Métodos Matemáticos Tarea 01: Análisis Vectorial

Dr. Omar De la Peña Seaman 29 Abril 2019

Nombre del Estudiante:

${\bf Problema\,1} \quad \textit{Vectorial relationships}$

(a) Find a vector **A** that is perpendicular to

$$\mathbf{U} = 2\hat{\boldsymbol{i}} + \hat{\boldsymbol{j}} - \hat{\boldsymbol{k}},$$

$$\mathbf{V} = \hat{\boldsymbol{i}} - \hat{\boldsymbol{j}} + \hat{\boldsymbol{k}},$$

(b) What is **A** if, in addition to this requirement, we demand that it have unit magnitude?

.

Problema 2 Law of sines

Derive the law of sines (see figure):

$$\frac{\mathrm{Sen}\alpha}{|\mathbf{A}|} = \frac{\mathrm{Sen}\beta}{|\mathbf{B}|} = \frac{\mathrm{Sen}\gamma}{|\mathbf{C}|}.$$

Problema 3 Gradient

Given the following vector,

$$\mathbf{r}_{12} = (x_1 - x_2)\hat{\mathbf{i}} + (y_1 - y_2)\hat{\mathbf{j}} + (z_1 - z_2)\hat{\mathbf{k}},$$

show that $\nabla_1 r_{12}$ (the gradient with respect to x_1 , y_1 , and z_1 of the magnitude $r_{12} = |\mathbf{r}_{12}|$) is a unit vector in the direction of \mathbf{r}_{12} .

.

Problema 9 2

Problema 4 Solenoidal vector field

If **A** is irrotational, show that $\mathbf{A} \times \mathbf{r}$ is solenoidal.

.

Problema 5 Vectorial identity

Verify the following identity,

$$\mathbf{A} \times (\nabla \times \mathbf{A}) = \frac{1}{2} \nabla (A^2) - (\mathbf{A} \cdot \nabla) \mathbf{A}.$$

Problema 6 Work

Find the work done moving on a unit circle in the xy-plane given by,

$$\oint \mathbf{F} \cdot d\mathbf{r}, \quad \forall \quad \mathbf{F} = -\frac{y}{x^2 + y^2} \hat{\mathbf{i}} + \frac{x}{x^2 + y^2} \hat{\mathbf{j}},$$

on the following paths:

- (a) Counterclockwise from 0 to π ,
- (b) Clockwise from 0 to $-\pi$,

.

Problema 7 Surface integral

Evaluate the following integral,

$$\frac{1}{3} \int_{S} \mathbf{r} \cdot d\boldsymbol{\sigma}$$

over the unit cube defined by the origin (0,0,0) and the unit intercepts on the positive x, y, and z axes.

.

Problema 8 Rotational field

If $\mathbf{B} = \nabla \times \mathbf{A}$, show that,

$$\oint_{S} \mathbf{B} \cdot d\boldsymbol{\sigma} = 0$$

for any closed surface S.

• • • • • • •

Problema 10

Problema 9 Gauss' theorem

Verify Gauss' theorem for the following field A,

$$\mathbf{A} = xy\hat{\mathbf{i}} - x^2\hat{\mathbf{j}} + (x+y)\hat{\mathbf{k}}$$

where the surface S is the tetrahedron created in the first octant by the plane 2x+2y+z=6.

.

Problema 10 Stokes' theorem

Show, by using Stokes' theorem that the gradient of a scalar field is irrotational:

$$\nabla \times (\nabla \phi(\mathbf{r})) = 0.$$

.