Mecánica Clásica Tarea 01: Mecánica Newtoniana

Dr. Omar De la Peña Seaman

30 Abril 2014

Problema 1 Equation of motion

A force:

$$
F=-F_{0} e^{-x / \lambda}
$$

where F_{0} and λ are positive constants, acts on a particle that is initially at $x_{0}=0$ and moving with velocity $v_{0}>0$. Determine its velocity $v(x)$ and sketch the three possible graphs of $v(x)$ versus x.

Problema 2 Gun's maximum range

A projectile is fired with a velocity v_{0} such that is passes through two points both a distance h above the horizontal. Show that if the gun is adjusted for maximum range, the separation of the points is,

$$
d=\frac{v_{0}}{g} \sqrt{v_{0}^{2}-4 g h}
$$

Problema 3 Charged particle in an electromagnetic field

The motion of a charged particle in an electromagnetic field can be obtained from the Lorentz equation for the force on a particle in such a field. If the electric field vector is \mathbf{E} and the magnetic field vector is \mathbf{B}, the force on a particle of mass m that carries a charge q and has a velocity \mathbf{v} is given by,

$$
\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B},
$$

where it is assumed that $v \ll c$.
a) If there is no electric field and if the particle enters the magnetic field in a direction perpendicular to the lines of magnetic flux, show that the trajectory is a circle with radius

$$
r=\frac{m v}{q B}=\frac{v}{\omega_{c}},
$$

where $\omega_{c} \equiv q B / m$ is the cyclotron frequency.
b) Choose the z-axis to lie in the direction of \mathbf{B} and let the plane containing \mathbf{E} and \mathbf{B} be the $y z$-plane. Thus,

$$
\mathbf{B}=B \mathbf{k}, \quad \mathbf{E}=E_{y} \mathbf{j}+E_{z} \mathbf{k} .
$$

Show that the z-component of the motion is given by

$$
z(t)=z_{0}+\dot{z}_{0} t+\frac{q E_{z}}{2 m} t^{2}
$$

where $z(0) \equiv z_{0}$ and $\dot{z}(0) \equiv \dot{z}_{0}$.

Problema 4 Connected masses

Two blocks of unequal mass are connected by a string over a smooth pulley. If the coefficient of kinetic friction is μ_{k}, what angle θ of the incline allows the masses to move at a constant speed?

Problema 5 Falling particle vs air resistance
A particle is relased from rest $(y=0)$ and falls under the influence of gravity and air resistance. Find the relationship between the velocity v and the distance of falling y when the air resistance is equal to a) αv, and b) βv^{2}.

Problema 6 Elusive force

The speed of a particle of mass m varies with the distance x as $v(x)=\alpha x^{-n}$. Assume $v(x=0)=0$ at $t=0$.
a) Find the force $F(x)$ responsible.
b) Determine $x(t)$.
c) Determine $F(t)$.

Problema 7 Potential analysis

Consider a particle moving in the region $x>0$ under the influence of the potential

$$
U(x)=U_{0}\left(\frac{a}{x}+\frac{x}{a}\right),
$$

where $U_{0}=1 \mathrm{~J}$ and $a=2 \mathrm{~m}$. Plot the potential, find the equilibrium points, and determine whether they are maxima or minima.

Problema 8 Rocket vertical ascent
Consider a single-stage rocket taking off from Earth on vertical ascent under gravity (no horizontal component), neglecting air resistance, and assuming that the acceleration of gravity is constant with height, find:
a) The velocity equation of motion $v=v(m)$.
b) The hight of the rocket at burnout.
c) How much farther in height will the rocket go after burnout?

