Mecánica Clásica Tarea 03: Cálculo de Variaciones

Dr. Omar De la Peña Seaman

19 octubre 2023

Problema 1 Euler equations

Derive the expression for the Euler equation when the functional f depend also on the second-order derivative of the function $y(x)$:

$$
J=\int_{1}^{2} f\left(y, y^{\prime}, y^{\prime \prime}, x\right) d x
$$

where x is the independent variable.

Problema 2 Refraction law

Consider light passing from one medium with index of refraction n_{1} into another medium with index of refraction n_{2}. Using the principle that the path taken between two points by a ray of light is the path that can be traversed in the least time (Fermat's principle), derive the law of refraction:
$n_{1} \operatorname{Sen} \theta_{1}=n_{2} \operatorname{Sen} \theta_{2}$.

Problema 3 Geodesics

Find the shortest distance between two points on:
(a) a cilindrical surface,
(b) a spherical surface.

Hint: the shortest distance on a plane is a straight line.

Problema 4 Catenary
An inextensible but flexible chain (catenary in Latin) or rope of specified length L hangs between two fixed points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, under the influence of gravity in the $x-y$ plane. What is the curve describing the chain's shape?
Hint: the quantity to minimize is the potential energy $U=\rho g \int y d s$, where ρ is the linear density of the rope, g the gravity, and y the high of the leght differential element $d s$.

Problema 5 Constrains

Find the extremal of the function,

$$
J=\int_{0}^{\pi}\left(y^{\prime 2}-y^{2}\right) d x
$$

with boundary conditions $y(0)=0, y(\pi)=1$ and subject to the constrain:

$$
\int_{0}^{\pi} y d x=1
$$

