

BUA

Universidad Autónoma de Puebla

Instituto de Física "Luis Rivera Terrazas"

Optimización de películas delgadas de silicio microcristalino y polimorfo, depositadas por la técnica PECVD, para aplicaciones en celdas solares

Tesis presentada por

Ing. Xochilt Luna Zempoalteca

para obtener el grado de

Maestría (en la especialidad de Ciencia de Materiales)

Dirigida por

Dr. Mario Moreno Moreno (INAOE) Dr. Luis Octavio Meza Espinoza

> Puebla, México Enero 2018

©2018 – Ing. Xochilt Luna Zempoalteca Derechos Reservados

Agradecimientos

Agradezco a mi familia y esposo por su apoyo incondicional en esta etapa de mi vida. A mis amigos por estar allí para escucharme.

Del mismo modo quiero agradecer a mis asesores; al Dr. Mario Moreno Moreno por su confianza y apoyo para el desarrollo de esta tesis; y al Dr. Octavio Meza Espinoza por haberme aceptado como su estudiante de tesis.

A mis profesores durante la maestría por su paciencia, constancia y dedicación en cada una de sus enseñanzas.

A mis revisores, Dr. Enrique Quiroga González, Dra. Ma. Estela Calixto Rodríguez y Dra. Ana Lilia González Ronquillo, que enriquecieron la tesis con sus observaciones.

Al personal técnico del Laboratorio Central del Instituto de Física- BUAP y Microelectrónica del INAOE, por brindarme su apoyo y las facilidades para el desarrollo de esta tesis.

Agradezco al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada durante mi maestría con la beca No. 414496.

Agradezco a INAOE por la beca otorgada como tesista en el periodo de Septiembre 2016-2017, para el desarrollo de mi proyecto de tesis.

Agradezco a la Vicerrectoría de Investigación y Estudios de Posgrado (VIEP), por el apoyo otorgado en el mes de Octubre para la conclusión de tesis.

Dedicado a...

Mis padres José Alberto Luna López, Roció Zempoalteca Pérez, a mis hermanas y a mi querido esposo Ovier Obregón Hinostroza que son mi inspiración y fortaleza para seguir adelante.

Optimización de películas delgadas de silicio microcristalino y polimorfo, depositadas por la técnica PECVD, para aplicaciones en celdas solares

Resumen

La electricidad generada por medio de la conversión de la energía solar, es considerada como una de las fuentes alternas más prometedoras y limpias que puede sustituir el uso de combustibles fósiles, por lo que su estudio y desarrollo se ha vuelto un tema de gran interés en años recientes. Las celdas solares de película delgada presentan bajos costos de producción debido a que éstas pueden ser depositadas sobre vidrios, láminas metálicas o plásticos flexibles utilizando una cantidad mínima de material para la formación de la película. En este contexto tenemos al silicio amorfo hidrogenado (a-Si:H), silicio microcristalino (μ c-Si:H) y silicio polimorfo (pm-Si:H), los cuales son semiconductores de gran interés en la industria fotovoltaica, porque pueden depositarse en forma de película delgada de bajo costo y producción masiva. El método de depósito PECVD ha sido una de las técnicas más utilizadas para la producción de a-Si:H, μ c-Si:H y pm-Si: H. Presentando ventajas en comparación con otras técnicas como lo son depósitos en áreas grandes (>1m²), temperaturas de depósito bajas (<300°C) y su uso generalizado en el campo de la electrónica, donde ha demostrado su fiabilidad y reproducibilidad.

El objetivo planteado en este trabajo fue el depósito, caracterización y estudio de películas delgadas de μ c-Si:H, pm-Si:H y a-Si:H (tipo p y n) utilizando la técnica PECVD a bajas temperaturas (200 °C). La caracterización estructural, eléctrica y óptica fue determinante para seleccionar la mejor película intrínseca y dopada para la fabricación de celdas solares tipo PIN cuya estructura es la siguiente: sustrato de vidrio / óxido conductor transparente / película de a-Si:H tipo p / película intrínseca (pm-Si:H o μ c-Si:H) /película a-Si:H tipo n / metal. Los resultados preliminares muestran que la mejor película intrínseca fue la de μ c-Si:H depositada a 10 W con una fotorespuesta (σ_{ph}/σ_D) de 2.79 E5, mientras que las películas de a-Si:H tipo p y n depositadas con un flujo de 15 sccm de B₂H₆ y 10 sccm de PH₃, respectivamente, muestran una buena conductividad a temperatura ambiente (σ_D) y baja energía de activación (E_a). Estas películas nos permitieron obtener una celda PIN con una eficiencia cercana al 2%.

Optimization of Microcrystalline and Polymorphous Silicon thin films, deposited by PECVD technique for applications in solar cells

Abstract

Electricity generated by solar energy conversion, is considered one of the most promising alternative sources and clear than can substitute the fossil fuels, its study and development has become a topic of great interest in recent years. Therefore, the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits for humanity. In this sense, thin film solar cells have low production costs because they can be deposited on glass, metal sheets or flexible plastics using a minimum amount of material for their development.

Hydrogenated amorphous silicon (a-Si: H), microcrystalline silicon (μ c-Si: H) and polymorphous silicon (pm-Si: H) are semiconductors of great interest in photovoltaic industry, because they can be deposited as low cost thin films in mass production. On the other hand, plasma enhanced chemical vapor deposition (PECVD) is a thin film fabrication method, which has been one of the most used techniques for the production of a-Si:H, μ c-Si: H and pm-Si: H. It shows advantages in comparison with other techniques such as the deposition over large substrate areas (> 1m²), low deposit temperatures (<300 ° C) and its use in electronics, where it has shown its reliability and reproducibility. The remarkable properties of this technique and variety of possible applications make it an area of interest for researchers, and offers potential for many future developments.

The objectives proposed in this research work were the deposition, characterization and study of μ c-Si:H, pm-Si:H and a-Si:H (p and n type) thin films using the PECVD technique at low temperatures (200 °C). The structural, electrical and optical characterizations were important in order to choose the best intrinsic and doped layer for fabrication of PIN junction solar cells whose structure was: Glass substrate / transparent conductive oxide /p type a-Si:H layer/ intrinsic (pm-Si:H or μ c-Si:H) layer/ n type a-Si:H layer/ metal contact. The best intrinsic thin film was μ c-Si:H, it was deposited with a RF power of 10 W, the results show a high photoresponse (σ_{ph}/σ_D) of 2.79E5. In the same way, a-Si:H (p and n type) thin films were deposited with a flow of 15 sccm of B₂H₆ and 10 sccm of PH₃, respectively, showing a high conductivity at room temperature (σ_D) and low activation energy (E_a). These thin films have been used for the fabrication of PIN solar cells cell with efficiencies close to 2%.

Contenido

Introducción	
1.1 Energía Solar	4
1.1.2 Energía solar fotovoltaica	5
1.1.3 Celdas solares	5
1.1.4 Estatus actual de las celdas solares	6
1.2 Película de silicio microcristalino(μc -Si:H) y silicio polim	orfo (<i>pm-Si:H</i>) 8
1.3 Motivación	9
1.3.1 Viabilidad del Proyecto	9
1.4 Objetivo General	9
1.4.1 Objetivos Particulares	
1.5 Organización de la Tesis	
Conceptos generales	
2.1 Materiales de estudio	
2.1.1 Silicio Amorfo Hidrogenado (a — Si: H)	
2.1.2 Silicio Polimorfo Hidrogenado (pm — Si: H)	
2.1.3 Silicio Microcristalino Hidrogenado (μc – Si: Η)	
2.2 Propiedades de materiales amorfos	
2.2.1 Estructura amorfa y microcristalina	
2.2.2 Estructura electrónica	
2.2.3 Coeficiente de absorción	
2.2.4 Efecto Stabler-Wronski	
2.3 Depósito químico en fase vapor asistido por plasma (Plasma Deposition -PECVD)	a Enhanced Chemical Vapor
2.4 Técnicas de Caracterización	
2.4.1 Caracterización Estructural	
2.4.1.1 Microscopia de Fuerza Atómica	
2.4.1.1.1 Altura promedio (Sa) y Rugosidad RMS (Sq)	
2.4.1.2 Espectroscopía Raman	
2.4.1.2.1 Fracción de volumen Cristalino (X _c)	
2.4.1.2 Perfilometría y Velocidad de depósito (V _d)	
2.4.2 Caracterización Eléctrica	

2.4.2.1 Medición corriente-voltaje (I-V) variando temperatura	24
2.4.2.1 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación	25
2.4.3 Caracterización Óptica	25
2.4.3.1Transmitancia	25
2.4.3.1.1 Ley de Bouguer-Lambert	
2.5 Fundamentos de las celdas solares	27
2.5.1 Radiación y espectro solar	27
2.5.2 Funcionamiento de una celda solar ideal: la estructura p-n	
2.5.3 Estructura PIN	29
2.5.4 Configuración de la celda solar PIN	30
2.5.5 Características de desempeño de las celdas solares	
Detalles experimentales	33
3.1 Caracterización Estructural	33
3.1.1 Microscopia de Fuerza Atómica (AFM)	33
3.1.2 Espectroscopia Raman	
3.1.3 Perfilometría	
3.2 Caracterización Eléctrica	35
3.2.1 Medición corriente-voltaje (I-V) variando temperatura	35
3.2.2 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación	
3.3 Caracterización Óptica	
3.3.1 Espectroscopía UV-Vis	
3.4 Caracterización I-V de Celdas PIN	
3.5 RF-PECVD (13.56 MHz)	38
Resultados y discusión	39
4.1 Silicio Microcristalino (μc — Si: Η)	39
4.1.1 Caracterización Estructural	39
4.1.1.1 AFM y Perfilometría	39
4.1.2 Caracterización Eléctrica	42
4.1.2.1 Medición corriente -voltaje (I-V) en oscuridad variando temperatura	42
4.1.2.2- Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación	43
4.1.3 Caracterización Óptica	45
4.1.3.1 Transmitancia	45
4.2 Silicio Polimorfo (pm — Si: H)	45

4.2.1 Caracterización Estructural	. 46
4.2.1.1 AFM y Perfilometría	. 46
4.2.1.2 Espectroscopia Raman	. 48
4.2.2 Caracterización Eléctrica	. 50
4.2.2.1 Medición corriente-voltaje (I-V) en oscuridad variando temperatura	. 50
4.2.2.2 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación	. 50
4.2.3 Caracterización Óptica	. 53
4.2.3.1Transmitancia	. 53
4.3 Silicio amorfo dopado tipo p (a-Si:H,B)	. 53
4.3.1 Caracterización Estructural	. 55
4.3.1.1 AFM y Perfilometría	. 55
4.3.2 Caracterización Eléctrica	. 57
4.3.2.1- Medición corriente-voltaje (I-V) en oscuridad variando temperatura	. 57
4.4 Silicio amorfo dopado tipo n (a-Si:H,P)	. 59
4.4.1 Caracterización Estructural	. 60
4.4.1.1 Microscopia de Fuerza Atómica (AFM)	. 60
4.4.2 Caracterización Eléctrica	. 62
4.4.2.1 Medición corriente-voltaje (I-V) en oscuridad variando temperatura	. 62
4.5 Celdas Solares PIN	. 64
4.5.1 Celda con película intrínseca de μc-Si:Η	. 65
4.5.1.1 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación de la celda solar de μc-Si:H	65
4.5.2 Celda con película intrínseca de Silicio Polimorfo	. 66
4.5.2.1 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación de la celda solar de silicio polimorfo (pm-Si:H)	67
Conclusiones	. 68
Trabajo a futuro	. 69
Apéndice A	. 70
1. Limpieza de vidrios para el depósito de películas	. 70
2. Limpieza de vidrios para el depósito de celdas PIN	. 71
Apéndice B	. 72
Bibliografía	. 73

Capítulo 1 Introducción

La forma en que producimos y usamos la energía hoy en día no es sostenible, nuestras principales fuentes de combustibles fósiles: petróleo, carbón y gas, son recursos naturales finitos y los estamos agotando rápidamente. Además, son los principales contribuyentes al cambio climático, lo que ha generado un panorama de crisis energético a nivel mundial. Por lo que la búsqueda de energías alternas, que puedan sustituir en un futuro no lejano a las fuentes tradicionales, se ha convertido en un tema de interés.

Actualmente, las energías renovables representan una importante fuente de energía limpia (no contaminante) en vías de mitigar los efectos del calentamiento global y el cambio climático [1]. Entre las fuentes de energías renovables se encuentran la eólica, geotérmica, biomasa, hidro-energía, energía solar, etc. Siendo la energía solar la fuente de energía más abundante en la Tierra [2-3].

El enorme potencial de la energía solar y sus beneficios para la sociedad son más evidentes que nunca. Así pues, la investigación y desarrollo de tecnología que contribuya al crecimiento de la energía solar es de gran importancia a nivel mundial, proporcionando cada vez más energía limpia, segura y asequible a las personas [4].

1.1 Energía Solar

El aprovechamiento de la energía solar se puede realizar mediante conversión fototérmica y conversión fotovoltaica, para lo cual se requiere del empleo de dispositivos que capten la energía proveniente del sol y la transformen de algún modo en energía eléctrica. La primera utiliza una parte del espectro electromagnético de la energía del sol para producir calor. A la energía obtenida se le llama energía solar térmica. La transformación se realiza mediante el empleo de colectores solares térmicos. La segunda, utiliza la otra parte del espectro electromagnético de la energía del sol para producir electricidad. A la energía obtenida se le llama energía solar fotovoltaica. La transformación se realiza por módulos o paneles solares fotovoltaicos [5].

1.1.2 Energía solar fotovoltaica

La energía solar fotovoltaica (FV) es la fuente de energía que produce electricidad por medio de la conversión directa de luz solar a corriente eléctrica [6], para hacer funcionar lámparas, radios, televisores, electrodomésticos de bajo consumo energético, etc. La tabla 1, enumera algunas de las ventajas y desventajas de la energía FV, se incluyen cuestiones técnicas como no técnicas. A menudo, las ventajas y desventajas de la energía fotovoltaica son casi completamente opuestas a la energía convencional de combustibles fósiles.

Ventajas	Desventajas
El Sol es una fuente de combustible inmensa y	El Sol es una fuente de combustible difusa (la luz
esencialmente infinita.	solar es energía relativamente de baja densidad).
Sin emisiones, sin combustión, que no contribuye	
perceptiblemente al cambio climático global o la	
contaminación.	
Bajo costo de operación.	Costos altos de instalación.
Sin piezas móviles (sin desgaste).	
Funcionamiento a temperatura ambiente.	
Alta fiabilidad en módulos (> 20 años).	
Modular (incrementos pequeños o grandes).	Poca fiabilidad de los elementos auxiliares
	(equilibrio del sistema), incluyendo
	almacenamiento.
Instalación rápida.	
Puede ser integrado en estructuras de edificios	
nuevos o existentes.	
Se puede instalar en prácticamente cualquier	Falta de disponibilidad comercial para la
Se puede instalar en prácticamente cualquier punto para su uso.	Falta de disponibilidad comercial para la integración del sistema e instalación.
Se puede instalar en prácticamente cualquier punto para su uso. El pico de producción diaria puede coincidir con	Falta de disponibilidad comercial para la integración del sistema e instalación.
Se puede instalar en prácticamente cualquier punto para su uso. El pico de producción diaria puede coincidir con la demanda local.	Falta de disponibilidad comercial para la integración del sistema e instalación.
Se puede instalar en prácticamente cualquier punto para su uso. El pico de producción diaria puede coincidir con la demanda local. Alta aceptación pública.	Falta de disponibilidad comercial para la integración del sistema e instalación. Falta de almacenamiento económico eficiente.

Tabla 1. Ventajas y desventajas de la energía solar FV [2].

1.1.3 Celdas solares

Una celda solar o celda fotovoltaica, es un dispositivo que convierte la energía de la luz directamente en electricidad por el efecto fotovoltaico. Las celdas solares son las unidades estructurales de los paneles solares, las cuales captan y convierten la energía solar a energía eléctrica. Las celdas solares pueden estar fabricadas de diferentes materiales de los cuales la gran mayoría tiene la cualidad de ser semiconductor, como el silicio cristalino, arseniuro de galio cristalino, silicio amorfo, etc. [7]. En general, las celdas solares se pueden clasificar en tres generaciones que indican el orden de importancia y relevancia que han tenido históricamente.

- Primera Generación: Este tipo de celdas basan su funcionamiento en la unión pn, comúnmente están hechas de obleas de silicio cristalino ya sea de silicio monocristalino (mono c-Si) ó policristalino, es la tecnología FV comercialmente predominante [8].
- Segunda Generación: Están basadas en la tecnología de película delgada y se subdivide en tres grupos: 1) silicio amorfo hidrogenado (a-Si:H), 2) Teluro de Cadmio (CdTe) y 3) Diseleniuro de Cobre e Indio-Galio (CIGS), son comercialmente importantes en centrales FV integradas o en pequeños sistemas autónomos de potencia [9].
- Tercera Generación: También llamadas celdas FV emergentes, se caracterizan por utilizar materiales orgánicos en lugar de semiconductores, como compuestos organometálicos. La mayoría de estas tecnologías aún se encuentra en desarrollo [10].

1.1.4 Estatus actual de las celdas solares

De acuerdo a un reporte realizado por la Agencia Internacional de Energía (IEA), para el año 2050, la capacidad instalada de sistemas FV podría alcanzar los 3000 gigawatts, proporcionando 4500 TWh al año, es decir, alrededor del 11% de la producción mundial de electricidad [11]. Solo en el año 2015, la producción anual de energía eléctrica generada mediante esta fuente de energía a nivel mundial equivalió a cerca de 184 TWh, suficiente para abastecer las necesidades energéticas de millones de hogares y cubriendo aproximadamente un 1 % de la demanda mundial de electricidad [12]. En la figura 1.1 se muestra el avance en las eficiencias logradas por las diferentes tecnologías fotovoltaicas a lo largo de los últimos años. Como puede observarse, las celdas solares Tándem o Multi-unión, presentan la mayor eficiencia de conversión solar la cual es superior al 40% [13]. No obstante, su principal desventaja es su fabricación. Actualmente el 85 a 90% de los paneles FV están basados en obleas de silicio cristalino y se prevé que sea la tecnología dominante hasta 2020 con un mercado pronosticado del 50% para ese año [12]. Las celdas solares de silicio cristalino tienen eficiencias de hasta 25.6% a nivel laboratorio [13]. Sin embargo, presentan altos costos en sus materias primas y procesos de manufacturación. En el INAOE, Puebla, también se están desarrollando celdas solares de silicio cristalino, con eficiencias de 14% en áreas de 100 mm² [14].

Figura 1.1: Evolución de las eficiencias récord para las diferentes tecnologías de celdas solares [13].

Por otro lado, las celdas solares de película delgada presentan bajos costos de producción debido a que éstas pueden ser fabricadas sobre sustratos de vidrio, láminas metálicas o plásticos flexibles utilizando unas cuantas micras de material para la formación de la película. Las celdas de a-Si:H presenta una eficiencia de 13.6%, en comparación las celdas de CdTe y CIGS que presentan una eficiencia de 22.1 % y 22.3% respectivamente, a nivel laboratorio [13], sin embargo, estas celdas tienen una gran limitante, debido al uso de metales pesados y calcógenos tóxicos en sus procesos de manufactura [9]. Otra de las desventajas que presentan, es que los materiales como el Cd, Te y Se son poco abundantes en la corteza terrestre.

1.2 Película de silicio microcristalino(μc-Si:H) y silicio polimorfo (pm-Si:H)

Se le conoce comúnmente como *silicio polimorfo (pm-Si:H)*, al material que tiene nanocristales, de aproximadamente 3-5 nm de diámetro embebidos en una matriz de a-Si:H, el cual se obtiene modificando las condiciones de depósito estándar del a-Si:H por la técnica PECVD. La presencia de nanocristales distribuidos en la matriz de silicio amorfo reduce la densidad de estados (DOS) y defectos, mejorando las propiedades eléctricas, al igual que la movilidad de portadores y la reducción de la degradación de la película por la luz, en comparación con él a-Si:H.

Por otro lado, modificando de nuevo las condiciones de depósito del a-Si:H por la técnica PECVD, es posible aumentar el tamaño del cristal y la fracción cristalina de la película, modificando no solo la estructura de la película de a-Si:H, sino sus propiedades. Esta película se le conoce como *silicio microcristalino (\mu c-Si:H)*, tiene tamaños de cristal más grande, del orden de 20-700nm, una fracción cristalina (X_c) mayor y propiedades optoelectrónicas diferentes en comparación con las películas de a-Si:H y pm-Si:H. Las películas de μc -Si:H son adecuadas para varios dispositivos electrónicos, como los Transistores de película delgada ó TFTs, debido a que presentan una conductividad mayor a temperatura ambiente y mayor movilidad de portadores (en comparación con a-Si:H y pm-Si:H), esto se traduce en dispositivos más rápidos. Por otro lado, en celdas solares poseen una mayor absorción de radiación infrarroja (IR) y más estabilidad a la radiación solar. En el siguiente capítulo se hablará más a detalle de las características de estas películas [15-19].

En la actualidad, las celdas solares tándem de a-Si:H/ μ c-Si:H (o también conocidas como celdas solares micromorfas) se han desarrollado con eficiencias mayores al 12% [19-20]. Por otro lado, se ha reportado en la literatura celdas solares de una sola unión PIN, con más de un 10% de eficiencia, usando pm-Si:H como película intrínseca, así como películas tipo p y n de a-Si: H [21].

En este trabajo, inicialmente se realizó una optimización de las películas pm-Si:H y μ c-Si:H, variando la potencia (W) de depósito, con el fin de encontrar las mejores propiedades optoelectrónicas, es decir una alta fotoconductividad, alta energía de activación, así como altas fracciones cristalinas con el objetivo de que sean más estables a la radiación solar, en comparación con su contraparte amorfa. Se utilizó el equipo PECVD con una frecuencia estándar de13.56 MHz.

Posteriormente se realizó la optimización de películas de a-Si:H dopadas, tipo p y tipo n, variando principalmente el flujo de los gases precursores, donde se buscó obtener la mayor conductividad eléctrica. Una vez optimizados los materiales, se seleccionaron las mejores películas intrínsecas (μ c-Si:H y pm-Si:H), así como las películas tipo p y n de a-Si:H, para la fabricación de celdas solares tipo PIN siguiendo la siguiente estructura: Sustrato de vidrio / óxido conductor transparente (ITO) / película de a-Si:H tipo p / película intrínseca (pm-Si:H o μ c-Si:H)/película a-Si:H tipo n / contacto metálico (Ag). Finalmente se realizó la caracterización

de las celdas solares en el simulador solar Oriel Newport ABA, el cual opera usando condiciones estándar AM 1.5, del laboratorio de microelectrónica del INAOE.

1.3 Motivación

En la literatura existe un amplio número de publicaciones acerca del depósito y aplicaciones de películas delgadas de silicio microcristalino y silicio polimorfo. Sin embargo, aún existe un nicho de investigación en el desarrollo de celdas solares (PIN) de silicio $\mu c - Si$: H y pm-Si:H, depositados en sustrato de vidrio a bajas temperaturas, 200 °C, buscando mejorar la estabilidad y eficiencia de este tipo de celdas. Además de que se puede extender su uso en sustratos flexibles como láminas metálicas o plásticos flexibles.

1.3.1 Viabilidad del Proyecto

Para el desarrollo de este trabajo de tesis se cuenta con un sistema de depósito RF-PECVD marca MVSystem de 3 cámaras de áreas de 15 x 15 cm², en donde cada una de las cámaras es utilizada para el depósito de diferentes películas: Tipo p, Tipo n e intrínsecas, tanto amorfas, polimorfas como micro-cristalinas. Por lo tanto, la optimización y caracterización de películas delgadas de silicio polimorfo, silicio microcristalino y silicio amorfo dopado tipo p y n, así como las celdas, se realizó en el Laboratorio Central del Instituto de Física-BUAP y en el Laboratorio de Microelectrónica-INAOE.

1.4 Objetivo General

Depositar y caracterizar películas delgadas de µc-Si:H, pm-Si:H y a-Si:H (tipo p y n) utilizando la técnica PECVD a baja temperatura (200 °C), con la finalidad de seleccionar las películas con mejores propiedades físicas (estructurales, eléctricas y ópticas) para su posible aplicación en la fabricación de celdas solares tipo PIN.

1.4.1 Objetivos Particulares

Los objetivos particulares se resumen a continuación:

- Depositar las películas semiconductoras (μc-Si, pm-Si:H y a-Si:H dopado tipo p y n) por la técnica RF-PECVD (13.56 MHz).
- Caracterizar eléctrica, óptica y estructuralmente las películas semiconductoras, con la finalidad de obtener la mayor fotoconductividad en las películas intrínsecas y la mayor conductividad en las películas dopadas.
- Analizar los resultados y seleccionar la película μc-Si, pm-Si:H y a-Si:H dopada tipo p y n para la fabricación de celdas tipo PIN.
- Fabricar estructuras de celdas solares tipo PIN empleando las películas semiconductoras.
- Realizar la caracterización de las celdas solares usando condiciones estándar AM 1.5.

1.5 Organización de la Tesis

La organización y presentación del trabajo de tesis es como se describe a continuación:

En el *Capítulo 1*- Se da una breve introducción al tema de energía solar, las películas que van a utilizarse en celdas solares PIN, así mismo, se describen los objetivos y la organización del trabajo de tesis.

En el *Capítulo 2*- Se presentan los antecedentes y el marco teórico de este trabajo. Se incluyen las características del espectro solar, se realiza un breve resumen de las propiedades físicas del silicio amorfo hidrogenado, microcristalino y polimorfo, la técnica PECVD, función de una celda solar, la unión PIN así como el funcionamiento de una celda solar basada en este tipo de unión y fundamentos de las técnicas de caracterización.

En el *Capítulo 3-* Se presentan los detalles experimentales de las técnicas de caracterización utilizadas.

En el *Capítulo 4*- Se presentan los parámetros de depósito, resultados y la discusión del trabajo realizado.

Finalmente se presentan las conclusiones de este trabajo y se propone el trabajo a futuro que podría realizarse a partir de los resultados de esta tesis.

Capítulo 2 Conceptos generales

En este capítulo primeramente se mencionan las características de los materiales de estudio, para posteriormente describir sus propiedades estructurales, ópticas y electrónicas. En consecuencia, se describe la técnica de depósito PECVD, así como las técnicas de caracterización: estructural, eléctrica y óptica. Por último, se presentan los temas relacionados con los fundamentos de celdas solares.

2.1 Materiales de estudio

2.1.1 Silicio Amorfo Hidrogenado (a – Si: H)

El silicio amorfo hidrogenado se ha estudiado desde mediados de los años 60, inicialmente se utilizaron sistemas por evaporación y *sputtering* obteniendo películas de a-Si sin hidrógeno. Sin embargo, los primeros investigadores en este campo se dieron cuenta que la mejor forma de pasivar los enlaces incompletos del silicio era añadiendo hidrógeno a la mezcla de gases [22]. El hidrógeno es responsable de la disminución de la densidad de defectos de enlaces incompletos. Además, estos enlaces sueltos adicionales se pueden reducir calentando la muestra hasta aproximadamente 200 ° C. El a-Si:H fue descubierto de forma accidental por R. Chittick [23], quien experimentaba con plasmas de silano (SiH₄). Pasarían varios años hasta que Spear et al. publicaran el primer trabajo sistemático sobre el depósito de este material empleando un reactor PECVD [24]. Por lo que fue la técnica PECVD la mejor opción para pasivar los enlaces incompletos. En dicha investigación, se demostraba que la inclusión en el plasma de otros gases como la fosfina (PH_3), o el diborano (B_2H_6), permitían dopar el a-Si: H. Se abría así la puerta a la fabricación de dispositivos semiconductores como diodos, transistores, y por supuesto celdas solares. De este modo surgía el interés por estudiar y aprender a controlar las características estructurales y optoelectrónicas del silicio amorfo hidrogenado. Las películas de a-Si:H presentan una banda prohibida directa de 1.7 eV, están compuestas por enlaces covalentes de Si-Si y Si-H [25], mientras que el contenido de hidrógeno reportado va desde 4% hasta 40%, lo que depende de las condiciones de depósito y las propiedades eléctricas necesarias para ser usadas en celdas solares . Posee un alto coeficiente de absorción (>2E4) en el rango visible del espectro solar (600 nm). Para el uso de a-Si:H en dispositivos electrónicos, la densidad de defectos debe estar en el rango de 1015 a 1016 cm-3 [26]. En a-Si puro (sin hidrógeno), la densidad de defectos es mayor (10^{19} a 10^{20} cm⁻³) que en a-Si:H, lo cual no es adecuado para aplicaciones de dispositivos electrónicos. La primera celda solar de a-Si:H fue reportada por Carlson y Wronski [27] en 1976, hoy en día las celdas solares con una unión simple muestran eficiencias del 10% [28]. A pesar de las ventajas mencionadas, el a-Si:H tiene ciertos problemas de estabilidad que no permiten mejorar más allá de cierto límite su desempeño eléctrico [29]. En particular, la eficiencia de estos dispositivos disminuye gradualmente cuando son expuestos a la luz. No obstante, se comercializan actualmente paneles solares de a-Si:H.

2.1.2 Silicio Polimorfo Hidrogenado (pm – Si: H)

En 1988 se publicó el primer reporte sobre silicio polimorfo ó polimorfo hidrogenado [30]. Roca i Cabarrocas et al. reportaron que la estructura de las películas de silicio amorfo hidrogenado puede consistir de regiones ordenadas de tamaño nanométrico de aproximadamente ~ 2 nm cuando es preparada bajo condiciones particulares de descarga lumínica de RF (Radiofrecuencia). El cual básicamente es a-Si:H con nanocristales embebidos en la matriz amorfa. La presencia de los nanocristales dentro de la matriz amorfa se observaron mediante HRTEM (Microscopía electrónica de transmisión de alta resolución). Tal condición se da en la transición entre a-Si:H a µc-Si:H [31]. Cuando las condiciones de depósito por PECVD del a-Si:H son modificadas usando SiH₄ con alta dilución de hidrógeno (H₂) y mayor presión en la cámara de depósito, se obtiene un tipo de película delgada de silicio conocido como silicio nanocristalino nc-Si:H o silicio polimorfo pm-Si:H [32]. Se les dice polimorfo por el hecho de tener una mezcla de fases amorfa, nanocristalina y cristalina, de acuerdo a la definición de polimorfismo, que es la capacidad de un material sólido de existir en más de una forma o estructura cristalina. Cabe aclarar que no se usa el término de alotropía ya que suele reservarse para los elementos puros. Con el pm-Si:H se mejoran las propiedades de transporte con respecto al a-Si:H, incluso después de una prolongada exposición a la radiación solar [33]. La naturaleza heterogénea de la micro-estructura no tiene efectos negativos en las propiedades electrónicas y de transporte de estas películas respecto a las de a-Si:H [34]. Estas propiedades sugieren al silicio polimorfo como una excelente alternativa al silicio amorfo [35]. La presencia de nanocristales tiene impacto en las propiedades del material relajando la red amorfa, reduciendo la densidad de estados y mejorando las propiedades de transporte y estabilidad del material con una fracción cristalina < 10 % [32]. Es importante notar que el pm-Si:H intrínseco aún conserva las características de a-Si:H, tal como una banda prohibida directa (~1.6-1.8 eV) y una energía de activación grande (E_a) de alrededor de 1 eV [18].

2.1.3 Silicio Microcristalino Hidrogenado (µc – Si: H)

El silicio microcristalino ó silicio microcristalino hidrogenado fue depositado por primera vez en 1968 por Veprek y Merecek [36] a temperaturas de 600 °C y posteriormente, en 1975 por Spears et. al. [37] a temperaturas cercanas a 200 °C. El μ c-Si: H es una película delgada con cristales en el rango de 20-700 nm [38]. Esos cristales tienen orientaciones diferentes y crecen en columnas que están separadas por una fase amorfa. Por lo general, las películas de μ c-Si: H se obtienen a partir de mezclas de gases SiH₄ y H₂, pero también se han utilizado mezclas de SiF₄, H₂ y Ar [39]. Los principales parámetros para el crecimiento de las películas de μ c-Si: H son la alta dilución de H₂, la potencia moderada de RF y la alta presión de depósito; de acuerdo con la optimización de estos parámetros, la fracción cristalina puede aumentar (X_c) y también se pueden optimizar sus características de rendimiento. En la actualidad, las películas μ c-Si:H están siendo ampliamente utilizadas como capas activas en dispositivo fotovoltaicos debido a sus excelentes propiedades ópticas y eléctricas comparadas con las películas a-Si:H. La banda prohibida indirecta (E_g), de películas μ c-Si:H puede ser de 1.1 eV [40], muestran una gran movilidad de los portadores, alta estabilidad y alta conductividad. Por otro lado, al tener una banda óptica y un coeficiente de absorción (\propto) diferente al de la película de a-Si:H, resulta en celdas solares con una mayor absorción de radiación infrarroja (IR). En la actualidad, las celdas solares micromorfas (a-Si: H/ c-Si: H) se han desarrollado con eficiencias estabilizadas de hasta el 12% [18].

2.2 Propiedades de materiales amorfos

2.2.1 Estructura amorfa y microcristalina

La estructura de un material amorfo consiste en átomos de Si cuyos enlaces se ubican localmente, de manera tetragonal y con distancias interatómicas muy similares a las del c-Si. Sin embargo, la periodicidad y el ordenamiento de los mismos se pierde a medida que se consideran distancias cada vez más alejadas en el volumen. En la figura 2.1 se puede ver un dibujo de la estructura de un material amorfo, que en general se denomina *red continua aleatoria* [41].

Figura 2.1: a) Esquema simplificado en dos dimensiones de la estructura del a-Si. Se pueden observar los enlaces incompletos originados a partir de la falta de coordinación debida a la amorficidad del material. Los colores denotan la cantidad de enlaces incompletos que posee cada átomo, b) Esquema de enlace covalente del átomo de silicio, ejemplo de estructura cristalina.

La naturaleza amorfa de la estructura da lugar a la existencia de enlaces *incompletos*. Los defectos en los materiales amorfos pueden ser: (a) enlaces incompletos, son átomos (Si) con un átomo de coordinación tres, es decir les falta un enlace por completar; (b) enlace suelto, son los átomos (Si) con un número de coordinación cinco, es decir poseen un enlace extra; (c) es el caso en que un átomo de Hidrógeno está enlazado con dos átomos de silicio; y (d) enlace débil, enlaces débiles entre átomos de Si-Si, debido a la mayor longitud entre los enlaces. En la figura 2.2 se muestran los defectos descritos anteriormente [22].

Figura 2.2: Descripción gráfica de los defectos encontrados en materiales amorfos de películas delgadas: a) enlaces incompletos; b) enlaces sueltos; c) enlace de un átomo de H con dos de Si; d) enlace débil.

Este ordenamiento local de corto alcance permite que el diagrama de bandas de energía sea similar al del c-Si. A su vez, el desorden de largo alcance, junto con los enlaces incompletos, introduce ciertas perturbaciones que dan lugar a una mayor banda prohibida y a una elevada densidad de defectos dentro de la banda prohibida. La densidad de defectos del a-Si lo transforma en un material poco útil en términos eléctricos ya que éstos actúan como centros de recombinación entre huecos y electrones. Sin embargo, el a-Si posee la propiedad de que puede pasivarse con átomos de H ligados a los enlaces incompletos, transformándose así en a-Si hidrogenado (a-Si:H). Este material sí es eléctricamente útil y se convierte en un buen fotoconductor, es decir que su interacción con la luz produce cargas libres capaces de conducir la corriente eléctrica [42].

Un material microcristalino consiste de granos cristalinos incorporados en una matriz amorfa. Estas fases son separadas una de otra por las fronteras de grano y espacios vacíos. La figura 2.3 da una ilustración de un amplio rango de cristalinidades en materiales, que van desde altamente cristalinos, lado izquierdo, hasta predominantemente amorfos en el lado derecho. Cuando el material está dominado por la fase amorfa, granos cristalinos de unos cuantos nanómetros están incorporados en la masa amorfa del cuerpo del material y en una capa de incubación, con la que posteriormente se forma la fase cristalina. Por el contrario, las muestras con alta fracción cristalina presentan estructuras de granos cristalinos apilados donde no se detecta ninguna parte amorfa, excepto en las fronteras de grano. La transición de amorfo a un material con alta fracción cristalina depende de las condiciones de depósito. La concentración de silano e hidrógeno es clave para controlar la fracción cristalina en las películas [43].

🚫 cristalitos 🛛 🖉 regiones amorfas 🖉 espacios vacíos

Figura 2.3: Representación esquemática de los diferentes grados de fracción cristalina en películas de materiales microcristalinos [44].

2.2.2 Estructura electrónica

En un semiconductor es posible distinguir: La *banda de valencia, B.V., la banda de conducción, B.C.* y *la banda prohibida*. Sin embargo, cuando se trata de un sólido amorfo, la ausencia de periodicidad de largo alcance produce cambios en la interacción interatómica. En el caso particular del silicio amorfo, la existencia de un cierto orden de corto alcance, permite mantener la banda de valencia y la banda de conducción en la estructura electrónica del material. Sin embargo, las enormes desviaciones encontradas en la estructura atómica a largo alcance, producen cambios muy importantes en la banda prohibida. De hecho, en el a-Si:H no existe realmente una banda prohibida. El intervalo existente entre la banda de valencia, y la de conducción, es denominado *banda prohibida*, y en su interior se pueden diferenciar dos tipos de estructuras electrónicas, las *colas de banda*, y los *estados intermedios* (ver figura 2.4) [45-46].

Figura 2.4: Distribución de la densidad de estados para un semiconductor amorfo mostrando las bandas, las colas de banda y estados de defectos en la banda prohibida. Las líneas punteadas son el equivalente de la densidad de estados en un cristal.

Las colas de banda son una consecuencia directa de la dispersión existente en la longitud y ángulo de los enlaces *Si-Si*. Estas colas surgen en los bordes de la banda de valencia y conducción respectivamente, y decaen exponencialmente a medida que se introducen en el interior de la banda prohibida. La principal particularidad de las colas de banda, es que se trata de *estados electrónicos localizados*. Al contrario de lo que sucede en los *estados extendidos* de las bandas de conducción y valencia, donde los huecos y electrones pueden moverse libremente por el sólido, en las colas de banda los portadores de carga se encuentran *atrapados*. Por su parte, los estados intermedios corresponden a estados electrónicos que, como su propio nombre indica, surgen en la zona media de la banda prohibida. Estos se encuentran directamente ligados a la existencia de defectos en la estructura atómica del a-Si:H que no han llegado a ser pasivados por el hidrógeno. La principal característica de los estados intermedios, es que actúan como *centros de recombinación*, capturando portadores fotogenerados que acaban aniquilándose con otros de signo opuesto [47-48]. Dicha recombinación se puede

traducir en pérdidas no despreciables de corriente en una celda solar de a-Si:H, lo que ha llevado al desarrollo de modelos físicos específicos para esta clase de dispositivos, en los que se incluye el efecto de los estados intermedios [49].

2.2.3 Coeficiente de absorción

El análisis del coeficiente de absorción óptico, $\alpha(hv)$, constituye la manera más simple de obtener información directa sobre las distribuciones de estados electrónicos. Por tanto, la determinación de $\alpha(hv)$ permite a su vez extraer conclusiones sobre la estructura atómica del a-Si:H, tales como el grado de desorden, o la densidad de defectos. En función del tipo de transiciones electrónicas involucradas, pueden distinguirse en el coeficiente de absorción tres regiones claramente diferentes. La primera de ellas, en el intervalo 1 conocida como "región de Tauc" corresponde al caso en el que la energía de los fotones es típicamente hv > 1.8 eV, y el salto electrónico tiene lugar entre las bandas de valencia y conducción. En esta región del espectro electromagnético, el coeficiente de absorción del a-Si:H es casi un orden de magnitud (10^3 - 10^4 cm⁻¹) superior al del c-Si, gracias a que el desorden relaja las reglas de conservación del momento, haciendo de este modo que la transición sea más probable. Tauc et al. obtuvieron la siguiente expresión matemática para la función $\alpha(hv)$ en esta región del espectro (ver figuras 2.5 y 2.6) [50] [22].

$$\alpha(h\nu) h\nu \propto (h\nu - E_a)^2 \tag{1}$$

Figura 2.5: Representación de Tauc del coeficiente de absorción en la región UV-VIS para una película de a-Si:H intrínseca. El ajuste en la región lineal permite obtener una estimación de la banda prohibida del material.

Donde E_g corresponde a la banda prohibida del a-Si:H, es decir, la distancia energética que separa los estados extendidos de la banda de valencia, de los de la banda de conducción. Para su obtención basta con efectuar un ajuste en la región lineal de la representación de Tauc del coeficiente de absorción, $(\alpha/hv)^{\frac{1}{2}} vs hv$ (ver figura 2.6).

Figura 2.6: Coeficiente de absorción para una película de silicio amorfo intrínseco. El intervalo 1 corresponde a las transiciones entre estados extendidos de la banda de valencia a la banda de conducción, proporcionando parámetros de interés como la Eg. En el intervalo 2 intervienen transiciones electrónicas que involucran estados localizados situados en las colas de banda, proporcionando información sobre el desorden estructural. Por último, el intervalo 3 corresponde a aquellas transiciones en las que intervienen estados intermedios, y que por tanto están relacionadas con la densidad de defectos en el material.

Para energías inferiores, hv < 1.8 eV, los saltos electrónicos comienzan a involucrar estados dentro de la banda prohibida. El coeficiente de absorción, pasa entonces a estar controlado por las transiciones entre la cola de banda de la B.V. y la B.C., y entre la cola de banda de la B.C. y la B.V. En este caso, la dependencia funcional α/hv , pasa a estar dominada por el decaimiento exponencial de la distribución de estados localizados, al intervalo 2 se le conoce como la "región de Urbach", que es descrita por la siguiente ecuación:

$$\alpha(h\nu) h\nu \propto \exp(h\nu - E_{Urbach})$$
(2)

El valor de la *energía de Urbach (E*_{Urbach}), está directamente relacionado con la rapidez con la que las colas de banda decaen dentro de la banda prohibida. De esta forma, una baja E_{Urbach} , se traduce en la existencia de una distribución de estados localizados que penetra poco dentro de la banda prohibida. De esta forma, la energía de Urbach, proporciona una medida de la dispersión en los valores de longitud y ángulos en los enlaces *Si-Si*, o sea, del desorden estructural. Para su obtención, basta con efectuar un ajuste en la región lineal de la representación In ((α/hv)) vs hv. Por último, en el intervalo 3 para valores de $hv \sim 1.2 \ eV$, el coeficiente de absorción pasa a estar dominado por los saltos electrónicos entre los estados intermedios de la banda prohibida, y los estados extendidos en las bandas de valencia y conducción. En este caso, no existe una dependencia funcional general para α/hv . No obstante, experimentalmente se ha encontrado una relación proporcional entre el valor del coeficiente de absorción en esta región, $\alpha(1.2eV)$, y la densidad de enlaces en la estructura del material [51] [22]. Así pues, su estudio proporciona información sobre la efectividad del efecto pasivante del hidrógeno durante el proceso de crecimiento del a-Si: H.

2.2.4 Efecto Stabler-Wronski

Poco tiempo después del desarrollo de la primera celda solar de a-Si: H en 1976, Staebler y Wronski informaron de un efecto de degradación inducido por la luz en 1977 [26]. Ellos informaron que la conductividad en oscuridad y la fotoconductividad de a-Si: H se reducía significativamente con una iluminación prolongada. Esto se correlacionó con la creación de defectos metaestables bajo iluminación. Este efecto consiste en el empobrecimiento de las propiedades de transporte del material debido a la creación de defectos metaestables que actuarán como centros de recombinación en una celda solar. Estos enlaces sueltos adicionales se pueden reducir calentando la muestra hasta aproximadamente 200 ° C, convirtiéndose en uno de los fenómenos más investigados en materiales y celdas solares de a-Si: H. Desde el primer informe, de los cambios metaestables inducidos por la luz en las propiedades del silicio amorfo hidrogenado se conocen como el efecto Staebler-Wronski (SWE) [2]. Algunos trabajos han informado la reducción de ese efecto incorporando flúor en la mezcla de gases durante el proceso de depósito por la técnica de depósito químico en fase vapor asistido por plasma (PECVD) [52].

2.3 Depósito químico en fase vapor asistido por plasma (Plasma Enhanced Chemical Vapor Deposition -PECVD)

El método de depósito PECVD ha sido una de las técnicas más utilizadas para la producción de a-Si:H. Presentando las siguientes ventajas en comparación con otras técnicas como lo son depósitos en áreas grandes (>1m²), temperaturas de depósito bajas (<300°C) y su uso generalizado en el campo de la electrónica, donde ha demostrado su fiabilidad y reproducibilidad. La técnica PECVD permite modificar la microestructura de las películas depositadas, y en consecuencia sus propiedades optoelectrónicas, con la variación de los parámetros del proceso de depósito (presión de la cámara, potencia RF (radiofrecuencia), la distancia entre electrodos, la temperatura del substrato, etc.) [53-54]. El sistema de depósito por plasma consiste de una cámara que se encuentra en vacío, se introducen los gases reactivos y por medio de una descarga de radiofrecuencia se genera un plasma. Los gases comúnmente utilizados son: Silano (SiH₄), es la molécula que da origen a los precursores del crecimiento del material semiconductor a-Si:H. Argón (Ar), permite un aumento en la fracción cristalina de las películas de µc-Si:H. Metano (CH₄), la introducción de carbono en la estructura del silicio amorfo permite variar la banda prohibida del material, haciéndolo más transparente y por tanto más apropiado para la fabricación de películas tipo p. Diborano (B_2H_6), este gas se ha empleado tradicionalmente como gas dopante tipo p, el boro introducido en la red actúa como impureza aceptora. Fosfina (PH₃), este gas se emplea como gas dopante tipo n. El fósforo introducido en la red actúa como impureza donadora. El hidrógeno en su estado atómico se encuentra de forma natural en el plasma y en la propia estructura del silicio amorfo, algo que se puede deducir del tipo de moléculas empleadas. Sin embargo, como veremos, el control de su concentración, así como de la forma en la que se incorpora en la estructura del material durante la fabricación, será determinante en la obtención de material de buena calidad. También se utilizan gases como el hidrógeno o argón para el arrastre y dilución de los gases reactivos.

El proceso de depósito químico está determinado por las reacciones que ocurren dentro del plasma y sobre la superficie de la muestra. Las reacciones químicas que ocurren dentro del plasma son: excitación por colisiones de moléculas con electrones, ionización y disociación de moléculas. Por lo tanto, el plasma utilizado durante el depósito PECVD está compuesto por electrones, moléculas ionizadas, moléculas neutras y radicales libres. Durante el proceso de depósito, las moléculas neutras se mueven hacia el substrato por difusión, los iones positivos bombardean el crecimiento de la película, los iones negativos son atrapados dentro de la cámara y pueden eventualmente formar pequeñas partículas o polvo. Cuando los productos creados en el plasma llegan a la superficie del sustrato, la película se forma mediante reacciones superficiales y otros procesos. Por ejemplo: absorción, desorción y difusión de hidrógeno, difusión de radicales, bombardeo iónico y electrónico. La propiedad de los sistemas PECVD de generar especies químicamente reactivas a baja temperatura se debe a la naturaleza fuera de equilibrio del plasma generado. Un plasma fuera de equilibrio se refiere a un gas parcialmente ionizado mantenido a baja temperatura, con temperaturas de los electrones libres en el rango de 10^4 - 10^5 K (1-10 eV), mientras que la temperatura de los iones, radicales y moléculas se encuentra en el rango de ~500 K (~0.04 eV) [22][55-56].

En la figura 2.7 se muestra un esquema del sistema PECVD. El sistema RF-PECVD (13.56 MHz) modelo MVSystems, utiliza cuatro cámaras para el depósito de a-Si:H y materiales relacionados. Para minimizar la contaminación cruzada entre las cámaras, tiene una cámara para el depósito de películas intrínsecas de a-Si:H, dos cámaras para el depósito de películas semiconductoras p y n dopadas, y una cámara para el depósito de metales y óxidos conductores transparentes. Las cámaras se mantienen en alto vacío (10⁻⁶ torr) mediante bombas turbo moleculares. Por otra parte, la temperatura de depósito usualmente se encuentra en el rango de 150 a 350 °C dependiendo de los parámetros de depósito y del tipo de películas a depositar. La densidad de potencia de depósito debe de estar en el rango de 10 a 100 mW/cm². Debajo de 10 mW/cm² es difícil mantener el plasma, por el contrario, arriba de 100 mW/cm² se forman polvos, debido a las reacciones por el plasma. La frecuencia estándar adoptada para procesos industriales es la señal RF de 13.56 MHz, sin embargo, existen otras frecuencias de depósito como muy alta frecuencia (VHF, 20-150 MHz) y microondas (MW, 2.45 GHz) [57].

Figura 2.7: Esquema del sistema de depósito de plasma utilizado para fabricar las muestras.

2.4 Técnicas de Caracterización

En esta sección se describen las técnicas de caracterización estructurales (AFM, Raman y Perfilometría), eléctricas (I-V variando temperatura y en oscuridad-iluminación) y ópticas (Transmitancia), así como las ecuaciones utilizadas para el cálculo de parámetros de cada una de ellas.

2.4.1 Caracterización Estructural

2.4.1.1 Microscopia de Fuerza Atómica

La técnica *AFM (Microscopia de Fuerza Atómica)* consiste de una punta que explora la superficie de la muestra y el resultado es la obtención de una imagen en dos dimensiones (2D) de la superficie de la muestra analizada. Además de permitir extraer la topografía tridimensional de la superficie, proporcionando información sobre la profundidad y altura de la topografía. En la figura 2.8 se muestra un esquema básico, el cual consiste en incidir un haz de laser en la superficie de un *cantiléver* (el cual contiene la punta que escanea la muestra) y el haz reflejado debido a la deflexión de la punta de prueba es medido por un fotodiodo. Los modos más comunes de operación en mediciones de AFM son contacto, no-contacto y *tapping*. En el modo contacto, la deflexión del cantiléver es debido a fuerzas adhesivas y capilares al igual que fuerzas de Van der Waals [58]. En modo no-contacto se eliminan las fuerzas de fricción y adhesivas entre la punta y la muestra manteniendo la punta a unos Angstroms de la superficie de la muestra manteniendo la punta a unos Angstroms de la superficie de la muestra se tor se obtiene una menor resolución [59]. Por último, en el modo *tapping*, el cantiléver se hace oscilar verticalmente sobre la muestra y se detectan los cambios

en la amplitud, fase o frecuencia de la oscilación del cantiléver debido a la interacción entre la punta y la muestra [60].

Figura 2.8: Esquema sencillo de un microscopio de fuerza atómica.

2.4.1.1.1 Altura promedio (S_a) y Rugosidad RMS (S_g)

El software analizador de imágenes que se utilizó en este trabajo, SPIP 5.0.6. TM, nos proporcionó información de la rugosidad promedio (Sa) y la rugosidad RMS (Sg) de la topografía de la película. La S_a, se define como la desviación del promedio absoluto de las irregularidades medidas desde una línea media, tomando una longitud *l*, como se muestra en la figura 2.9, su expresión matemática está dada por la siguiente ecuación [61].

(3)

Figura 2.9: Ilustración de la altura promedio S_a.

Por otra parte, la rugosidad RMS (valor cuadrático medio) representa la desviación estándar de la distribución de las alturas de las superficies. Este parámetro es más sensitivo que la altura promedio (S_q) a grandes desviaciones medidas desde la línea media. Su expresión matemática está dada por [61]:

$$S_q = \sqrt{\frac{1}{l} \int_0^l |y(x)| dx} \qquad (4)$$

2.4.1.2 Espectroscopía Raman

El proceso de dispersión Raman ocurre cuando un haz al interactuar con el material cambia el estado actual (vibracional o rotacional) del material a otro distinto cambiando su polarizabilidad. El modo vibracional es característico para distintas moléculas o estructuras. Puesto que las vibraciones de la red son muy sensibles a los ambientes locales, la dispersión Raman da información acerca de la estructura del material o dispositivo y/o de su calidad a una escala de unas cuantas constantes de red, es decir, la anchura media de la dispersión proporciona información del grado de cristalinidad, la polarización de la luz de excitación y la posición del pico permiten algunas veces determinar la dirección de los planos cristalinos, la estructura cristalina y la composición química [62]. Cuando se analizan áreas muy pequeñas de la muestra, la técnica se denomina espectroscopía micro-Raman. El análisis se basa en el examen del haz dispersado por un material al incidir sobre él un haz monocromático de un láser. Al interaccionar con la muestra existen dos tipos básicos de dispersión (ver figura 2.10):

La luz dispersada inelásticamente a la que se le llama dispersión Raman y, por lo tanto, existen dos tipos de ella: en uno de ellos la luz dispersada tiene menor energía que la luz incidente (la que tiene menor frecuencia y longitud de onda mayor) y el efecto se llama dispersión Raman Stokes. En el otro, la luz dispersada tiene mayor energía que la luz incidente (es decir tiene mayor frecuencia y longitud de onda menor) y se le llama dispersión Raman anti-Stokes [63]. La luz dispersada elásticamente a la que se le llama dispersión Rayleigh (misma frecuencia) no hay cambio en la energía de la luz incidente.

2.4.1.2.1 Fracción de volumen Cristalino (X_c)

La fracción de volumen cristalino (X_c), se obtiene a partir de espectros raman, los cuales pueden descomponerse en tres picos Gaussianos: Para el silicio microcristalino el modo óptico transversal (I_c) en 520 cm⁻¹ del Si cristalino, la fase de frontera de grano (I_{gb}) en 510 cm⁻¹ y la fase amorfa (I_a) en 480 cm⁻¹, Para las películas de pm-Si:H los picos Gaussianos son los siguientes: modo óptico transversal (I_c) en 520 cm⁻¹ del Si cristalino, la fase de nanocristales de grano (I_{gb}) en 514 cm⁻¹ y la fase amorfa (I_a) en 480 cm⁻¹. De acuerdo a la siguiente ecuación [64-65]:

$$X_c = \frac{I_c + I_{gb}}{I_c + I_{gb} + I_a} \tag{5}$$

En la figura 2.11 se observa una deconvolución de los tres picos gaussianos que se realizó ajustando un espectro raman de una película de μ c-Si:H, de este trabajo de tesis.

Figura 2.11: Deconvolución en tres picos Gaussianos (líneas negras) correspondientes a la parte amorfa, intermedia y cristalina de una película depositada, la línea roja es el espectro raman y la línea azul es el ajuste obtenido por las deconvoluciones.

2.4.1.2 Perfilometría y Velocidad de depósito (Vd)

Es una técnica de análisis superficial en dos dimensiones basada en un estilete o aguja, el cual se encarga de realizar un desplazamiento vertical mientras se realiza un barrido lineal manteniendo constante la fuerza que esta realiza sobre la superficie de la muestra. Si bien existen diferentes estiletes para distintas aplicaciones, con radios que van desde 50 nm a 25μ m, y de alta relación de aspecto para la caracterización de zanjas profundas y estrechas, una de las desventajas de esta técnica es que el contacto con la muestra puede provocar algún tipo de daño o deformación a la misma [66]. Esta técnica nos proporciona el espesor de una película. Una vez obtenido un espesor promedio (d) de la película podemos calcular la velocidad de depósito, V_d, mediante el espesor medido dividido entre el tiempo de depósito (t_d).

$$V_d = \frac{d}{t_d} \tag{6}$$

2.4.2 Caracterización Eléctrica

2.4.2.1 Medición corriente-voltaje (I-V) variando temperatura

Es una técnica que consiste en un barrido I-V en oscuridad y vacío con una variación de la temperatura en una película. Utilizando los datos de las mediciones I-V se obtienen los valores de la conductividad en oscuridad y la energía de activación. En las películas amorfas la conductividad en oscuridad (σ_D) se debe sólo a los portadores excitados térmicamente. La conductividad puede ser determinada por [67]:

$$\sigma_D = \frac{I_D}{V} \frac{l}{wt_h} \qquad (7)$$

donde V es el voltaje aplicado, I_D la corriente medida en oscuridad, l la distancia entre los electrodos, w la longitud de los electrodos y t_h el espesor de la película como se muestra en la figura 2.12.

Figura 2.12: Patrones geométricos de las películas depositadas [68].

Al realizar mediciones de conductividad en oscuridad a diferentes temperaturas se obtiene la energía de activación (E_a). La E_a define el salto energético existente entre la posición del nivel de Fermi y el borde de la banda de conducción para el transporte por electrones. Así pues, combinado con la energía de la banda prohibida de la muestra bajo análisis, E_g, el valor de E_a será un buen indicador de la presencia o ausencia de impurezas (para un material intrínseco ideal, E_a = E_g/2 (8). La conductividad en oscuridad en función de la temperatura y la energía de activación se relacionan por medio de una ecuación tipo Arrhenius:

$$\sigma_D = \sigma_0 \exp\left[-\frac{E_a}{kT}\right] \tag{9}$$

donde σ_D es la conductividad en oscuridad, σ_0 es una constante, k la constante de Boltzmann, T la temperatura y E_a la energía de activación. La ecuación (9) puede ser expresada con la forma de la ecuación de una línea recta (y = mx+b). Experimentalmente la energía de activación se obtiene de la pendiente de la gráfica de ln(σ_D) vs. 1/KT.

$$\ln(\sigma_D) = \ln(\sigma_0) - \frac{E_a}{kT}$$
(10)

2.4.2.1 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación

Consiste en un barrido de I-V en oscuridad y bajo iluminación a temperatura ambiente en una película. Con esta técnica se obtiene el valor de la fotoconductividad σ_{ph} . Por definición la fotoconductividad es el cambio que se da al pasar de la conductividad en oscuridad a la conductividad con iluminación [69]. La fotoconductividad ocurre cuando los portadores son ópticamente excitados de estados no conductores a conductores. La absorción de energía por el material puede liberar portadores de corriente en la forma de pares electrón-hueco, por lo tanto, la conductividad del material se incrementará. La fotoconductividad de un material puede ser calculada por medio de la ecuación [70]:

$$\sigma_{ph} = \frac{l_{ph}}{V} \frac{l}{wt_h} \tag{11}$$

donde *V* es el voltaje aplicado, *I*_{ph} la corriente medida bajo iluminación, *l*, *w* y *th* son los patrones geométricos descritos en la figura 2.12.

2.4.3 Caracterización Óptica

2.4.3.1Transmitancia

La técnica espectroscópica UV-Visible es muy utilizada para medir la transmitancia, reflectancia y absorbancia en materiales. La transmitancia óptica se refiere a la cantidad de luz que atraviesa un cuerpo, en una determinada longitud de onda. Cuando un haz de luz incide sobre un cuerpo traslúcido, una parte de esa luz es absorbida por el mismo, y otra fracción de ese haz de luz atravesará el cuerpo, según su transmitancia. Parámetros como el coeficiente de absorción y la energía de la banda prohibida son derivados de expresiones de transmisión [71]. Si se tiene una película delgada de un material cualquiera de espesor *d* en la que incide una onda electromagnética de intensidad I₀(λ) parte de esa energía I_R(λ) será reflejada en la película. Sin embargo, una parte de la intensidad de la radiación electromagnética será absorbida por la película y otra, atravesará totalmente la muestra y la intensidad de la onda transmitida será I_T(λ). En la figura 2.13 se muestra un esquema del proceso que ocurre al incidir una radiación a un material.

Figura 2.13:4 Fenómeno de transmisión en una muestra.

En este contexto la transmitancia óptica vendrá definida por $T(\lambda) = \frac{I_T(\lambda)}{I_0(\lambda)} X \, 100$ (12). Los espectrofotómetros, están a menudo, equipados con un dispositivo que tiene una escala lineal que se extiende de 0 a 100%. De manera que el instrumento da una lectura directa en porcentaje de transmitancia [72].

2.4.3.1.1 Ley de Bouguer-Lambert

Cuando un haz de luz monocromática incide perpendicularmente sobre un material, fracciones del haz incidente (I₀) serán reflejadas (R), transmitidas (T) o absorbidas por el material. La absorción óptica es un proceso donde un fotón de la luz puede ser absorbido y su energía es transferida a un electrón de la banda de valencia, excitándolo hacia la banda de conducción, si su energía es mayor que la banda prohibida del material (E_g). La intensidad del haz después de atravesar el material es:

$$I = I_0 e^{-\alpha x}$$
 (13)

En donde \propto es el coeficiente de absorción, x el grosor de la muestra e I_0 es el haz incidente. El espectrofotómetro determina la relación I/I₀, la fracción de radiación incidente que consigue atravesar la muestra que se define como la transmitancia (T). Las medidas de transmitancia son posibles, si la muestra en forma de película sobre un sustrato es suficientemente translucida, permitiendo el paso de la luz incidente. La absorbancia se define como:

$$A = -\log \frac{I}{I_0} = -\log T \quad (14)$$
$$A = \alpha * x \quad (15)$$

La absorción se expresa en términos del coeficiente de absorción utilizando la ecuación de Bouguer-Lambert [73]:

$$\alpha = -\frac{1}{x} \ln\left(\frac{l}{l_0}\right) = -\frac{\ln(T)}{x} \quad (16)$$

2.5 Fundamentos de las celdas solares

2.5.1 Radiación y espectro solar

La irradiancia solar, potencia total incidente sobre una superficie por unidad área, que llega al exterior de la atmósfera de la Tierra tiene un valor aproximado de 1365 W/m² y es conocida como constante solar. En términos de distribución espectral es referida como masa de aire cero (AMO). Donde Masa de Aire (AM) es la medición de como la absorción, que se lleva a cabo en la atmósfera, afecta al contenido espectral y a la intensidad de la radiación incidente [2]. No toda la radiación alcanza la superficie terrestre, ya que al pasar a través de la atmósfera varias porciones del espectro solar son reflejadas o absorbidas, principalmente por moléculas de agua, carbono y oxígeno [74]. Por tal motivo el pico de la irradiancia disminuye hasta un valor promedio de 1000 W/m² o espectro AM1.5 (ver figura 2.14).

Los términos AMO y AM1.5 son definiciones para condiciones específicas de la radiación. El número de Masa de Aire está dado por la siguiente expresión:

$$Air Mass = \frac{1}{\cos\theta}$$
(17)

donde θ es el ángulo de incidencia, y es igual a cero cuando los rayos del sol caen de forma perpendicular a la Tierra. Los términos para los diferentes tipos de (AM) se muestran a continuación [2]:

- AM0: es la radiación extraterrestre, aplicable a satélites en el espacio.
- AM1: es la incidencia vertical de los rayos del sol sobre el Ecuador a nivel del mar.
- AM1.5: es la radiación solar a través de una masa de aire 1.5 mayor al caso vertical.

Figura 2.14: Distribución espectral de la intensidad de radiación [2].

Debido a que las celdas solares y módulos fotovoltaicos son producidos por diferentes empresas que utilizan tecnologías distintas, se han definido como condiciones estándar AMO,
AM1 y AM1.5. Las cuales permiten la comparación entre los diferentes dispositivos fotovoltaicos. La caracterización eléctrica de los dispositivos se realiza mediante la obtención de curvas corriente-voltaje (I-V) bajo condiciones de iluminación de 100 mW/cm².

2.5.2 Funcionamiento de una celda solar ideal: la estructura p-n

Un semiconductor dopado con *impurezas aceptoras de electrones (tipo p)* se pone en contacto con otro semiconductor dopado con *impurezas donadoras de electrones (tipo n)*. Rápidamente tendrá lugar un proceso de difusión en el que los electrones del lado n tratarán de moverse hacia el lado p con el objeto de homogeneizar la densidad de portadores de carga en el dispositivo. Sin embargo, a medida que se produce este movimiento, las impurezas donadoras de electrones más próximas a la unión comenzarán a quedar cargadas positivamente, mientras que en el lado p, la captura de estos mismos electrones por parte de las impurezas aceptoras originará una densidad de carga negativa. Como resultado se establecerá en la unión un campo eléctrico que aumenta progresivamente de intensidad hasta detener el proceso de difusión (ver figura 2.15) [75][2]. Una vez alcanzada la situación de equilibrio, es posible dividir la celda solar en dos tipos de regiones.

Figura 2.15: Dopado y concentración de distribución de una unión p-n [63].

Regiones cuasineutras (QNR por sus siglas en inglés *Quasi Neutral Region*): corresponden a aquellas regiones del dispositivo en las que la densidad espacial de carga puede asumirse como nula.

Región espacial de carga (SCR por sus siglas en inglés *Space-Charge Region*): delimita la región donde los átomos dopantes han quedado ionizados, y en la que reside el campo eléctrico de la unión.

Cuando un dispositivo electrónico de este tipo es iluminado, la absorción de fotones de energía superior a la de la banda prohibida del semiconductor libera electrones a la banda de conducción, donde estos son móviles. A su vez, los huecos producidos en la banda de valencia, también se comportan como portadores de carga libres, pero de signo opuesto. De esta manera se podrán generar portadores de carga, los cuales son separados por el campo eléctrico (F), formado dentro de la SCR. En este caso, los electrones son arrastrados hacia el lado n mientras que los huecos hacia el lado p produciendo la fotocorriente (I_{ph}). Sin embargo, no sólo los portadores de carga generados dentro de la región de carga espacial contribuyen a la fotocorriente total. Los electrones fotogenerados a una longitud de difusión (L_e) de la orilla de

la SCR en el lado p, pueden difundirse dentro de la región de agotamiento para ser arrastrados por el campo eléctrico hacia el lado n y poder contribuir a la generación de la I_{ph} . De forma análoga, contribuyen a la fotocorriente los huecos en la región n que son fotogenerados a una longitud de difusión (L_h) de la orilla de la SCR, (ver figura 2.16) [76]. Por otra parte, los portadores fotogenerados más allá de esta longitud de difusión, con respecto a la orilla de la SCR, no contribuyen a la I_{ph} ya que se recombinan en el sustrato. Éste es en esencia el fundamento físico en el que se basa el funcionamiento de una *celda solar dominada por un mecanismo de difusión*.

Figura 2.16:5 Principio de operación de una celda solar [64].

2.5.3 Estructura PIN

La estructura PIN se observa en la figura 18, en ella, las regiones espaciales de carga generadas en el interior del a-Si:H tipo p y n, dan lugar a un campo eléctrico que se extiende ahora a lo largo de una capa intrínseca del orden de 0.5 μ m de espesor. En dicha película i se produce la absorción de la radiación solar, y por tanto la fotogeneración de los portadores de carga (ver figura 2.17) [45].

a-Si:H

Figura 2.17: Esquema de una unión PIN. El campo eléctrico se extiende ahora a lo largo de la mayor parte del dispositivo. Los pares electrón/huecos fotogenerados son instantáneamente arrastrados hacia los extremos de la celda solar, minimizando así la probabilidad de que se recombinen.

Los portadores de carga, sometidos a la acción del campo eléctrico, recorrerán una longitud media que vendrá ahora determinada por un nuevo parámetro denominado *longitud de arrastre*, y que se define según la siguiente expresión:

$$L_{arrastre} = \mu \tau * F \tag{18}$$

donde μ es la movilidad de los portadores, τ es su tiempo de vida, y F define la intensidad del campo eléctrico en el *absorbedor*. Para un silicio amorfo intrínseco de calidad ($\mu\tau \sim 1\cdot 10^{-7}$ cm²/V), el valor de *L*_{arrastre} será mayor que el espesor del absorbedor garantizando así la colección de los portadores de carga [77][2]. Otra de las ventajas de la *estructura PIN*, es que permite reducir drásticamente el espesor de las películas p y n hasta valores del orden de 0.02 μ m. De esta forma, se minimiza la fotogeneración de portadores en regiones del dispositivo con una elevada densidad de defectos, donde la recombinación ocurriría inmediatamente.

2.5.4 Configuración de la celda solar PIN

Las celdas *solares dominadas por un mecanismo de arrastre* pueden presentarse en configuraciones diversas: estructura PIN ó NIP, de unión simple ó tandem, entre otras. La denominada como *configuración superestrato de unión simple* es sin duda la más popularizada, y la que se ha empleado en este trabajo (ver figura 19). Su funcionamiento es que la luz que es capaz de atravesar el substrato y el óxido conductor transparente, es dispersada por este último dentro de la estructura PIN de silicio amorfo. Aquellos fotones que no han sido capturados en la película intrínseca, son reflejados en el contacto metálico posterior, y devueltos al absorbedor de la estructura de silicio amorfo. Las partes que componen esta celda solar son las siguientes [2][78-80]:

- **Sustrato:** En la configuración de superestrato, la luz deberá atravesar el sustrato para llegar a la celda solar (ver figura 2.18). Por esta razón, habitualmente se recurre a vidrios con una alta transmitancia óptica. De esta forma, se garantiza que una mayor porción de fotones penetre en el dispositivo, favoreciendo así la generación de una mayor corriente eléctrica.
- **Oxido conductor transparente (TCO):** Uno de los problemas que se presenta a la hora de fabricar una celda solar, es la necesidad de utilizar un electrodo frontal que, a la vez que extraiga eficientemente la corriente fotogenerada, permita el paso de la luz hasta la estructura de silicio amorfo. Para cumplir con este objetivo se emplean habitualmente TCO's.
- **Emisor frontal**: Denominamos *emisor frontal* de la estructura PIN, a la película de silicio amorfo dopado que debe ser atravesada por la luz solar para alcanzar el absorbedor, habitualmente la capa p. Su función en el dispositivo será doble, por una parte, asegurar el paso de los fotones hasta la capa intrínseca, y por otra contribuir a la creación del campo eléctrico encargado de arrastrar los portadores fotogenerados.
- **Película intrínseca**: La capa intrínseca o *absorbedor*, constituye el corazón de la celda solar. Esta película tiene como funciones, por una parte, capturar el mayor número

posible de fotones, y por otra permitir la correcta colección de los pares electrón-hueco fotogenerados.

- **Emisor posterior**: La capa n o *emisor posterior* tiene por objeto contribuir a la formación del campo eléctrico de arrastre. Esta película deberá garantizar la correcta colección de los electrones fotogenerados.
- **Contacto metálico posterior**: Para extraer los portadores de carga que alcanzan la película n, la estructura de la celda solar es terminada con un electrodo posterior metálico que asegura un contacto óhmico.

Figura 2.18: Estructura básica de una celda solar PIN en configuración de superestrato.

2.5.5 Características de desempeño de las celdas solares.

En la figura 2.19 se muestran las curvas I-V características de una celda solar ideal. La primera curva corresponde a la del diodo y es la medición de la celda solar en oscuridad. Mientras que la segunda pertenece a la celda solar bajo iluminación. De forma gráfica la corriente de corto circuito (I_{sc}), que es la corriente máxima producida por una celda solar cuando sus terminales están cortocircuitadas, se obtiene cuando el voltaje es cero. Así encontramos que $I_{sc}=I_{ph}$ [2] [81-82].

Figura 2.19: Curvas I-V características de una celda solar ideal.

El voltaje de circuito abierto (V_{oc}) es el voltaje máximo que puede tener la celda cuando sus terminales están abiertas. Está dado por el punto en el cual la curva característica I-V de la celda solar bajo iluminación corta el eje V, es decir cuando I_{sc} es igual a cero. Se obtiene mediante la siguiente expresión:

$$V_{OC} = \frac{KT}{q} ln \left(\frac{l_{ph}}{l_0} + 1 \right)$$
(19)

La máxima potencia liberada (P_{max}) por la celda solar se obtiene cuando I=I_m y V =V_m, es decir, la corriente y el voltaje están en el punto máximo de funcionamiento de la celda. Como la corriente y voltaje máximo que se pueden obtener son I_{sc} y V_{oc}, se puede definir al Factor de Llenado (FF) de la siguiente manera:

$$FF = \frac{I_m V_m}{I_{sc} V_{oc}} = \frac{P_{max}}{I_{sc} V_{oc}}$$
(20)

Por otro lado, la eficiencia (η) de una celda solar se define como la razón de la potencia máxima de salida del dispositivo entre la potencia de la luz incidente, y se puede expresar de la siguiente forma.

$$\eta = \frac{I_m V_m}{P_{ligth}} = \frac{FF I_{sc} V_{oc}}{P_{ligth}}$$
(21)

Por otro lado, se define la densidad de corriente eléctrica como la intensidad de corriente (I) por unidad de área (A), su expresión matemática es la siguiente:

$$J = \frac{I}{A} \tag{22}$$

Capítulo 3 Detalles experimentales

En esta sección se muestran los detalles experimentales de las técnicas de caracterización utilizadas en este trabajo de tesis. La caracterización estructural de las películas, consistió en la técnica de Microscopia de Fuerza Atómica (AFM), Perfilometría y Raman. Por otra parte, la caracterización eléctrica corresponde a mediciones I-V variando la temperatura, así como a temperatura ambiente en oscuridad e iluminación. Por último, la caracterización óptica se realizó en un espectrofotómetro UV-VIS. Así mismo se describen las condiciones de depósito de las películas de μ c-Si:H, pm – Si:H, a – Si: H tipo p y n, en el sistema PECVD.

3.1 Caracterización Estructural

3.1.1 Microscopia de Fuerza Atómica (AFM)

El equipo utilizado fue un Microscopio de Fuerza Atómica EasyScan marca nano surf, utilizando punta de contacto en modo dinámico, utilizando una frecuencia dinámica de 190 KHz. El área de exploración de escaneo fue de 2 μ m x 2 μ m, se realizaron dos mediciones (puntos) por cada muestra. Para iniciar con la medición se procedió a colocar la muestra en el equipo, donde de manera manual se aproximó a la punta del equipo, posteriormente, se configuro el software del equipo para acercar la punta a la muestra, una vez hecho esto, se calibró el equipo y se procedió a realizar la micrografía en el punto deseado, en la figura 3.1 se muestra el equipo utilizado.

Figura 3.1: a) Microscopio de Fuerza Atómica, b) Obtención de Micrografía.

3.1.2 Espectroscopia Raman

Se utilizó un equipo labRAM HR de HORIBA JYVON, el cual presenta las siguientes características técnicas, un láser de He-Ne (632.8 nm), resoluciones máximas espacial y espectral de 6 μ m y 0.5 cm⁻¹, respectivamente, un detector CCD enfriado termoeléctricamente, un microscopio óptico (10, 50 y 100X) y una videocámara para enfoque, como se muestra en la figura 3.2. Se utilizó el microscopio óptico en 100X, una red de 600, un hole/slit de 400/400, un tiempo de integración de 3 segundos, 5 ciclos, y un intervalo de medición de 100 cm⁻¹ a 1000 cm⁻¹.

Se inició realizando la calibración del equipo, donde se utilizó una muestra de silicio monocristalino. Una vez calibrado el equipo se procedió a realizar la caracterización de las películas. El procedimiento consistió en activar en modo video el sistema, activar la cámara y encender la lámpara, con el objetivo de observar la superficie de la muestra y con ello seleccionar el área de medición, se enfocó con las perillas de aumento y el desplazamiento es por medio de una palanca de mano. Una vez seleccionada el área de medición se procedió a detener la cámara, apagar la luz, colocar el sistema en modo Raman, dar nombre a nuestro espectro y medir la muestra.

Figura 3.2: a) Equipo Raman, b) Obtención de Espectro.

3.1.3 Perfilometría

La obtención de los perfiles se realizó en el perfilómetro P-7 KLA-Tencor, la medición consistió en un barrido con una aguja de diamante sin contacto sobre la superficie de la película. La aguja está acoplada mecánicamente al núcleo de un transformador diferencial de variable lineal, este transformador produce una señal analógica proporcional al cambio de posición vertical de la aguja.

Se midieron tres puntos en cada muestra, la medición consistió en un barrido

tomando como referencia el sustrato (vidrio) de la muestra, a lo largo de 1500 μ m lineales entre la película y el sustrato, fuerza de 2mg, velocidad de 100 μ m/s, y una frecuencia de 200Hz. En la figura 3.3 se muestra el equipo utilizado. El procedimiento consiste en colocar la muestra sobre la base de medición del equipo, aproximar la punta, colocarla en el área de medición y realizar la medición, posteriormente el procedimiento se repite para los diferentes puntos medidos sobre la muestra.

Figura 3.3: a) Equipo de Perfilometría, b) Medición de espesor.

3.2 Caracterización Eléctrica

3.2.1 Medición corriente-voltaje (I-V) variando temperatura

La caracterización I-V dependiente de la temperatura se realizó en películas sobre Corning glass 2947 con contactos de aluminio. Cada muestra se colocó dentro de un criostato, se fijaron las muestras a un soporte y se soldaron los contactos a una terminal positiva y negativa, esta posteriormente se introduce en el criostato y se sella. Una vez sellado el equipo se procede a realizar vacío en el sistema hasta alcanzar una presión de 90 mTorr. Se utilizó una fuente Keithley 6517A configurado como fuente de voltaje y medidor de corriente, se aplicó un barrido de voltaje de -11 V a 11 V, se aplicó una rampa de temperatura empezando de 300K a 400K (subida) y de 400K a 300K (bajada), en la figura 3.4 se muestra el equipo de medición.

Figura 3.4: a) Equipo para medir I-V dependiente de la temperatura, b) Muestra fijada al criostato.

3.2.2 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación

Se realizaron mediciones I-V a temperatura ambiente en oscuridad y bajo iluminación, en películas depositadas sobre Corning glass 2947 con contactos de aluminio. Las mediciones con iluminación se realizaron utilizando el simulador solar ORIEL SOL 2A, el cual provee iluminación con un espectro estándar AM 1.5 y una densidad de potencia de 100 mW/cm². En ambas mediciones se utilizó el electrómetro Keithley 6517A configurado como fuente de voltaje y medidor de corriente. Cada muestra se colocó en el soporte del simulador solar, se realizaron las conexiones pertinentes y se aplicó un voltaje en oscuridad y posteriormente bajo iluminación, en un rango de 40 a -40 volts, en la figura 3.5 se muestra el equipo de medición.

Figura 3.5: a) Simulador solar ORIEL SOL 2 con un espectro estándar AM 1.5.

3.3 Caracterización Óptica

3.3.1 Espectroscopía UV-Vis

Por medio de un espectrómetro UV-VIS Perkin-Elmer Lambda Series se obtuvieron los datos de transmitancia en la región (190 nm - 900 nm) en películas depositadas sobre Corning 1737. Para iniciar la medición se estableció la línea base midiendo el Corning 1737, una vez hecho esto se midieron las películas. En la figura 3.6 se muestra el equipo de medición.

Figura 3.6: Espectofotómetro UV-VIS Perkin-Elmer Lambda Series.

3.4 Caracterización I-V de Celdas PIN

Se realizaron mediciones I-V en oscuridad e iluminación de las celdas solares PIN. Se midieron dos celdas con película intrínseca de μ c – Si: H y pm – Si: H. El equipo que se utilizó fue un simulador solar Oriel New Port Sol-2A, el cual presenta una lámpara con una potencia de 100mW/cm² y una iluminación estándar AM 1.5. El barrido que se realizó para las celdas microcristalinas fue de -0.7 a 1.3 Volts, con un paso de 0.2. Para la celda polimorfa el barrido realizado fue de -0.5 a 1 Volt, con un paso de 0.2. Para la caracterización de las celdas se montaron tres micro-manipuladores, los cuales nos permitieron fijar la celda y las conexiones correspondientes, como se muestra en la figura 3.7.

Figura 3.7: a) Simulador solar, b) Montaje de muestra.

3.5 RF-PECVD (13.56 MHz)

El sistema de depósito químico en fase vapor asistido por plasma (RF-PECVD) marca MVS systems el cual trabaja a una frecuencia de 13.56MHz., consiste de cuatro cámaras, de las cuales tres son utilizadas para el depósito de películas tipo p, n e intrínsecas y la restante para el depósito por medio de la técnica de Sputtering. El depósito de las películas intrínsecas (µc-Si: H y pm-Si: H) se realizó en la cámara intrínseca y las películas dopadas se depositaron en las cámaras n y p respectivamente. Las disoluciones de gases utilizados en el equipo RF-PECVD se muestran en el apéndice B. Previamente a los depósitos se realizó un tratamiento de plasma de argón durante 5 minutos con una presión de 300 mTorr, con el objetivo de limpiar la cámara, posteriormente se colocaron los sustratos para realizar el depósito (limpieza de sustratos en anexo A1). El sistema se muestra en la figura 3.8. En este capítulo se muestran los parámetros de depósito, resultados y discusión de la caracterización realizada en las películas intrínsecas y dopadas.

Figura 3.8: a) Sistema RF-PECVD (13.56 MHz), b) Se fija soporte de muestras en la cámara y c) Proceso de depósito por medio de plasma.

Capítulo 4

Resultados y discusión

4.1 Silicio Microcristalino ($\mu c - Si: H$)

Se realizaron 3 procesos de películas delgadas de μ c-Si:H. En los procesos se varió la potencia de depósito (W), manteniendo las mismas condiciones de presión, tiempo y flujo de gases, como se muestra en la tabla 2.

Tubla 2. Tura	neti os de de	posito de le	is penetitus de p	c onn		
	Potencia	Flujo	Flujo de	Flujo de	Presión	Tiempo de
Procesos	(W)	de SiH4	Hidrogeno	Argón	(Torr)	depósito
		(sccm)	(sccm)	(sccm)		(minutos)
MVSucSi1	10	5	20	5	1.5	40
MVSucSi2	15	5	20	5	1.5	40
MVSucSi3	20	5	20	5	1.5	40

Tabla 2. Parámetros de depósito de las películas de µc-Si:H

4.1.1 Caracterización Estructural

4.1.1.1 AFM y Perfilometría

Las mediciones se realizaron en una región de 2 μ m x 2 μ m para cada una de las películas de μ c-Si:H. La rugosidad promedio (S_a) y RMS (S_q) de las películas se obtuvieron a partir del programa procesador de imágenes SPIP 5.0.6. La velocidad de depósito, V_d, de las películas se calculó mediante el espesor medido de cada película dividido entre el tiempo de depósito.

En la tabla 3, se muestran los datos de S_a , S_q , V_d , espesor y las imágenes en 2D y 3D de las películas de μ c-Si:H variando la potencia de depósito de 10 W a 20 W. En las imágenes de AFM se puede apreciar que para una película depositada con una potencia de 10 W hay conglomerados de grano de mayor diámetro que los que se encuentran en la película depositada con una potencia de 15W. Sin embargo, existe una mayor rugosidad, espesor y V_d en la película depositada a 15W, como se observa en la figura 4.1. Por otro lado, la película depositada a una potencia de 20 W tiene una ligera disminución de la rugosidad mientras que la velocidad de depósito disminuye abruptamente, por lo que el espesor es mucho menor que las películas depositadas a 10 W y 15 W como se muestra en la figura 4.1.

Tabla 3. Imágenes de las películas de µc-Si:H variando la potencia de depósito.

Figura 4.1: Rugosidad promedio (S_a) y velocidad de depósito (V_d) de películas de μ c-Si:H en función de la potencia de depósito.

4.1.1.2 Espectroscopia Raman

En la figura 4.2a y 4.2b se observan los espectros Raman de las películas de μ c-Si: H y una gráfica de la variación de X_c en función de la potencia de depósito, donde a mayor potencia de depósito existe una mayor X_c. Por otro lado, los espectros Raman pueden descomponerse en tres bandas: modo óptico transversal en 520 cm⁻¹ del Si cristalino, la banda de frontera de grano en 510 cm⁻¹ y la banda de la fase amorfa en 480 cm⁻¹. En consecuencia, X_c puede ser determinada mediante la ec. 5 [64-65].

La deconvolución de las bandas se realizó ajustando los espectros raman de nuestro experimento mediante MATLAB, con un margen de error para cada fase de ± 5 cm⁻¹, como se muestra en la tabla 4. De acuerdo a los resultados de rugosidad por medio de AFM se espera un material con características cristalinas, esto se corrobora en los resultados de la deconvolución donde existe un incremento en la X_c de 0.45 a 0.92 a mayor potencia de depósito (figura 30b).

En la figura 4.2a, el pico de la película depositada a 20 W presenta la mayor intensidad y una anchura de pico delgada, lo que indica su alta cristalinidad, sin embargo, el pico de la película depositada a 15 W presenta una menor intensidad junto con el pico de la película depositada a 10 W, este último presenta un mayor ensanchamiento de pico con respecto a los otros espectros. Predominando en esta la fase amorfa y la fase de frontera de grano, como se observa en la tabla 4. Se confirma así lo reportado en la literatura donde la velocidad de depósito aumenta significativamente a medida que la frecuencia de excitación del plasma aumenta [83], obteniendo así en el sistema RF películas con características microcristalinas.

Figura 4.2. a) Espectro raman y b) Gráfica de fracción cristalina (X_c) Vs potencia de depósito (W) para películas μ c – Si: H variando la potencia de depósito.

Tabla 4. Deconvolución de las películas de μ c – Si: H para la determinación de la fracción cristalina, variando la potencia de depósito.

4.1.2 Caracterización Eléctrica

4.1.2.1 Medición corriente -voltaje (I-V) en oscuridad variando temperatura

En la figura 4.3 se muestran curvas de Arrhenius del logaritmo (Ln) de la conductividad en oscuridad (σ_D) en función de la temperatura (1/KT), la cual está dada por las ecs. 9 y 10. La pendiente de la curva de Arrhenius es la E_a . La conductividad es un proceso que se activa térmicamente para el silicio amorfo y microcristalino, la energía de activación para una película intrínseca de μ c-Si:H es típicamente 0.5 eV [84], la cual es menor a la E_a del a-Si:H con más de 0.7 eV. cm⁻¹I_m, I_c, X_c

En la tabla 5 se observan los datos de la E_a para cada una de las películas de μ c-Si:H. Los datos de la E_a están en un rango de 0.28-0.09 eV, los cuales decrementan con la potencia de depósito.

Se observa que la película que está depositada a 20W presenta la mayor X_c, pero una disminución de σ_D con respecto a la película depositada a 10 W, sin embargo, es la que presenta la menor E_a de las tres películas, lo cual no está reportado en la literatura [85]. De acuerdo a la literatura, la conductividad del µc-Si:H es varios órdenes de magnitud mayor que la de a-Si: H. Sin embargo, la σ_D de nuestras películas está por debajo de los valores reportados (10-3) para el µc-Si:H [83], a pesar de obtener una alta X_c con el incremento de la potencia de depósito.

Muestra	Potencia	$\sigma_{ m D}$	Xc	E _a (eV)
	(W)	(Ω/cm)		
MVSucSi1	10	6.27E-08	0.451	0.28
MVSucSi2	15	1.82E-07	0.894	0.11
MVSucSi3	20	1.77E-07	0.92	0.09

Tabla 5. Energía de activación de películas de µc-Si:H variando la potencia de depósito.

Figura 6: Gráficas de Arrhenius para películas $\mu c - Si$: *H* variando la potencia de depósito.

4.1.2.2- Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación.

En la figura 4.4 se muestran las curvas I-V en oscuridad e iluminación para las películas de μ c-Si:H, las cuales presentan un comportamiento resistivo. Se determinó el incremento de corriente (Δ I) definido como I_D – I_{ph}, la conductividad en oscuridad (σ_D) se determinó mediante la ec. 7 y la conductividad bajo iluminación (σ_{ph}) por la ec. 11, por último, se determinó la foto-respuesta (σ_D/σ_{ph}).

En la tabla 6 se muestran los datos de σ_D y σ_{ph} de las películas de μc – Si: H, las películas etiquetadas como MVSucSi2 y MVSucSi3, presentan una baja foto-respuesta [86]. Mientras que la película MVSucSi1 presenta una alta foto-respuesta, tales características son similares a las que presentan las películas de a-Si:H y pm-Si:H [87]. De acuerdo al espectro Raman, X_c, y AFM esta película tiene propiedades de una película de silicio polimorfo.

Figura 4.4: Gráficas I-V obtenidas en oscuridad y bajo iluminación de las películas $\mu c - Si$: *H* variando la potencia de depósito.

Tabla 6. Valores de las corrientes en oscuridad (I_D) y bajo iluminación (I_{ph}), Δ I, conductividad (σ _D), fotoconductividad (σ _D) y fotorespuesta (σ _{ph} / σ _D) de las películas de µc-Si:H variando la potencia de depósito.

Muestras	Iph	ID	ΔI(A)	$\sigma_{ m ph}$	σd	$\sigma_{\rm ph}/\sigma_{\rm D}$
MVSucSi1	7.36E-05	2.63E-10	7.36E-05	1.75E-02	6.27E-08	2.79E05
MVSucSi2	4.21E-10	3.41E-10	7.97E-11	2.25E-07	1.82E-07	1.23
MVSucSi3	7.45E-10	5.16E-10	2.29E-10	2.55E-07	1.77E-07	1.44

4.1.3 Caracterización Óptica

4.1.3.1 Transmitancia

Es bien sabido que el intervalo de la banda óptica está relacionado con el coeficiente de absorción como lo muestra la ec.16. Por lo que E_g se puede calcular a partir de la fórmula de Tauc, mediante la ec.1, realizando una extrapolación de la curva (α hu)^{1/y} versus hu [88].

En la figura 4.5a se muestran las curvas de transmitancia de las películas de μ c-Si:H. Las películas depositadas a 15W y 20W muestran una alta transmitancia en la región de 700nm a 800 nm y un bajo coeficiente de absorción en este rango (figura 4.5b). Por lo que la absorción de las películas a bajas energías es mayor, lo cual concuerda con la literatura en el sentido de que el μ c-Si:H tienen mayor absorción que el a-Si:H a bajas energías. Se observa un incremento en X_c y E_g de 1.54 eV a 1.65 eV, en el rango de 10W a 20W (tabla 7), lo cual ha sido reportado en la literatura [89], donde el aumento de E_g se debe al incremento de X_c de las películas.

Tabla 7. E_g para películas μ c-Si:H depositadas.						
Películas	Potencia	Xc	Eg			
	(W)		(eV)			
MVSucSi1	10	0.451	1.54			
MVSucSi2	15	0.894	1.63			
MVSucSi3	20	0.92	1.65			

4.2 Silicio Polimorfo (pm – Si: H)

Se realizaron tres procesos de películas delgadas de pm-Si:H. En todos los procesos se mantuvieron las mismas condiciones de presión, tiempo, y flujo de gases, variando únicamente la potencia de depósito como se muestra en la tabla 3.

Tabla 6. Farametros de deposito de las penculas de pin-51.n.						
	Potencia	Flujo	Flujo de	Flujo de	Presión	Tiempo de
Procesos	(W)	de SiH4	Hidrógeno	Argón	(Torr)	depósito
		(sccm)	(sccm)	(sccm)		(minutos)
MVSpmSi1	10	5	5.5	NO	1	40
MVSpmSi2	15	5	5.5	NO	1	40
MVSpmSi3	20	5	5.5	NO	1	40

Tabla 8. Parámetros de depósito de las películas de pm-Si:H

Figura 4.5: Gráficas de a) transmitancia, b) coeficiente de absorción y c) Obtención de E_g por el método de Tauc de las películas de μ c-Si:H.

4.2.1 Caracterización Estructural

4.2.1.1 AFM y Perfilometría

Las mediciones se realizaron en una región de 2 μ m x 2 μ m para cada una de las películas de pm-Si:H variando la potencia (W) de depósito por RF-PECVD. La rugosidad promedio (S_a) y RMS (S_q) de las películas se obtuvieron a partir del programa procesador de imágenes SPIP 5.0.6. La velocidad de depósito, V_d, de las películas se calculó mediante el espesor medido de cada película dividido entre el tiempo de depósito.

En la tabla 9, se muestran los datos de S_a , S_q , V_d , espesor y las imágenes en 2D y 3D de las películas de pm-Si:H variando la potencia de depósito de 10 W a 20 W. En las imágenes de AFM se puede apreciar un incremento en la rugosidad promedio de 10 W a 15 W, el incremento de la rugosidad está relacionada con una producción de nanocristales y una mayor microcristalinidad en el bulto de las películas [38]. Así mismo, se observa que, a mayor rugosidad en la superficie de las películas, aumenta el espesor de las mismas, como se observa en la figura 4.6 y tabla 9.

La microestructura de pm-Si:H no depende del espesor de la película o de la naturaleza del sustrato, ya que su mecanismo de depósito depende principalmente de los nanocristales de silicio sintetizados en el plasma, por lo que los nanocristales se distribuyen por todo el espesor de la película. La película depositada con una potencia de 15 W, tiene la mayor rugosidad y V_d, por lo que dicha película probablemente tenga la mayor X_c., lo cual debe corroborarse por espectroscopia Raman.

Figura 4.6: Rugosidad promedio (S_a) y velocidad de depósito (V_d) de películas de pm-Si:H en función de la potencia.

		Películas	
	MVSpmSi1	MVSpmSi2	MVSpmSi3
Potencia (W)	10	15	20
Vista			
2D	ForwardScan	ForwardScan	ForwardScan
3D	ForwardScan	ForwardScan	ForwardScan
Rugosidad	1.69	1.78	1.55
S _a (nm)			
Sq	1.95	2.05	1.79
Espesor	110.72	56.86	44.51
(nm)			
V _d (Å/s)	0.44	0.48	0.42

D 1/

Tabla 9. Imágenes de las películas de pm-Si:H en función de la potencia.

4.2.1.2 Espectroscopia Raman

En la figura 4.7a y 4.7b se observan los espectros Raman de las películas de pm-Si: H, así como la dependencia de X_c de las películas con la potencia de depósito. Los espectros Raman pueden descomponerse en tres: modo óptico transversal en 520 cm⁻¹ del Si cristalino, la fase de nanocristales de grano en 514 cm⁻¹ y la fase amorfa en 480 cm⁻¹. En consecuencia, X_c puede ser determinada mediante la ec.5 [64][90].

La deconvolución de las fases se realizó ajustando los espectros raman de nuestro experimento mediante MATLAB, con un margen de error para cada fase de ± 5 cm⁻¹, como se muestra en la tabla 10. De acuerdo a los resultados de rugosidad y AFM se espera un material con características cristalinas, esto se corrobora en la figura 4.7a, se observa como X_c aumenta conforme incrementa la potencia de depósito. Los picos se encuentran en 524 cm⁻¹, que corresponde a la fase cristalina, aunque presentan una buena intensidad, poseen un ancho de pico que está relacionada a la fase amorfa y la fase de formación de nanocristales [19].

La X_c se correlaciona fuertemente con la variación de la potencia de depósito, en las películas depositadas en este trabajo X_c aumentó de 0.734 a 0.848. Así pues, diferentes fracciones cristalinas y tamaños promedio de nanocristales de silicio en películas delgadas de silicio polimorfo se pueden obtener cambiando la potencia de RF [91].

Figura 4.7:7 a) Espectro Raman y b) Gráfica de fracción cristalina (X_c) Vs potencia de depósito (W) para películas pm - Si: H, en función de la potencia.

Tabla 10. Deconvolución de las películas de pm — Si: H para la determinación de la fracción cristalina. Fracción cristalina

4.2.2 Caracterización Eléctrica

4.2.2.1 Medición corriente-voltaje (I-V) en oscuridad variando temperatura

En la figura 4.8 se muestran curvas de Arrhenius del logaritmo (Ln) de la conductividad en oscuridad (σ_D) en función de la temperatura (1/KT), la cual está dada por las ecs. 9 y 10. La pendiente de la curva de Arrhenius es la E_a.

La σ_D se determinó mediante la ec.7 utilizando los datos I-V variando la temperatura. La energía de activación para una buena película intrínseca de pm - Si: H está típicamente en el rango de 0.72-0.94 eV [92]. En la tabla 11 se observan los datos de E_a para cada una de las películas de pm-Si: H. Los datos de la E_a están en un rango de 0.34-0.15 eV, estos resultados se aproximan a los valores de una película de silicio microcristalino, sin embargo, se observa una dependencia al incrementar la potencia de depósito con un aumento en la X_c y la σ_D , acompañado con una disminución de la E_a.

II.	11. Ellergia de acti	vacion de pend	Luias de pill-s	iin deposita	uas por KF-Pr	20
	Muestra	Potencia	$\sigma_{ m D}$	Xc	Ea	
		(W)	(Ω/cm)	(%)	(eV)	
	MVSpmSi1	10	2.62E-07	0.734	0.34	
	MVSpmSi2	15	2.39E-07	0.841	0.14	
	MVSpmSi3	20	4.36E-07	0.848	0.15	

Tabla 11. Energía de activación de películas de pm-Si:H depositadas por RF-PECVD.

4.2.2.2 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación.

En la figura 4.9 se muestran las curvas I-V en oscuridad e iluminación para las películas de pm-Si: H. Se determinó el incremento de corriente (Δ I) definido como I_D – I_{ph}, la conductividad en oscuridad (σ_D) se determinó mediante la ec.7 y la fotoconductividad bajo iluminación (σ_{ph}) por la ec. 11, por último, la foto-respuesta (σ_D/σ_{ph}).

La $\sigma_{\rm ph}$ incrementa conforme aumenta la potencia de depósito (tabla 12), por otro lado, no existe una diferencia entre la conductividad en oscuridad y la fotoconductividad por lo que hay una baja foto-respuesta de las películas. Lo que no es característico de un material de silicio polimorfo, ya que al tener una baja conductividad presenta una alta foto-respuesta, lo cual no se presenta en nuestras películas. Lo anterior se debe a que las películas son de tipo microcristalino, más que de tipo polimorfo.

Figura 4.8: Gráficas de Arrhenius de películas pm - Si: H.

Figura 4.9: Gráficas de corriente-voltaje obtenidas en oscuridad y bajo iluminación de las películas pm — Si: H.

Tabla 12. Valores de las corrientes en oscuridad (I_D) y bajo iluminación (I_{ph}), Δ I, conductividad (σ _D), fotoconductividad (σ _D) y fotorespuesta (σ _{ph} / σ _D) de las películas.

Muestras	I _{ph}	ID	ΔI(A)	σ_{ph}	$\sigma_{ m D}$	$\sigma_{\rm ph}/\sigma_{\rm D}$
MVSpmSi1	1.23E-09	9.87E-10	2.4E-10	3.26E-07	2.62E-07	1.24
MVSpmSi2	7.27E-10	4.08E-10	3.19E-10	4.26E-07	2.39E-07	1.78
MVSpmSi3	7.30E-10	6.60E-10	7.04E-11	4.82E-07	4.36E-07	1.11

4.2.3 Caracterización Óptica

4.2.3.1Transmitancia

El intervalo de la banda óptica está relacionado con el coeficiente de absorción mediante la ec. 16. Por lo que E_g se puede calcular a partir de la fórmula de Tauc, mediante la ec.1, realizando una extrapolación de la curva (α hu)^{1/\gamma} versus hu [88].

En la figura 4.10a se muestran las curvas de transmitancia de las películas de pm-Si:H, se observa altos valores de transmitancia en 650 nm y 800 nm, sin embargo, existe un segundo pico en las curvas en el rango de 450nm y 550 nm. Las curvas en el rango de 650nm y 800nm presentan un bajo coeficiente de absorción, mientras que en 450nm y 550nm tienen un alto coeficiente de absorción (figura 4.10b).

En la figura 4.10c y tabla 13 se observa claramente una dependencia de X_c con el aumento de la potencia de depósito. Los valores de E_g se encuentran en 1.54 eV a 1.53 eV, los cuales están por debajo de lo reportado para el silicio polimorfo con valores de 1.6 eV a 1.8 eV [19], por lo que estas películas presentan características de una película microcristalina. Esto se complementa con los resultados obtenidos en X_c , conductividad, espectros Raman y foto-respuesta.

Tabla 13. Eg para películas pm-Si:H.							
Películas	Potencia	Xc	Eg				
	(W)		(eV)				
MVSpmSi1	10	0.734	1.54				
MVSpmSi2	15	0.841	1.55				
MVSpmSi3	20	0.848	1.53				

4.3 Silicio amorfo dopado tipo p (a-Si:H,B)

Se realizaron 5 procesos de películas delgadas de a-Si:H,B. En todos los procesos se mantuvieron las mismas condiciones de presión, tiempo, y potencia, variando únicamente el flujo de gas de diborano (B_2H_6) de 1 a 15 sccm, como se muestra en la tabla 14.

Figura 4.10: Gráficas de a) transmitancia, b) coeficiente de absorción y c) Obtención de E_g por el método de Tauc de las películas de pm-Si:H.

	Presión	Potencia	Temperatura	Tiempo de	Flujo de	Flujo de	Flujo de	B ₂
	(mTorr)	(W)	(°C)	depósito	SiH4	$B_2 H_6$	CH_4	H ₆ /SiH ₄
Procesos				(minutos)	(sccm)	(sccm)	(sccm)	
MVS aSiHP1	550	3	200	10	50	1	7.5	8.00E-04
MVS aSiHP2	550	3	200	10	50	2	7.5	1.60E-03
MVS aSiHP3	550	3	200	10	50	5	7.5	4.00E-03
MVS aSiHP4	550	3	200	10	50	10	7.5	8.00E-03
MVS aSiHP5	550	3	200	10	50	15	7.5	1.20E-02

Tabla 114. Parámetros de depósito de las películas de a-Si:H tipo p.

4.3.1 Caracterización Estructural

4.3.1.1 AFM y Perfilometría

Las mediciones se realizaron en una región de 2 μ m x 2 μ m para cada una de las películas de a-Si:H tipo p variando el flujo de B₂H₆ por RF-PECVD. La rugosidad promedio (S_a) y RMS (S_q) de las películas se obtuvieron a partir del programa procesador de imágenes SPIP 5.0.6. La velocidad de depósito, V_d, de las películas se calculó mediante el espesor medido de cada película dividido entre el tiempo de depósito.

En la tabla 15, se muestran las imágenes de AFM, la rugosidad, el espesor y el V_d de las películas de a-Si:H tipo p, dopadas con boro. Se puede apreciar que la rugosidad de las películas disminuye al aumentar el flujo del gas dopante B_2H_6 , de 1 a 5 sccm, y después aumenta de nuevo para flujos mayores, este comportamiento también se ve en la razón de depósito, V_d, como se muestra en la gráfica de la figura 4.11.

Figura 4.11: Rugosidad promedio (S_a) y velocidad de depósito (V_d) de las películas de a-Si:H tipo p variando el flujo de diborano.

Tabla 15. Imágenes de las películas de a-Si:H tipo p.

			Películas		
	MVS aSiHP1	MVS aSiHP2	MVS aSiHP3	MVS aSiHP4	MVS aSiHP5
Flujo de	1	2	5	10	15
B_2H_6 (sccm)					
Vista		FanuardCaan			
2D	s due 2m	Forwards.can	ForwardScan	ForwardScan	ForwardScan
	<u></u>	A	<u> </u>	<u></u>	oum X* 2um
3D	ForwardScan 0000 2000 2000 2000 2000 2000 2000 200	ForwardScan	ForwardScan Gum 2 Zum 2	ForwardScan Compared Scan Compared	Uum x ² 2um
3D Rugosidad	ForwardScan Commentation of the second seco	ForwardScan	ForwardScan	ForwardScan	the forward scan f
3D Rugosidad Sa (nm)	ForwardScan 0000 2000 2000 2000 2000 2000 2000 200	ForwardScan	ForwardScan	ForwardScan June A Lum ForwardScan June June June June June June June June	tum <u>x</u> <u>um</u>
3D Rugosidad Sa (nm) Sq	ForwardScan	ForwardScan	ForwardScan	ForwardScan Dum 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um <u>x</u> um ForwardScan <u>um v</u> <u>um</u> <u>um v</u> <u>um v</u> <u>um</u>
3D Rugosidad Sa (nm) Sq Espesor	ForwardScan ForwardScan 1.95 2.28 26.3	ForwardScan	ForwardScan um y zm ForwardScan um y um y	ForwardScan Unit X Unit of the second secon	tum x 2m ForwardScan forwardSc
3D Rugosidad Sa (nm) Sq Espesor (nm)	ForwardScan 0000 2000 2000 2000 2000 2000 2000 200	ForwardScan	ForwardScan	ForwardScan ForwardScan Lef 1.65 1.93 97.9	tum x 2m ForwardScan forwardSc

4.3.2 Caracterización Eléctrica

4.3.2.1- Medición corriente-voltaje (I-V) en oscuridad variando temperatura

En la figura 4.12 se observan las curvas de Arrhenius (Ln σ_D vs 1/KT) de las películas de a-Si:H tipo p. La σ_D se determinó mediante la ec.7 utilizando los datos I-V a temperatura ambiente. La energía de activación para una película de a-*Si*: *H tipo p* es típicamente mayor a 0.7 eV [84].

En la tabla 16 se observan los datos de la energía de activación (E_a) y conductividad en oscuridad a temperatura ambiente ($\sigma_{\rm D}$) para cada una de las películas de a-Si:H tipo p. En la muestra MVSaSiHP2 se obtuvo un *error de medición en el equipo (-)* para el valor de $\sigma_{\rm D}$. Los datos de la E_a están en un rango de 0.61-0.27 eV, estos valores corresponden a los reportados para el silicio amorfo dopado, en donde a mayor dopado la E_a disminuye. En la figura 4.13 a y b, se observa como la energía de activación disminuye conforme aumenta el flujo de B₂H₆ hasta que se alcanza un punto de saturación. El objetivo de dopar es incrementar la $\sigma_{\rm D}$ de las películas, dicho incremento va acompañado con una reducción de E_a. Esto se atribuye a un desplazamiento del nivel de Fermi hacia la banda de valencia o el borde de la banda de conducción, como se reporta en la literatura [22]. Así pues, la película depositada con un flujo de B₂H₆ de 15 sccm tiene la mayor $\sigma_{\rm D}$.

Por otro lado, la conductividad aumenta al incrementar el flujo de B_2H_6 y también se satura para flujos altos de gas dopante. Lo anterior indica que hay una óptima incorporación de átomos de boro, con lo cual se producen películas con la mayor conductividad posible. Una incorporación mayor de átomos dopantes resulta en la generación de un mayor número de defectos en la película [22]. Cabe aclarar que estas películas se usarán como la película tipo p de una celda solar, por lo que el objetivo es que tengan la mayor conductividad posible sin una gran cantidad de defectos.

	Flujo de B ₂ H ₆	σD	Ea
Muestra	(sccm)	(Ω/cm)	(eV)
MVSaSiHP1	1	5.45E-07	0.61
MVSaSiHP2	2	-	0.37
MVSaSiHP3	5	1.39E-04	0.27
MVSaSiHP4	10	7.67E-05	0.27
MVSaSiHP5	15	1.39E-04	0.3

Tabla 16. Energía de activación y σ_D de películas de a — Si: H tipo p depositadas por RF-PECVD.

Figura 4.12: Gráficas de Arrhenius para películas a - Si: H tipo p.

Figura 4.13:8 a) Gráfica de E_a vs B_2H_6 / SiH₄, b) Gráfica de conductividad a temperatura ambiente σ_D Vs B_2H_6 / SiH₄, para películas a-Si:H tipo p.

4.4 Silicio amorfo dopado tipo n (a-Si:H,P)

Se realizaron 5 procesos de películas delgadas de a-Si:H, P. En todos los procesos se mantuvieron las mismas condiciones de presión, tiempo, y potencia, variando únicamente el flujo de gas de Fosfina de 0.1 a 10 sccm, como se muestra en la tabla 17.

			1				
	Presión	Potencia	Temperatura	Tiempo de	Flujo	Flujo	PH ₃ /SiH ₄
	(mTorr)	(W)	(°C)	depósito	de SiH4	de PH ₃	
Procesos				(minutos)	(sccm)	(sccm)	
MVS aSiHN1	550	3	200	10	50	0.1	2.00E-04
MVS aSiHN2	550	3	200	10	50	0.5	1.00E-03
MVS aSiHN3	550	3	200	10	50	2	4.00E-03
MVS aSiHN4	550	3	200	10	50	5	1.00E-02
MVS aSiHN5	550	3	200	10	50	10	2.00E-02

Tabla 17. Parámetros de depósito de las películas de a-Si:H tipo n.

4.4.1 Caracterización Estructural

4.4.1.1 AFM y Perfilometría

Las mediciones se realizaron en una región de 2 μ m x 2 μ m para cada una de las películas de a-Si:H tipo n. La rugosidad promedio (S_a) y RMS (S_q) de las películas se obtuvieron a partir del programa procesador de imágenes SPIP 5.0.6. La velocidad de depósito, V_d, de las películas se calculó mediante el espesor medido de cada película dividido entre el tiempo de depósito.

En la tabla 18, se muestran los datos de S_a, S_q, V_d, espesor y las imágenes en 2D y 3D de las películas de a-Si:H tipo n variando el flujo de fosfina de 0.1sccm a 10 sccm. En las imágenes de AFM de la figura 4.14 se puede apreciar un incremento de grano, empezando por granos pequeños a granos de mayor tamaño conforme aumenta el flujo de fosfina, sin embargo, no hay una relación con la rugosidad, V_d y espesor. Se observa que el punto donde se encuentra una mayor rugosidad y V_d, es en la película depositada con un flujo de 5 sccm.

Figura 4.14:9 Rugosidad promedio (S_a) y velocidad de depósito (V_d) de películas de a-Si:H tipo n variando el flujo de fosfina.

Películas							
	MVS aSiHN1	MVS aSiHN2	MVS aSiHN3	MVS aSiHN4	MVS aSiHN5		
Flujo de PH ₃ (sccm) Vista	0.1	0.5	2	5	10		
2D	ForwardScan	ForwardScan	ForwardScan	ForwardScan	ForwardScan		
3D	ForwardScan	ForwardScan Um 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	ForwardScan	ForwardScan	ForwardScan Unit of the second secon		
Rugosidad S _a (nm)	1.57	1.44	1.61	2.38	1.36		
Sa	1.80	1.70	1.88	3.08	1.59		
Espesor	27.7	30.1	19.5	27.3	21.8		
(nm)							
V _d (Å/s)	0.74	0.75	0.6	1.5	0.7		

Tabla 17. Imágenes de depósito de las películas de a-Si:H tipo n variando el flujo de fosfina.

4.4.2 Caracterización Eléctrica

4.4.2.1 Medición corriente-voltaje (I-V) en oscuridad variando temperatura

En la tabla 19 se observan los datos de la energía de activación (E_a) para cada una de las películas de a-Si:H tipo n. Los datos de la E_a están en un rango de 0.63-0.34 eV, estos valores están en el rango del silicio amorfo dopado. Así mismo, hay una tendencia clara con el aumento del flujo de fosfina por lo que la E_a disminuye, así como la conductividad incrementa, sin llegar a un punto de saturación, por lo que probablemente las películas se pueden dopar con más flujo de fosfina antes de que lleguen al punto de saturación, después del cual, la incorporación de átomos de fósforo no contribuye al dopado, pero sí a la formación de defectos (ver figura 4.15) [22].

En la figura 4.16 se observan las curvas de Arrhenius (Ln σ_D vs 1/KT) de las películas de a-Si:H tipo n en donde la pendiente de las curvas es la energía de activación. La σ_D se determinó mediante la ec. 7 utilizando los datos I-V a temperatura ambiente.

Muestra	Flujo	$\sigma_{ m D}$	Ea
	de PH₃	(Ω/cm)	(eV)
	(sccm)		
MVSaSiHN1	0.1	2.47E-07	0.63
MVSaSiHN2	0.5	7.92E-07	0.42
MVSaSiHN3	2	1.73E-04	0.39
MVSaSiHN4	5	1.03E-03	0.38
MVSaSiHN5	10	2.01E-03	0.34

Tabla 18. E_a de películas de a — Si: H tipo n variando el flujo de fosfina.

Figura 4.15:10 a) Gráfica de E_a vs PH₃/SiH₄, b) Grafica de σ_D vs PH₃/SiH₄, para películas a-Si:H tipo n variando el flujo de fosfina.

Figura 4.16: Gráficas de Arrhenius para películas a - Si: H tipo n.
4.5 Celdas Solares PIN

De acuerdo a los resultados y el análisis de las películas depositadas, se seleccionaron las películas con características óptimas para la fabricación de celdas solares, como lo es alta fotoconductividad en el caso de las películas intrínsecas y alta conductividad eléctrica para las películas dopadas para su aplicación en celdas solares PIN. Se realizaron dos procesos de celdas solares PIN, una con película intrínseca de silicio microcristalino (μ c-Si:H) y otra de silicio polimorfo (pm – Si: H). Las películas depositadas con 10 W de potencia RF se seleccionaron en términos de su alta fotoconductividad). Por otro lado, la película dopada p seleccionada (debido a su alta conductividad eléctrica) correspondió a un flujo de diborano (B₂H₆) de 15 sccm y la película dopada n correspondió a un flujo de fosfina (PH₃) de 10 sccm. Cabe aclarar que las condiciones de depósito se mantuvieron, aumentando únicamente el tiempo de depósito, con la finalidad de obtener un grosor adecuado de cada película para la fabricación de la celda solar, de acuerdo a lo reportado en la literatura. El sustrato utilizado para las celdas fue vidrio recubierto con ITO (ITO Coated Glass) de un espesor de 150 nm - 200nm, resistividad de ~10 ohms/sq de la marca TECHINSTRO con código TIXZ 001.

Las películas intrínsecas se depositaron en la cámara intrínseca, mientras que para las dopadas se depositaron en las cámaras n y p respectivamente. Previamente a los sustratos se les realizó un grabado en seco con CF₄ en micro RIE (ver limpieza de sustratos en anexo A2) y posteriormente en el sistema RF-PECVD se realizó un tratamiento de plasma de argón durante 10 minutos con una presión de 300 mTorr - 400mTorr, con el objetivo de eliminar cualquier contaminante sobre la película de ITO, una vez depositada la celda PIN se depositaron los contactos de plata (Ag) en la cámara de Sputtering, en la figura 4.17 se muestra el diseño de la celda.

Figura 4.17:11 Diseño de celda PIN.

4.5.1 Celda con película intrínseca de µc-Si:H

En la tabla 20 se muestran los parámetros de depósito de las películas tipo p, intrínseca y tipo n de la celda PIN con película intrínseca de silicio microcristalino depositada a una potencia de 10W sobre un sustrato de vidrio recubierto de ITO. En la figura 4.18 se muestran las celdas depositadas.

	Celda PIN											
Película	Proceso	Presión	Potencia	Tiempo	Temperatura	Espesor	Flujo	Flujo	Flujo	Flujo	Flujo de	Flujo
		(mTorr)	(W)	de	(°C)	(nm)	de	de	de	de CH4	Hidrógeno	de
				deposito			SiH4	B_2H_6	PH_3	(sccm)	(sccm)	Argón
				(minutos)			(sccm)	(sccm)	(sccm)			(sccm)
Р	MVSaSiHP5	550	3	2.35	200	20	50	15	NO	7.5	-	NO
Ι	MVSucSi1	1500	10	100	200	300	5	NO	NO	NO	20	5
N	MVSaSiHN5	550	3	4.75	200	20	50	NO	10	NO	-	NO

Tabla 19. Parámetros de depósito para celda PIN con película intrínseca de silicio microcristalino.

Figura 4.18: Imagen de celdas depositadas sobre sustrato de vidrio / ITO.

4.5.1.1 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación de la celda solar de μ c-Si:H

En la figura 4.19, se muestran las curvas I-V en luz y oscuridad, medidas bajo condiciones estándar AM1.5. En la tabla 21 se muestran los datos de rendimiento de la celda solar PIN, el voltaje de circuito abierto, V_{oc}, es de 0.5V, mientras que la densidad de corriente de corto circuito Jsc, es de 5.4 mA/cm². El factor de llenado, FF, es de 48 %, y la eficiencia de 1.47 %. Esto demuestra que las películas analizadas pueden aplicarse para la fabricación de celdas solares, cabe destacar que a pesar de que se obtuvo una eficiencia baja, este resultado es preliminar y es necesario realizar mayor trabajo en la fabricación de celdas PIN, investigando la influencia del espesor de las películas, así como realizar un estudio de cómo afecta a la eficiencia de la celda el nivel de dopado de las películas tipo p y n.

Rendimiento de Celda PIN									
Dispositivo	I_{sc}	Voc	Area	J _{sc}	I _{Pmax}	V _{Pmas}	J _{Pmax}	FF	Eficiencia
	(mA)	(V)	(cm ²)	(mA/cm ²)	(mA)	(V)	(mA/cm ²)	%	%
3	0.83	0.57	0.15	5.40	0.46	0.50	2.95	48	1.47

Tabla 20. Datos de rendimiento de celda solar PIN microcristalina depositadas a 10 W.

Figura 4.19: Curvas I-V de las celdas tipo PIN de silicio microcristalino.

4.5.2 Celda con película intrínseca de Silicio Polimorfo

En la tabla 22 se muestran los parámetros de depósito de la celda PIN con película intrínseca de silicio polimorfo depositada a una potencia de 10W sobre un sustrato de vidrio recubierto de ITO por RF-PECVD.

					Ce	elda PIN						
Película	Proceso	Presión	Potencia	Tiempo	Temperatura	Espesor	Flujo	Flujo	Flujo	Flujo	Flujo de	Flujo
		(mTorr)	(W)	de	(°C)	(nm)	de	de	de	de CH4	Hidrógeno	de
				deposito			SiH4	B_2H_6	PH ₃	(sccm)	(sccm)	Argón
				(minutos)			(sccm)	(sccm)	(sccm)			(sccm)
Р	MVSaSiHP5	550	3	2.35	200	20	50	15	NO	7.5	-	NO
Ι	MVSpmSi1	1000	10	115	200	300	5	NO	NO	NO	5.5	NO
N	MVSaSiHN5	550	3	4.75	200	20	50	NO	10	NO	-	NO

Tabla 21. Parámetros de depósito para celda PIN con película intrínseca de silicio polimorfo.

4.5.2.1 Medición corriente-voltaje (I-V) en oscuridad y bajo iluminación de la celda solar de silicio polimorfo (pm-Si:H)

En la figura 4.20, se muestra las curvas I-V en luz y oscuridad, medida en el simulador solar bajo condiciones estándar AM1.5. En la tabla 23 se muestran los datos de rendimiento de la celda solar PIN, el voltaje de circuito abierto, V_{oc}, es de 0.3 V, mientras que la densidad de corriente de corto circuito J_{sc}, es de 7.64 mA/cm². El factor de llenado, FF, es de 27 %, y la eficiencia de 0.6%. Al igual que en el caso anterior, este resultado es preliminar y es necesario un mayor trabajo de investigación en la fabricación de celdas solares PIN.

Tabla 22. Parametros de rendimiento de la celda solar PIN polimorta depositada a 10% por RF-PECVD.									
Rendimiento de celda PIN									
Dispositivo	Isc	Voc	Area	Jsc	Imp	Vmp	Jmp	FF	Eficiencia
	(mA)	(V)	(cm ²)	(mA/cm ²)	(mA)	(V)	(mA/cm ²)	%	%
6	1.18	0.30	0.15	7.64	0.48	0.20	3.11	27	0.62

Figura 4.20: Curvas I-V de la celda tipo PIN de silicio polimorfo.

Conclusiones

En la presente tesis se cumplieron los objetivos planteados al inicio de este trabajo que fueron la optimización de parámetros de depósito, caracterización y estudio de películas delgadas de μ c-Si:H, pm-Si:H y a-Si:H (tipo p y n) utilizando la técnica PECVD a bajas temperaturas (200 °C). La caracterización estructural, eléctrica y óptica fue determinante para seleccionar la mejor película intrínseca y dopada para la fabricación de celdas solares tipo PIN. Las principales conclusiones de este trabajo son las siguientes:

• Películas depositadas por RF-PECVD

- Se depositaron películas de silicio microcristalino variando la potencia de depósito de 10 W a 20 W. De acuerdo a la caracterización estructural, eléctrica y óptica sí fue posible obtener películas microcristalinas. Sin embargo, la película depositada a 10 W presenta características de silicio polimorfo, una alta fotoconductividad y fotorespuesta (σph = 1.75E-02, σph/σd= 2.79E+05). Mientras que las películas depositadas a 15 W y 20 W presentan características microcristalinas sin embargo una baja fotoconductividad y fotorespuesta (σph = 2.55E-07, σph/σd= 1.44).
- Se depositaron películas de silicio polimorfo variando la potencia de depósito de 10 W a 20 W, sin embargo, de acuerdo a la caracterización estructural, eléctrica y óptica, las características fueron de películas microcristalinas, que puede estar relacionado a la exposición de flujo de Argón durante el depósito. Estas películas presentan una baja fotoconductividad y fotorespuesta (σph = 4.26E-07, σph/σd= 1.78).
- \circ Se depositaron las películas de silicio amorfo tipo P variando el flujo de B₂H₆ de 1 sccm a 15 sccm. De acuerdo a las caracterizaciones eléctricas en este rango las películas presentan una alta conductividad (σ_D), y una baja E_a, la cual es característica de películas de a-Si:H eficientemente dopadas.
- \circ Se depositaron las películas de silicio amorfo tipo N variando el flujo de PH₃ de 0.1 sccm a 10 sccm, de acuerdo a la caracterización eléctrica las películas presentan una alta conductividad (σ_D), así como una baja E_a, propias de películas de a-SI:H eficientemente dopadas.

• Celdas solares PIN

Se fabricaron celdas solares PIN con película intrínseca de silicio microcristalino, las cuales presentaron una eficiencia de 1.47 %. Por otro lado, la celda solar PIN con película intrínseca de silicio polimorfo, presentó una eficiencia de 0.62 %. Cabe aclarar que este es un resultado preliminar y es necesario realizar un mayor trabajo de investigación en la fabricación de celdas solares tipo PIN, con el objetivo de incrementar la eficiencia.

Trabajo a futuro

Como trabajo futuro queda un estudio sistemático en la fabricación de estructuras PIN, particularmente en el análisis del efecto del nivel de dopado de las películas de a-Si:H tipo P y tipo N sobre la corriente de corto circuito y la eficiencia de las celdas solares PIN. Así mismo el efecto del espesor tanto de las películas dopadas como intrínsecas también debe ser estudiado.

Apéndice A

1. Limpieza de vidrios para el depósito de películas.

Para el depósito de las películas en el equipo RF-PECVD, previamente se realizó limpieza a los sustratos, se utilizaron sustratos Corning 2947 para las mediciones AFM, Raman y mediciones eléctricas, por otra parte, se utilizaron substratos de vidrio Corning 1737 para las mediciones de transmitancia (espectroscopía UV-VIS). Los pasos realizados en la limpieza fueron los siguientes:

Sustratos (2947 y 1737):

• Etiquetado:

Se marcó cada uno de los sustratos de acuerdo al nombre predeterminado en cada procedimiento.

- Desengrasado:
- 1. Sumersión por 10 minutos en Tricloroetileno en sistema ultrasónico.
- 2. Sumersión por 10 minutos en acetona en sistema ultrasónico.
- 3. Enjuague con agua desionizada (DI) y secado.
 - Limpieza RCA1:

Inmersión por 17 minutos a 70 °C en una solución con 706 ml. de agua DI, 118 ml. de hidróxido de amonio (NH₄OH) y 176.5 ml. de peróxido de hidrogeno (H₂O₂) y enjuague con agua DI. Se usa para eliminar residuos orgánicos.

• Limpieza RCA2:

Sumersión por 17 minutos a 70 °C en una solución con 737 ml. de agua DI, 158 ml. de peróxido de hidrogeno y 103 ml. con ácido clorhídrico (HCl). Enjuague con agua DI y secado. Se usa para quitar metales pesados.

Posteriormente, para las mediciones eléctricas se depositaron contactos de aluminio con un grosor de 3000 Å sobre Corning 2947. En la figura A.1 se muestra el área de limpieza RCA y la evaporadora para el depósito de contactos.

Figura A.1: a) Área de limpieza para el procedimiento RCA, b) Evaporadora para el depósito de contactos de aluminio.

2. Limpieza de vidrios para el depósito de celdas PIN

Para el depósito de las celdas, previamente se realizó limpieza a los sustratos con ITO, que consistió en lo siguiente (ver figura 68a):

Sustratos de vidrio recubiertos con ITO:

• Etiquetado:

Se marcó cada uno de los sustratos de acuerdo al nombre predeterminado en cada procedimiento.

- Desengrasado:
- 1. Sumersión por 10 minutos en Tricloroetileno en sistema ultrasónico.
- 2. Sumersión por 10 minutos en acetona en sistema ultrasónico.
- 3. Enjuague con agua desionizada (DI) y secado.

Apéndice B

Disolución de gases en el depósito PECVD

La disolución de gases para el equipo RF-PECVD se muestran en la tabla 24.

Tabla 23.Disolución de gases en equipos-PECVD.						
Gases	concentración en H					
	(%)					
SiH4	10					
B ₂ H ₆	1					
PH ₃	1					
CH ₄	100					

Bibliografía

- [1] Renewables Global Status Report 2016, Renewable Energy Policy Network for the 21st Century, 2016, 2016.
- [2] Hegedus, A. Luque and S., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Inc., 2003.
- [3] Méndez Muñiz, Javier María; Cuervo García, Rafael; Bureau Veritas, Energía Solar Térmica, Fundación Confemetal. «1»,p. 37, 2010..
- [4] Gaëtan Masson (iCARES Consulting), Sinead Orlandi, Manoël Rekinger, Global Market Outlook For Photovoltaics 2014-2018EPIA (European Photovoltaic Industry Association), 2014.
- [5] Network, Biomass Users, Manuales sobre energia renovable: Solar Fotovoltaica, Biomass Users Network (BUN-CA), 2002.
- [6] [En línea]. Available: http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html.
- [7] [En línea]. Available: http://galt.mx/celdas-solares/.
- [8] Gangopadhyay, Utpal, Sukhendu Jana, and Sayan Das. State of art of solar photovoltaic technology. Conference Papers in Science. Vol. 2013. pp 1-9. Hindawi Publishing Corporation, 2013..
- [9] Bagher, Askari Mohammad, Mirzaei Mahmoud Abadi Vahid, and Mirhabibi Mohsen. Types of solar cells and application American Journal of Optics and Photonics 3(5). pp: 94-113, 2015..
- [10] Swami, Rashmi. Solar cell. International Journal of Scientific and Research Publications 2(7), pp: 1-5, 2012..
- [11] Internacional Energy Agency (IEA), SOLAR PHOTOVOLTAIC ROADMAP, 2015.
- [12] International Energy Agency "Snapshot of Global PV", 1992-2014.
- [13] [En línea]. Available: http://www.nerl.gov/ncpv.
- [14] Jesús Martínez; Mario Moreno; Pedro Rosales, Alfonso Torres, Roberto Ambrosio, Dulce Murias. Study of the spin on dopant technique as alternative for the fabrication of c-Si solar cells. IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 2483-2486, 2016.

- [15] Roca i Cabarrocas P., Fontcuberta i Morral A., Lebib S., Poissant Y., Plasma production of nanocrystalline silicon thin films for large area electronic and devices, Pure Appl. Chemicals, 74 (3), pp. 359-367, 2002.
- [16] Brinza M., Adriaenssens G.J., Abramov A., Roca i Cabarrocas P., Influence of deposition parameters on hole mobility in polymorphous silicon, Thin Solid Films 515, pp. 7504-7507, 2007.
- [17] Roca i Cabarrocas P., Fontcuberta i Morral A., Poissant Y., Growth and optoelectronic properties of polymorphous silicon thin films, Thin Solid Films, pp. 403-404, 2002.
- [18] Fontcuberta i Morral A., Brenot R., Hamers E.A.G., Vanderhaghen R., Insitu investigation of polymorphous silicon deposition, J. Non Cryst. Solids, pp. 266-269, 2000.
- [19] «Mario Moreno, Roberto Ambrosio, Arturo Torres, Alfonso Torres, Pedro Rosales, Adrián Itzmoyotl and Miguel D., Amorphous, Polymorphous, and Microcrystalline Silicon Thin Films Deposited by Plasma at Low Temperatures, Crystalline and Non-crystalline Solids,» *Ed. InTech*, 2016.
- [20] «Cashmore J.S., Apolloni M., Braga A., Caglar O., Cervetto V., Fenner Y., Goldbach-AschemannS., Goury C., Hötzel J.E., Iwahashi T., Kalas J., Kitamura M., Klindworth M., Kupich M., Leu G.-F., Lin J., Lindic M.-H., Losio P.A., Mates T., Matsunaga D.,,» Mereu B., Nguyen X.-V., Psimoulis I., Ristau S., Roschek T., Salabas A., Salabas E.L., Sinicco I.Improved conversion efficiencies of thin-film silicon tandem (MICROMORPH[™]) photovoltaic modules, Sol. Energ. Mater. Sol. Cells, 144, pp. 84-95, 2016.
- [21] P. Roca i Cabarrocas, Mater. Res. Symp. Proc. 507., p. 855, 1990.
- [22] K. Tanaka, E. Maruyama, T. Shimada, H. Okamoto. Amorphous Silicon., 1999.
- [23] R. C. CHITTICK, ALEXANDE.JH, and H. F. STERLING. Preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 116(1):77–&, 1969..
- [24] W. E. SPEAR, G. WILLEKE, P. G. LECOMBER, and A. G. FITZGERALD.Electronic-properties of microcrystalline silicon films prepared in a glow-discharge plasma.Journal De Physique, 42(NC4):257–260, 1981..
- [25] Huang T.-C., Huang J.-L., ChengTim K.-T., Robust circuit design for flexible electronics, IEEE Des. Test Comput., 28, (2011) 8–15.
- [26] «Stutzmann M., Defect density in amorphous silicon, Philos. Mag. B: Phys. Condens. Matter 60, (1989) 531–546».
- [27] D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976)..

- [28] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, and L. Castens, Proc. 24th European PVSEC, Hamburg 2009, pp. 21-25.
- [29] B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C-S. Jiang, Appl. Phys. Lett. 99, 113512 (2011)..
- [30] P. Roca i Cabarrocas, S. Hamma, S. N. Sharma, G. Viera, E.Bertran, and J. Costa, J. Non-Cryst. Solids 227-230, 871 (1998)..
- [31] C. Bohm and J. Perrin, J. Phys. D: Appl. Phys. 24, 865 (1991)..
- [32] S. Thomson, C.R. Perrey y T.J. Belich, J. Appl. Phys. 97 (2005) 034310..
- [33] R. Butte et al., J. Non-Cryst. Solids 266-269 (2000) 263..
- [34] M. Meaudre, R. Meaudre, R. Butte, S. Vignoli, C. Longeaud, J.P. Kleider, P.Roca i Cabarrocas, J. Appl. Phys. 86, 946 (1999)..
- [35] Syllaios A.J., Schimert T.R, Gooch R.W., McCardel W.L., Ritchey B.A, Tregilas J.H., Amorphous silicon microbolometer technology, Mat. Res. Soc. Symp. Proc.Vol. 609, A14.4.1-A14.4.6, 2000..
- [36] S. Veprek and V. Macerek, "The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport," sol. st. elec., vol. 11, p. 683, 1968..
- [37] W. E. Spears and L. P.G., "Substitutional doping of amorphous silicon," Sol. state comm., vol. 17, p. 1193, 1975..
- [38] Shah A., VallatSauvain E., Torres P., Meier J., Kroll U., Intrinsic microcrystalline silicon (mc-Si:H) deposited by VHF GD (very high frequency-glow discharge): a new material for photovoltaics and optoelectronics, Mater. Sci. Eng. B 69–70 (2000) 219–226..
- [39] «Moreno M., Boubekri R., Roca P., Cabarrocas I.,,» Study of the effect of different fraction of large grains μc-Si:H:F films on the infrared absorption on thin film solar cells, Sol.Energ. Mater. Sol. Cells 100 (2012) 16..
- [40] J. Ni, Q. Liu, J. Zhang, J. Ma, H. Wang, X. Zhang, and Y. Zhao, "Microcrystalline silicon– germanium solar cells with spectral sensitivities extending into 1300nm," Sol. Energy Mater. Sol. Cells, vol. 126, pp. 6–10, 2014..
- [41] D. E. Polk. Structural model for amorphous silicon and germanium. J. Non-Cryst. Solids, 5:365, 1971..
- [42] N. Budini, Silicio policristalino para dispositivos fotovoltaicos, PhD, Tesis, Universidad Nacional del Litoral, Grupo de Semiconductores y Energías no Convencionales, Instituto de Desarrollo Tecnológico para la Industria Química, 2012.

- [43] L. Houben M. Luysberg P. Hapke R. Cari, "Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth," Philos. Mag. A, vol. 77, no. 6, pp. 1447–1460, 1998..
- [44] O. Vett erl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz , A.Muck, B. Rech, and H. Wagner, Sol. Energy Mater. 62 (2000) 97..
- [45] R. A. Street "Hydrogenated amorphous silicon"; Cambridge University Press, (1991)..
- [46] A.V. Shah. Thin-Film silicon solar Cells (Engineering science: Micro- and Nanotechnology). EPFL Press, 2010..
- [47] J. J. Gand'ıa. C'ELULAS SOLARES BASADAS EN ALEACIONES DE SILICIO AMORFO Y MICROCRISTALINO. PhD thesis, Universidad Complutense Madrid, 2007..
- [48] Wilfried G.J.H.M. van Sark. Thin Films and Nanostructures. Academic Press, San Diego, 2002...
- [49] J. Merten, J. M. Asensi, C. Voz, A. V. Shah, R. Platz, and J. Andreu. Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules. Ieee Transactions On Electron Devices, 45(2):423–429, February 1998..
- [50] J. TAUC, GRIGOROV.R, and A. VANCU. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi, 15(2):627–&, 1966..
- [51] N. WYRSCH, F. FINGER, T. J. MCMAHON, and M. VANECEK. How to reach more precise interpretation of subgap absorption-spectra in terms of deep defect density in a-si-h. Journal of Non-crystalline Solids, 137:347–350, December 1991..
- [52] Matsumura H., Nakagome Y., Furukawa S., Conductivity and p–n type control of fluorinated amorphous silicon (a-Si:F) without incorporating hydrogen, J. Appl. Phys., 52, (1981), 291.
- [53] W. Bronner et al., J. Non-Cryst. Solids 299–302 (2002) 551..
- [54] C. Longeaud et al., J. Non-Cryst. Solids 227-230 (1998) 96..
- [55] W.G.J.H.M. van Sark. Methods of deposition of hydrogenated amorphous silicon for device applications. In: Francombe, M.H. (ed.) Thin Films and Nanostructures. Advances in Plasma-Grown Hydrogenated Films, ch. 1, vol. 30, pp.1-215, 2002.
- [56] G. Bruno, P. Capezzuto, A. Madan. Plasma Deposition of Amorphous Silicon-Based Materials. pp. 4-5, 1995..
- [57] Cluster Tool for Prototyping [internet] 2016. Available from: http://www.mvsystemsinc.com/products/cluster-tool-for-prototyping/[Accessed: 2016-05-01].

- [58] A. Engel, "Analytical Imaging Techniques for Soft Matter Characterization," Microsc.Microanal., vol. 19, no. 03, p. 775, 2013..
- [59] M. Waves, "Chapter 7," Integr. Vlsi J., pp. 147–174, 2003..
- [60] J. Rose, M. Auffan, O. Proux, V. Niviere, and J. Y. Bottero, Encyclopedia of Nanotechnology. 2012..
- [61] E. S. Gadelmawla, M. M. Koura, T. M. a Maksoud, I. M. Elewa, and H. H. Soliman, "Roughness parameters," J. Mater. Process. Technol., vol. 123, no. 1, pp. 133–145, 2002..
- [62] F.H. Pollak. (1985). Princenton Applied Research. Brooklyn College, New York. P.2.
- [63] R. Chang, Principios básicos de espectroscopia, ed. A.C. Madrid, España, 1984..
- [64] S. Mukhopadhyay, C. Das, and S. Ray, Structural analysis of undoped microcrystalline silicon thin films deposited by PECVD technique, Journal of Physics D: Applied Physics, vol. 37, nº 13, pp. 1736-1741, 2004..
- [65] B. Kalache, A. I. Kosarev, R. Vanderhaghen, and P. Roca i Cabarrocas, Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties, Journal of Applied Physics, vol. 93, nº 2, pp. 1262-1273, 2003..
- [66] «Teslar instruments, Perfilometria mecanica,» [En línea]. Available: http://www.telstarinstrumat.com/productos/metrologia%20de%20superficies/perfilometria%20mecanica.htm.
- [67] B. Yan, L. Zhao, B. Zhao, J. Chen, G. Wang, H. Diao, Y. Mao, and W. Wang, "Hydrogenated amorphous silicon germanium alloy with enhanced photosensitivity prepared by plasma enhanced chemical vapor deposition at high temperature," Vacuum, vol. 89, no. 1, , p. 46, 2013..
- [68] Torres S. Arturo, "Depósito, caracterización y estudio de películas delgadas de silicio, germanio y silicio-germanio microcristalinos", Tesis de Maestría, Departamento de Electronica, INAOE, 2015..
- [69] S. O. Kasap "Principles of electronic materials and devices", Second edition, Mc Graw Hill (2000)..
- [70] J. H. Mcelroy, "Photoconductivity An Instructive Exercise," no. 1, pp. 12–18, 1968.
- [71] Pankove, J.I. Optical processes in Semiconductors, Prentice-Hall, Inc. New Jersey. (1971).
- [72] Fernández- Merino María J. Grafenos preparados por métodos químicos: características y aplicaciones. Universidad de Oviedo, (2013).
- [73] F. Basanni and G. Pastori Parravivini, Electronic States and Optical Transitions in Solids, Pergamon Press, Germany, pp. 149. 1975..

- [74] J Knobloch A Goetzberger and B. Voss. Crystalline Silicon Solar Cells. John Wiley & Sons, 1 edition, 1998..
- [75] M.A. Green. Solar Cells Operating Principles, Technology and System Applications. University of New South Wales, 1998..
- [76] S. O. Kasap. Principles of electronic, materials and devices. McGraw Hill, 2006..
- [77] R.E.I. Schropp and Miro Zeman. Amorphous and Mycrocrystalline Silicon Solar Cells (Modeling, Materials and Device Technology). Kluwer Academic Publishers, Dordrecht, 1998..
- [78] J. Muller, B. Rech, J. Springer, and M. Vanecek. Tco and light trapping in silicon thin film solar cells. Solar Energy, 77(6):917–930, 2004..
- [79] J. C. VAN DEN HEUVEL, M. J. GEERTS, and J. W. METSELAAR. The relation between the optical-properties and the hydrogen concentration in a-si-h. Solar Energy Materials,22(2-3):185–194, July 1991..
- [80] J. M. Asensi, J. Merten, C. Voz, and J. Andreu. Analysis of the role of mobility-lifetime products in the performance of amorphous silicon p-i-n solar cells. Journal of Applied Physics,85(5):2939–2951, March 1999..
- [81] S. O. Kasap. Principles of electronic, materials and devices. McGraw Hill, 2006..
- [82] «PVEDUCATION.ORG,» [En línea]. Available: http://www.pveducation.org/pvcdrom/ivcurve.
- [83] Shanglong Peng, DeshengWang, Fuhua Yang, ZhanguoWang, and Fei Ma., Grown Low-Temperature Microcrystalline Silicon Thin Film by VHF PECVD for Thin Films Solar Cell, Journal of Nanomaterials, vol. 2015, nº ID 327596, p. 5, 2015.
- [84] J. Kocka et al, Proc. of the 2nd World Conf, Photovoltaic Solar Energy Conversion, vol. 785, 1998.
- [85] T. Toyama *, W. Yoshida, Y. Sobajima, H. Okamoto, Influence of boron doping on roughness microcrystalline silicon, Journal of Non-Crystalline Solids, vol. 354, p. 2204–2207, 2008.
- [86] A. Parashar, S. Kumar, J. Gope, C. M. S. Rauthan, P. N. Dixit, and S. a. Hashmi, Influence of argon dilution on growth and properties of hydrogenated nanocrystalline silicon films, Sol. Energy Mater. Sol. Cells, vol. 94, nº 5, p. 892–899, 2010.
- [87] D. Das, M. Jana, and a. K. Barua, Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma, J. Appl. Phys, vol. 89, nº 5, p. 3041–3048, 2001.

- [88] A. Nakajima, Y. Sugita, K. Kawamura, H. Tomita, and N. Yokoyama, Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition, Journal of Applied Physics, vol. 80, nº 7, p. 4006–4011, 1996.
- [89] S. Y. Myong, K. Sriprapha, Y. Yashiki, S. Miyajima, A. Yamada, and M. Konagai, Silicon-based thin-film solar cells fabricated near the phase boundary by VHF PECVD technique, Solar Energy Materials and Solar Cells, vol. 92, nº 6, p. 639–645, 2008.
- [90] B. Kalache, A. I. Kosarev, R. Vanderhaghen, and P. Roca i Cabarrocas, Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties, Journal of Applied Physics, vol. 93, nº 2, pp. 1262-1273, 2003.
- [91] A. Remolina, L. Hamui, B. M. Monroy, M. F. García-Sánchez, A. Ponce, M. Picquart, and G. Santana, Variation in the structure and optical properties of polymorphous silicon thin films using dichlorosilane as silicon precursor, Phys. Status Solidi C, vol. 8, nº 3, p. 850–853, 2011.
- [92] Roca iCabarrocas P., Kim K.H., Cariou R., Labrune M., Johnson E.V., Moreno M., Torres Rios A., Abolmasov S., Kasoui S.,Low temperature plasma synthesis of nanocrystals and their application to the growth of crystalline silicon and ge,Mater. Res. Soc. Symp, vol. Proc. 1426, 2012.