# Mecánica Clásica Tarea 03: Cálculo de Variaciones

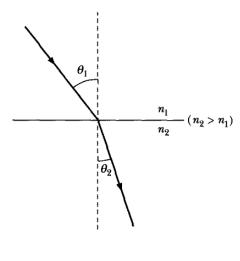
Dr. Omar De la Peña Seaman

3 Junio 2014

## Problema 1 Euler equations

Derive the expression for the Euler equation when the functional f depend also on the second-order derivative of the function y(x):

$$J = \int_{1}^{2} f(y, y', y'', x) dx,$$


where x is the independent variable.

. . . . . . . . .

## Problema 2 Refraction law

Consider light passing from one medium with index of refraction  $n_1$  into another medium with index of refraction  $n_2$ . Using the principle that the path taken between two points by a ray of light is the path that can be traversed in the least time (Fermat's principle), derive the law of refraction:

$$n_1 \operatorname{Sen} \theta_1 = n_2 \operatorname{Sen} \theta_2.$$



. . . . . . . . .

Problema 5

#### Problema 3 Geodesics

Find the shortest distance between two points on:

- (a) a cilindrical surface,
- (b) a spherical surface.

*Hint*: the shortest distance on a plane is a straight line.

. . . . . . . . .

### Problema 4 Catenary

An inextensible but flexible chain (catenary in Latin) or rope of specified length L hangs between two fixed points,  $(x_1, y_1)$  and  $(x_2, y_2)$ , under the influence of gravity in the x - y plane. What is the curve describing the chain's shape?

*Hint*: the quantity to minimize is the potential energy  $U = \rho g \int y ds$ , where  $\rho$  is the linear density of the rope, g the gravity, and y the high of the leght differential element ds.

. . . . . . . . . .

#### Problema 5 Constrains

Find the extremal of the function,

$$J = \int_0^{\pi} (y'^2 - y^2) \, dx,$$

with boundary conditions y(0) = 0,  $y(\pi) = 1$  and subject to the constrain:

$$\int_0^\pi y dx = 1.$$

. . . . . . . . .