Mecánica Clásica Tarea 05: Dinámica Hamiltoniana

Dr. Omar De la Peña Seaman

4 Julio 2014

Problema 1 Particle on a cylinder surface

We have a particle of mass m constrained to move on the surface of a cylinder defined by $x^2 + y^2 = R^2$, it is subject to a force directed toward the origin and proportional to the distance of the particle from the origin: $\mathbf{F} = -kr\hat{\mathbf{r}}$. Find the following:

- 1. The Hamiltonian, using the Legendre transformation.
- 2. The canonical equations of motion of the particle.
- 3. The equation of motion in the z direction.

.

Problema 2 Spherical pendulum reloaded

A spherical pendulum consists of a point mass m tied by a string of lenght l to a fixed point, so that it is constrained to move on a spherical surface.

- 1. Find the Hamiltonian, using the Legendre transformation.
- 2. Calculate canonical equations of motion.

.

Problema 3 Rotating planes

A mass point m shall move in a cylindrically symmetric potential $V(\rho, z)$. Determine the Hamiltonian and the canonical equations of motion with respect to a coordinate system that rotates with constant angular velocity ω about the symmetry axis in cylindrical coordinates.

.

Problema 4 Spiral movement

A particle of mass m moves under the influence of gravity along the spiral $z = k\theta$, with r = cte, where k is a constant and z is vertical. Obtain the Hamiltonian canonical equations of motion.

.

Problema 5 Spring

A massless spring of lenght b and spring constant k connects two particles of masses m_1 and m_2 . The system rests on a smooth table and may oscilate and rotate.

- 1. Determine the Lagrangian of the system.
- 2. Does exist cyclic coordinates? If that's the case, what are the conserved quantities?
- 3. Find the Hamiltonian.
- 4. Determine Hamilton's canonical equations of motion.

••••