Métodos Matemáticos Tarea 04: Ecuaciones Diferenciales Ordinarias

Dr. Omar De la Peña Seaman

5 Junio 2013

Problema 1 Radioactive decay

Radioactive nuclei according to the law

$$\frac{dN}{dt} = -\lambda N,$$

N being the concentration of a given nuclide, and λ the particular decay constant. In a radioactive series of two different nuclides, with concentrations $N_1(t)$ and $N_2(t)$, we have

$$\frac{dN_1}{dt} = -\lambda N_1, \quad \frac{dN_2}{dt} = \lambda N_1 - \lambda_2 N_2.$$

Find $N_2(t)$ for the conditions $N_1(0) = N_0$ and $N_2(0) = 0$.

.

Problema 2 First order ODE

Solve the following ODE's,

(a)
$$x\frac{dy}{dx} + y^2 - 1 = 0;$$

(b) & $\frac{dy}{dx} = (x+y)^2.$

.

Problema 3 First order ODE II

Solve the following ODE,

$$\left(\operatorname{Sen} x - 4y^3\right)\frac{dy}{dx} + y\operatorname{Cos} x + 3x^2 = 0.$$

Problema 4 First order ODE III

Solve the following ODE,

$$\frac{dy}{dx} + y - xy^3 = 0.$$

Problema 5 Second order ODE

Solve the equation,

$$4x^2\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + (x^2 - 1)y = 0.$$

Problema 6 Second order ODE II

Solve the following equation,

$$x^2\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0.$$

Hint: the second solution can be expressed in integral form.

• • • • • • • • •

Problema 7 Second order ODE III

(a) Show that,

$$4x^2 \frac{d^2y}{dx^2} + (1 - \alpha^2)y = 0,$$

has two solutions:

$$y_1(x) = a_0 x^{(1+\alpha)/2}, \quad y_2(x) = a_0 x^{(1-\alpha)/2}.$$

(b) Find the two linearly independent solutions when $\alpha = 0$.

.

Problema8 Inhomogeneous second order ODE

Find the general solution to the following inhomogeneous ODE,

$$(1-x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = (1-x)^3$$

following the next steps,

- (a) Solve the homogeneous part and find both linearly independent solutions considering the general case for the proposed solution: $y(x) = \sum_{i=0}^{\infty} a_j x^{i+s}$.
- (b) Find the second solution of the homogeneous part with the series method, thus considering $y_1(x)$ as a series.

(c) Find the particular solution $y_p(x)$ for the inhomogeneous part with the variation of parameters' method.

• • • • • • • • •