Mecánica Clásica
 Tarea 09: Hamilton-Jacobi

Dr. Omar De la Peña Seaman

27 Noviembre 2019

Problema 1 Sliding rod

One end of a uniform rod of lenght $2 l$ and mass m rests against a smooth horizontal floor and the other against a smooth vertical surface (both surfaces without friction). Assuming that the rod is constrained to move under gravity with its ends always in contact with the surfaces, use the Hamilton-Jacobi equations to reduce the soluction of the problem to the integral form (quadratures).

Problema 2 Roller coaster

A particle is constrained to move on a roller coaster, the equation of whose curve is

$$
z=A \operatorname{Cos}^{2} \frac{2 \pi x}{\lambda}
$$

There is the usual constant downward force of gravity. Obtain the trajectories in space face, that is $p=p(x)$.

Problema 3 General oscillations

A particle of mass m moves in one dimension subject to the potential

$$
V=\frac{a}{\operatorname{Sen}^{2}\left(x / x_{0}\right)} .
$$

1. Obtain the integral expresion for Hamilton's caracteristic function. Under what conditions can action-angle variables be used?
2. Assuming these are met, find the frequency of oscillation by the action-angle method.
3. Check the result in the limit of oscillations of small amplitude.

Problema 4 Parametric oscillating movement
A particle of mass m is constrained to move on a curve in the vertical plane defined by the parametric equations

$$
y=l(1-\operatorname{Cos} 2 \phi), \quad x=l(2 \phi+\operatorname{Sen} 2 \phi) .
$$

There is the usual constant gravitational force acting in the vertical y direction. By the method of action-angle variables, find the frequency of oscillation such that the maximum of ϕ is equal to $\pi / 4$.
Hint: $\oint p d q=2 \int_{-\phi_{0}}^{\phi_{0}} p d q$.

