal
contains noise, and this signal is then cleaned and demodulated using frequency-
domain filtering techniques. This idea is easy to describe and to implement, but cannot
usually be performed on-line in view of the heavy computational requirements. Our
filtering operations are carried out on the frequency-domain version of the signal, and
this is generated using the fast Fourier transform algorithm. The MATLAB code in
Figure 8.34 is designed to illustrate how results can be obtained working from basic
ideas. The nature and usefulness of the Toolboxes now associated with MATLAB have
made it possible to work at a higher level. Nevertheless it is thought valuable to retain
this figure for instructional purposes, since it is easily modified. (Note: In Figure 8.34 i
is used instead of j to denote �−1, to conform with MATLAB convention.)

8.8 Engineering application:

Figure 8.34
‘MATLAB’ M-file 
demonstrating 
frequency-domain 
filtering using the 
fast Fourier transform.

% Demonstration of frequency domain filtering using the FFT.
%
%
% Some MATLAB housekeeping to prevent memory problems!
clear
clg
%
% Select a value of N for the number of samples to be taken.
% Make a selection by adding or removing % symbols.
% N must be a power of 2.
%N = 512;
N = 1024;
%N = 2048;
%N = 4096;
%N = 8192;
%
% T is the sampling interval and the choice of N determines the
% interval over which the signal is processed. Also, if
% N frequency domain values are to be produced the resolution
% is determined.
T = 0.001;
t = 0:T:(N − 1)*T;
delw = 2*pi/(T*N);
%
% Generate the ‘information’
f = t .*exp(−t/2);
%
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Figure 8.34 continued
% Set the frequency of the carriers, wc is the carrier which
% will be modulated.
wc = 2*pi*50;
wca = 2*pi*120;
%
% Perform the modulation . . .
x = f. *cos(wc*t) + cos(wca*t);
%
% . . . and add channel noise here
nfac = 0.2;
rand(‘normal’);
x = x + nfac*rand(t);
%
% Plot the ‘received’ time signal
plot(t,x)
title(‘The time signal, modulated carrier and noise if added’)
xlabel(‘time, t’)
ylabel(‘x(t)’)
pause
%
% Calculate the DFT using the FFT algorithm . . .
y = fft(x);
z = T*abs(y);
w = 0:delw:(N − 1)*delw;
%
% . . .  and plot the amplitude spectrum.
plot(w,z)
title(‘The amplitude spectrum. Spikes at frequencies of carriers’)
xlabel(‘frequency, w’)
ylabel(‘amplitude’)
pause
%
% Construct a filter to isolate the information-bearing carrier.
%
% 2*hwind + 1 is the length of the filter ‘window’.
% Set ffac to a value less than 1.0 ffac = 0.5 gives a filter
% of half length wc/2 where wc is frequency of carrier. Don’t
% exceed a value of 0.95!
ffac = 0.5;
hwind = round(ffac*wc/delw);
l = 2*hwind + 1;
%
% Set the centre of the window at peak corresponding to wc.
% Check this is ok by setting l = 1!
l1 = round(wc/delw) − hwind;
%
% Remember that we must have both ends of the filter!
mask = [zeros(1,l1),ones(1,l),zeros(1,N − (2*l + 2*l1 − 1)),ones(1,l),zeros(1,l1 − 1)];
%
% Do the frequency domain filtering . . .
zz = mask.*y;
%
% . . .  and calculate the inverse DFT
yya = ifft(zz);
%
% Remove rounding errors . . . it is real!
yy = 0.5*(yya + conj(yya));
%
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8.8.2 Modulation and transmission

We suppose that our ‘information’ consists of samples from the signal f (t) = t e−t /2,
taken at intervals T = 0.001 s. This signal, or more correctly, data sequence, will be used
to modulate the carrier signal cos (50*2*π*t). A second carrier signal is given by

Figure 8.34 continued
% Plot the ‘cleaned’ spectrum with only lower carrier present.
plot(w,T*abs(zz))
title(‘Upper carrier eliminated and noise reduced’)
xlabel(‘frequency, w’)
ylabel(‘amplitude’)
pause
%
% Now the signal is cleaned but needs demodulating so
% form the product with 2*carrier signal . . .
dem = yy.*cos(wc*t);
dem = 2*dem;
%
% . . . and take the DFT.
demft = fft(dem);
%
% Use a low-pass filter on the result, the length is llp.
% The same factor is used as before!
llp = round(ffac*wc/delw);
masklp = [ones(1,llp),zeros(1,N − (2*llp − 1)),ones(1,llp − 1)];
%
% Carry out the filtering . . .
op = masklp.*demft;
%
% . . . and plot the DFT of filtered signal.
plot(w,T*abs(op))
title(‘Result of demodulation and low-pass filtering’)
xlabel(‘frequency, w’)
ylabel(‘amplitude’)
pause
%
% Return to the time domain . . .
opta = ifft(op);
opt = 0.5*(opta + conj(opta));
act = f;
vp = N;
% . . . and finally plot the extracted signal vs the original.
plot(t(1:vp),opt(1:vp),‘−’,t(1:vp),act(1:vp),‘:’);
title(‘The extracted signal, with original’)
xlabel(‘time, t’)
ylabel(‘f(t)’)
pause
%
% Clean-up . . .
clg
clear
%
% . . . but responsibly!
i = sqrt(−1);
home
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cos (120*2*π*t), and this can be thought of as carrying the signal f (t) = 1. We
combine these two signals and add ‘white noise’ to represent the action of the channel.
This part of the exercise corresponds to the signal generation and transmission part of
the overall process, and Figure 8.35 shows the time-domain version of the resulting
signal.

8.8.3 Identification and isolation of the information-
carrying signal

Here we begin the signal-processing operations. The key to this is Fourier analysis, and
we make use of the fast Fourier transform algorithm to perform the necessary trans-
forms and their inverses. First we examine the spectrum of the received signal, shown
in Figure 8.36. We immediately see two spikes corresponding to the carrier signals, and
we know that the lower one is carrying the signal we wish to extract. We must design
a suitable filter to operate in the frequency domain for the isolation of the selected
carrier wave before using the demodulation operation to extract the information. To do
this, we simply mask the transformed signal, multiplying by 1 those components we
wish to pass, and by 0 those we wish to reject. Obviously we want to pass the carrier-
wave frequency component itself, but we must remember that the spectrum of the informa-
tion signal is centred on this frequency, and so we must pass a band of frequencies
around this centre frequency. Again a frequency-domain filter is constructed. We thus
have to construct a bandpass filter of suitable bandwidth to achieve this, and moreover,
we must remember to include the right-hand half of the filter! There are no problems

Figure 8.35
Time-domain 
version of 
noisy signal.
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here with the Nyquist frequency – at first glance we simply need to avoid picking up
the second carrier wave. However, the larger the bandwidth we select, the more noise
we shall pass, and so a compromise has to be found between the necessary width for
good signal recovery and noise elimination. Obviously, since we know the bandwidth
of our information signal in this case, we could make our choice based on this know-
ledge. This, however, would be cheating, because usually the exact nature of the trans-
mitted information is not known in advance: if it were, there would be little point in
sending it! In the M file we have set the half-length of the filter to be a fraction of the
carrier frequency. The carrier frequency ωc represents the maximum possible channel
bandwidth, and in practice a channel would have a specified maximum bandwidth
associated with it. Figure 8.37 shows the resulting spectrum after application of the
bandpass filter, with a bandwidth less than ωc.

8.8.4 Demodulation stage

The purpose of this operation is to extract the information from the carrier wave, and
it can be shown that multiplying the time signal by cos ωcT, where ωc is the frequency
of the carrier wave, has the effect of shifting the spectrum of the modulating signal so
that it is again centred on the origin. To perform the multiplication operation, we have
to return to the time domain, and this is achieved by using the inverse FFT algorithm. In
the frequency-domain representation of the demodulated signal there are also copies of
the spectrum of the modulating signal present, centred at higher frequencies (2ωc, 4ωc),
and so we must perform a final low-pass filtering operation on the demodulated signal.
To do this, we return to the frequency domain using the FFT algorithm again. The
result of the demodulation and low-pass filtering operations is shown in Figure 8.38. 

Figure 8.36
Spectrum of 
received signal. 
Spikes and 
frequencies of 
carriers.
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8.8.5 Final signal recovery

The last operation to be performed is to return to the time domain to examine what we
have achieved. After calling the inverse FFT routine, the extracted signal is plotted
together with the original for comparison. The results with a fairly low value for the
added noise are shown in Figure 8.39. If the process is carried out in the absence of
noise altogether, excellent signal recovery is achieved, except for the characteristic
‘ringing’ due to the sharp edges of the filters.

Figure 8.37
Spectrum after 
application of 
bandpass filter.

Figure 8.38
Result of 
demodulation 
and low-pass 
filtering 
operations.
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8.8.6 Further developments

Readers are invited to develop this case study to increase their understanding. Try adding
a second information signal modulating the second carrier wave, and extract both signals
after ‘transmission’. Also add more carrier waves and modulating signals, and investigate
signal recovery. If information signal bandwidths are limited to a fixed value, how
many signals can be transmitted and recovered satisfactorily? What happens if T is
altered? Can the ‘ringing’ effect be reduced by smoothing the transition from the string
of ones to the string of zeros in the filter masks? Seek references to various window
functions in signal-processing texts to assist in resolving this question.

Engineering application: direct design of digital filters 
and windows

This application section provides a brief introduction to some methods of digital filter
design. In particular we introduce a transform based on the Fourier transform itself, rather
than going via the exponential form of Fourier series and the underlying periodicity
implications. The material contained in this section first appeared in Signal Processing
in Electronic Communication by M. J. Chapman, D. P. Goodall and N. C. Steele, originally
published in the Horwood Series in Engineering Science in 1997 and is reproduced by
courtesy of the current publishers Woodhead Publishing Limited.

8.9.1 Digital filters

Suppose f (t) is a signal with Fourier transform F( jω) so that

Figure 8.39
Extracted signal, 
shown together 
with the original 
signal.

8.9 Engineering application:
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f (t) = F( jω)ejω tdω (8.112)

If we now sample f(t) at times t = kT, k ∈ �, we obtain the sequence {fk} = { f (kT )} and
(8.112) gives

f k = F( jω)ejωkTdω (8.113)

Splitting this infinite interval of integration into intervals of length 2π/T, we obtain

f k = 

= 

= 

since  = ejωkTejnk2π  = ejωkT. As usual, we do not attempt to give conditions
under which the above interchange between an integral and an infinite sum is valid. In
any case, the above is only intended as a formal procedure leading to a definition for
the discrete-time Fourier transform.

If we now let θ be the normalized frequency θ = ωT and set

(8.114)

where we note that the right-hand side has period 2π in θ, we obtain

fk = F( ejθ )ejkθ dθ (8.115)

The periodic function, F(e jθ ), is referred to as the discrete-time Fourier transform
(DTFT) of the sequence {fk}. Equation (8.114) is unsuitable for calculation of the
DTFT and so we instead use (8.115) to define the inverse DTFT and invert this in order
to define the direct transform. We claim that the DTFT is, in fact, given by

F(e jθ ) = fne
−jnθ  =  fn(e

jθ )−n (8.116)

Note that this is the same as the transform defined in (6.1), which is known as the
bilateral z transform of { f} reflecting the fact that it is defined for both positive and
negative values of the time index k, evaluated at z = e jθ . This fact also explains the use
of the notation, F(e jθ). To show that (8.116) is valid, we substitute into the right-hand
side of (8.115) to give

1
2π
------�

∞–

∞

1
2π
------�

∞–

∞

1
2π
------

n=−∞

∞

∑ �
n2π

T
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n+1( )2π
T
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1
2π
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n=−∞

∞

∑ �
0

2π
T
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F  j ω n2π
T
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⎛ ⎞

⎝ ⎠
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j(ω +n2π
T
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2π
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2π
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⎛ ⎞
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⎛ ⎞
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⎝ ⎠
⎛ ⎞
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F(ejθ )ejkθ dθ =  fne
−jnθe jkθ dθ

= fn ej(k−n)θ dθ

assuming the interchange of summation and integration is permissible. However, it is
easy to see that

ej(k−n)θ dθ = = δk−n

and so the right-hand side of (8.115) reduces to

fnδk−n = fk,

as desired. To summarize, we have the two equations

DTFT F(ejθ ) = fke
−jkθ (8.117a)

IDTFT fk = F(ejθ )ejkθ dθ (8.117b)

Calculate the discrete-time Fourier transform of the finite sequence

{u} = {1, 2, 2, 1}

Solution We adopt the convention that the above sequence is ‘padded-out’ with zeros, that
is we have {u} = {uk} where u0 = u3 = 1, u1 = u2 = 2 and uk = 0 otherwise. It follows
from (8.117a) that

U(e jθ ) = 1 + 2e− jθ  + 2e−2 jθ  + e−3 jθ

= 

= 

A sketch of |U(ejθ)| =  is given in Figure 8.40. |U(ejθ)| is called

the amplitude spectrum of the sequence {u}. Figure 8.40 clearly shows the periodicity
of |U(e jθ )|, which by now is not surprising. In a similar fashion, we refer to arg U(e jθ )
as the phase spectrum of {u}.

1
2π
------�

0

2π
1

2π
------�

0

2π

n=−∞

∞

∑

n=−∞

∞

∑ 1
2π
------�

0

2π

1
2π
------�

0

2π
0 for k ≠ n,
1 for k = n,⎩

⎨
⎧

n=−∞

∞

∑

k=−∞

∞

∑

1
2π
------�

0

2π

Example 8.22

e
3
2
---- jθ–

e
3
2
---- jθ

e
3
2
---- jθ–

+⎝ ⎠
⎛ ⎞ 2 e

1
2
---- jθ

e
1
2
---- jθ–

+⎝ ⎠
⎛ ⎞+

e
3
2
---- jθ–

2 cos 3θ
2

-------⎝ ⎠
⎛ ⎞ 4 cos θ

2
----⎝ ⎠

⎛ ⎞+

2 cos 3θ
2

-------⎝ ⎠
⎛ ⎞ 4 cos θ

2
----⎝ ⎠

⎛ ⎞+
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712 THE FOURIER TRANSFORM

We are now in a position to develop a direct approach to the design of digital filters
based on a Fourier series approach. Suppose that D(z) is the transfer function of a stable
discrete-time system, then, we can write as usual,

Y(z) = D(z)U(z)

If the input sequence is {uk} = {δ k} = {1, 0, 0, 0, . . .}, the unit impulse sequence with
z-transform U(z) = 1, then the transform of the output sequence, namely the impulse
response sequence, is 

Yδ(z) = D(z) = dnz−n

Since the system is stable, by assumption, there is a frequency response which is
obtained by taking the DTFT of the impulse response sequence. This is achieved by
replacing z by ejω t in D(z) to obtain

D(e jωT) = D(e jθ ) = dne
−jnθ (8.118)

where θ = ωT.
Now (8.118) can be interpreted as the Fourier expansion of D(e jθ ), using as basis

functions the orthogonal set {e−jnθ}. It is then easy to show that the Fourier coefficients
relative to this base are given by

dn = D(e jθ )e jnθ  dθ

We now set D(e jθ ) to the desired ideal frequency response function and calculate the
resulting Fourier coefficients, {hd(n)} say. It should be noted that, at this stage, we can
no longer restrict to n � 0, i.e. hd(n), as defined above, is not causal and hence does not
correspond with the impulse response of any realizable system. If a filter is to be real-
ized using a finite number of delay elements, some form of truncation must take place.
It is helpful to think of this truncation being performed by the application of a window,
defined by a window weighting function w(n). The simplest window is the rectangular
window, with weighting function w(n) defined by 

Using this window, we actually form

w(n)hd(n)e−jnθ  = hd(n)e−jnθ  = R(e jθ )

n=0

∞

∑

n=0

∞

∑

1
2π
------�

π–

π

w n( ) = 
1 n1 � n � n2–,
0,  otherwise⎩

⎨
⎧

n=−∞

∞

∑
n= n1–

n2

∑

Figure 8.40
Amplitude 
spectrum |U(e jθ )| 
for Example 8.22.
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where, if n1 and n2 are sufficiently large, R(e jθ ) will be an adequate approximation to
D(e jθ ), the desired frequency response. It is important to note that the filter length,
that is the number of delay elements or terms in the difference equation, depends on the
choice of n1 and n2. This means that some accuracy will always have to be sacrificed in
order to produce an acceptable design.

We explore this technique by designing a low-pass filter in Example 8.23.

Use the Fourier series, or direct design method, to produce a low-pass digital filter with
cut-off frequency fc = 1 kHz, when the sampling frequency is fs = 5 kHz.

Solution We wish to make use of the non-dimensional frequency variable θ and, since T = 1/fs =
1/5000, we have

θ = ωT = 2πfT = 

The cut-off frequency is then θc = 2πfc /5000 = 2π/5 and the ideal frequency response
D(ejθ ) is now defined by

D(e jθ ) = 

We now calculate the coefficients hd(n) as

hd(n) = D(ejθ )ejnθ dθ

= ejnθ dθ

= 

= 

At this stage, we have to choose the length of the filter. By now, we know that a ‘long’
filter is likely to produce superior results in terms of frequency domain performance.
However, experience again tells us that there will be penalties in some form or other.
Let us choose a filter of length 9, with the coefficients selected for simplicity as sym-
metric about n = 0. As already discussed, this choice leads to a non-causal system, but
we deal with this problem when it arises. This scheme is equivalent to specifying the
use of a rectangular window defined by

We now calculate the coefficients hd(−4), hd(−3), . . . hd(0), . . . hd(4), which are tabulated
in Figure 8.41.

Example 8.23

2πf
5000
-------------

1 θ  � 2π/5

0 θ  � 2π/5⎩
⎨
⎧

1
2π
------�

π–

π

1
2π
------�

2π /5–

2π /5

1
nπ
------sin 2nπ

5
-----------⎝ ⎠

⎛ ⎞ for n ≠ 0

2
5
----sinc 2nπ

5
-----------⎝ ⎠

⎛ ⎞ (also valid for n = 0 ) 

w n( ) = 1 4 � n � 4–

0   otherwise⎩
⎨
⎧
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The transfer function of the digital filter is then R, where

R(z) = hd(n)z−n

= −0.07568z−4 − 0.06237z−3 + 0.09355z−2 + 0.30273z−1 + 0.40000 
+ 0.30273z + 0.09355z 2 − 0.06237z 3 − 0.07568z4

Although this system is indeed non-causal, since its impulse response sequence con-
tains terms in positive powers of z, we can calculate the frequency response as

R(e jθ ) = −0.15137 cos(4θ) − 0.12473 cos(3θ) + 0.18710 cos(2θ) 
+ 0.60546 cos(θ) + 0.40000

Figure 8.42 illustrates the corresponding amplitude response.

Figure 8.42, of Example 8.23, shows us that the amplitude response of our filter is a
reasonable approximation to the design specification. We do, however, notice that there
are some oscillations in both pass- and stop-bands. These are due to the abrupt cut-off
of the rectangular window function and the effect is known as Gibbs’ phenomenon.
Thus, the window function generates additional spectral components, which are referred
to as spectral leakage. A way of improving the performance in this respect is discussed
in Section 8.9.2. The immediate problem is the realization of this non-causal design. To
see how we can circumvent the difficulty, we proceed as follows.

The transfer function we have derived is of the general form

R(z) = hd(k)z−k

= zN [hd(−N) + hd(−N + 1)z−1 + . . . + hd(0)z−N + . . . + hd(N)z−2N]

Suppose that we implement the system with transfer function

Q(z) = z−NR(z)

which is a causal system. First we notice that, on setting z = e jωT, the amplitude response
|Q(e jωT )| is given by

|Q(e jωT )| = |e−jωNT | |R(e jωT )| = |R(e jωT )|

hd(±4) hd(±3) hd(±2) hd(±1) hd(0)
−0.07568 −0.06237 0.09355 0.30273 0.40000

n=−4

4

∑

Figure 8.42 Amplitude 
response of the 
non-causal filter of 
Example 8.23.

k= N–

N

∑

Figure 8.41 
Coefficients hd(k), 
for k = −4, −3, . . . , 4.
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that is, it is identical with that of the desired design. Furthermore,

arg{Q(e jωT )} = arg{R(e jωT )} − NωT

indicating a pure delay of amount NT in the response of the second system. This means
that, assuming we are prepared to accept this delay, our design objective can be met by
the system with transfer function Q(z) given by

Q(z) = [−0.07568 − 0.06237z−1 + 0.09355z−2 + 0.30273z−3 + 0.40000z−4 
+ 0.30273z−5 + 0.09355z−6 − 0.06237z−7 − 0.07568z−8]

It is evident from Figure 8.43 that the filter designed in Example 8.23 differs from the
previous designs. The nature of this difference is the absence of feedback paths in the
block diagram realization of Figure 8.43. One effect of this is that the impulse response
sequence is finite, a fact which we already know, since the design method involved
truncating the impulse response sequence. Filters of this type are known as finite
impulse response (FIR) designs and may always be implemented using structures not
involving feedback loops. Another name used for such structures is non-recursive, but
it is not correct to assume that the only possible realization of an FIR filter is by use of
a non-recursive structure; for details see M. T. Jong, Methods of Discrete Signals and
Systems Analysis, McGraw-Hill, New York, 1982.

8.9.2 Windows

In this section, we consider the problem identified in Example 8.23 in connection with
the sharp cut-off of the rectangular window function.

The rectangular window sequence, illustrated in Figure 8.44, is defined by

Figure 8.44
Rectangular window 
sequence.

Figure 8.43 A 
realization of the 
final system of 
Example 8.23.

a = −0.07568, b = −0.06237, c = 0.09355, d = 0.30273, f = 0.40000.

w k( ) = 1 k  � N

0 otherwise⎩
⎨
⎧
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which can be expressed in the form

w(k) = ζ(k + N) − ζ(k − (N + 1))

where ζ(k) = {h(k)}, defined in Example (6.22).
Since

W(z) = (z N − z−(N+1))

the DTFT of the sequence {w(k)} is

W(e jθ ) = 

= 

It is easy to see that W(ej0) = W(1) =  w(n) = 2N + 1 and so the above formula, using the

sinc function, is valid for all θ, including θ = 0. The graph of this function is illustrated
in Figure 8.45. The first positive (negative) zero in its spectrum is the positive (negative)
value of θ closest to zero such that W(e jθ ) = 0. The main lobe of the window function
is that part of the graph of W(e jθ ) that lies between the first positive and first negative
zero in W(e jθ ). The main lobe width is the distance between the first positive and
negative zeros in W(e jθ ). As the length of the window increases, the main lobe narrows
and its peak value rises and, in some sense, W(e jθ ) approaches an impulse, which is
desirable. However, the main disadvantage is that the amplitudes of the side lobes also
increase.

The use of any window leads to distortion of the spectrum of the original signal caused
by the size of the side lobes in the window spectrum and the width of the window’s
main spectral lobe, producing oscillations in the filter response. The window function
can be selected so that the amplitudes of the sides lobes are relatively small, with the
result that the size of the oscillations is reduced; however, in general, the main lobe
width does not decrease. Thus, in choosing a window, it is important to know the trade-
off between having narrow main lobe and low side lobes in the window spectrum.

A considerable amount of research has been carried out, aimed at determining suitable
alternative window functions which smooth out straight truncation and thus reduce
the Gibbs’ phenomena effects observed in the amplitude response of Figure 8.42.

z
z 1–
------------⎝ ⎠

⎛ ⎞  = z
N+1

2
----

z
(N– +1

2
----)

–

z
1
2
----

z
1
2
----–

–
----------------------------

sin 1
2
----(2N + 1( )θ )
sin 1

2
----θ( )

------------------------------------------ for θ ≠ 0

2N 1+( )sinc 1
2
----(2N + 1( )θ )

sinc 1
2
----θ( )

-------------------------------------------------------------------

n=−N

N

∑

Figure 8.45 DTFT of 
the rectangular window 
sequence.
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To minimize the effect of spectral leakage, windows which approach zero smoothly at
either end of the sampled signal are used. We do not discuss the derivation of the various
window functions, rather we tabulate, in Figure 8.46, some of the more popular exam-
ples in a form suitable for symmetric filters of length 2N + 1. For a more detailed
discussion on windows and their properties, see, for example: E. C. Ifeachor and B. W.
Jervis, Digital Signal Processing: A Practical Approach, Addison-Wesley, Wokingham,
UK, 1993; A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, Prentice-
Hall, Englewood Cliffs, NJ, 1989; S. J. Stearns and D. R. Hush,  Digital Signal Analysis,
Prentice-Hall, Englewood Cliffs, NJ, 1990.

Note: Slight variations on the above definitions may be found in various texts. These
tend to involve switching between ‘division by N’, ‘division by N + ’ and ‘division
by N + 1’. For example, the von Hann or Hanning window is variously defined by
w(k) = 0.5(1 + cos(πk/N)) or w(k) = 0.5(1 + cos(2πk/(2N + 1))) or w(k) = 0.5(1 + cos(πk/
(N + 1))) for |k| � N with w(k) = 0 for |k| � N. The Bartlett window, or one of its
variations, is sometimes referred to as a triangular window. It should also be noted
that both the Bartlett window and the Blackman window, as defined in Figure 8.46,
satisfy w(−N) = w(N) = 0 and hence give rise to difference equations of order 2N − 2
rather than 2N.

Formulations for other configurations can easily be deduced, or may be found in,
for example, L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic
Publishers, Boston, MA, 1986; R. E. Ziemer, W. H. Tranter and D. R. Fannin, Signals
and Systems, Macmillan, New York, 1983. The section closes with an example of the
application to the design of Example 8.23.

Plot the amplitude response for the filter design of Example 8.23, using (a) the
Hamming window and (b) the Blackman window.

Solution (a) The transfer function coefficients are now given by hd(k) wH(k), where wH(k) are
the Hamming window coefficients, calculated with N = 4 and −4 � k � 4. The
Hamming window coefficients are tabulated in Figure 8.47.

Window name w(k)

Bartlett
w(k) =

 (k + N )/N
(N − k)/N

−N � k � 0
0 � k � N

von Hann or Hanning w(k) = 0.5 + 0.5 cos(πk/(N + 1)) −N � k � N
Hamming w(k) = 0.54 + 0.46 cos(πk/N ) −N � k � N
Blackman w(k) = 0.42 + 0.5 cos(πk/N ) + 0.08 cos(2πk/N ) −N � k � N

In each case, w(k) = 0 for k outside the range [−N, N].

⎩
⎨
⎧

1
2
----

Example 8.24

N = 4 ±4 ±3 ±2 ±1 0
0.08000 0.21473 0.54000 0.86527 1.00000

Figure 8.46 Some 
popular window 
functions.

Figure 8.47 Hamming 
window coefficients 
for −4 � k � 4.
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718 THE FOURIER TRANSFORM

The transfer function then becomes

QH(z) = [−0.00605 − 0.01339z−1 + 0.05052z−2 + 0.26194z−3 + 0.40000z−4

+ 0.26194z−5 + 0.05052z−6 − 0.01339z−7 − 0.00605z−8]

The frequency response is then obtained by writing z = e jθ , as

QH(e jθ ) = e−j4θ  (−0.01211 cos(4θ) − 0.02678 cos(3θ) + 0.10103 cos(2θ) 
+ 0.52389 cos(θ) + 0.40000)

Figure 8.48 illustrates the magnitude of this response and the reduction of
oscillations in both the pass- and stop-band is striking. The penalty is the lack
of sharpness near the cut-off frequency, although the stop-band characteristics
close to θ = π are quite good.

(b) Proceeding as in case (a), we calculate the Blackman window coefficients as
shown in Figure 8.49. The Blackman windowed transfer function is thus

QB(z) = −0.00414 + 0.03181z−1 + 0.23418z−2 + 0.40000z−3 + 0.23418z−4

+ 0.03181z−5 − 0.00414z−6

and the frequency response is found as

Q(e jθ ) = e−j3θ  (−0.00829 cos(3θ) + 0.06361cos(2θ) 
+ 0.46836 cos(θ) + 0.40000)

The amplitude response is shown in Figure 8.50 and this design again suffers
from a relatively poor performance in terms of sharpness of cut-off. The ripples
observed in the pass- and stop-bands with the rectangular window have been
removed as before. However, the ‘flat’ characteristic of the Hamming design close
to θ = π is not evident when using the Blackman window for this particular filter.

N = 4 ±4 ±3 ±2 ±1 0
0.00000 0.06645 0.34000 0.77355 1.00000

Figure 8.48
Amplitude response of 
the filter of Example 
8.23, with Hamming 
window.

Figure 8.50
Amplitude response 
of the filter of 
Example 8.23, with 
Blackman window.

Figure 8.49
Blackman window 
coefficients for 
−4 � k � 4.
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8.9.3 Exercises

Use the direct design method with a rectangular 
window of length 11 to produce a causal 
low-pass filter with non-dimensional cut-off 
frequency

Plot the frequency response.

Repeat Exercise 32 but use a Hamming window.

32 θc
π
2
----=

33

Calculate the Fourier sine transform of the causal 
function f(t) defined by

Show that if �{ f(t)} = F( jω) then �{ f(−t)} = 
F(−jω). Show also that

�{ f (−t − a)} = e jaωF(−jω)

where a is real and positive.
Find �{ f(t)} when

Use the result

�[H(t + ) − H(t − )] = T sinc ωT

and the frequency convolution result to verify that 
the Fourier transform of the windowed cosine 
function

f(t) = cos ω 0t [H(t + ) − H(t − )]

is 

[sinc (ω − ω 0)T + sinc (ω + ω 0)T ]

Show that

δ(t − t1) *δ(t − t2) = δ(t − (t1 + t2))

and hence show that

�{cos ω0t H(t)} = π[δ(ω + ω0) + δ(ω − ω0)]

Establish the demodulation property,

�{ f(t)cos ω0t cos ω0t}

= F( jω) + [F( jω + 2jω 0) + F( jω + 2jω 0)]

Use the result �{H(t + T ) − H(t − T )} = 2T sinc ωT 
and the symmetry property to show that

�{sinc t} = π[H(ω + 1) − H(ω − 1)]

Check your result by use of the inversion integral.

For a wide class of frequently occurring Laplace 
transforms it is possible to deduce an inversion 
integral based on the Fourier inversion integral. 
If X(s) = �{x(t)} is such a transform, we have

where Re (s) = γ, with γ real, defines a line in the s
plane to the right of all the poles of X(s). Usually 
the integral can be evaluated using the residue 
theorem, and we then have

x(t) = ∑ residues of X(s) e st at all 
poles of X(s)

(a) Write down the poles for the transform

where a and b are real. Calculate the residues of
X(s) e st at these poles and invert the transform.

(b) Calculate

(c) Show that

1

f t( ) = 
t 0 t 1� �( )
1 1 t� 2�( )
0 t � 2( )⎩

⎪
⎨
⎪
⎧

2

f t( )

1
2
----– π t 2–�( )

1
4
----πt 2– t 2� �( )
1
2
----π t � 2( )⎩

⎪
⎨
⎪
⎧

=

3

1
2
----T 1

2
----T 1

2
----

1
2
----T 1

2
----T

1
2
----T 1

2
---- 1

2
----

4

1
2
----

+ jω
ω0

2 ω2–
-------------------

5

1
2
---- 1

4
----

6

7

x t( ) 1
j2π
-------- �

γ − j∞

γ + j∞

X s( ) est ds=

X s( ) 1
s a–( ) s b–( )

--------------------------------=

i( ) � 1– 1

s 2–( )2
-------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

ii( ) � 1– 1

s2 s 1+( )
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

� 1– 2s

s2 1+( )2
--------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

t tsin=
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A linear system has impulse response h(t), so that 
the output corresponding to an input u(t) is

When u(t) = cos ω 0t, y(t) = −sin ω 0t (ω 0 � 0).
Find the output when u(t) is given by

(a) cos ω0(t + π) (b) sin ω 0t

(c) (d)

This system is known as a Hilbert transformer.

In Section 8.5.1 we established that

where sgn(t) is the signum function. Deduce that

and use the symmetry result to demonstrate that

The Hilbert transform of a signal f (t) is 
defined by

Show that the operation of taking the Hilbert 
transform is equivalent to the convolution

and hence deduce that the Hilbert-transformed 
signal has an amplitude spectrum FHi( jω) 
identical with f(t). Show also that the phase of 
the transformed signal is changed by ± π, 
depending on the sign of ω.

Show that

Hence show that the Hilbert transform of

is

If FHi(x) = �{ f(t)} is the Hilbert transform 
of f(t), establish the following properties: 

(a) �{ f(a + t)} = FHi(x + a)

(b) �{ f(at)} = FHi(ax) (a � 0)

(c) �{ f(−at)} = −FHi(−ax) (a � 0)

(d)

(e) �{tf(t)} = xFHi(x) +

Use Exercises (9) and (10) to deduce the inversion 
formula

Define the analytic signal associated with the real 
signal f(t) as

fa(t) = f(t) − jFHi(t)

where FHi(t) is the Hilbert transform of f(t). Use 
the method of Review exercise 13 to show that

Use the result �{H(t)} = 1/jω + πδ(ω) and the 
symmetry property to show that

(Hint: H(−ω) = 1 − H(ω).)
Hence show that if f (t) is defined by �{ f (t)} =

2H(ω)F( jω) then f (t) = f(t) − jFHi(t), the analytic 
signal associated with f(t), where F( jω) = �{ f(t)} 
and FHi(t) = �{ f(t)}.

If f(t) = cos ω 0t (ω 0 � 0), find �{ f(t)} and 
hence f (t). Deduce that

�{cos ω 0t} = −sin ω 0t

By considering the signal g(t) = sin ω 0t (ω 0 � 0), 
show that

�{sin ω 0t} = cos ω 0t

8

y t( ) �
∞–

∞

h t τ–( ) u τ( ) dτ=

1
4
----

ejω 0t e j– ω 0t

9

� 1– 1
jω
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
---- sgn t( )=

�{sgn t( )} 2
jω
-------=

� 1
πt
------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

j sgn ω( )=

10

FHi x( ) � f t( ){ } 1
π
---- �

∞–

∞

f τ( )
τ x–
------------ dτ= =

1
πt
------– * f t( )

1
2
----

11

t

t2 a2+( ) t x–( )
-----------------------------------

1

x2 a2+
----------------- a2

t2 a2+
---------------- x

t x–
---------- xt

t2 a2+
----------------–+⎝ ⎠

⎛ ⎞=

f t( ) t

t2 a2+
---------------- a � 0( )=

a

x2 a2+
-----------------

12

� df
dt
------

⎩ ⎭
⎨ ⎬
⎧ ⎫ d

dx
------- FHi x( )=

1
π
---- �

∞–

∞

f t( ) dt

13

f t( ) 1
π
----– �

∞–

∞
FHi x( )
x t–

---------------- dx=

14

� fa t( ){ } Fa jω( )
2F jω( ) ω � 0( )
0 ω � 0( )⎩

⎨
⎧

= =

15

� 1– H ω( ){ } 1
2
----δ t( ) j

2πt
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8.10  REVIEW EXERCISES (1–25) 721

A causal system has impulse response l(t), 
where l(t) = 0 (t � 0). Define the even part 
le(t) of l(t) as

le(t) = [l(t) + l(−t)]

and the odd part lo(t) as

lo(t) = [l(t) − l(−t)]

Since l(t) = 0 (t � 0) deduce that 

lo(t) = sgn(t)le(t)

and that

l(t) = le(t) + sgn (t)le(t) for all t

Verify this result for l(t) = sin t H(t). Take the 
Fourier transform of this result to establish that

Y( jω) = Ye( jω) + j�{Ye( jω)}

Let l(t) = e−atH(t) be such a causal impulse 
response. By taking the Fourier transform, deduce 
the Hilbert transform pair

Use the result

to show that

The Hartley transform is defined as

FH(s) = H{ f(t)} =

where cas t = cos t + sin t. Find the Hartley 
transform of the functions

(a) f(t) = e−atH(t) (a � 0)

(b)

An alternative form of the Fourier transform pair is 
given by

where the frequency p is now measured in hertz. 
Define the even part of the Hartley transform as

E(s) = [FH(s) + FH(−s)]

and the odd part as

O(s) = [FH(s) − FH(−s)]

Show that the Fourier transform of f(t) is given by

F( jp) = E( p) − jO( p)

and confirm your result for f(t) = e−2tH(t).

Prove the time-shift result for the Hartley 
transform in the form

H{ f(t − T )} = sin(2πTs) FH(−s) 
+ cos(2πTs) FH(s)

Using the alternative form of the Fourier transform 
given in Review exercise 18, it can be shown that 
the Fourier transform of the Heaviside step 
function is

Show that the Hartley transform of H(t) is then

and deduce that the Hartley transform of 
H(t − ) is

Show that H{δ(t)} = 1 and deduce that 
H{1} = δ(s). Show also that H{δ(t − t0)} =
cas 2πst0 and that

H{cas 2πs0t} = H{cos 2πs0t} + H{sin 2πs0t} 
= δ(s − s0)

Prove the Hartley transform modulation theorem
in the form

H{ f(t) cos 2πs0t} = FH(s − s0) + FH(s + s0)

Hence show that

H{cos 2πs0t} = [δ(s − s0) + δ(s + s0)]

H{sin 2πs0t} = [δ(s − s0) − δ(s + s0)]

16

1
2
----

1
2
----

� a

a2 t2+
----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ x

a2 x2+
-----------------–=

� t f t( ){ } x� f t( ){ } 1
π
---- �

∞–

∞

f t( ) dt+=

� t

a2 t2+
----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ a

x2 a2+
-----------------=

17

�
∞–

∞

f t( ) cas 2πst dt

f t( ) 0 t � T( )
1 t T�( )⎩

⎨
⎧

=

18

F jp( ) �
∞–

∞

f t( ) e j– 2πpt dt=

g t( ) �
∞–

∞

G j p( ) e j2πpt dt=

1
2
----

1
2
----

19

20

� H t( ){ } 1
j pπ
---------- 1

2
----δ p( )+=

1
2
----δ s( ) 1

sπ
------+

1
2
----

1
2
----δ s( ) πscos πssin–

sπ
------------------------------------+

21

22

1
2
---- 1

2
----

1
2
----

1
2
----
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722 THE FOURIER TRANSFORM

Show that

Show that

x(t) = (1 + cos ω0t)[H(t + ) − H(t − )]

has Fourier transform

T [sinc ω + sinc(ω − ω0) + sinc(ω + ω0)]

The discrete Hartley transform of the sequence 
is defined by

(v = 0, 1, . . . , N − 1)

The inverse transform is

Show that in the case N = 4,

H = Tf

H = [H(0) H(1) H(2) H(3)]T

f = [ f (0) f (1) f (2) f (3)]T

Hence compute the discrete Hartley transform of 
the sequence {1, 2, 3, 4}. Show that T 2 = I and 
hence that T −1 = 4T, and verify that applying the 
T −1 operator regains the original sequence.

23

� tan 1– t{ } π e ω–

jω
--------------=

Hint: Consider �
∞–

t

1 t2+( ) 1– dt.
⎝ ⎠
⎜ ⎟
⎛ ⎞

24
1
2
---- 1

2
----T 1

2
----T

1
2
---- 1

2
----

25
f r( ){ }r =0

N−1

H v( ) 1
N
----- f r( ) cas 2πvr

N
-------------⎝ ⎠

⎛ ⎞
r =0

N−1

∑=

f r( ) H v( ) cas 2πvr
N

-------------⎝ ⎠
⎛ ⎞ r 0 . . . , N 1–,=( )

v=0

N−1

∑=

T 1
4
----

1 1 1 1

1 1 1– 1–

1 1– 1 1–

1 1– 1– 1

=

1
4
----
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1002 ANSWERS TO EXERCISES

36

37 4a, ellipse centred at origin, semi axes are 

and

38 (a) j + z − jz2 − z3 + jz4 + . . .

(b)

(c) 1 − (z − 1 − j) + (z − 1 − j)2 − (z − 1 − j)3 + . . .

39 (a) 1 − 2z2 + 3z4 − 4z6 + . . .
(b) 1 − 3z2 + 6z4 − 10z6 + . . .

40 (a) ; 2

(b) ; 2

(c)

; �2

41 1 − z + z3 + . . .

42 1, 1, �5; f is singular at z = j

43

44 (a)

(b)

45 (a)

(b)

(c)

46 (a)

(b)

(c)

(d)

(e)

+ (z − 2)4 − . . .

47 (a) z = 0, double pole
(b) z = j, simple pole; z = − j, double pole
(c) z = ±1, ± j, simple poles
(d) z = jnπ (n an integer), simple poles
(e) z = ± jπ, simple poles
(f ) z = 1, essential singularity
(g) Simple zero at z = 1 and simple poles at z = ± j
(h) Simple zero at z = − j, simple pole at z = 3 and a 

pole of order 3 at z = −2
(i) Simple poles at z = 2 + j, 2 − j and a pole of order 

2 at z = 0

48 (a)  (removable singularity)

(b) (pole of order 3)

(c)  (essential singularity)

(d)  (analytic point)

50 (a) Simple poles at z = −1, 2; residues 

(b) Simple pole at z = 1, double pole at z = 0; residues 
−1, 1

(c) Simple poles at z = 1, 3j, −3j; residues , 
(3 − j), (3 + j)

(d) Simple poles at z = 0, 2j, −2j; residues − , 
, 

(e) Pole of order 5 at z = 1, residue 19
(f ) Pole of order 2 at z = 1, residue 4
(g) Simple pole at z = −3, double pole at z = 1; 

residues 
(h) Simple poles at z = 0, −2, −1; residues 

51 (a) 1 (simple pole)
(b)

(c)

(d) −π (simple pole) (e)

52 (a) (b)
(c) enπ (double pole)

53 , all cases

54 0, all cases

56 (a) 0, (b) 2πj

57

58 , 0

a2 + b2

b
---------------

b2 − a2

b
--------------------

1

z
---- + 

j

z2
----- − 1

z3
----- − 

j

z4
----- + 1

z5
----- + . . .

1
2
---- − 1

4
---- z − 1( ) + 1

8
---- z − 1( )2 − 1

16
------- z − 1( )3

1
4
---- − 1

16
------- z − 2j( )2 + 1

64
------- z − 2j( )4 − 1

256
---------- z − 2j( )6

− 1
2
----j 1

2
---- 1 j+( ) z 1– j–( ) 3

4
---- z 1– j–( )2+ +

1
2
---- j 1–( ) z 1– j–( )3+

z 1
3
----z2 2

15
-------z5 . . . ; 1

2
----π+ + +

1
z
---- + 2 + 3z + 4z2 . . . 0 � z  � 1( )+

1

z 1–( )2
-----------------  − 1

z 1–
----------- 1 z 1–( )– z 1–( )2 . . .–+ +

0 � z 1–  � 1( )

. . . 1

5!z3
---------  − 1

3!z
---------  + z+

z 1

3!z
---------  + 1

5!z3
--------- . . .––

a2 1
a
---- + zf ′ a( ) + z2f ″ a( ) . . .+sin

1
2
----z + 3

4
----z2 + 7

8
----z3 + 15

16
-------z4 + . . .

. . . − 1

z2
-----  − 1

z
---- − 1 − 1

2
---z − 1

4
---z2− 1

8
---z3 . . .–

1

z
---- 3

z2
----- 7

z3
----- 15

z4
------- . . .+ + + +

1

z 1
----------- 2

– z 1–( )2
----------------- 2

z 1–( )3
----------------- . . .+ + +

−1 2
z 2–
------------ z 2–( ) z 2–( )2– z 2–( )3+ + +

z
2!
------ z3

4!
------– z5

5!
------ . . .–+

1

z3
----- 1

z
---- z

2!
----- z3

3!
----- z5

4!
----- z7

5!
----- . . .+ + + + + +

1

z
---- 1

2!z3
--------- 1

4!z5
--------- . . .–+ +

2−1 2
5
----z 6

25
-------z2– . . .+ +tan

1
3
----, 5

3
----

1
2
----

5
12
------- 5

12
-------

1
4
----

−3
8
---- 3

4
---- j+ −3

8
---- − 3

4
---- j

−1
8
----, 1

8
----

3
2
----, −5

2
----, 1

− 1
12
------- 3 j�3+( ) 1

2
---- 1 j�3+( )[ ] simple pole( )sin

1
4
---- 1 j+( )�2 simple pole( )

−j1
4
---- double pole( )

−1
2
---- triple pole( ) −14

25
------- double pole( )

−44
3
------- j8

3
----–

4
5
----πj, 12

5
-------πj

4
17
-------π 9 j2+( )
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ANSWERS TO EXERCISES 1003

59 (a) (b) 0

60 (a) 0  (b) 2πj

61 (a) (b) 2πj

62 z = j, ; z = −j, ; z = j�6, �6; 
z = − j�6, �6

(a) 0, (b) , (c) 0

63 (a) 0 (b) 0

64 (a) 2πj, 

(b)

(c) 0, , 

(d) , −3πj

65 (a) 2π/�3 (b) (c) (d)

(e) (f ) (g) π (h) π/2�2

(i) ( j) π(1 − 3/�5)

66 2axV0/(x2 + y2)

67 (a) (0, 0), (0, 1), (0, 7), (7, 0)
(b) v = 0 (c) u = 0

68 H(x, y) = 2y − y2 + x2; 
W = 2z − jz2

70 (a) (0, 0), (1, 0), (−1, 0)
(b) u = 0 (c) v = 0

4.9 Review exercises

1 (a) 3j (b) 7 + j4 (c) 1 (d) j2

2 (a) y = 2x gives 3u + v = 3, u + 2v = 3 and 3v − u = 1 
respectively

(b) x + y = 1 gives v = 1, v − u = 3 and u = 1 respectively

3 (a) α = , β = 3 + j

(b) 13 � 3u + 4v

(c) | w − 3 − j | � 1 (d)

4 (a) u2 + v2 + u − v = 0 (b) u = 3v
(c) u2 + v2 + u − 2v = 0 (d) 4(u2 + v2) = u

5

Fixed points: 1 ± �2

6 Fixed points z = ±�2/2
r = 1 ⇒ u = 0

7 u = x3 − 3xy2, v = 3x2y − y3

8 (z sin z) v = y sin x cosh y + x cos x sinh y

9 w = 1/z

10 Ellipse is given by 

11 1 − z3 + z6 − z9 + z12 − . . . ;
1 − 2z3 + 3z6 − 4z9 + . . .

12 (a) 1 − 2z + 2z2 − 2z3; 1
(b) ; �2

(c) ; �2

13 1, 1, 1, , 2�2 respectively

14 (a)

(b)  (| z − 1 | � 1)

15 (a) Taylor series
(b) and (c) are essential singularities, the principal 

parts are infinite

16 (a)
(b) cos 2x cosh 2y − j sin 2x sinh 2y
(c)

(d)

17 (a) Conformal (b) j, −1 − j (c)  ±0.465, ± j0.465

18

x = k → hyperbolas, 

y = l → ellipses, 

−3
8
----πj

−4
9
----πj

− 3
10
------- j 3

10
------- j 2

15
------- j

− 2
15
------- j

3
5
----π

5
2
----πj

2
25
-------π 25 j39–( )

19
108
----------πj − 19

108
----------πj

0 487
162
----------πj–

1
2
----π 5

288
----------π 1

12
-------π

8
3
----π 7

10
-------π

1
2
----π

−1
5
---- 3 j4+( )

1
4
---- 7 j–( )

x k → u k

k 1–
-----------–⎝ ⎠

⎛ ⎞ 2

v2+ 1

k 1–( )2
------------------= =

y l → u 1–( )2 v 1

l
----+⎝ ⎠

⎛ ⎞ 2

+ 1

l2
---= =

x2

R a2/4k+( )2
----------------------------- y2

R a2/4k–( )2
------------------------------+ 1=

1
2
---- 1

2
---- z 1–( )– 1

4
---- z 1–( )2 1

6
---- z 1–( )4–+

1
2
---- 1 j+( ) 1

2
---- j z j–( ) 1

4
---- 1 j+( ) z j–( )2– 1

8
---- z j–( )3–+

1
2
----�5

1
z
---- z– z3 z5– . . . 0 � | z | � 1+ +

1
2
---- z 1–( )– 5

4
---- z 1–( )2 . . .+ +

1
2
---- e2x cos 2y 1–( ) j1

2
---- e2x sin 2y+

xsinxcosh y ycos xsinh y j xcosxsinhy ysin x coshy–( )+ +
x2 y2+

-------------------------------------------------------------------------------------------------------------------------------------------

tan x 1 tanh2y–( ) j tanh y 1 tan2x+( )+
1 tan2x tanh2y+

--------------------------------------------------------------------------------------------

u2

cos2k
------------ v2

sin2k
-----------– 1=

u2

cosh2l
-------------- v2

sinh2l
-------------+ 1=
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1004 ANSWERS TO EXERCISES

19 (a) Simple pole at z = 0
(b) Double poles at z = 2, 2e2π j/3, 2e4π j/3

(c) Simple poles at z = +1, ±j, removable singularity 
at z = −1

(d) Simple poles at 
(n = 0, ±1, ±2, . . . )

(e) No singularities in finite plane (entire)
(f ) Essential singularity at z = 0
(g) Essential (non-isolated) singularity at z = 0

20 (a) 2e−2 (b) 0 (c) 0 (d) 0

21 Zeros: ±1, 

Poles: 0, eπ j/4, e3π j/4, e5π j/4, e7π j/4

Residues (respectively) −5, ,

, , 

22 −204 − 324j

23 (a) (b) 0 (c) (i) 0, (ii) 3πj (d) 0, 0

(e) −π (f )

24 (a) (b) (c) (d)

CHAPTER 5

Exercises

1 (a) (b) 

(c) (d) 

2 (a) 5 (b) −3 (c) 0 (d) 3 (e) 2
(f ) 0 (g) 0 (h) 0 (i) 2 ( j) 3

3 (a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

(i)

( j)

(k)

(l)

(m)

(n)

(o)

4 (a) (b) −e−t + 2 e3t

(c) (d) 2 cos 2t + 3 sin 2t

(e) (f ) e−2t(cos t + 6 sin t)

(g)

(h) et − e−t + 2t e−t

(i) e−t(cos 2t + 3 sin 2t) ( j)

(k)

(l)

(m) e−t(cos 2t − sin 2t) (n)

(o)

(p)

(q)

(r)

5 (a) x(t) = e−2t + e−3t

(b)

(c)

(d)

(e)

(f )

(g)

(h)

(i)

( j)

(k)

(l) y(t) = e−t + 2t e−2t/3

(m)

(n)

z 1
2
---- 2n 1+( )πj=

−3
2
---- ± 1

2
---- j�11

6 3�2+
4

------------------ j–

6 3�2–
4

------------------- j+ 6 3�2–
4

------------------- j– 6 3�2+
4

------------------ j+

−2
5
----πj

jπ
6
---- −4π

3
------j,

7
50
-------π 1

8
----π�2 −11π--------- 19π

24 12
---------

s

s2 4–
-------------- Re s( ) � 2, 2

s3
----- Re s( ) � 0,

3s 1+
s2

-------------- Re s( ) � 0, 1

s 1+( )2
------------------ Re s( ) � −1,

5s 3–

s2
-------------- Re s( ) � 0,

42

s4
------- 6

s2 9+
-------------– Re s( ) � 0,

3s 2–

s2
-------------- 4s

s2 4+
-------------+ Re s( ) � 0,

s

s2 9–
-------------- Re s( ) � 3,

2

s2 4–
-------------- Re s( ) � 2,

5

s 2+
------------- 3

s
---- 2s

s2 4+
-------------–+ Re s( ) � 0,

4

s 2+( )2
------------------ Re s( ) � −2,

4

s2 6s 13+ +
---------------------------- Re s( ) � −3,

2

s 4+( )3
------------------ Re s( ) � −4,

36 6s– 4s2 2s3–+
s4

--------------------------------------------- Re s( ) � 0,

2s 15+
s2 9+

------------------- Re s( ) � 0,

s2 4–

s2 4+( )2
-------------------- Re s( ) � 0,

18s2 54–

s2 9+( )3
---------------------- Re s( ) � 0,

2

s3
----- 3s

s2 16+
----------------– Re s( ) � 0,

2

s 2+( )3
------------------ s 1+

s2 2s 5+ +
------------------------- 3

s
----+ + Re s( ) � 0,

1
4
---- e 3t– e 7t––( )
4
9
---- 1

3
----t– 4

9
---- e 3t––

1
64
------- 4t sin 4t–( )
1
8
---- 1 e 2t– cos 2t– 3 e 2t– sin 2t+( )

1
2
---- et 3e2t– 11

2
------- e3t+

−2e 3t– 2 cos �2t( ) �1
2
---- sin �2t( )–+

1
5
---- et 1

5
---- e t– tcos 3 tsin–( )–

1
2
---- e2t 2 e3t– 3

2
---- e 4t–+

−et 3
2
---- e2t 1

2
---- e 2t––+

4 9
2
---- cos t– 1

2
---- 3cos t+

9 e 2t– e 3t/2– 7 1
2
----�3t( )cos �3 sin 1

2
----�3t( )–[ ]–

1
9
---- e t– 1

10
------- e 2t–– 1

90
------- e t– cos 3t 3 sin 3t+( )–

x t( ) 35
78
------- e4t/3 3

26
------- 2cos t 2

3
---- 2sin t+( )–=

x t( ) 1
5
---- 1 e t– cos 2t– 1

2
---- e t– 2sin t–( )=

y t( ) 1
25
------- 12 e t– 30t e t– 12 cos 2t– 16 sin 2t+ +( )=

x t( ) −7
5
---- et 4

3
---- e2t 1

15
------- e 4t–+ +=

x t( ) e 2t– cos t sin t 3+ +( )=
x t( ) 13

12
------- et 1

3
---- e 2t–– 1

4
---- e t– cos 2t 3 sin 2t–( )+=

y t( ) −2
3
---- t 2

3
---- e t– cos �2t( ) �1

2
---- �2t( )sin+[ ]+ +=

x t( ) 1
8
---- 3

4
----t+( ) e 2t– 1

2
---- t2 e 2t– 3

8
---- 1

2
---- t– 1

4
---- t2+ + +=

x t( ) 1
5
---- 1

5
---- e 2t/3– cos 1

3
----t 2 sin 1

3
----t+( )–=

x t( ) t e 4t– 1
2
---- cos 4t–=

x t( ) 5
4
---- 1

2
----t et– 5

12
------- e2t 2

3
---- e t––+ +=

x t( ) 9
20
------- e t– 7

16
------- tcos– 25

16
------- sin t 1

80
------- cos3t–+=

3
80
------- sin 3t–
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ANSWERS TO EXERCISES 1005

6 (a)

(b) x(t) = 5 sin t + 5 cos t − et − e2t − 3
y(t) = 2 et − 5 sin t + e2t − 3

(c) x(t) = 3 sin t − 2 cos t + e−2t

(d)

(e) x(t) = 2et + sin t − 2 cos t
y(t) = cos t − 2 sin t − 2 et

(f ) x(t) = −3 + et + 3 e−t/3

(g) x(t) = 2t − et + e−2t, 

(h) x(t) = 3 cos t + cos(�3t)
y(t) = 3 cos t − cos(�3t)

(i)

( j)

7

9

10

, �3, �13

13 f(t) = tH(t) − tH(t − 1)

14 (a) f(t) = 3t 2 − [3(t − 4)2 + 22(t − 4) + 43]H(t − 4)
− [2(t − 6) + 4]H(t − 6)

(b) f(t) = t − 2(t − 1)H(t − 1) + (t − 2)H(t − 2)

15 (a)

(b)

(c) [t − cos(t − 1) − sin(t − 1)]H(t − 1)

(d)

(e)

(f) [t − cos(t − 1) − sin(t − 1)]H(t − 1)

16 x(t) = e−t + (t − 1)[1 − H(t − 1)]

17

18

19 f(t) = 3 + 2(t − 4)H(t − 4)

x(t) = 3 − 2 cos t + 2[t − 4 − sin(t − 4)]H(t − 4)

20

21

23

24

25 (a) 2δ(t) + 9e−2t − 19e−3t

(b)

(c)

26 (a)

(b)

(c) x(t) = 5 e−3t − 4 e−4t + (e−3(t−3) − e−4(t−3))H(t − 3)

27 (a) f ′(t) = g′(t) − 43δ(t − 4) − 4δ(t − 6)

(b)

(c) f ′(t) = g′(t) + 5δ(t) − 6δ(t − 2) + 15δ(t − 4)

28

x t( ) 1
4
---- 15

4
------- e3t 11

4
------- et– e 2t––( ),= y t( ) 1

8
---- 3e3t et–( )=

y t( ) −7
2
---- sin t 9

2
---- cos t 1

2
---- e 3t––+=

x t( ) 3
2
---- et/3 1

2
---- et,–= y t( ) −1 1

2
---- et 3

2
---- et/3+ +=

y t( ) t 1– 1
2
---- et– 3

2
---- e t/3–+=
y t( ) t 7

2
---- 3 et 1

2
---- e 2t–+ +–=

x t( ) cos � 3
10
-------t( ) 3

4
---- cos �6t( )+=

y t( ) 5
4
---- cos � 3

10
-------t( ) 1

4
---- cos �6t( )–=

x t( ) 1
3
---- et 2

3
---- cos 2t 1

3
---- sin 2t+ +=

y t( ) 2
3
---- et 2

3
---- cos 2t– 1

3
---- sin 2t–=

I1 s( ) E1 50 s+( )s

s2 104+( ) s 100+( )2
------------------------------------------------=

I2 s( ) Es2

s2 104+( ) s 100+( )2
------------------------------------------------=

i2 t( ) E − 1
200
---------- e 100t– 1

2
---- t e 100t– 1

200
---------- cos 100t+ +( )=

i1 t( ) 20�1
7
---- e t/2– sin 1

2
----�7t( )=

x1 t( ) − 3
10
------- cos �3t( ) 7

10
------- �13t( )cos–=

x2 t( ) − 1
10
------- cos �3t( ) 21

10
------- cos �13t( )+=

F s( ) 6

s3
----- 6

s3
----- 22

s2
------- 43

s
-------+ +⎝ ⎠

⎛ ⎞ e 4s–– 2

s3
----- 4

s
----+⎝ ⎠

⎛ ⎞ e 6s––=

F s( ) 1

s2
----- 2

s2
----- e s–– 1

s2
----- e 2s–+=

1
6
---- t 5–( )3 e2 t−5( )H t 5–( )
3
2
---- e t−2( )– e 3 t−2( )––[ ]H t 2–( )

�1
3
---- e t−π( )/2– {�3 1

2
----�3 t π–( )[ ]cos

+ sin 1
2
----�3 t π–( )[ ]}H t π–( )

H t 4
5
----π–( ) cos 5t

x t( ) 2 e t/2– cos 1
2
----�3t( ) t 1– 2H t 1–( )–+=

{t 2– e t−1( )/2– {cos[1
2
----�3 t 1–( )]+

�1
3
---- sin 1

2
----�3 t 1–( )[ ]}}–

H t 2–( ){t 3– e t−2( )/2–+ +
{cos 1

2
----�3 t 2–( )[ ] �1

3
---- sin 1

2
----�3 t 2–( )[ ]}}–

x t( ) e t– 1
10
-------(sin t 3 cos t– 4 eπ e 2t–+ +=

− 5 eπ/2 e t– )H t 1
2
----π–( )

F s( ) 3

s
---- 2

s2
----- e−4s+=

θ0 t( ) 3
10
------- 1 e 3t– cos t– 3e 3t– sin t–( )=
− 3

10
-------[1 e3a e 3t– cos t a–( )–

− 3e3a e 3t– sin t a–( )]H t a–( )

θ0 t( ) 1
32
------- 3 2t– 3e−4t– 10t e−4t–( )=
+ 1

32
------- 2t 3– 2t 1–( ) e−4 t−1( )+[ ]H t 1–( )

3 3e 2s–– 6s e− 4s–

s2 1 e− 4s–( )
------------------------------------------

K

T
----- 1

s2
----- K

s
----- e sT–

1 e sT––
-----------------–

δ t( ) 5
2
---- sin 2t–

δ t( ) e t– 2 cos 2t 1
2
---- sin 2t+( )–

x t( ) 1
6
---- 2

3
---- e 3t–– 1

2
---- e−4t+( )=

+ e 3 t−2( )– e−4 t−2( )–( )H t 2–( )
x t( ) 1

2
---- e6πe 3t– H t 2π–( ) sin 2t=

g′ t( ) = 
6t 0 � t � 4( )
2 4 � t � 6( )
0 t � 6( )⎩

⎪
⎨
⎪
⎧

g′ t( ) = 
1 0 � t � 1( )

−1 1 � t � 2( )
0 t � 2( )⎩

⎪
⎨
⎪
⎧

g′ t( ) = 
2 0 � t � 2( )

−3 2 � t � 4( )
2t 1 t � 4( )–⎩

⎪
⎨
⎪
⎧

x t( ) −19
9
------- e 5t– 19

9
------- e 2t– 4

3
----t e 2t––+=
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30  , 

31

− 4(M + W )x3 + (2M + 3W )l 2x]

32

− (x − x2)
4H(x − x2)]

ymax = wl 4/8EI

33

34 (a)

(b) s2 + 2s + 5 = 0, order 2

(c)

35 , s3 + 5s2 + 17s + 13 = 0

order 3, zeros −3, −2, poles −1, −2 ± j3

36 (a) Marginally stable (b) Unstable
(c) Stable (d) Stable (e) Unstable

37 (a) Unstable
(b) Stable
(c) Marginally stable
(d) Stable
(e) Stable

40

41 (a) 3e−7t − 3e−8t (b)

(c) (d)

42

47

49 (a)

(b)

(c)

51 e−3t − e−4t

+ 3 e−4(t−T ))H(t − T )]

52 e−2t sin t, 

53

54

55 (a)

y = [5 3 1]x

(b) y = [2 3 1]x

57

58 x1 = x2 = 2 e−2 t − e−3 t

59

60 y = [2 9 22]z

The system is stable, controllable and observable

61 y = [5 3 15]z

The system is marginally stable, controllable and 
observable

62  − t + e−2 t − 6 e− t

63

q t( ) E

Ln
-------- e μt– sin nt,= n2 1

LC
--------- R2

4L2
--------–= μ R

2L
--------=

i t( ) E
Ln
------ e μt– n cos nt μ sin nt–( )=

y x( ) 1
48EI
------------- [2Mx4/l 8W x 1

2
----l–( )3

H x 1
2
----l–( )+=

y x( ) w x2
2 x 1

2–( )x2

4EI
-----------------------------

w x2 x1–( )x3

6EI
-----------------------------–=

+ w
24EI
------------- [ x x1–( )4H x x1–( )

y x( ) W
EI
------- 1

6
----x3 1

6
---- x b–( )3H x b–( )– 1

2
----bx2–[ ]=

−Wx2

6EI
----------- 3b x–( ) 0 � x � b( )

−Wb2

6EI
----------- 3x b–( ) b � x � l( )

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

3s 2+
s2 2s 5+ +
-------------------------

Poles −1 j2; zero −2
3
----±

s2 5s 6+ +
s3 5s2 17s 13+ + +
---------------------------------------------

K � 2
3
----

1
3
---- e−4t sin 3t

2
3
---- e4t e 2t––( ) 1

3
---- e2t sin 3t

s 8+
s 1+( ) s 2+( ) s 4+( )

---------------------------------------------------

2
7
---- 4

5
----,

1
54
------- 2 e– 3t– 9t2 6t 2+ +( )[ ]

1
125
---------- e 3t– 5t 2+( ) e2t 5t 2–( )+[ ]
1

16
------- 4t 1– e 4t–+( )

x t( ) 1
12
-------A[1 4 e 3t–– 3 e 4t– (1– 4 e 3 t−T( )––+=

1
5
---- 1 e 2t– cos t 2 sin t+( )–[ ]

E1

E2

5– 1–

3 1–

x1

x2

2

5
u y 1 2[ ]

x1

x2

=,+=

G s( ) 12s 59+
s 2+( ) s 4+( )

----------------------------------=

E1

E2

7– 1

6– 0

x1

x2

1

1
u y,+ 1 0[ ]

x1

x2

= =

t = 
0 1 0

0 0 1

−7 −5 −6

x

0

0

1

u,+

t = 
0 1 0

0 0 1

0 −3 −4

x

0

0

1

u,+

x t( ) = 
−5 8

3
---- e−t 10

3
------- e5t+ +

3 8
3
---- e−t 5

3
---- e5t+–

x t( ) = 4t e−t e−2t+

−4t e−t 2e−2t 2e−t+–

u

−1 0 0

0 −2 0

0 0 −3

z

1
2
----

−1
1
2
----

u,+=

u

0 0 0

0 −1 0

0 0 −5

z

1
5
----

−1
4
----

1
20
-------

u,+=

15
4
------- 5

2
---- 9

4
----

E1

E2

E3

E4

0 1 0 0

1– 1– 0 1

0 0 0 1

0 1 1– 1–

x1

x2

x3

x4

0 0

1 0

0 0

0 1

u1

u2

+=
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G(s) = 

64 (a)

(b) G(s) = 

(c) y1(t) = 1 + 0.578e−8.12t − 1.824e−0.56t + 0.246e−1.32t

y2(t) = 0.177e−8.12t + 0.272e−0.56t − 0.449e−1.32t

65 u(t) = [− − ]x(t) + uext

66 u(t) = [− − ]x(t) + uext

67 u(t) = [− − ]x(t) + uext

u(t) = [−31 −11]x(t) + uext

69 M = , rank 1, M = , rank 2

5.10 Review exercises

1 (a) x(t) = cos t + sin t − e−2t(cos t + 3 sin t)

(b)

2 (a)
(b) i(t) = 2 e−t − 2 e−2t

3 x(t) = − t + 5 sin t − 2 sin 2t,
y(t) = 1 − 2 cos t + cos 2t

4

, 63.4° lag

6 (a) (i)  

(ii)

(b) 

7 (a) e−2t(cos 3t − 2 sin 3t)
(b) y(t) = 2 + 2 sin t − 5e−2t

8 x(t) = e−8t + sin t, y(t) = e−8t − cos t

9

current leads by approximately 18.5°

10

11 (a)

(b)

12

13 , i2 → E/3R

14

15 (a) (i) e−t(cos3t + sin 3t)
(ii) et − e2t + 2t et

(b)

16 (a)

(b) , 

17 (a) (ii) 

(b)

− 2sin t]H(t − π)

18

+ 2H(t − T ) e−40(t−T )

Yes, since time constant is large compared with T

19 e−t sin t, 

20

y(0) = y′(0) = y(4) = y(2)(5) = y(3)(0) = 0

y(x) =

(4 � x � 5)
25.5 kN, 18 kN m

y1

y2

1 0 0 0

0 0 1 0

x1

x2

x3

x4

=

1

s 1+( )2 s2 1+( )
-------------------------------------- s2 s 1+ + s

s s2 s 1+ +

E1

E2

E3

1– 1– 1–

1– 3– 3–

1– 3– 6–

x1

x2

x3

1– 1

1– 1

1– 1

u1

u2

+=

y1

y2

0 2 2

0 0 1

x1

x2

=

1
Δ
--- 2s– 2s 3+( ) 2s 2s 3+( )

s2– s2
,

Δ s3= 10s2 16s 6+ + +

33------- 17
2

-------
2

99
4

------- 35
4

-------

35
6

------- 31
6

-------

2 −2

1 −1

0 1

1 1
2
----

x t( ) −3 13
7
------- et 15

7
------- e 2t/5–+ +=

e t– 1
2
---- e 2t–– 1

2
---- e t– cos t sin t+( )–

+ V e t– 1
2
---- e 2t–– 1

2
---- e t– cos t sin t+( )–[ ]

1
5
---- cos t 2 sin t+( )
e t– x0

1
5
----–( ) cos t x1 x0

3
5
----–+( ) sin t+[ ]

�1
5
----

s cos φ ω sin φ–

s2 ω2+
--------------------------------------

s sin φ ω cos φ sin φ+( )+
s2 2ωs 2ω2+ +

------------------------------------------------------------

1
20
------- cos 2t 2 sin 2t+( ) 1

20
------- e 2t– 39 cos 2t 47 sin 2t+( )+

q t( ) 1
500
---------- 5 e 100t– 2 e 200t––( )=
− 1

500
---------- 3 cos 100t sin 100t–( ),

x t( ) 29
20
------- e t– 445

1212
------------- e t/5– 1

3
----e 2t–+ +=

− 1
505
---------- 76 cos 2t 48 sin 2t–( )

θ 1
100
---------- 4 e− 4t 10t e− 4t 4 cos 2t– 3 sin 2t+ +( )=

i1
1
7
---- e4t 6 e 3t–+( ),= i2

1
7
---- e 3t– e4t–( )=

i E
R
--- 1 e nt– cos nt sin nt+( )–[ ]=

i1
E 4 3e Rt/L–– e 3Rt/L––( )

6R
-----------------------------------------------------=

x1 t( ) 1
3
---- sin t 2 sin 2t– �3 sin �3t( )+[ ]=

x2 t( ) 1
3
---- sin t sin 2t �3 sin �3t( )–+[ ]=

y t( ) 1
2
---- e t– 8 12t t3+ +( )=

5
2
---- e7t sin 2t

n2i

Ks s2 2Ks n2+ +( )
--------------------------------------------- θ t( ) i

K
---- 1 e Kt––( ) it e Kt––=

e t−α( )– cos 2 t α–( ) 1
2
---- sin 2 t α–( )–[ ]H t α–( )

y t( ) 1
10
------- e t– cos 2t 1

2
---- sin 2t–( ) 2 sin t cos t–+[ ]=

+ 1
10
-------[e t−π( )– cos 2t 1

2
---- sin 2t–( ) cos t+

i t( ) 1
250
---------- [e

− 40t
2H 1 1

2
----T–( ) e− 40 t−T/2( )–=

− 2H t 3
2
----T–( ) e 40 t−3T/2( )– . . . ]+

1
2
---- 1 e t– cos t sin t+( )–[ ]

EI d4y

dx4
--------- 12 12H x 4–( ) Rδ x 4–( ),–+=

1
2
----x4 4.25x3– 9x2 0 � x � 4( )+
1
2
----x4 4.25x3– 9x2 1

2
---- x 4–( )4 7.75 x 4–( )3–+ +⎩

⎨
⎧
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21 (a) f(t) = H(t − 1) − H(t − 2)
x(t) = H(t − 1)(1 − e−(t−1)) − H(t − 2)(1 − e−(t−2))

(b) 0, E/R

23 (a) t − 2 + (t + 2) e−t

(b) y = t + 2 − 2et + 2t et, 

24

25 (a) x(t) =

26 (a) No (b) (d) K � 3

27 (a) 4 (b)

28 (c) 4 e−2t − 3e−3t, y(t) = 1 (t � 0)

29

e−t(cos t + sin t)

30 1, −1, −2; [1 0 −1]T, [1 −1 0]T, [0 0 1]T

u(t) = −6{x1(t ) + x2(t )}

31 (a)

y = [1 0]

(b) G(s) = 

32 (a)

(c) K = 12.5, K1 = 0.178 (d) 0.65 s, 2.48 s, 1.86 s

33 (a) K2 = M2ω2

34 (b) Unstable (c) β = 2.5 × 10−5, 92 dB
(d) −8 dB, 24°
(e) K = 106, τ1 = 10−6, τ2 = 10−7, τ3 = 4 × 10−8

(f ) s3 + 36 × 106s2 + 285 × 1012s 
 + 25 × 1018(1 + 107β) = 0

CHAPTER 6

Exercises

1 (a) , (b) , 

(c) , (d) , 

(e) , 

2

4

5 (a) (b)

6

8 (a)

(b)

(c)

11 (a) 1 (b) (−1)k (c) (d)
(e) jk (f ) (− j�2)k

(g) 0 (k = 0), 1 (k � 0)
(h) 1 (k = 0), (−1)k+1 (k � 0)

12 (a) (b)

(c) (d)

(e) (f )

(g) (h)

13 (a) {0, 1, 0, 0, 0, 0, 0, 2}
(b) {1, 0, 3, 0, 0, 0, 0, 0, 0, −2}
(c) {5, 0, 0, 1, 3} (d)

(e) 1(k = 0),   

(f )

(g)

14

15 (a) yk = k (b)

(c) (d)

16 (a)

(b)

(c)

(d)

y t( ) 1
2
---- t2 y1+=

EIy −2
9
----Wlx2 10

81
-------Wx3 W x l–( )3

6
----------------------H x l–( )–+=

EI d 4y

dx4
-------- −Wδ x l–( ) − w H x( ) H x l–( )–[ ]=

1
6
---- 1 e3 t−a( )/2 �3 sin 1

2
----�3t( ) cos 1

2
----�3t( )–[ ]H t a–( )+{ }

1

s2 2s K 3–( )+ +
---------------------------------------

1
10
-------

x t( ) = e−t tsin

1 e−t tcos tsin+( )–

H s( ) = s 2+
s 1+( )2 1+

---------------------------

E1

E2

 = 2– 4

0 1

x1

x2

1

1
u+

x1

x2

s 3+
s 2+( ) s 1–( )

----------------------------------

K

s2 1 KK1+( )s K+ +
-------------------------------------------------

4z
4z – 1
---------------- | z | � 1

4
----

z
z 3–
------------ | z | � 3

z
z 2+
----------- | z | � 2 z–

z 2–
------------ | z | � 2

3 z

z 1–( )2
----------------- | z | � 1

e 2ω kT– z

z e 2ωT––
-------------------↔

1

z3
----- 2z

2z 1–
---------------- 2

z2 2z 1–( )
-----------------------=

5z
5z 1
-------------- z

+ z 1+
-----------

2z

2z 1–
---------------- , 2z

2z 1–( )2
--------------------

e 4kT–{ } z

z e 4T––
------------------↔

ksin T{ } z Tsin

z2 2z Tcos– 1+
---------------------------------------↔

2cos kT{ } z z 2cos T–( )
z2 2z 2cos T– 1+
--------------------------------------------↔

1
2
----( )k 1

3
---- −1

3
----( )k

1
3
---- 1 − −2( )k[ ] 1

7
---- 3k − −1

2
----( )k[ ]

1
3
---- 1

6
---- −1

2
----( )k+ 2

3
---- 1

2
----( )k 2

3
---- −1( )k+1+

sin 1
2
----kπ 2k sin 1

6
----kπ

5
2
----k 1

4
---- 1 − 3k( )+ k 2�1

3
----

1
3
----k − 3

2
----π( )cos+

0 0 1 1, , ,{ } −1
3
----( )k{ }+

5
2
---- k 1=( ) 5

4
---- k 2=( ) −1

8
---- −1

2
----( )k 3–

k � 3( )
0 k 0=( )
3 2k– 2k−1 k � 1( )+⎩

⎨
⎧

0 k 0=( )
2 2k−1 k � 1( )–⎩

⎨
⎧

yk+2
1
2
---- yk+1+ xk yk+2

1
4
---- yk+1

1
5
---- yk–+, xk= =

yk
3
10
------- 9k( ) 17

10
------- −1( )k+=

2k−1 1
2
----sin kπ 2 −1

2
----( )k

3k+

yk
2
5
---- −1

2
----( )k − 9

10
------- 1

3
----( )k 1

2
----+=

yk
7
2
---- 3k( ) − 6 2k( ) 5

2
----+=

yn
2
5
---- 3n( ) − 2

3
---- 2n( ) 4

15
------- 1

2
----( )n+=

yn −2 �3( )n−1 1
6
----sin nπ 1+=
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(e)

(f )

17 (b) 7, £4841

18

19 As k → ∞, Ik → 2G as a damped oscillation

21 (a)

(b)

(c)

22

23 (a) (b)

(c) (d) 4k+1 + 2k

24

25 (a), (b) and (c) are stable; (d) is unstable; 
(e) is marginally stable

26

28

30 (a)

(b)

(c)

31 x(k) = 5k(cos kθ + sin kθ ), y(k) = 5k(2 cos kθ), 

cos θ = −

32

33

34

35 (a)

y(kT ) = [1 0] x(kT )

(b) x[(k + 1)T ] = Gx(kT ) + Hu(kT )
y(kT ) = [1 0] x(kT )

G = 

H = 

37 (a) x(k + 1) = 

(b) x(k + 1) = 

(c) x1(t) = x1(0)[1.1 − 2.15e−1/4t + 2.05e−3/4t]
x2(t) = kc + x1(0)[−5.867 + 8.6e−1/4t − 2.71e−3/4t]

38 q form:
(Aq2 + Bq + C)yk = Δ2(q2 + 2q + 1)uk

δ form:
[AΔ2δ2 + (2ΔA + ΔB)δ + (A + B + C)]yk

= Δ2(4 + 4Δδ + Δ2δ2)uk

A = 2Δ2 + 6Δ + 4
B = 4Δ2 − 8
C = 2Δ2 − 6Δ + 4

39

[(Δ3 + 4Δ2 + 8Δ + 8)δ3 + (6Δ2 + 16Δ + 16)δ2 
 + (12Δ + 16)δ + 8] yk = (2 + Tδ )3uk

yn −2
5
---- −1

2
----( )n + 12

5
------- 2( )n − 2n − 1=

yn −1
2
---- 2n −2( )n+[ ] 1 − n+=

yk 2k − 1
2
---- 3k( ) 1

2
----+=

1

z2 3z– 2+
--------------------------

z 1–

z2 3z– 1+
--------------------------

z 1+
z3 z2– 2z 1+ +
-------------------------------------

1
2
---- −1

4
----( )k − −1

2
----( )k{ } 2 3k( ) 1

6
----sin k 1+( )π

2
3
---- 0.4( )k 1

3
---- −0.2( )k+

0 k 0=( )
2k−1 1 k � 1( )–⎩

⎨
⎧

0 k 0=( )
2k−1 k � 1( )⎩

⎨
⎧

2 − 1
2
----( )k

yn −4 1
2
----( )n

2 1
3
----( )n

2 2
3
----( )n+ +=

2k

4
----

2 1

4 2

−2( )k

4
--------------

2 −1

−4 2
+

−4( )k

2
-------------- 1 −1

−1 1
2k−1 1 1

1 1
+

−1( )k 1 −k

0 1

3
5
----

x k( ) = 
25
18
------- 17

6
------- −0.2( )k– 22

9
-------+ −0.8( )k

7
18
------- 3.4/6( ) −0.2( )k– 17.6/9( ) −0.8( )k–

y k( ) = 1
�5
------- 1 �5+

2
----------------⎝ ⎠

⎛ ⎞ k 1 �5–
2

----------------⎝ ⎠
⎛ ⎞ k

–

x1 k 1+( )T[ ]
x2 k 1+( )T[ ]

 = 1 1
2
---- 1 e 2T––( )

0 e 2T–

x1 kT( )
x2 kT( )

+ 
1
2
----T 1

4
---- e 2T–

1–( )+
1
2
---- 1 e 2T––( )

u kT( )

x1 k 1+( )T[ ]
x2 k 1+( )T[ ]

 = 1 T

T– 1 T–

x1 kT( )
x2 kT( )

0

T
u kT( )+

e T– /2
(�3

2
-------T ) 1

�3
------- (�3

2
-------T )sin+cos

2
�3
------- (�3

2
-------T )sin–

2
�3
------- (�3

2
-------T )sin

(�3
2

-------T ) 1
�3
------- (�3

2
-------T )sin–cos

1 e T– /2 (�3
2

-------T ) 1
�3
------- e T– /2 (�3

2
-------T )sin–cos–

2
�3
------- e T– /2 (�3

2
-------T )sin

0.368 0

0.632 1
x k( ) 0.632k1 0

0.368k1 1–
u k( )+

0.368 0.1185–

0.632 1

x1 k( )
x2 k( )

0.1185 0

0.069 1–
+ kc

1.1x1 0( )

1

s3 2s2 2s 1+ + +
---------------------------------------
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41

6.12 Review exercises

4 3 + 2k

5

7

8 (a)

(b) (i) 3k−1k (ii)

9

10 (−1)k

13

17 [1 3 1]T, [3 2 1]T, [1 0 1]T

18 (i)

(ii) (iii) vT = [0 − ]

(iv) (v)

α = −5, β = 4

CHAPTER 7

Exercises

1 (a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

2

Taking t = π gives the required result.

3

4

5 Taking t = 0 and t = π gives the required answers.

6

Taking t = 0 gives the required series.

7

Replacing t by  gives the following sine series 
of odd harmonics:

8

9

10

12 z2 z–( )
12 5Δ+( )z2 8Δ 12–( )z Δ–+

-----------------------------------------------------------------------

12γ 1 Δγ+( )
Δ 12 5Δ+( )γ 2 8Δ 12–( )γ 12+ +
-------------------------------------------------------------------------------

1
6
---- 1

3
---- −2( )k 1

2
---- −1( )k–+

2z

z e–( )3T
--------------------- z

z e 2T––
------------------–

1
a b–
------------- an bn–( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

2�1
3
---- 1

3
----sin kπ

3
2
---- − 1

2
---- −1( )k − 2k

1
2
----A 2 2 1

2
----( )n– n 1

2
----( )n−1–[ ]

x k( ) = 
−1

6
---- −1( )k 1

3
---- 2k( )– 3

2
----+

1 2k–

−1
6
---- −1( )k 1

3
---- 2k( )– 1

2
----+

D z( ) = z 3+
z2 4z 5–+
-------------------------- Mc = 1 −3

0 −2

M c
−1 = 

1 −3
2
----

0 −1
2
----

1
2
----

T
0 −1

2
----

1 1
2
----

= T −1 = 1 1

−2 0

f t( ) −1

4
---π 2

π
--- cos 2n 1–( )t

2n 1–( )2
-----------------------------

n=1

∞

∑–=

+ 3 sin 2n 1–( )t
2n 1–

-------------------------------- sin 2nt
2n

------------------–
n=1

∞

∑

f t( ) 1

4
---π 2

π
--- 2n 1–( )cos t

2n 1–( )2
------------------------------- sin nt

n
--------------

n=1

∞

∑–
n=1

∞

∑+=

f t( ) 2
π
---- sin nt

n
--------------

n=1

∞

∑=

f t( ) 2

π
--- 4

π
--- −1( )n+1 cos 2nt

4n2 1–
------------------------------------

n=1

∞

∑+=

f t( ) 2

π
--- 4

π
--- −1( )n+1 ntcos

4n2 1–
----------------------------------

n=1

∞

∑+=

f t( ) 1

2
---π 4

π
--- cos 2n 1–( )t

2n 1–( )2
-----------------------------

n=1

∞

∑–=

f t( ) − 4

π
--- cos 2n 1–( )t

2n 1–( )2
----------------------------- sin2nt

n
---------------

n=1

∞

∑–
n=1

∞

∑=

f t( ) 1
2
----π 1

π
---- sinh π+⎝ ⎠

⎛ ⎞=

+ 2

π
--- −1( )n 1–

n2
--------------------- −1( )n sinh π

n2 1+
-----------------------------+ cos nt

n=1

∞

∑

− 2

π
--- n −1( )n

n2 1+
----------------- sinh π sin nt

n=1

∞

∑

f t( ) 1

3
---π2 4 cos nt

n2
---------------

n=1

∞

∑+=

q t( ) Q 1

2
--- 4

π2
------ 2n 1–( )cos t

2n 1–( )2
-------------------------------

n=1

∞

∑–=

f t( ) 5

π
--- 5

2
--- sin t 10

π
------- cos 2nt

4n2 1–
------------------

n=1

∞

∑–+=

f t( ) 1

4
---π 2

π
--- cos 4n 2–( )t

2n 1–( )2
-----------------------------

n=1

∞

∑–=

f t( ) 3

2
--- 4

π2
------ cos 2n 1–( )t

2n 1–( )2
-----------------------------

n=1

∞

∑+=

t 1
2
----π–

f t 1

2
---π–⎝ ⎠

⎛ ⎞ 3

2
---– − 4

π2
------ −1( )n sin 2n 1–( )t

2n 1–( )2
------------------------------------------

n=1

∞

∑=

f t( ) 2l
π
------ −1( )n+1

n
------------------ sin nπt

l
--------

n=1

∞

∑=

f t( ) 2K
π

-------- 1
n
---- nπt

l
--------sin

n=1

∞

∑=

f t( ) 3
2
---- 6

π
---- 1

2n 1–( )
------------------- sin 2n 1–( )πt

5
--------------------------------

n=1

∞

∑+=
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11

12

13

15

16 (a)

(b)

× sin(2n − 1)πt 

(c)

17

18

19

20

21

22

23

26 (c)

29 (a)

(b) an = 0

,

(c)

(d)

30

iss(t) � 0.008 cos(100πt − 1.96) 
+ 0.005 cos(300πt − 0.33)

31

xss(t) � 0.14 sin(πt − 0.1) + 0.379 sin(3πt − 2.415) 
+ 0.017 sin(5πt − 2.83)

32

xss(t) � 0.044 sin(2πt − 3.13) − 0.0052 sin(4πt − 3.14)

33

iss(t) � 0.78 cos(50πt + (−0.17)) 
− 0.01 sin(100πt + (−0.48))

35

36 (a)

v t( ) A

π
--- 1 1

2
---π sin ωt 2 cos 2nω t

4n2 1–
---------------------

n=1

∞

∑–+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

f t( ) 1---T 2 4T 2

3 π2
-------- −1( )n

n2
------------ cos nπt

T
--------

n=1

∞

∑+=

e t( ) E
2
--- 1 2

π
---- 1

n
---- 2πnt

T
-------------sin

n=1

∞

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

f t( ) − 8

π2
------ 1

2n 1–( )2
--------------------- 2n 1–( )cos πt

n=1

∞

∑=

f t( ) 2

3
--- 1

π2
------ 1

n2
------ cos 2nπt

n=1

∞

∑–=

+ 1
π
---- 1

n
---- sin 2nπt

n=1

∞

∑

f t( ) 1
π
---- 1

n
---- 2sin nπt

n=1

∞

∑=

+ 2

π
--- 1

2n 1–
--------------- 4

π2 2n 1–( )3
----------------------------+

n=1

∞

∑

f t( ) 2

3
--- 4

π2
------ −1( )n+1

n2
------------------ cos nπt

n=1

∞

∑+=

f t( ) 1

6
---π2 1

n2
------ cos 2nt

n=1

∞

∑–=

f t( ) 8

π
--- 1

2n 1–( )3
--------------------- sin 2n 1–( )t

n=1

∞

∑=

f x( ) 8a

π2
------- −1( )n+1

2n 1–( )2
--------------------- sin 2n 1–( )πx

l
---------------------------

n=1

∞

∑=

f x( ) 2l

π2
------ −1( )n+1

2n 1–( )2
--------------------- sin 2 2n 1–( )πx

l
-----------------------------

n=1

∞

∑=

f t( ) 1

2
--- sin t 4

π
--- n −1( )n+1

4n2 1–
-------------------- sin 2nt

n=1

∞

∑+=

f x( ) −1---A 4A

2 π2
-------- 1

2n 1–( )2
--------------------- cos 2n 1–( )πx

l
---------------------------

n=1

∞

∑–=

T x( ) 8KL2

π3
-------------- 1

2n 1–( )3
--------------------- sin 2n 1–( )πx

L
---------------------------

n=1

∞

∑=

f t( ) 1

2
--- 1

2
--- πt 4

π
--- 1

4n2 1–
------------------ sin 2nπt

n=1

∞

∑+cos+=

− 2
π
---- 1

2n 1–
---------------- sin 2n 1–( )πt

n=1

∞

∑

1 4 −1( )n+1

n
------------------ sin nt

n=1

∞

∑+

1

6
---π2 2

n2
------ −1( )n cos nt

n=1

∞

∑+

+ 1

π
--- −π2

n
------ −1( )n 2

n3
------ −1( )n 2

n3
------–+ sin nt

n=1

∞

∑

bn
4

nπ
------ cos nπ cos 1

2
----nπ–⎝ ⎠

⎛ ⎞=

+ 2 3π
4n2
--------- sin 1

2
---nπ π2

8n
------ 1

2
---cos nπ–⎝

⎛

+ 3

n3
------ cos 1

2
---nπ 6

πn4
-------- sin 1

2
---nπ– ⎠

⎞

1
π
---- 3

2
----π2 16–⎝ ⎠

⎛ ⎞ sin t 1
8
---- 32 π3 6π–+( ) sin 2t+

− 1
3
---- 32

9
------- 1

2
----π2+⎝ ⎠

⎛ ⎞ sin 3t . . .+

− 4

π2
------ 2n 1–( )cos πt

2n 1–( )2
--------------------------------- 2

π
--- 2n 1–( )sin t

2n 1–( )
------------------------------

n=1

∞

∑+
n=1

∞

∑
1

4
--- 2

π2
------ 1

2n 1–( )2
--------------------- cos 2 2n 1–( )πt

n=1

∞

∑+

e t( ) 5 20

π
------- 1

2n 1–
--------------- sin 2n 1–( )100πt

n=1

∞

∑+=

f t( ) 400
π

---------- 1
2n 1–
---------------- sin 2n 1–( )t

n=1

∞

∑=

f t( ) 100
π

---------- −1( )n+1

n
------------------ sin 2πnt

n=1

∞

∑=

e t( ) 100

π
---------- 50 sin 50πt 200

π
---------- 100cos πnt

4n2 1–
--------------------------

n=1

∞

∑–+=

f t( ) 1
2
---- j

2nπ
----------- −1( )n 1–[ ] ejnπt/2

n=−∞
n≠0

∞

∑+=

3

4
---π 1

2π
-------- jπ

n
------ 1

n2
------ 1 −1( )n+[ ]–

⎩ ⎭
⎨ ⎬
⎧ ⎫

ejnt

n=−∞
n≠0

∞

∑+
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(b)

(c)

(d)

38 (b) (i) 17.74, (ii) 17.95
(c) 18.14; (i) 2.20%, (ii) 1.05%

39 (a) c0 = 15, 

15, , , , 0, 

(b) 15 W, 24.30 W, 12.16 W, 2.70 W, 0.97 W
(c) 60 W
(d) 91.9%

40 0.19, 0.10, 0.0675

41 (c) c0 = 0, , c2 = 0, 

42 (c) , , , c3 = 0

46 (b) c0 = 0, c1 = � (2π), c2 = 0, MSE = 0

7.9 Review exercises

1

Taking T = π gives the required sum.

2

3 (a)

(b) ;

(c) Taking  gives 

5

8

10 (a)

(b)

13 (a)

(b)

15 (a)

(b) 2.5 W, 9.01%

16 (b)

f(t) = 1 + g(t)

18 (b)

α = (4n − 2)π/T

19 (c) T0 = 1, T1 = t1, T2 = 2t 2 − 1, T3 = 4t 3 − 3t

(d)

(e) , , t = −1

CHAPTER 8

Exercises

1

2

3

4 8K sinc 2ω, 2K sinc ω, 2K(4 sinc 2ω − sinc ω)

5 4 sinc ω − 4 sinc 2ω

7

10 , 

12

a

2
--- sin ωt a

2π n2 1–( )
-------------------------- −1( )n 1+[ ] ejnωt

n=−∞

∞

∑–

3
2
---- j

2πn
----------- 1 −1( )n–[ ] ejnt

n=−∞
n≠0

∞

∑+

2

π
--- 1

1 4n– 2
------------------ e2jnt

n=−∞

∞

∑

cn
30
jnπ
-------- 1 e−jnπ/2–( )=

30
π
------- 1 j–( ) −30

π
-------j −10

π
------- 1 j+( ) 6

π
---- 1 − j( )

c1
3
2
----= c3 −7

8
----=

c0
1
4
----= c1

1
2
----= c2

5
16
-------=

f t( ) 1

6
---π2 2

n2
------ −1( )n cos nt

n=1

∞

∑+=

+ π
2n 1–
--------------- 4

π 2n 1–( )3
--------------------------– 2n 1–( )sin t

n=1

∞

∑

− π
2n
------- sin 2nt

n=1

∞

∑

f t( ) = 1

9
---π 2

π
--- 1

n2
------ cos 1

3
---nπ 1

3
--- 2 −1( )n+[ ]–

⎩ ⎭
⎨ ⎬
⎧ ⎫

cos nt,
n=1

∞

∑+

2
9
----π

f t( ) 2T

π2
------ −1( )n+1

2n 1–( )2
--------------------- 2 2n 1–( )πt

T
----------------------------sin

n=1

∞

∑=

−1
4
----T

t 1
4
----T= S 1

8
----π2=

f t( ) 4

π
--- −1( )n 2n 1–( )sin t

2n 1–( )2
--------------------------------------------

n=1

∞

∑=

f x( ) 4

π
--- −1( )n+1

2n 1–( )2
--------------------- sin 2n 1–( )x

n=1

∞

∑=

f x( ) 1

4
---π 2

π
--- cos 2 2n 1–( )x

2n 1–( )2
-----------------------------------

n=1

∞

∑–=

f t( ) 2
n
---- nsin t

n=1

∞

∑=

f t( ) 1

2
---π 4

π
--- 1

2n 1–( )2
--------------------- 2n 1–( )cos t

n=1

∞

∑+=

f t( ) 1

2
---π 4

π
--- 1

2n 1–( )2
--------------------- 2n 1–( )cos t

n=1

∞

∑–=

g t( ) 4
π
---- 1

2n 1–
---------------- 2n 1–( )sin t

n=1

∞

∑=

v t( ) = 10

π
------- 5 2πt

T
--------  − 20

π
------- 1

4n2 1–
------------------ cos 4nπt

T
-------------

n=1

∞

∑sin+

g t( ) 4
π
---- 1

2n 1–
---------------- 2n 1–( )sin t

n=1

∞

∑=

sin ωt ω cos ωt–

1 ω2+
---------------------------------------- 4

π
--- sin αt α αcos t–

2n 1–( ) 1 α2+( )
------------------------------------------

n=1

∞

∑

1
16
-------T5

5
8
----T4– 33

16
-------T3

5
2
----T2– 95

5
-------T1

79
8
-------T0–+ +

33
4
-------t3 5t2– 91

16
-------t 59

8
-------–+ 11

16
-------

2a

a2 ω2+
-----------------

AT 2jω sinc2 ωT-------
2

AT sinc2ωt
2

-------

ω0

a jω+( )2 ω0
2+

----------------------------------

Fs
x

x2 a2+
-----------------= Fc

x

x2 a2+
-----------------=

1

1 ω2–( ) 3jω+
-----------------------------------
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13 4 sinc 2ω − 2 sinc ω

14

15

16 j[sinc(ω + 2) − sinc(ω − 2)]

18 4AT cos ωτ sinc ωT

19 High-pass filter

20 π e−a | ω |

21 T[sinc(ω − ω 0)T + sinc(ω + ω 0)T ]

26

28 {2, 0, 2, 0}

29 {2, 0, 2, 0}

32 D(z) = 0.06366 − 0.10660z−2 + 0.31831z−4 + 0.5z−5

+ 0.31831z−6 − 0.010660z−8 + 0.06366z−10

33 D(z) = 0.00509(1 + z−10) − 0.04221(z−2 + z−8)
+ 0.29035(z−4 + z−6) + 0.5z−5

8.10 Review exercises

1

2

7 (a)

(b) (i) t e2tH(t) (ii) (t − 1 + e−t)H(t)

8 (a) (b) cos ω 0t

(c) (d)

17 (a)

(b)

CHAPTER 9

Exercises

1 a2 = b2c2

2 α = ±c

5 For α = 0: V = A + Bx

For α � 0:
V = A sinh at + B cosh at, where a2 = α /κ
or C eat + D e−at

For α � 0:
V = A cos bt + B sin bt, where b2 = −α /κ

6 n = −3, 2

8 a = −3

10 (a) Ixx = (Lc)Itt

(b) vxx = (rg)v + (rc)vt and (rc)Wt = Wxx

(c) wxx = (Lc)wtt

12 g(z) = (1 + 2z)/(1 + z)4

15 u = sin x cos ct

16 u = (sin x sin ct + sin 2x sin 2ct)

19

20 u = [exp{−(x − ct)2} − exp{−(x + ct)2}]

21 u = F(x − ct) + F(x + ct), where

22 x + (−3 − �6)y = constant
and
x + (−3 + �6)y = constant

23 u = [4(x + 2t)2 + (x − 3t)2 − 5]

25

1
2
----T sinc 1

2
---- ω0 ω–( )T sinc 1

2
---- ω0 ω+( )T+[ ]

1
2
----T e jωT/2– [ ejω 0T/2 sinc 1

2
---- ω ω0–( )T

+ e jω 0T/2– sinc 1
2
---- ω ω0+( )T ]

1

2
---πj δ ω ω0+( ) δ ω ω0–( )–[ ] − 

ω0

ω 0
2 ω2–

--------------------

sin ω
ω2

----------- cos 2ω
ω

-----------------–

−πj
ω
------ sinc 2ω

1
a b–
------------- eat ebt–( )H t( )

−sin ω0 t 1
4
----π+( )

je
jω 0t −je

−jω 0t

a 2πs+
a2 4π2s2+
-------------------------

1
2πs
---------- sin 2πsT cos 2πsT– 1+( )

1
c
---- 1

4
----

u = 2l

π2
------ π x ct–( )

l
---------------------sin  − 1

9
---- 3π x ct–( )

l
------------------------sin

⎩
⎨
⎧

1
25
------- 5πx ct–

l
---------------------sin  + . . .+  + π x ct+( )

l
---------------------sin

             1
9
----

3πx ct+
l

---------------------sin + 1
25
-------

5πx ct+
l

---------------------sin . . .+–
⎭
⎬
⎫

1
4c
-------

1
2
---- 1

2
----

F z( ) = 
1 z– 0 � z � 1( )
1 z −1 � z � 0( )+
0 z  � 1( )⎩

⎪
⎨
⎪
⎧

1
5
----

x f (x) u(x, 0) u(x, 0.5) u(x, 1) u(x, 1.5) u(x, 2)

−3.0 0.024 893 0 0.025 943 0.058 509 0.106 010 0.180 570
−2.5 0.041 042 0 0.042 774 0.096 466 0.174 781 0.297 710
−2.0 0.067 667 0 0.070 522 0.159 046 0.288 166 0.490 842
−1.5 0.111 565 0 0.116 272 0.262 222 0.475 106 0.681 635
−1.0 0.183 939 0 0.191 700 0.432 332 0.655 692 0.791 166
−0.5 0.303 265 0 0.316 060 0.585 169 0.748 392 0.847 392
0 0.5 0 0.393 469 0.632 120 0.776 869 0.864 664
0.5 0.696 734 0 0.316 060 0.585 169 0.748 392 0.847 392
1.0 0.816 060 0 0.191 700 0.432 332 0.655 692 0.791 166
1.5 0.888 434 0 0.116 272 0.262 222 0.475 106 0.681 635
2.0 0.932 332 0 0.070 522 0.159 046 0.288 166 0.490 842
2.5 0.958 957 0 0.042 774 0.096 466 0.174 781 0.297 710
3.0 0.975 106 0 0.025 943 0.058 509 0.106 010 0.180 570

www.20file.org

www.semeng.ir


1014 ANSWERS TO EXERCISES

26

28 Explicit with λ = 0.5

Implicit with λ = 0.5

29 Explicit

30 Explicit

Implicit (symmetric as in the explicit case)

31 Explicit

32 u = a[exp(− κπ2t) cos πx 

+ exp(− κπ2t) cos πx]

33 AN = 2/πN

34 α = − , κ = −

35 β = 2, u = −u0e
−xsin(x − 2t)

36 The term represents heat loss at a rate proportional to 
the excess temperature over θ0.

37

where

39 u(0, t) = u(l, t) = 0 for all t
u(x, 0) = 10 for 0 � x � l

41

42 At t = 1 with λ = 0.4 and Δ t = 0.05
Explicit

x t = 0 t = 0.25 t = 0.5 t = 1 t = 1.5

0 0 0 0 0 0
0.25 0 0.0625 0.125 0.179 687 0.210 937
0.50 0 0.125 0.218 75 0.265 625 0.269 531
0.75 0 0.0625 0.125 0.179 687 0.210 937
1.00 0 0 0 0 0

x t = 0 t = 0.25 t = 0.5 t = 1

0 0 0 0 0
0.25 0 0.0625 0.122 45 0.174 07
0.50 0 0.125 0.224 49 0.281 5
0.75 0 0.0625 0.122 45 0.174 07
1.00 0 0 0 0

x t = 0 t = 0.02 t = 0.04 t = 0.06 t = 0.08

0 0 0.031 410 0.062 790 0.094 108 0.125 333
0.2 0 0 0.000 314 0.001 249 0.003 101
0.4 0 0 0 0.000 003 0.000 018
0.6 0 0 0 0 0.000 000
0.8 0 0 0 0 0
1.0 0 0 0 0 0

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 0 0 0 0
0.2 0.16 0.19 0.2725 0.388 75
0.4 0.24 0.27 0.36 0.508 125
0.6 0.24 0.27 0.36 0.508 125
0.8 0.16 0.19 0.2725 0.388 75
1.0 0 0 0 0

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 0 0 0 0
0.2 0.16 0.19 0.2319 0.2785
0.4 0.24 0.27 0.3191 0.3849

u = 8

π
--- 1

2n 1–( )3
-----------------------

n =1

∞

∑ (2n 1– )x (2n 1)– ctcossin

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 0 0.03 0.12 0.27
0.2 0.16 0.19 0.28 0.43
0.4 0.24 0.27 0.36 0.51
0.6 0.24 0.27 0.36 0.51
0.8 0.16 0.19 0.28 0.43
1.0 0 0.03 0.12 0.27

Implicit (symmetric as in the explicit case)

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 1 0.03 0.08 0.1495
0.2 0.16 0.19 0.24 0.3099
0.4 0.24 0.27 0.32 0.39

x 0 0.2 0.4 0.6 0.8 1.0
u 0 0.1094 0.2104 0.2939 0.3497 0.3679

1
2
---- 9

4
---- 3

2
----

1
4
---- 1

2
----

1
2
---- 1

4
----

u = an

−κ n + 1
2
----( )2π2t

l 2
---------------------------------- n + 1

2
---⎝ ⎠

⎛ ⎞ πx

l
-------cosexp

n=0

∞

∑

an = u0
8

2n + 1( )2π2
------------------------------ − 2 −1( )n

2n + 1( )π
--------------------------

x t = 0 t = 0.02 t = 0.04 t = 0.06 t = 0.08 t = 0.1

0 0 0 0 0 0 0
0.2 0.04 0.08 0.1 0.12 0.135 0.1475
0.4 0.16 0.2 0.24 0.27 0.295 0.315
0.6 0.36 0.4 0.44 0.47 0.495 0.515
0.8 0.64 0.68 0.7 0.72 0.735 0.7475
1.0 1 1 1 1 1 1
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Implicit

43

44

46 φ = x 2y + sin πx

47 u(r, θ ) = sin(3θ )

48 v = const gives circles with centre  and 
radius 1/| v − 1 |
u = const gives circles with centre  and 
radius 1/|u |

50

× {sinh nπy + (−1)n sinh nπ(1 − y)}

51 Boundary conditions are u(0, y) = u(a, y) = 0, 
0 � y � a; and u(x, 0) = 0, 0 � x � a, u(x, a) = u0, 
0 � x � a

54

55 For Δx = Δy = 0.5 u(0.5, 0.5) = 0.3125
For Δx = Δy = 0.25 u(0.5, 0.5) = 0.3047

56 At two sample points
For Δx = Δy = , u(0.5, 0.5) = 0.6429 and 
u(0.5, 1) = 0.5714
For Δx = Δy = , u(0.5, 0.5) = 0.6379 and 
u(0.5, 1) = 0.5602

57 u(1, 1) = 10.674, u(2, 1) = 12.360, u(3, 1) = 8.090, 
u(1, 2) = 10.337, u(2, 2) = 10.674

58 h = 1/2 gives φ (0.5, 0.5) = 1.8611 and 
φ (0.5, 1) = 1.3194
For h = 1/4 φ is given in the table

59 φ (0, 0) = 1.5909, φ (0, ) = 2.0909, φ (0, ) = 4.7727, 
φ ( , 0) = 1.0909, φ ( , 0) = 0.7727 and other values 
can be obtained by symmetry.

60 (a) u1 = 1/35, u2 = 6 /35
(b) u1 = 0.1024, u2 = 0.0208, u3 = 0.2920, u4 = 0.2920, 

u5 = 0.0208

61 Has the same solution as Exercise 57.

62 u(0, 0) = 1.6818, u(0, ) = 2.2485, u(0, ) = 5.3121, 
u( , 0) = 1.1152, u( , 0) = 0.7727 and other values by 
symmetry. Compare with Exercise 59.

63 T(r, θ) = 

64

66 T(x, y, z) = 

68 Parabolic; r = x − y and s = x + y gives uss = 0 
Elliptic; r = −3x + y and s = x + y gives 
8(uss + urr) − 9ur + 3us + u = 0
Hyperbolic; r = 9x + y and s = x + y gives 49urr − uss = 0

69 u = f (2x + y) + g(x − 3y)

71 (a) elliptic;
(b) parabolic;
(c) hyperbolic
For y � 0 characteristics are (−y)3/2 ± x = constant

x 0 0.2 0.4 0.6 0.8 1.0
u 0 0.1082 0.2095 0.2954 0.3551 0.3679

x t = 0 t = 0.02 t = 0.04 t large

0 0 −0.04 −0.0799 → −1
0.2 0.16 0.12 0.0803 → −0.8
0.4 0.24 0.2002 0.1613 → −0.6
0.6 0.24 0.2012 0.1657 → −0.4
0.8 0.16 0.1269 0.1034 → −0.2
1 0 0 0 → 0

u = 5
8
---- e−πy πx 5

16
------- e−3πy 3πx 1

16
------- e−5πy 5sin πx+sin–sin

πysinh
πsinh

------------------

3
4
----

r
a
-- θsin  − 1

4
----

r
a
--⎝ ⎠

⎛ ⎞ 3

−v
v 1–
----------- , 0⎝ ⎠

⎛ ⎞

1, −1
u

------⎝ ⎠
⎛ ⎞

u = x 2
π
---- nπxsin

n nπsinh
---------------------

n=1

∞

∑+

V = 2α
3

--------

1 a

r
--–⎝ ⎠

⎛ ⎞

1 a

b
---–⎝ ⎠

⎛ ⎞
------------------- α

3
--- 2 3 θ2sin–( )

r2 a5

r3
------–⎝ ⎠

⎛ ⎞

b2 a5

b3
------–⎝ ⎠

⎛ ⎞
----------------------–

1
2
----

1
4
----

y
1 2 1.601 566 6 1.286 764 7 1.056 521 6 1
0.75 2.4375 1.967 955 1 1.581 801 5 1.257 228 7 1
0.5 2.75 2.266 577 2 1.846 507 3 1.437 466 9 1
0.25 2.9375 2.517 471 5 2.131 433 8 1.693 006 4 1
0.0 3 2.75 2.5 2.25 1

x 0 0.25 0.5 0.75 1

1
3
---- 2

3
----

1
3
---- 2

3
----

1
3
---- 2

3
----

1
3
---- 2

3
----

T0

π
------  1– α r+

α r–
-------------

θ
2
----tan⎝ ⎠

⎛ ⎞  1– α r+
α r–
-------------

θ
2
----cot⎝ ⎠

⎛ ⎞tan+tan

2
π
----  1– x0

y0
----⎝ ⎠

⎛ ⎞tan

qL

4ρcκ π
----------------- h 1– z L+

x a–( )2 y2+
-----------------------------⎝ ⎠

⎛ ⎞sin

− h 1–sin z L–

x a–( )2 y2+
-----------------------------⎝ ⎠

⎛ ⎞

qL

4ρcκ π
-----------------– h 1– z L+

x a+( )2 y2+
-------------------------------⎝ ⎠

⎛ ⎞sin

− h 1–sin z L–

x a+( )2 y2+
-------------------------------⎝ ⎠

⎛ ⎞

3
2
----
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1016 ANSWERS TO EXERCISES

72 elliptic if | y | � 1
parabolic if x = 0 or y = ±1
hyperbolic if | y | � 1

73 p � q or p � −q then hyperbolic; p = q then parabolic; 
−q � p � q then elliptic

9.10 Review exercises

3

5 A2n+1 = 8θ0l /π2(2n + 1)2

6 T = T0 + φ0[1 − erf(x /2�(κ t))]

7 Explicit

Implicit

9

11 k = −

12 z = x − y, valid in the region x � y

14

15

17 φ = A cos( px)e−Kt/2cos ω t, where ω2 = c2p2 − K 2

18 On r = a, vr = 0, so there is no flow through 
the cylinder r = a. As r → ∞, vr → U cos θ and 
vθ → −U sin θ, so the flow is steady at infinity and 
parallel to the x axis.

CHAPTER 10

Exercises

1 x = 1, y = 1, f = 9

3 Original problem:
20 of type 1, 50 of type 2, profit = £1080, 70 m 
chipboard remain

Revised problem:
5 of type 1, 75 of type 2, profit = £1020, 5 m chipboard 
remain

4 4 kg nails, 2 kg screws, profit 14 p

5 9 of CYL1, 6 of CYL2 and profit £54

6 LP solution gives x1 = 66.67, x2 = 50, f = £3166.67. 
Profit is improved if more cloth is bought, up to a 
maximum when the amount of cloth is increased to 
600 m then x1 = 0, x2 = 150 and f = £4500.

7 For k � 60: x1 = , x2 = 0, z = k

For 60 � k � 10: x1 = 6, x2 = 7, z = 140 + 6k
For k � 10: x1 = 0, x2 = 10, z = 200

8 x1 = 1, x2 = 0.5, x3 = 1, x4 = 0, f = 6.5

9 B1, 0; B2, 15 000; B3, 30 000; profit £21 000

10 Long range 15, medium range 0, short range 0, 
estimated profit £6 million

11 Many solutions of the form x1 = 1.5 − 1.5t, x2 = 0, 
x3 = 2.5 − 1.5t, x4 = 3t where 0 � t � 1 giving f = 14.

12 x = 1, y = 4, f = 9

13 x1 = 1, x2 = 10, f = 20

14 Boots 50, shoes 150, profit £1150

15 B1, 0; B2, 10 000; B3, 40 000; profit is down to 
£20 000

16 x = 3, y = 0, z = , f = 

17 x1 = 2, x2 = 0, x3 = 2, x4 = 0, f = 12

18 36.63% of A, 44.55% of B, 18.81% of C, profit per 
100 litres £134.26

x t = 0 t = 0.004 t = 0.008

0 1.0000 0.9600 0.9296
0.2 1.0000 1.0000 0.9960
0.4 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 0.9960
1.0 1.0000 0.9600 0.9296

x t = 0 t = 0.004 t = 0.008

0 1.0000 0.9641 0.9354
0.2 1.0000 0.9984 0.9941
0.4 1.0000 0.9999 0.9996
0.6 1.0000 0.9999 0.9996
0.8 1.0000 0.9984 0.9941
1.0 1.0000 0.9641 0.9354

y = 4 e−t/2τ 3πx
l
--⎝ ⎠

⎛ ⎞ ω 3tcos  + 1
2ω 3τ
----------- ω 3tsin⎝ ⎠

⎛ ⎞sin

where ω3 = 3πc

l
-- 1 l2

36π2c2τ2
---------------------–⎝ ⎠

⎛ ⎞
1/2

y = 1 1 0.928 592 5
y = 0.5 0.987 574 3 0.956 962 1 0.937 999 5
y = 1 1 0.984 980 8 0.964 774 6 0.960 193 4

x = 0 x = 0.5 x = 1 x = 1.5

3
2
----

A2n+1 = 32a2(–1) n+1

π3(2n 1)+ 3 (2n 1)+ πb
2a

----------------------------cosh

--------------------------------------------------------------------------

u x, t( ) = 2
π
---- 1

n
---- nπx nπtcossin

n=1

∞

∑
1
4
----

25
3

------- 25
3
-------

4
3
---- 13

3
-------
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19 6 of style 1, 11 of style 2, 6 of style 3, total profit 
£37 500

20 x1 = 2500 m2, x2 = 1500 m2, x3 = 1000 m2, profit £9500

21 x = , y = 

22 x = ±a and y = 0

23 x = a/�2, y = b/�2, area = 2ab

24 Several possible optima: (0, 3, 0); ( ); 
(6 − 3t, 0, t) for any t

25 (0, 1, 1); (0, −1, −1); (2, −1, 1) /�7; −(2, −1, 1) /�7

26 For given surface area S, b = c = 2a, where a2 = S 
and V = 4a3

27 A = −1.83, B = 0.609, I = 81.4

28 For α � 0 minimum at (0, 0); for α � 0 minimum at 
(2α, −3α) /5

29 (a) Bracket (without using derivatives) 0.7 � x � 3.1
(b) Iteration 1:

Iteration 2:

gives b = 1.5127 and f(b) = 1.9497

gives x = 1.1684 and f = 1.9009

30 (a) Iteration 1:

Iteration 2:

gives x = 0.989 79 and f = 0.422 24

gives x = 0.8242, f = 0.4371, f ′ = −0.0247

31 (a) Iteration 1:

Iteration 2:

gives x = 1.4784 and f = 0.260 22

(b) Iteration 1:

Iteration 2:

gives x = 1.4462, f = 0.260 35, f ′ = −0.000 14
(c) Convergence in 6 and 3 iterations to x = 1.446, 

f = 0.2603

32 x = 1, λmax = 2; x = 0, λmax = 1.414 21; x = −1, 
λ max = 1.732 05. One application of the quadratic 
algorithm gives x = −0.148 26 and λ max = 1.3854.

34 (a) After five iterations x = 2.0492 and f = 1.8191.
(b) After five iterations x = 2.1738, f = 0.0267059.

a 0.7 f(a) 2.7408
b 1.9 f(b) 2.177
c 3.1 f(c) 3.2041

a 0.7 f(a) 2.7408
b 1.7253 f(b) 2.0612
c 1.9 f(c) 2.177

(c)
Iteration 1 Iteration 2

x 0.7 3.1 0.7 1.5129
f(x) 2.7408 3.2041 2.7408 1.9498
f ′(x) −4.8309 0.9329 −4.8309 0.4224

a 0 f(a) 0
b 1 f(b) 0.420 74
c 3 f(c) 0.014 11

1
2
---- 1

2
----

3
2
----, 3

2
----, 1

2
----

1
12
-------

a 0 f(a) 0
b 1 f(b) 0.420 74
c 1.5113 f(c) 0.303 96

(b)
Iteration 1 Iteration 2

x 0 1 0 0.8667
f(x) 0 0.4207 0 0.4352
f ′(x) 1 −0.1506 1 −0.0612

a 1 f(a) 0.232 54
b 1.6667 f(b) 0.255 33
c 3 f(c) 0.141 93

a 1 f(a) 0.232 54
b 1.6200 f(b) 0.257 15
c 1.6667 f(c) 0.255 33

x 1 3
f(x) 0.232 54 0.141 93
f ′(x) 0.135 34 −0.087 18

x 1 1.507 7
f(x) 0.232 54 0.259 90
f ′(x) 0.135 34 −0.013 68
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35 Iteration 1:

Iteration 2:

Iteration 3:

36 Steepest descent gives the point (−0.382, −0.255) and 
f = −0.828

37

38

39 y = 0.2294x and y = 0.5x − 0.2706, cost = 5.974

40 (a) After step 1

After step 2 the exact solution x = 1, y = 1 is obtained
(b) After cycle 1

After cycle 2

41 (a) After cycle 1

After cycle 2 the minimum at x = 0, y = 0 is 
obtained

(b) After cycle 1

After cycle 2

The method converges to x = 0, y = 1, z = 0.

43 (a) (0, 0) 
(b)

10.7 Review exercises

1 x1 = 250, x2 = 100, F = 3800

2 x1 = 22, x2 = 0, x3 = 6, profit £370

3 Standard 20, super 10, deluxe 40, profit £21 000

4 2 kg bread and 0.5 kg cheese, cost 210 p

5 Maximum at (1, 1) and (−1, −1), with distance = �2 
Minimum at  and  with 
distance = 

a
1

1
,= f 3

2
----= , ∇∇∇f

1

1
=

a
−1

−1
,= f −1

2
----= , ∇∇∇f

1

−1
=

a
−7

5
----

−3
5
----

,= f −0.9= , ∇∇∇f
1
5
----

1
5
----

=

f −29.0000 −1.5023 −0.4523 −0.0764 −0.0248 −0.0165 → 0
x 2.0000 1.1523 0.5022 0.6214 0.4948 0.5185 → 0.5
y 2.0000 2.1695 1.8214 1.7539 1.6654 1.6394 → 1.5
z 2.0000 0.4741 0.7943 0.9630 1.0170 1.0301 → 1

f 29.0000 1.2448 0.1056 0.0026 0.0000 → 0
x 2.0000 0.2727 0.4245 0.4873 0.4995 → 0.5
y 2.0000 1.7273 1.5755 1.5127 1.5005 → 1.5
z 2.0000 1.4545 1.1510 1.0253 1.0009 → 1

a = 1.2

2
, f 0.8= , g

0

1.6
=

H  = 0.1385 0.1923

0.1923 0.9615

a1

0.5852

0

0.2926

,= f 1.0662,= g1

−0.3918

−1.7557

0.7822

=

H 1 = 
0.3681 0.1593 −0.4047

0.1593 0.9632 0.1002

−0.4047 0.1002 0.7418

a2

1.0190

0.9813

−0.0372

,= f 2.999 10− 6× ,=

g2 = 
0.0046

−0.0012

0.0027

a
0.485

−0.061
,= f 0.2424= , g

0.970

−0.242
=

H  = 0.995 −0.062

−0.062 0.258

a1

–0.0732

0.8344

0.4522

,= f 0.1563,= g1

0.0386

0.1564

0.6296

=

H 1 = 
0.4425 0.3669 0.0998

0.3669 0.7585 −0.0657

0.0198 −0.0657 0.9821

a2

–0.1628

0.7747

0.0525

,= f 0.0321,= g2

–0.2006

–0.1207

0.0630

=

H 2 = 
0.2820 0.1819 –0.0498

0.1819 0.5452 –0.2380

–0.0498 –0.2380 0.8429

f 1.3125 0.0764 0.0072 0.0007 0.0004 0.0000 → 0
x 0.5000 −0.0950 0.0057 −0.0251 −0.0079 −0.0032 → 0
y 0.5000 0.9165 0.9276 0.9633 0.9742 0.9978 → 1
z 0.5000 0.7380 0.9674 1.0009 1.0044 1.0014 → 1

�1
3
----, −�1

3
----( ) −�1

3
----, �1

3
----( ),

�2
3
----

www.20file.org

www.semeng.ir


ANSWERS TO EXERCISES 1019

6 Sides are 3�  and 2�

7 ( , 0, ), with distance 2.683

8 (1, 2, 3) with F = 14, and (−1, −2, −3) with F = −14. 
(1, 2, 3) gives the global maximum and (0, 0, 0) gives 
the global minimum.

9 (i) b = c (ii) a = b = c

10 h2 = 3π2/b, r 2 = 3a2/2b

11 k = 2.19

12 Bracket:

Quadratic algorithm gives R = 6.121 and cost = 802, 
so R = 5.5 still gives the best result. After many 
iterations R = 4.4 and cost = 579

13 Quadratic algorithm always gives x = 0.5 for any 
intermediate value. However,

14 Maximum at θ = 5.01 rad, minimum at θ = 1.28 rad

15 44 mph

16 At iteration 2 
(a) x = −0.0916, y = −0.1375, f = 0.0326 
(b) x = −0.1023, y = −0.1534, f = 0.0323 
(c) x = −0.1007, y = 0.1519, f = 0.0323. The exact 

minimum is at x = −0.1026, y = −0.1540, f = 0.0323

17 Maximum of 1.056 at X = 0, Y = 0.4736, minimum of 
0.5278 at X = ±0.25, Y = 2

18 Partan

Steepest-descent

19 Start values:

λ = 0:

(no improvement)

λ = 1:

(ready for next iteration)

20 (a)

(b)

21

23

R 3.5 5.5 9.5
Cost 1124 704 1418

f 0.7729 0.7584 0.7524 0.7508 → 0.7500

a 0.3147 0.5000 0.5629 0.6051
b 0.5000 0.5629 0.6051 0.6243 → 0.6514
c 1.0000 1.0000 1.0000 1.0000

1
10
------- 1

10
-------

17------- 6
5 5

----

x1
0

0
= , f 1= x2

0.5

0
= , f 0.5=

z2
0.5

0.5
= , f 0.25= x3

1

1
= , f 0=

x1
0

0
= , f 1= x2

0.5

0
= , f 0.5=

x3
0.5

0.5
= , f 0.25=

x4
0.75

0.5
= , f 0.125=

a0
1

1
= , f 1=

a1
1.5

1
= , f 1=

a1
3

2
= , f −5=

a0
0

0
= , F 0.0625=

a1
−0.25

−0.25
= , F 0.0039=

a2
−0.375

−0.375
= , F 0.0002=

a0
1

1
= , F 0.3125=

a1
0.333

3.667
= , F 0.0664=

a0
1

0
= , F 1.29=

a1
1.07

0.27
= , F 0.239=

amin
0.987

0.956
= , Fmin 0.032=

a0
0

0
= , f 1=

a1
0.5

0
= , f 0.5=

a2
0.5

0.5
= , F 0.25=
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24 Bracket gives

Quadratic algorithm gives α* = 1.5218 and f = 9 × 10−5

CHAPTER 11

Exercises

1 (a) (762, 798) (b) 97

2 76.1, (65.7, 86.5)

3 (8.05, 9.40)

4 (71.2, 75.2), accept

5 (2.92, 3.92)

6 (24.9, 27.9)

7 95% confidence interval (53.9, 58.1), criterion 
satisfactory 

8 (−1900, 7500), reject

9 90%: (34, 758), 95%: (−45, 837), reject at 10% but 
accept at 5%

10 90%: (0.052, 0.089), 95%: (0.049, 0.092), reject at 
10% but accept at 5%. Test statistic leads to rejection 
at both 10% and 5% levels, and is more accurate

11 203, (0.223, 0.327)

12 90%: (−0.28, −0.08), 95%: (−0.30, −0.06), accept at 
10% but reject at 5%

13 (0.003, 0.130), carcinogenic

14 (a) X: (0.34, 0.53, 0.13), Y: (0.25, 0.31, 0.44)
(b) 0.472, (c) E(X ) = 1.79, Var(X ) = 0.426, 

E(Y ) = 2.19, Var(Y ) = 0.654, ρX,Y = −0.246

17 (a) 0.552, (b) 0.368

18 0.934

19 0.732

20 (0.45, 0.85)

21 (0.67, 0.99)

22 0.444, 90%: (0.08, 0.70), 95%: (0.00, 0.74), just 
significant at 5%, rank correlation 0.401, significant 
at 10%

23 (a) 6, (b) 0.484,

(c) fX(x) = 6(  − x + x 2), fY( y) = 6(1 − y)y

24 0.84

25 a = 1.22, b = 2.13

26 a = 6.315, b = 14.64, y = 226

28 (a) a = 343.7, b = 3.221, y = 537;
(b) (0.46, 5.98), reject; (c) (459, 615)

29 a = 0.107, b = 1.143, (14.4, 17.8)

31 120 Ω

32 λ = 2.66, C = 2.69 × 106, P = 22.9

33 a = 7533, b = −1.059, y = 17.9

34 χ2 = 2.15, accept

35 χ2 = 12.3, significant at 5%

36 χ2 = 1.35, accept Poisson

37 χ2 = 12.97, accept Poisson

39 χ2 = 1.30, not significant

40 χ2 = 20.56, significant at 5%

41 χ2 = 20.7, significant at 0.5%

42 χ2 = 11.30, significant at 5% but not at 1%, for 
proportion 95%: (0.111, 0.159), 99%: (0.104, 0.166), 
significant at 1%

43 c = 4, MX(t ) = 4 /(t − 2)2, E(X ) = 1, Var(X ) = 

45 0.014

46 0.995

48 Warning 9.5, action 13.5, sample 12, UCL = 11.4, 
sample 9

49 UK sample 28, US sample 25

50 Action 2.93, sample 12

51 Action 14.9, sample 19 but repeated warnings

52 (a) sample 9,  (b) sample 9

53 (a) sample 10, (b) sample 12

54 sample 10

55 sample 16

56 (a) Repeated warnings, (b) sample 15,
(c) sample 14

58 sample 11

α [F(α) − 3]2

1.4 0.0776
1.5 0.0029
1.6 0.0369

1
2
---- 1

2
----

1
2
----
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ANSWERS TO EXERCISES 1021

59 Shewhart, sample 26; cusum, sample 13; 
moving-average, sample 11

60 0.132

61 0.223, 0.042

63 (a) , (b) 2 , (c) 0.237,

(d) 45 min, (e) 0.276

65 Mean costs per hour: A, £200; B, £130

66 6

67 Second cash desk

68 29.4%

69 Sabotage

70 P(C | two hits) = 0.526

71  

72 (a) 0.0944, (b) 0.81

73 (a) , (b) [1 + ]−1

74 AAAA

75 1.28:1 in favour of Poisson

77 2.8:1 in favour of H2

78 12.8:1 in favour of H1

11.12 Review exercises

1 Z = 0.27, accept

2 (0.202, 0.266)

3 (96.1 × 106, 104.9 × 106)

4 χ2 = 3.35 (using class intervals of length 5, with a 
single class for all values greater than 30), accept 
exponential

5 Outlier 72 significant at 5%, outlier included 
(7.36, 11.48); excluded (7.11, 10.53)

6 χ2 = 20.0, significant at 2.5%

7 Operate if p � 

8 Cost per hour: A, £632.5; B, £603.4

9 (a) P(input 0 |output 0) =

(b) p � α � 1 − p

1
4
---- 1

4
----

1
2
----

3
4
---- 1

3
----( )k2n−k

4
13
-------

pα
pα pα+
--------------------  etc.
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abscissa of convergence of Laplace 
transforms 354

AC circuits (application) 335–6
action limits in control charts 965
Adams-Bashforth formulae 133
Adams-Morton formulae 140
addition of matrices 4
addition rule 907
adjoint matrix 5
algebraic multiplicity of eigenvalues 23
aliasing error 688
alternative solutions in linear 

programming 854
amplified gain 464
amplified input 462
amplitude gain 464
amplitude modulation (application)

703–9
demodulation stage 707–8
final signal recovery 708–9
information-carrying signal 706–7
and transmission 705–6

amplitude ratio 464
amplitude spectrum 615, 648, 711
analogue filters 545

application 700–2
analytic function 283
applied probability 906
arbitrary constant 735
arbitrary function 735–40
arbitrary inputs in transfer 

functions 446–9
Argand diagram 259
artificial variable 862
associative law 4
asymptotically stable system 104
attenuated input 462
attribute 964

augmented matrix 9
average power 621

base set 560
basic variables 849
Bayes’ theorem 986–90, 987

applications 988–90
derivation 986–8

beams, bending of 424–7
bending of beams 424–7
Bernoulli, 560
Bernoulli distribution 909
Bessel’s equality 628
BFGS method 890
bilateral Laplace transform 349, 658
bilinear mappings of complex 

functions 273–9
bilinear transform method 549
binding constraints 848
binomial distribution 909
Blackman window 717–18
block diagram algebra 429
blood-flow model (application) 834–7
Bode plots 466
Boole, George 482
boundary conditions in partial differential 

equations 826–30
boundary-value problems in differential 

equations 161–2
bracket 877
bracketing procedure 876–7
breakpoint 467
Brigham, E.E. 693
Broyden 890
Butterworth approximation 700
Butterworth filter 545

A

B

Index
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1024 INDEX

canonical form of matrices, reduction to 39, 
39–53

diagonal form 39–42
Jordan canonical form 42–5
quadratic forms 47–53

canonical representation of equations 99
capacitor microphone (application)

107–10
capacitors 382
carrier signal 655
Carslaw, H.S. 823
Cauchy-Goursat theorem 321
Cauchy-Riemann equations 283–7, 292
Cauchy’s conditions in partial differentiation 

equations 826, 827
Cauchy’s integral theorem 325
Cauchy’s theorem 320–7
causal functions 349
causal sequences 483
Cayley-Hamilton theorem 56
central difference scheme 140
central limit theorem 910

proof 956–7
chain rule 187
Chapman, M.J. 545, 549, 702, 709
characteristic equation 429, 510
characteristic function 953
characteristic polynomial 15
characteristics in partial differential 

equations 745
chemical processing plant 

(application) 896–8
Chi-square distribution and test 946–8

contingency tables 949–51
circular frequency 562
closed boundary 826
coefficients of Fourier series at jump 

discontinuities 599–601
collocation methods 164
column rank matrix 66, 67
column vector 3
columns 761
commutative law 4

not satisfied 4
companion form 83
complement of event 907
complementary function in Laplace transform 

methods 373
complementary function of matrices 90
complex differentiation 282–94

Cauchy-Riemann equations 283–7, 292
conjugate functions 288–90
harmonic functions 288–90
mapping 290–4

complex form of Fourier series 609
complex frequency 346
complex frequency domain 348, 648
complex functions 259–82

bilinear mappings 273–9
inversion 268–73
linear mappings 261–8
polynomial mappings 280–2

complex integration
fundamental theorem of 321

complex series 295–307
Laurent series 303–7
power series 295–9
Taylor series 299–302

composite-function rule 187
conditional distribution 929
conditional probability 907
confidence interval for mean 914–17, 

915
conformal mapping 290
conjugate functions 288–90
conjugate-gradient methods 888
conservative force 218, 246
contingency tables 949–51
continuity correction 910
continuity equation 248
continuous Fourier spectra 648–50
continuous Fourier transform 684–92
continuous random variables 908
continuous source 821
continuous-time systems 347
continuous variables 907
contour integral 317–20
contour integration 317–34

Cauchy’s theorem 320–7
contour integrals 317–20, 318
deforming 321
evaluation of definite real integrals

331–4
residue theorem 328–31, 329

control charts 964
controllable modes in matrics 100
convergence

in Fourier series 584–7
convergence rate of eigenvalues 32
convolution

in discrete-linear systems 524–7
in Fourier transforms 673–5

convolution integral 443
convolution sum 525
Cooley, J.W. 638, 693
corner frequency 467
correlation 929–33, 930

partial 933
rank 936–7
and regression 943
sample 933–5

coupled first order equations 151–6

C
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Courant, Fredricks and Levy (CFL) 
condition 765

covariance 929–33, 930
Crank-Nicolson method for solution of 

heat-conduction/diffusion 
equation 782

cumulative distribution function 908
curl-free motion 209
curl of a vector field 206–9
current 382
current in field-effect transistor 

(application) 338–40
customers 975
Cusum control charts 968–71

D’Alembert, J. de 560
D’Alembert solution in partial differential 

equations 742–51, 745
damped sinusoids 360
dampers 386
Danzig 847
Davidon 888
DD transform 547–53
definite real integrals, evaluation of 331–4
deflation methods in matrices 34
deforming the contour 321
degeneracy of a matrix 26
degree of belief 989
degrees of freedom 919
delay theorem 397
delta function 413
delta operator 547
delta operator (application) 547–53

q (shift) operator 547
dependent variable 259
derivatives

Laplace transforms of 370–1
of scalar point function 199–202
of vector point function 203–13

curl of a vector field 206–9
divergence of vector field 204–6
vector operator 210–13

determinants
of mappings 274
of a matrix 3, 5

DFP method 888, 889–90
diagonal matrix 3, 40, 66
diagonalization 40
difference between means 921–2
difference equation 482

in discrete-time systems 502–3
solutions 504–8

differential 196
differential equations

Laplace transform methods on 370–80
ordinary differential equations 372–7
simultaneous differential 

equations 378–80
step and impulse functions 403–7
transforms of derivatives 370–1
transforms of integrals 371–2

numerical solution of
boundary-value problems 161–2
coupled first order equations 151–6
first order 117–51

on engineering problems 125–7
Euler’s method 118–24
local and global truncation errors

134–6
multi-step methods 128–34
predictor-corrector methods

136–41
Runge-Kutta methods 141–4
software libraries on 149–51
stiff equations 147–9

functional approximation methods
164–70

higher order systems, state-space 
representation of 156–9

method of shooting 162–4
see also partial differential equations

differentiation of Fourier series 597–8
diffusion equation in partial differential 

equations 725, 728–31
solution of 768–84

Laplace transform method 772–7
numerical solution 779–84
separation method 768–72
sources and sinks for 820–3

digital filters (application) 709–15
and windows 715–18

digital replacement filters 546–7
Dirac delta function 413
direct form of state equations 89–91
directional derivative 201
directional field 118
Dirichlet, L. 561
Dirichlet’s conditions 561, 584

for Fourier integral 641
in partial differentiation equations 826, 

828, 829
discrete Fourier transform 680–4
discrete Fourier transform (DFT) pair 683
discrete frequency spectra 615, 639
discrete-linear systems 509–26

convolution 524–7
impulse response 515–18
stability 518–24

discrete-time Fourier transform (DTFT) 710
discrete-time signal 482

D
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discrete-time system 347
constructing 549–51
design of (application) 544–7

analogue filters 545
digital replacement filters 546–7

difference equations in 502–3
discrete variables 907
discretization of continuous-time state-space 

models 538–43
Euler’s method 538–40
step-invariant method 540–3, 541

disjoint events 907
displacement 386
dissipative force 218
distensibility 836
distribution 414, 907

of sample average 913–14
distributive law 4
domain of dependence 746
domain of function 259
domain of influence 746
dominant eigenvalue 31
double integrals 219–24, 220
duality property 656
Duhamel integral 443
dynamic equations 84

echelon form of a matrix 9
eigenvalues 2, 14–30, 17

characteristic equation 15–17
method of Faddeev 16

and eigenvectors 17–22
pole location 470–1
and poles 470
repeated 23–7
useful properties 27–9

eigenvectors 2, 14, 17
electrical circuits (application) 382–6
electrical fuse, heating of (application)

174–8
element of a matrix 3
elliptic equations 824
energy 663
energy signals 668
energy spectral density 664
energy spectrum 664
engine performance data (application)

958–64
mean running times and 

temperatures 959–62
normality test 962–3

equal matrices 3

equality-constrained optimization 844
equality constraints in Lagrange 

multipliers 870–4, 871
equivalent linear systems 99
essential singularity 308
Euler, L. 560
Euler’s formula 563
Euler’s method 538–40
Euler’s method on differential 

equations 118–24, 120
analysis 122–4

even functions in Fourier series 
expansion 573–7

even periodic extension 589
events 907
Everitt, B.S. 951
exact differential 197
excitation term 372
expected value 907
explicit formula

for solution of heat-conduction/diffusion 
equation 779

explicit methods in partial differential 
equations 765

exponential distribution with parameter 976
exponential form of Fourier series 609
exponential modulation theorem 358
exponential order of functions 353, 354

Faddeev method on eigenvalues 16
faltung integral 443
Fannin, D.R. 717
feasible basic solution 849
feasible region 847
Fermat, Pierre de 871
Feshbach, H. 830
Fick’s law 729
field-effect transistor (application) 338–40
filter length 713
filters 545
final-value theorem 439–40
finite calculus 482
finite difference methods 482
finite-difference representation 762
finite-difference techniques 164
finite-element method 164
finite elements in partial differential 

equations 802–14
finite impulse response (FIR) 715
first harmonic 562
first order method on differential 

equations 123

E
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first shift property of z transforms 490–1
first shift theorem in inverse Laplace 

transform 358, 367–9
fixed point 261
Fletcher 888
Fletcher, R. 890, 891
fluid dynamics, streamline in 

(application) 248–9
folding integral 443
forcing term 372
Forsyth, R. 990
Forsythe, W. 548
Fourier, Joseph 560
Fourier coefficients 563
Fourier cosine integral 642
Fourier integral representation 640
Fourier series 560

coefficients at jump discontinuities
599–601

complex forms 608–23
complex representation 608–12
discrete frequency spectra 615–21
multiplication theorem 612–13
Parseval's theorem 612, 614
power spectrum 621–3, 622

differentiation of 597–8
functions defined over finite interval 587–94

full-range series 587–9
half-range cosine and sine series 589–93

integration of 595–7
orthogonal functions 624–9

convergence of generalized series
627–9

definitions 624–6
generalized series 626–7

Fourier series expansion 561–87, 563
convergence 584–7
even and odd functions 573–7
Fourier’s theorem 562–6
functions of period 2B 566–73
functions of period T 580–3
linearity property 577–9
periodic functions 561–2

Fourier sine integral 642
Fourier transforms 346, 638–50

continuous Fourier spectra 648–50
in discrete time 676–99

continuous transform 684–92
fast Fourier transform 693–9
sequences 676–80

Fourier integral 638–43
Fourier transform pair 644–8
frequency response 658–62
and Laplace transform 658–60
properties of 652–7

frequency-shift 654–5
linearity 652
symmetry 655–7, 656

time-differentiation 652–3
time-shift 653–4

step and impulse functions 663–75
convolution 673–5
energy and power 663–72

Fourier’s theorem 562–6
Fredricks 765
frequency 562
frequency components in Fourier series

615
frequency domain 348
frequency-domain filtering 

(application) 703–9
frequency-domain portrait 648
frequency response

in Fourier series 603–6
in Fourier transform 658–62

frequency response (applications) 462–9, 
464

frequency response plot 469
frequency-shift property 654–5
frequency spectrum 615
frequency transfer function 661, 679
Fryba, L. 831
full-rank matrix 66, 67, 77
functional approximation methods in 

differential equations 164–70
functions 259

describing functions (application) 632–3
with localized support 168
of periiod 2B 566–73
of period T 580–3

fundamental mode 562
fundamental theorem of complex 

integration 321

Gabel, R.R. 418–19
Gauss’s divergence theorem 241–4
generalized calculus 414
generalized derivatives 420
generalized form of Parseval’s theorem

628
generalized Fourier coefficients 627
generalized Fourier series 627
generalized Fourier transforms 666
generalized functions 413
generating function 484
geometric distribution 979
geometric moving-average (GMA) 

charts 971
Gerschgorin circles on matrices 36–7
Gibbs, J.W. 586
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Gibbs’ phenomenon 586, 714
Gill, K.F. 442
global truncation errors on differential 

equations 134–6
Goldfarb 890
Goodall, D.P. 545, 549, 702, 709
Goodall, R.M. 548
goodness-of-fit tests 946–51

Chi-square 946–8
contingency tables 949–51

Goodwin, G.C. 548, 553
gradient of scalar point function 199–200
Green’s functions 792, 819
Green’s theorem 224–9, 226, 320, 829

Haberman, R. 725, 819
half-range cosine series expansion 591
half-range Fourier series expansion 591
half-range sine series expansion 591
Hamming window 717–18
Hanning window 717–18
harmonic components in Fourier series 615
harmonic functions 288–90
harmonic functions (application) 336–40
heat-conduction in partial differential 

equations 725, 728–31
solution of 768–84

Laplace transform method 772–7
numerical solution 779–84
separation method 768–72
sources and sinks for 820–3

heat transfer (application) 250–4
using harmonic functions 336–8

heating fin (application) 898–900
heaviside step function 392–5
heaviside theorem 397
Helmholtz equation 734
Hessian matrix 884
higher order systems, state-space 

representation of 156–9
hill climbing 867, 875–95

advanced multivariable searches 888–91
least squares 892–5
single multivariable searches 882–7
single-variable search 875–81

holomorphic function 283
Hooke’s law 386
L’Hôpital’s rule 313
Householder methods 35
Hunter, S.C. 812
Hush, D.R. 717
hyperbolic equations 825

hypothesis tests 912–13
simple, testing 917–18

ideal low-pass filter 545
identity matrix 3
Ifeachor, E.C. 717
image set 259
implicit formula for solution of 

heat-conduction/diffusion 
equation 779

implicit methods in partial differential 
equations 765

improper integral 348
impulse forces 413
impulse functions 413–14, 415–18

in Fourier transforms 663–75
Laplace transforms on 403–7

impulse invariant technique 547
impulse response in transfer functions 436–7
impulse sequence 486, 515
in-phase quadrature components 563
indefinite quadratic forms 49
independent events 907, 929
independent variable 259
inductors 382
inequality-constrained optimization 844
inequality constraints in Lagrange 

multipliers 874
infinite real integrals 331–3
infinite sequence 483
initial-value theorem

of Laplace transforms 437–8
of z transforms 493

inner (scalar) product
input-output block diagram 428
instantaneous source 821
integral solutions to partial differential 

equations 815–23
separated solutions 815–17
singular solutions 817–20

integral transforms 346
integrals, Laplace transforms of 371–2
integration

of Fourier series 595–7
in vector calculus 214–47

double integrals 219–24
Gauss’s divergence theorem 241–4
Green’s theorem 224–9
line integral 215–18
Stokes’ theorem 244–7
surface integrals 230–6
volume integrals 237–40

H
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integro-differential equation 371
inter-arrival time 975
interval and test

for correlation 935–6
for proportion 922–4

interval estimate 912–13
inverse Laplace transform 364–5

evaluation of 365–7
and first shift theorem 367–9

inverse Laplace transform operator 364
inverse mapping 261

with respect to the circle 271
of complex functions 268–73

inverse matrix 5–6
properties 6

inverse Nyquist approach 469
inverse polar plot 469
inverse transform 364
inverse z transform operator 494
inverse z transformation 494
inverse z transforms 494–501

techniques 495–501
inversion of complex functions 268–73
irrotational motion 209, 246

Jackson, L.B. 717
Jacobi methods 35
Jacobian 227
Jacobian matrix 884
Jaeger, J.C. 823
Jervis, B.W. 717
joint density function 927
joint distributions 925–9, 926

independence 928–9
and marginal distributions 926–8

Jong, M.T. 715
Jordan canonical form 42–5
jump discontinuities, coefficients of Fourier 

series at 599–601
Jury, E.I. 520
Jury stability criterion 520–2

kernel of Laplace transform 348
Kirchhoff’s laws 87, 382
Kraniauskas, P. 527
Kuhn, 874

Lagrange interpolation formula 879
Lagrange multipliers 870–4, 871

equality constraints 870–4, 871
inequality constraints 874

Laplace equation in partial differential 
equations 725, 731–3

solution of 785–801
numerical solution 794–801
separated solutions 785–92

Laplace transform 348–69
bending of beams 424–7
definition and notation 348–50, 392–5
derivative of 360–1
on differential equations 370–80

ordinary differential equations 372–7
simultaneous differential 

equations 378–80
step and impulse functions 403–7
transforms of derivatives 370–1
transforms of integrals 371–2

existence of 353–5
and Fourier transform 658–60
frequency response (application) 462–9
heaviside step function 392–5

and impulse functions 418–23
impulse functions 413–14, 415–18

and heaviside step function 418–23
inverse transform 364–5

evaluation of 365–7
and first shift theorem 358, 367–9

kernel of 348
limits 348–50
as non-anticipatory system 349
one-sided (unilateral) transform 349
periodic functions 407–11
pole placement (application) 470–1
properties of 355–63
second shift theorem 397–400

inversion 400–3
sifting property 414–15
simple functions 350–3
solution to wave equation 756–9
state-space equations, solution of 450–61
table of 363
transfer functions 428–49

and arbitrary inputs 446–9
convolution 443–6
definitions 428–31
final-value theorem 439–40
impulse response 436–7
initial-value theorem 437–8
stability in 431–6

two-sided (bilateral) transform 349
unit step function 392, 395–7
and z transforms 529–30

J
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Laplace transform method 346
for solution of heat-conduction/diffusion 

equation 772–7
Laplace transform operator 348
Laplace transform pairs 348

table of 363
Laplacian operator 211
Laurent series 303–7, 314
leading diagonal 3
leading principle minor of matrices 50
least squares in hill climbing 892–5
left inverse matrix 77
left singular vector matrix 71
Levy 765
Lewis, P.E. 802
likelihood ratio 989
lilinear transform 547
limit-cycle behaviour 632
Lindley, D.V. 990
line integral 215–18, 317
line spectra 615
linear dependence of vector spaces 11–12
linear equations of matrices 7–9
linear mappings of complex functions 261–8
linear operator

in Fourier transforms 652
in Laplace transforms 356
on z transforms 489

linear programming 847–69
simplex algorithm 849–59
two-phase method 861–9

linear regression 940
linear time-variant system 372
linearity property

in Fourier series expansion 577–9
of Fourier transforms 652
of z transforms 489–90

local truncation errors on differential 
equations 134–6

LR methods in matrices 36
Lyapunov stability analysis 

(application) 104–6

Maclaurin series expansion 300
magnification 263, 264
main lobe 716
main lobe width 716
MAPLE

on differential equations 121, 122, 126, 
139, 144, 149–51, 154, 159, 174

on Fourier series 572–3
on Fourier transforms

on Laplace transforms 353, 359–60, 
361–2, 365–6, 376, 377, 379, 396, 
397, 400, 401, 406, 416

on linear progamming 856, 866
on matrices 6–7, 9, 10, 21–2, 39, 

80–1
on partial differentiation equations 733, 

738, 739, 774
on vector calculus 185, 187, 190–1, 193, 

206, 209
on z transforms 487, 488, 497, 505, 517

mapping 259
in complex differentiation 290–4
determinants of 274
polynomial mapping 280–2

marginal density function 927
marginal distributions 926–8
marginally stable linear system 431–2
marginally stable system 519
mass 386
MATLAB

on differential equations 121, 149–51
on Fourier series 572–3
on Fourier transforms 647–8, 666, 669, 

671–2, 703–5
on hill climbing 876–9, 882, 886, 890–1, 

893, 895
on Laplace transforms 353, 359–60, 

361–2, 365–6, 376, 377, 380, 395–
6, 397, 400, 401, 416, 417, 437, 
459–61

on linear progamming 856–7, 866
on matrices 6–7, 8, 10, 21, 24–5, 39, 45, 

64, 79–80
on partial differentiation equations 739, 

764, 767, 781, 784, 798, 806, 807, 
808, 813

on vector calculus 185, 187, 190–1, 193, 
206, 209, 224, 240

on z transforms 486, 488, 496–7, 498, 
500–1, 505, 517, 542–3

matrices 2–114
eigenvalues 14–30
characteristic equation 15–17

method of Faddeev 16
and eigenvectors 17–22
repeated 23–7
useful properties 27–9

functions 54–64
matrix algebra 2–10

adjoint matrix 5
basic operations 3–4
definitions 3
determinants 3
inverse matrix 5–6

properties 6
linear equations 7–9
rank 9–10
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numerical methods 30–7
Gerschgorin circles 36–7
power method 30–6

reduction to canonical form 39–53
diagonal form 39–42
Jordan canonical form 42–5
quadratic forms 47–53

singular value decomposition 66–81
pseudo inverse 75–81
SVD 72–5

singular values 68–72
solution of state equation 89–102

canonical representation 98–102
direct form 89–91
spectral representation of response 95–8
transition matrix 91

evaluating 92–4
state-space representation 82–8

multi-input-multi-output (MIMO) 
systems 87–8

single-input-single-output (SISO) 
systems 82–6

symmetric 29–30
vector spaces 10–14

linear dependence 10–12
transformation between bases 12–13

matrix 3
maximum of objective function 853
mean 907

when variance unknown 918–20
mean square error in Fourier series 627
means, difference between 921–2
mechanical vibrations (application) 386–90
memoryless property 976
meromorphic poles 309
method of separation of variables 751
Middleton, R.M. 548, 553
minimal form 457
modal form in matrics 96
modal matrix 39
modes in matrics 96
modulation

in Fourier transforms 655
moment generating functions 953–7

definition and applications 953–4
Poisson approximation to the 

binomial 955–7
Moore-Penrose pseudo inverse square matrix 

76
Morse, P.M. 830
motion in a viscous fluid (application)

116–17
moving-average control charts 971–2
multi-input-multi-output (MIMO) systems

in Laplace transforms 455–61
in matrices 87–8

multi-step methods on differential 
equations 128–34, 131

multiple service channels queues 982–3
multiplication-by-t property 360
multiplication of matrices 4
multiplication theorem in Fourier 

series 612–13
Murdoch, J. 969, 971

negative-definite quadratic forms 49, 51
negative-semidefinite quadratic forms

49, 51
net circulation integral 218
Neumann conditions in partial differentiation 

equations 826, 828, 829
Newton method 884, 885
Newton-Raphson methods 884
Newton’s law 386
Nichols diagram 469
nodes 761
non-anticipatory systems 349
non-basic variables 849, 854
non-binding constraints 848
non-conservative force 218
non-negative eigenvalues 68
non-square matrix 66
non-trivial solutions of matrices 8
nonlinear regression 943–4
normal distribution 910–11
normal residuals in regression 941–2
normalizing eigenvectors 20
nth harmonic 562
null matrix 3
Nyquist approach 469
Nyquist interval 688
Nyquist-Shannon sampling theorem 688, 

692

observable state of matrix 100
odd functions in Fourier series 

expansion 573–7
odd periodic extension 590
offsets 440
Ohm’s law 382
one-dimensional heat equation 729
one-sided Laplace transform 349
open boundary 826
Oppenheim, A.V. 717
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optimization
chemical processing plant 

(application) 896–8
heating fin (application) 898–900
hill climbing 867, 875–95
Lagrange multipliers 870–4
linear programming 847–69

order of pole 308
order of the system 429, 510
ordinary differential equations, Laplace 

transforms of 372–7
orthogonal functions 624–9
orthogonal matrix 13
orthogonal set 624
orthogonality relations 563
orthonormal set 625
oscillating systems (application) 603–6
oscillations of a pendulum 

(application) 170–4
over determined matrix 75, 78

Page, E. 983
parabolic equations 825
parameters 909

estimating 912–24
confidence interval for mean 914–17, 

915
difference between means 921–2
distribution of sample average 913–14
hypothesis tests 912–13
interval and test for proportion 922–4
interval estimate 912–13
mean when variance unknown 918–20
testing simple hypotheses 917–18

parasitic solutions in differential equations 
132

Parseval’s theorem 612, 614, 664
partial correlation 933
partial derivative 185
partial differential equations 724

arbitrary functions and first-order 
equations 735–40

boundary conditions 826–30
finite elements 802–14
formal classification of 824–6
heat-conduction or diffusion 

equation 725, 728–31
solution of 768–84

Laplace transform method 772–7
numerical solution 779–84
separation method 768–72
sources and sinks for 820–3

Helmholtz equation 734
integral solutions 815–23

separated solutions 815–17
singular solutions 817–20

Laplace equation 725, 731–3
solution of 785–801

numerical solution 794–801
separated solutions 785–92

Poisson equation 734
Reynolds number 733
Schrôdinger equation 734
wave equation 725–8

solution of 742–67
D’Alembert solution 742–51, 745
Laplace transform solution 756–9
numerical solution 761–7
separated solutions 751–6

particular integral 90
particular integral in Laplace transform 

methods 373
Paterson, Colin 548
path of line integral 215
pendulum, oscillations of (application)

170–4
period 561
periodic extension 588
periodic functions 561–2
phase angle 562
phase plane 83
phase quadrature components 563
phase shift 464
phase spectrum 615, 648, 711
phases in linear programming 862–6
point at infinity 303
Poisson approximation to the binomial

955–7
Poisson distribution 909
Poisson equation 734
Poisson process in queues 975–7
polar plot 469
pole placement (application) 470–1
pole-zero plot 429
poles 308, 510

and eigenvalues 470
polynomial approximation 879
polynomial mapping 280–2
population 912
population mean 913
positive constant in matrices 104
positive definite function 104
positive-definite quadratic forms 49, 51
positive-semidefinite quadratic forms 49, 51
posterior odds 989
posterior probabilities 989
Powell 888
power 665
power method on matrices 30–6, 32
power series 295–9
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power signals 668
power spectrum 621–3, 622
practical signal 641
predictor-corrector methods on differential 

equations 136–41, 138
principal diagonal 3
principal part of Laurent series 304
principle minor of matrices 50
principle of superposition 446
prior odds 989
prior probabilities 989
probability density function 908
probability theory 906–12

Bernoulli distribution 909
binomial distribution 909
central limit theorem 910

proof 956–7
normal distribution 910–11
Poisson distribution 909
random variables 907–9
rules 907
sample measures 911–12

product of eigenvalues 27
product rule 907
proportion, interval and test for 922–4
pseudo inverse square matrix 75–81, 76
punctured disc 305
pure resonance 389

q (shift) operator 547
QR methods in matrices 36
quadratic forms of matrices 47–53, 105
quadratic polynomial 879
quasi-Newton method 884
queues 974–85

multiple service channels queue 982–3
Poisson process in 975–7
problems 974–5
simulation 983–5
single service channel queue 978–82

quiescent state 428

Rade, L. 643
radius of convergence 296
random variables 907–9
range charts 973

range of function 259
rank correlation 936–7
rank of a matrix 9–10
rate of arrival 976
real integrals 333–4
real vector space 10
realization problem 457
reciprocal basis vectors of matrix 95
rectangular matrix 66
rectangular window 712
regression 938–44, 939

and correlation 943
least squares method 939–41
linear 940
nonlinear 943–4
normal residuals 941–2

regression coefficients 940
regular function 283
regular point of f(z) 308, 309
removable singularity 309
repeated eigenvalues 23–7
residual of equation 165
residue theorem 328–31, 329
residues 311–16
resistors 382
resonance 389, 604
response in differential equations 372
Reynolds number in partial differential 

equations 733
Richardson extrapolation 136
Riemann sphere 303
right inverse matrix 77
right singular vector matrix 71
Roberts, R.A. 418–19
robust methods 906
root mean square (RMS) 614
rotation 263, 264
rotational motion 209
Routh-Hurwitz criterion 434
row rank matrix 66, 67
row vector 3
rows 761
rule of total probability 987
Runge-Kutta methods on differential 

equations 141–4

sample 912
sample average 912

distribution of 913–14
sample correlation 933–5
sample measures in probability theory

911–12
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sample range 973
sample space 907
sample variance 912
sampling 482, 487–8
sampling function 621
scalar field 183, 210
scalar Lyapunov function 104
scalar point function 182

derivatives of 199–202
gradient 199–200

scatter diagrams 933
Schafer, R.W. 717
Schrôdinger equation 734
Schwarzenbach, J. 442
second shift property of z transforms 491–2
second shift theorem 397–400

inversion 400–3
separated solutions

in Laplace equation method 785–92
of partial differential equations 815–17
to wave equation 751–6

separation method for solution of 
heat-conduction/diffusion 
equation 768–72

service channel 975
service discipline 975
service time 975
set of vectors 11
Shanno 890
Shewart attribute control charts 964–7
Shewart variable control charts 967–8
shooting method in differential 

equations 162–4
sifting property 414–15
signals 347
significance levels 917
signum function 671
similarity transform 39
simple pole 309
simplex algorithm 849–53, 850

general theory 853–9
simplex method 848
simplification 2
simulation, queues 983–5
simultaneous differential equations, Laplace 

transform on 378–80
sine function 620
Singer, A. 835
single-input-single-output (SISO) 

systems 82–6
in Laplace transforms 450–4
in matrices 82–6

single multivariable searches in hill 
climbing 882–7

single service channel queue 978–82
single-variable search in hill climbing

875–81
singular points 871

singular solutions of partial differential 
equations 817–20

singular value decomposition matrices
66–81, 72–5

pseudo inverse 75–81
singular value matrix 68
singularities 303, 308–11
sinks in solution of heat-conduction/diffusion 

equation 820–3
sinusoids, damped 360
skew symmetric matrix 3
slack variables 849
Snell's law 872
solenoidal vectors 205
sources in solution of heat-conduction/

diffusion equation 820–3
Spearman rank correlation coefficient 936
spectral form in matrics 96
spectral leakage 714
spectral matrix 39
spectral pairs in matrics 95
spectral representation of response of state 

equations 95–8
springs 386
square matrix 3, 68
square non-singular matrix 76
stability

in differential equations 132
in discrete-linear systems 518–24
in transfer functions 431–6

stable linear system 431
standard deviation 908
standard form of transfer function 466
standard normal distribution 910
standard tableau 853
state equation 83
state equation, solution of 89–102

canonical representation 98–102
direct form 89–91
spectral representation of response 95–8
transition matrix 91

evaluating 92–4
state feedback 470
state-space 2, 83
state-space form 552
state-space model 84
state-space representation

of higher order systems 156–9
in Laplace transforms 450–61

multi-input-multi-output (MIMO) 
systems 455–61

single-input-single-output (SISO) 
systems 450–4

in matrices
multi-input-multi-output (MIMO) 

systems 87–8
single-input-single-output (SISO) 

systems 82–6
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state variables 83
state vector 83
statistical quality control (application)

964–73
Cusum control charts 968–71
moving-average control charts 971–2
range charts 973
Shewart attribute control charts 964–7
Shewart variable control charts 967–8

statistics 906
steady-state erors 440
steady-state gain 440
Stearns, S.J. 717
Steele, N.C. 545, 549, 702, 709
steepest ascent/descent 882
step functions

in Fourier transforms 663–75
Laplace transforms on 403–7

step-invariant method 540–3, 541
step size in Euler’s method 120
stiff differential equations 147–9
stiffness matrix 806
Stokes’ theorem 244–7, 245
stream function 248
streamline in fluid dynamics 

(application) 248–9
subdominant eigenvalue 31
successive over-relaxation (SOR) 

method 797–8
sum of eigenvalues 27
superposition integral 443
superposition principle 446
surface integrals 230–6
surplus variable 862
Sylvester's conditions 50, 105
symmetric matrix 3, 29–30, 68
symmetry property 655–7, 656
system discrete 510
system frequency response 661
system input/output 372

tableau form 850
Taylor series 299–302
Taylor series expansion 300
Taylor theorem 884
testing simple hypotheses 917–18
text statistic 917
thermal diffusivity 251, 729
thermally isotropic medium 250
Thomas algorithm 766
time as variable 346
time-differentiation property 652–3

time domain 348
time-shift property 653–4
top hat function 393
total differential 196

in vector calculus 196–9
trace 3
trajectory 83
transfer functions 428–49

and arbitrary inputs 446–9
convolution 443–6
definitions 428–31
final-value theorem 439–40
impulse response 436–7
initial-value theorem 437–8

transfer matrix 456
transformations 192, 259

in vector calculus 192–5
of vector spaces 12–13

transition matrix 91
in discrete-time state equations 533
evaluating 92–4

transition property 91
translation 263, 264
transmission line 836
transposed matrix 3, 4, 68

properties 4
Tranter, W.H. 717
travelling waves 744
trial function 165
triangular window 717
Tucker 874
Tukey, J.W. 638, 693
Tustin transform 547, 549
two-dimensional heat equation 731
two-phase method 861–9
two phase strategy 864
two-sided Laplace transform 349
type I error 917
type II error 917

unbounded region 855
uncontrollable modes in matrics 100
under determined matrix 75
unilateral Laplace transform 349, 658
unit impulse function 413
unit matrix 3
unit pulse 486
unit step function 392, 395–7
unitary matrix 68
unobservable state of matrix 100
upper control limit (UCL) in control 

charts 966
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variable 964
variance 907

unknown, mean when 918–20
variational problems 899
vector calculus 181–256

basic concepts 183–91
derivatives of scalar point function

199–202
gradient 199–200

derivatives of vector point function
203–13

curl of a vector field 206–9
divergence of a vector field 204–6
vector operator 210–13

domain 182
integration 214–47

double integrals 219–24
Gauss’s divergence theorem 241–4
Green’s theorem 224–9
line integral 215–18
Stokes’ theorem 244–7
surface integrals 230–6
volume integrals 237–40

rule 182
total differential 196–9
transformations 192–5

vector field 183, 210
divergence of 204–6

vector-matrix differential equation 83
vector point function 182

derivatives of 203–13
curl of a vector field 206–9
divergence of a vector field 204–6
vector operator 210–13

vector spaces in matrices 10–14
linear dependence 10–12
transformation between bases 12–13

vectors 10
viscous fluid, motion in (application)

116–17
voltage 382
volume integrals 237–40
vortex 250

Ward, J.P. 802
warning in control charts 965
wave equations in partial differential 

equations 725–8

solution of 742–67
D’Alembert solution 742–51
Laplace transform solution 756–9
numerical solution 761–7
separated solutions 751–6

wave propagation under moving load 
(application) 831–4

‘weak’ form 804
weighting factor 79
weighting function in transfer functions 436
Westergren, B. 643
window functions 709, 712

z transform function 510
z transform method for solving linear 

constant-coefficient difference 
equationa 505

z transform operator 483
z transform pair 483
z transforms 483–8

definition and notation 483–7
discrete-linear systems 509–26

convolution 524–7
impulse response 515–18
stability 518–24

discrete-time state equations 533–7
discrete-time state-space equations 

in 530–7
discrete-time systems in 502–8

design of (application) 544–7
state-space model in 530–2

discretization of continuous-time 
state-space models 538–43

Euler’s method 538–40
inverse see inverse z transforms
and Laplace transform 529–30
properties 488–93

final-value theorem 493
first shift property 490–1
initial-value theorem 493
linearity 489–90
multiplication 492–3
second shift property 491–2

sampling 487–8
table of 493

zero crossing 622
zero matrix 3
zero of f(z) 308–11
zero-order hold device 482
zeros of discrete transfer function 510
zeros of transfer function 429
Ziemer, R.E. 717
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