Mecánica Clásica Parcial 3: Cálculo de Variaciones

Dr. Omar De la Peña Seaman

20 octubre 2025

Problema 1 Superficie mínima	(35 pts.)
Una curva $y(x)$ en el plano x - y que conecta dos puntos del plano cartesiano (x_2, y_2) , forma una superficie de revolución teniendo al eje x como eje rotación esquema del problema y mostrar que la curva que genera la superficie con la me	. Hacer un
$y(x) = C_1 \operatorname{Cosh}\left(\frac{x - C_2}{C_1}\right),$	
en donde C_1 y C_2 son constantes.	
•••••	
Problema 2 Curva de área constante	(35 pts.)

Determinar la ecuación de la curva C que encierra una superficie (área) fija A, tal que posea el perímetro mínimo. Existen constricciones? Si las hay, determinar el valor y naturaleza del multiplicador de Lagrange y representar la curva C mediante un esquema o diagrama.

• • • • • • • • •

(30 pts.)

Problema 3 Funciones extremales

Una partícula está sujeta al potencial U(x) = -Fx, en donde F es una constante. La partícula viaja de x = 0 a x = a en un tiempo t_0 . Asumiendo que la ecuación de movimiento de la partícula es $x(t) = A + Bt + Ct^2$, encuentre los valores de A, B, y C tal que acción tenga un extremal.

Hint: la acción se define como:

Nombre del Estudiante: _

$$I = \int (T - U)dt \quad \forall \quad T = \text{energía cinética}.$$

.