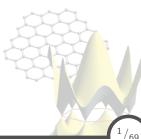
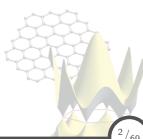
Contenido

2. Método de Hartree-Fock



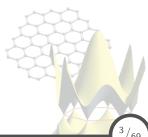
Contenido: Tema 02

- 2. Método de Hartree-Fock
- 2.1 La aproximación de Hartree
- 2.2 El método de Hartree-Fock
- 2.3 Orbitales, energía total, teorema de Koopmans
- 2.4 Método de Hartree-Fock-Roothaan



Contenido: Tema 02

- 2. Método de Hartree-Fock
- 2.1 La aproximación de Hartree
- 2.2 El método de Hartree-Fock
- 2.3 Orbitales, energía total, teorema de Koopmans
- 2.4 Método de Hartree-Fock-Roothaan



Fundamentos

El problema se centra en encontrar una solución aproximada a la ecuación de Schrödinger electrónica,

$$\begin{split} \hat{H}_e \psi_e &= E_e \psi_e, \\ \text{siendo:} \quad \hat{H}_e &= \sum_{i=1}^N \hat{h}_1(\mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j=1}^N \hat{h}_2(\mathbf{r}_i, \mathbf{r}_j), \end{split}$$

en donde la sol. aproximada $\psi_e \approx \Phi$ se puede obtener aplicando el **método variacional**,

$$\frac{\langle \Phi | \hat{H}_e | \Phi \rangle}{\langle \Phi | \Phi \rangle} \ \, \text{\'o} \ \, \langle \Phi | \hat{H}_e | \Phi \rangle - \lambda \left[\langle \Phi | \Phi \rangle - 1 \right],$$

tal que el valor esperado sea el menor posible, es decir, se busca para el estimado de la energía su valor mas bajo: el estado base.

Bases

Para obtener el **estado base**, se debe hacer un compromiso en **dos** requerimientos para la solución de la ec. de Schrödinger:

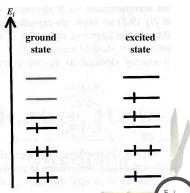
- 1. La función aprox. Φ deberá ser lo **más exacta posible**, tal que los observables calc. de interés sean lo suficientemente **precisos**.
- 2. La función Φ debe ser lo suficientemente simple, de tal manera que los calcs. no sean prohibitivos.

Para esto, se aplica la **aprox. de Hartree**, la cual se basa en el esquema de llenado de los niveles de energía:

En el **estado base**, los N electrones ocuparán los N orbitales más bajos en energía,

$$\Rightarrow \Phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$$

= $\phi_1(\mathbf{x}_1)\phi_2(\mathbf{x}_2)\cdots\phi_N(\mathbf{x}_N).$



Bases y aplicación

Una vez expresada la función aproximada $\Phi,$ ahora toca aplicar el método variacional,

$$F = \langle \Phi | \hat{H}_e | \Phi \rangle - \sum_{i,j} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right],$$
 exigiendo:
$$\frac{\partial F}{\partial x_{ij}} = 0 \ \forall \ \langle \phi_i | \phi_j \rangle = \delta_{ij},$$

lo cual se puede expresar de manera análoga como,

$$\delta F = 0$$
 cuando $\phi_k(\mathbf{x}_k) \to \phi_k(\mathbf{x}_k) + \delta \phi_k(\mathbf{x}_k)$.

Por tanto, el procedimiento de solución sería el siguiente:

- Introducir la función propuesta Φ en la ecuación de F.
- Analizar la variación de F, δF , en función de la variación de los orbitales, $\phi \to \phi + \delta \phi$.
- Aplicar la condición de extremal, $\delta F = 0$, y de ahí obtener los $\{\phi_k\}$ que la cumplen.

¹En donde $\delta\phi_k$ es muy pequeño.

Limitantes de la aproximación

Dos propiedades fundamentales de los electrones que deben estar precentes en el modelo son:

- Son partículas indistinguibles.
- Su función de onda es de naturaleza antisimétrica.

Por tanto, para la función Φ en la aprox. de Hartree se debe cumplir,

$$\begin{split} \hat{P}_{ij} \Phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{i-1}, \mathbf{x}_i, \mathbf{x}_{i+1}, \dots, \mathbf{x}_{j-1}, \mathbf{x}_j, \mathbf{x}_{j+1}, \dots, \mathbf{x}_N) \\ &= \Phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{i-1}, \mathbf{x}_j, \mathbf{x}_{i+1}, \dots, \mathbf{x}_{j-1}, \mathbf{x}_i, \mathbf{x}_{j+1}, \dots, \mathbf{x}_N), \\ &= -\Phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{i-1}, \mathbf{x}_i, \mathbf{x}_{i+1}, \dots, \mathbf{x}_{j-1}, \mathbf{x}_j, \mathbf{x}_{j+1}, \dots, \mathbf{x}_N), \end{split}$$

en donde el operador de permutación \hat{P}_{ij} representa el **intercambio** de dos partículas, siendo su eigenvalor,

$$\hat{P}_{ij}\chi_{sym}=\chi_{sym}, \;\; {
m donde} \;\; \chi_{sym}={
m función \ simétrica}, \ \hat{P}_{ij}\chi_{ant}=-\chi_{ant}, \;\; {
m donde} \;\; \chi_{ant}={
m función \ antisimétrica}.$$

Limitantes de la aproximación

Analizando para la función propuesta en la aproximación de Hartree cuando se intercambian dos partículas,

$$\Phi = \phi_1(\mathbf{x}_1)\phi_2(\mathbf{x}_2)\cdots\phi_{i-1}(\mathbf{x}_{i-1})\phi_i(\mathbf{x}_i)\phi_{i+1}(\mathbf{x}_{i+1})\times\cdots$$

$$\cdots\times\phi_{j-1}\mathbf{x}_{j-1}\phi_j(\mathbf{x}_j)\phi_{j+1}(\mathbf{x}_{j+1})\cdots\phi_N(\mathbf{x}_N),$$

$$\Rightarrow \hat{P}_{ij}\Phi = \phi_1(\mathbf{x}_1)\phi_2(\mathbf{x}_2)\cdots\phi_{i-1}(\mathbf{x}_{i-1})\phi_i(\mathbf{x}_j)\phi_{i+1}(\mathbf{x}_{i+1})\times\cdots$$

$$\cdots\times\phi_{j-1}\mathbf{x}_{j-1}\phi_j(\mathbf{x}_i)\phi_{j+1}(\mathbf{x}_{j+1})\cdots\phi_N(\mathbf{x}_N),$$

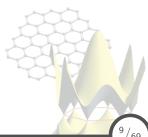
Se observa que:

$$\hat{P}_{ij}\Phi \neq -\Phi !!,$$

lo que indica que la aproximación de Hartree **no satisface** la propiedad de **antisimetría** de los electrones, por tanto no es aplicable al problema de interés.

Contenido: Tema 02

- 2. Método de Hartree-Fock
- 2.1 La aproximación de Hartree
- 2.2 El método de Hartree-Fock
- 2.3 Orbitales, energía total, teorema de Koopmans
- 2.4 Método de Hartree-Fock-Roothaan



Planteamiento

Para poder satisfacer las condiciones de antisimetría, se procede a modificar la función de onda originalmente propuesta por Hartree,

$$\Phi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)=\phi_1(\mathbf{x}_1)\phi_2(\mathbf{x}_2)\cdots\phi_N(\mathbf{x}_N).$$

Con el fin de identificar la modificación ideal, se analiza primero un ejemplo sencillo de función tipo Hartree,

$$f_1(x)f_2(y),$$

la cual bajo el intercambio de x y y queda como,

$$f_1(y)f_2(x),$$

por tanto al exigirle que fuera antisimétrica, claramente **no** cumpliría con el principio:

$$f_1(x)f_2(y) \neq -f_1(y)f_2(x).$$

Modificación de la propuesta de Hartree

Para poder obtener tal comportamiento antisimétrico, se considera la siguiente construcción,

$$f_1(x)f_2(y) - f_1(y)f_2(x),$$

la cual si es antisimétrica ante el intercambio,

$$x \to y \Rightarrow f_1(x)f_2(y) - f_1(y)f_2(x) = -[f_1(y)f_2(x) - f_1(x)f_2(y)].^2$$

Analizando el caso para tres funciones,

$$f_1(x)f_2(y)f_3(z),$$

se puede obtener la antisimetría de la función respecto al intercambio $x \to y$ con,

$$f_1(x)f_2(y)f_3(z) - f_1(y)f_2(x)f_3(z),$$

<u>sin embargo, **no es antisimétri**ca</u> respecto al intercambio x o z.

²Además, guarda mucha semejanza con la función original $(f_1(x)f_2(y))$.

Modificación de la propuesta de Hartree

Para que la función anterior sea **antisimétrica** respecto al intercambio $x \to z$ se propone lo siguiente:

$$f_1(x)f_2(y)f_3(z) - f_1(y)f_2(x)f_3(z) - f_1(z)f_2(y)f_3(x) + f_1(y)f_2(z)f_3(x), \\$$

sin embargo, aún no es antisimétrica al intercambio $y \to z$, lo cual se logra, finalmente, mediante:

$$F(x,y,z) = f_1(x)f_2(y)f_3(z) - f_1(y)f_2(x)f_3(z) - f_1(z)f_2(y)f_3(x) + \dots + f_1(y)f_2(z)f_3(x) - f_1(x)f_2(z)f_3(y) + f_1(z)f_2(x)f_3(y).$$

Se observa que la función anterior representa la definición de un determinante,

$$F(x,y,z) = \begin{bmatrix} f_1(x) & f_2(x) & f_3(x) \\ f_1(y) & f_2(y) & f_3(y) \\ f_1(z) & f_2(z) & f_3(z) \end{bmatrix}.$$

Aproximación de Hartree-Fock

Por tanto, regresando a la propuesta de Hartree, es posible redefinir la función para que posea las propiedades de antisimetría de los electrones:

$$\begin{split} \Phi(\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_N) &= \frac{1}{\sqrt{N!}} \begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \cdots & \phi_N(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \cdots & \phi_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \cdots & \phi_N(\mathbf{x}_N) \end{bmatrix},^3 \\ &\equiv |\phi_1,\phi_2,\dots,\phi_N| &\leftarrow \text{ notación compacta}. \end{split}$$

Ya con Φ , se puede retomar la expresión del funcional F,

$$F = \langle \Phi | \hat{H}_e | \Phi \rangle - \sum_{i,j} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right],$$

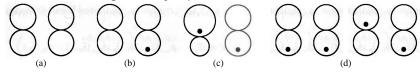
siendo: $\delta F = 0 \ \forall \ \phi_k(\mathbf{x}) \to \phi_k(\mathbf{x}) + \delta \phi_k(\mathbf{x}),$

donde la redefinición de $\Phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$, junto con el set de ecs. a resolver, se le conoce como la aproximación de Hartree-Fock.

³Lo cual se conoce como el determinante de Slater.

Aproximación de Hartree-Fock: limitantes

Considerando el siguiente ejemplo:



- Se tienen 2 orbitales (a) y 2 electrones en el sistema.
- Se coloca un elec. en uno de los orbitales en cierta posición (b).
- El segundo **electrón** reaccionará al primero, y evitará estar cerca de él, ubicándose lo más lejos posible (c): **correlación electrónica**.

Sin embargo, tal interacción **no** esta presente en el método de Hartree-Fock, ya que considera la aprox. de **partículas independientes**, por lo que el segundo **electrón** tendrá la misma probabilidad de ubicarse más o menos cerca del primero (d) !!

A pesar de no contar con la correlación electrónica, el método de H–F contiene mucha de la Física del problema y ha sido ampliamente utilizado de manera exitosa.

Preliminares y propiedades del determinante de Slater

Algunas de las propiedades del **determinante de Slater**, que define la función propuesta $\Phi \equiv |\phi_1, \phi_2, \dots, \phi_N|$ son:

- Contiene *N*! términos.
- Cada uno de ellos tiene N factores.
- Cada uno es multiplicado por "+1" o "-1".
- Cada uno contiene exactamente una de cada función ϕ_i , y cada uno de los argumentos \mathbf{x}_i solo una vez.

Por tanto, cada uno de los N! términos posee la sig. forma,

$$(-1)^{P(i_1,i_2,\ldots,i_n)}\phi_{i_1}(\mathbf{x}_1)\phi_{i_2}(\mathbf{x}_2)\cdots\phi_{i_N}(\mathbf{x}_N),$$

en donde $P(i_1,i_2,\ldots,i_n)$ es el número de permutaciones necesarias para cambiar $1,2,\ldots,N \to i_1,i_2,\ldots,i_N$.

Preliminares y propiedades del determinante de Slater

Con la expresión anterior es posible describir al det. de Slater como,

$$\Phi = \frac{1}{\sqrt{N!}} \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_1}(\mathbf{x}_1) \phi_{i_2}(\mathbf{x}_2) \cdots \phi_{i_N}(\mathbf{x}_N),$$

siendo que la suma es sobre todas las diferentes permutaciones de $1,2,\dots,N$, y donde i_1,i_2,\dots,i_N dependen de i.

Ahora, recordando F,

$$F = \langle \Phi | \hat{H}_e | \Phi \rangle - \sum_{i,j} \left[\lambda_{ij} \langle \phi_i | \phi_j \rangle - \delta_{ij} \right],$$

siendo:
$$\hat{H}_e = \sum_{i=1}^N \hat{h}_1(\mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j=1}^N \hat{h}_2(\mathbf{r}_i, \mathbf{r}_j),$$

en donde se tienen sumas de:

- \hat{h}_1 : operadores idénticos de **un** electrón.
- \hat{h}_2 : operadores idénticos de un par de electrones.

Operadores idénticos de un electrón

Considerando la suma de operadores idénticos de un electrón,

$$\hat{A} = \sum_{n=1}^{N} \hat{a}_1(n) \;\; \forall \;\; \hat{a}_1(n) \;\; {
m que \; opera \; s\'olo \; al \; } n$$
-ésimo electrón,

por tanto, calculando $\langle \Phi | \hat{A} | \Phi \rangle$ donde Φ es el determinante de Slater,

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{N!} \left\langle \sum_{j=1}^{N!} (-1)^{P(j)} \phi_{j_1}(\mathbf{x}_1) \phi_{j_2}(\mathbf{x}_2) \cdots \phi_{j_N}(\mathbf{x}_N) \right| \times \dots$$

$$\dots \times \sum_{n=1}^{N} \hat{a}_1(n) \left| \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_1}(\mathbf{x}_1) \phi_{i_2}(\mathbf{x}_2) \cdots \phi_{i_N}(\mathbf{x}_N) \right\rangle,$$

$$= \frac{1}{N!} \sum_{n=1}^{N} \left\langle \sum_{j=1}^{N!} (-1)^{P(j)} \phi_{j_1}(\mathbf{x}_1) \phi_{j_2}(\mathbf{x}_2) \cdots \phi_{j_N}(\mathbf{x}_N) \right| \times \dots$$

$$\dots \times \hat{a}_1(n) \left| \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_1}(\mathbf{x}_1) \phi_{i_2}(\mathbf{x}_2) \cdots \phi_{i_N}(\mathbf{x}_N) \right\rangle,$$

Operadores idénticos de un electrón

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{N!} \sum_{n=1}^{N} \left\langle \sum_{j=1}^{N!} (-1)^{P(j)} \phi_{j_{1}}(\mathbf{x}_{1}) \phi_{j_{2}}(\mathbf{x}_{2}) \cdots \right.$$

$$\cdots \phi_{j_{n-1}}(\mathbf{x}_{n-1}) \phi_{j_{n}}(\mathbf{x}_{n}) \phi_{j_{n+1}}(\mathbf{x}_{n+1}) \cdots \phi_{j_{N}}(\mathbf{x}_{N}) | \times \dots$$

$$\dots \times \hat{a}_{1}(n) \left| \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_{1}}(\mathbf{x}_{1}) \phi_{i_{2}}(\mathbf{x}_{2}) \cdots \right.$$

$$\cdots \phi_{i_{n-1}}(\mathbf{x}_{n-1}) \phi_{i_{n}}(\mathbf{x}_{n}) \phi_{i_{n+1}}(\mathbf{x}_{n+1}) \cdots \phi_{i_{N}}(\mathbf{x}_{N}) \right\rangle,$$

$$= \frac{1}{N!} \sum_{n=1}^{N} \sum_{i,j=1}^{N!} (-1)^{P(j)} (-1)^{P(i)} \left\langle \phi_{j_{1}} | \phi_{i_{1}} \right\rangle \left\langle \phi_{j_{2}} | \phi_{i_{2}} \right\rangle \cdots$$

$$\cdots \left\langle \phi_{j_{n-1}} | \phi_{i_{n-1}} \right\rangle \left\langle \phi_{j_{n}} | \hat{a}_{1}(n) | \phi_{i_{n}} \right\rangle \left\langle \phi_{j_{n+1}} | \phi_{i_{n+1}} \right\rangle \cdots \left\langle \phi_{j_{N}} | \phi_{i_{N}} \right\rangle,$$

$$= \frac{1}{N!} \sum_{n=1}^{N} \sum_{i,j=1}^{N!} (-1)^{P(j)} (-1)^{P(i)} \delta_{j_{1},i_{1}} \delta_{j_{2},i_{2}} \cdots \delta_{j_{n-1},i_{n-1}} \cdots$$

$$\cdots \left\langle \phi_{j_{n}} | \hat{a}_{1}(n) | \phi_{i_{n}} \right\rangle \delta_{j_{n+1},i_{n+1}} \cdots \delta_{j_{N},i_{N}}.$$
4

⁴Debido a que las funciones $\{\phi_k\}$ son ortonormales: $\langle \phi_k | \phi_l \rangle = \delta_{kl}$.

Operadores idénticos de un electrón

Cada uno de los N términos de la sumatoria en n son idénticos, por tanto se puede sustituir $\sum_{n=1}^{N} \to N$ en la expresión anterior:

$$\langle \Phi | \hat{A} | \Phi \rangle = N \frac{1}{N!} \sum_{i,j=1}^{N!} (-1)^{P(j)} (-1)^{P(i)} \delta_{j_1,i_1} \delta_{j_2,i_2} \cdots \delta_{j_{n-1},i_{n-1}} \cdots \\ \cdots \langle \phi_{j_n} | \hat{a}_1(n) | \phi_{i_n} \rangle \delta_{j_{n+1},i_{n+1}} \cdots \delta_{j_N,i_N},$$

además, como cada función aparece sólo una vez entonces,

$$i_1=j_1;\ i_2=j_2\ \dots\ i_{n-1}=j_{n-1};\ i_{n+1}=j_{n+1}\ \dots\ i_N=j_N;$$
 $\Rightarrow \ i_n=j_n\ \therefore\ P(i)=P(j)\ \ {\rm con\ lo\ que:}\ \ (-1)^{2P(i)}=1,$

por tanto, el valor esperado calculado queda como, C

$$\langle \Phi | \hat{A} | \Phi \rangle = N \frac{1}{N!} \sum_{i=1}^{N!} \langle \phi_{i_n} | \hat{a}_1(n) | \phi_{i_n} \rangle.$$

Operadores idénticos de un electrón

De la ecuación anterior,

$$\langle \Phi | \hat{A} | \Phi \rangle = N \frac{1}{N!} \sum_{i=1}^{N!} \langle \phi_{i_n} | \hat{a}_1(n) | \phi_{i_n} \rangle,$$

se observa que para un i_n dado, las demás i_p se pueden escoger de manera **arbitraria**, dando exactamente la **misma** contribución al elemento de matriz, donde se tienen (N-1)! de éstos términos, por tanto, solo se deben sumar hasta N en i_n ,

$$\langle \Phi | \hat{A} | \Phi \rangle = N \frac{1}{N!} (N-1)! \sum_{i_n=1}^{N} \langle \phi_{i_n} | \hat{a}_1(n) | \phi_{i_n} \rangle = \sum_{i_n=1}^{N} \langle \phi_{i_n} | \hat{a}_1 | \phi_{i_n} \rangle,$$

finalmente, renombrando índices $i_n \rightarrow i$, se tiene:

$$\langle \Phi | \hat{A} | \Phi \rangle = \sum_{i=1}^{N} \langle \phi_i | \hat{a}_1 | \phi_i \rangle ,$$

es decir, el elemento de matriz es una suma de contribuciones de los orbitales individuales.

Operadores idénticos de un par de electrones

El otro operador en \hat{H}_e es la suma de op. idénticos de dos electrones,

$$\hat{A} = \frac{1}{2} \sum_{n \neq m}^{N} \hat{a}_2(n,m) \ \forall \ \hat{a}_2(n,m) \ \text{opera en el par de electrones} \ (n,m),$$

calculando para este operador los elementos de matriz,

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{N!} \left\langle \sum_{j=1}^{N!} (-1)^{P(j)} \phi_{j_1}(\mathbf{x}_1) \phi_{j_2}(\mathbf{x}_2) \cdots \phi_{j_N}(\mathbf{x}_N) \right| \times \dots$$

$$\dots \times \frac{1}{2} \sum_{n \neq m=1}^{N} \hat{\mathbf{a}}_2(\mathbf{n}, \mathbf{m}) \left| \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_1}(\mathbf{x}_1) \phi_{i_2}(\mathbf{x}_2) \cdots \phi_{i_N}(\mathbf{x}_N) \right\rangle,$$

$$= \frac{1}{2(N!)} \sum_{n \neq m=1}^{N} \left\langle \sum_{j=1}^{N!} (-1)^{P(j)} \phi_{j_1}(\mathbf{x}_1) \phi_{j_2}(\mathbf{x}_2) \cdots \phi_{j_N}(\mathbf{x}_N) \right| \times \dots$$

$$\dots \times \hat{\mathbf{a}}_2(\mathbf{n}, \mathbf{m}) \left| \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_1}(\mathbf{x}_1) \phi_{i_2}(\mathbf{x}_2) \cdots \phi_{i_N}(\mathbf{x}_N) \right\rangle,$$

Operadores idénticos de un par de electrones

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{2(N!)} \sum_{n \neq m=1}^{N} \left\langle \sum_{j=1}^{N!} (-1)^{P(j)} \phi_{j_1}(\mathbf{x}_1) \phi_{j_2}(\mathbf{x}_2) \cdots \right.$$

$$\cdots \phi_{j_{n-1}}(\mathbf{x}_{n-1}) \phi_{j_n}(\mathbf{x}_n) \phi_{j_{n+1}}(\mathbf{x}_{n+1}) \cdots \phi_{j_{m-1}}(\mathbf{x}_{m-1}) \phi_{j_m}(\mathbf{x}_m) \cdots$$

$$\cdots \phi_{j_{m+1}}(\mathbf{x}_{m+1}) \cdots \phi_{j_N}(\mathbf{x}_N) \left| \hat{a}_2(n,m) \right| \sum_{i=1}^{N!} (-1)^{P(i)} \phi_{i_1}(\mathbf{x}_1) \phi_{i_2}(\mathbf{x}_2) \cdots$$

$$\cdots \phi_{i_{n-1}}(\mathbf{x}_{n-1}) \phi_{i_n}(\mathbf{x}_n) \phi_{i_{n+1}}(\mathbf{x}_{n+1}) \cdots \phi_{i_{m-1}}(\mathbf{x}_{m-1}) \phi_{i_m}(\mathbf{x}_m) \cdots$$

$$\cdots \phi_{i_{m+1}}(\mathbf{x}_{m+1}) \cdots \phi_{i_N}(\mathbf{x}_N) \rangle,$$

$$= \frac{1}{2(N!)} \sum_{n \neq m=1}^{N} \sum_{i,j=1}^{N!} (-1)^{P(j)} (-1)^{P(i)} \left\langle \phi_{j_1} | \phi_{i_1} \right\rangle \left\langle \phi_{j_2} | \phi_{i_2} \right\rangle \cdots$$

$$\cdots \left\langle \phi_{j_{n-1}} | \phi_{i_{n-1}} \right\rangle \cdots \left\langle \phi_{j_{m-1}} | \phi_{i_{m-1}} \right\rangle \cdots$$

$$\cdots \left\langle \phi_{j_n}(\mathbf{x}_n) \phi_{j_m}(\mathbf{x}_m) | \hat{a}_2(n,m) | \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) \right\rangle \cdots$$

$$\cdots \left\langle \phi_{j_{n-1}} | \phi_{i_{n+1}} \right\rangle \cdots \left\langle \phi_{j_{m+1}} | \phi_{i_{m+1}} \right\rangle \cdots \left\langle \phi_{j_N} | \phi_{i_N} \right\rangle,$$

Operadores idénticos de un par de electrones

 $\cdots \delta_{j_{m+1},i_{m+1}} \cdots \delta_{j_{n+1},i_{n+1}} \cdots \delta_{j_N.i_N}$,⁵

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{2(N!)} \sum_{n \neq m=1}^{N} \sum_{i,j=1}^{N!} (-1)^{P(j)} (-1)^{P(i)} \delta_{j_1,i_1} \delta_{j_2,i_2} \cdots \delta_{j_{n-1},i_{n-1}} \cdots \\ \cdots \delta_{j_{m-1},i_{m-1}} \langle \phi_{j_n}(\mathbf{x}_n) \phi_{j_m}(\mathbf{x}_m) | \hat{a}_2(n,m) | \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) \rangle \cdots$$

de lo anterior se observa que **todos** los i_k deben ser idénticos a los j_k correspondientes, **excepto** para n, m, ya que todavía deben ser operados por \hat{a}_2 , con lo cual se tienen dos posibilidades, por un lado:

$$(j_n, j_m) = (i_n, i_m) \Rightarrow P(i) = P(j) \to (-1)^{P(j) + P(i)} = (-1)^{2P(i)} = 1,$$

o por el otro:

$$(j_n, j_m) = (i_m, i_n) \Rightarrow P(i) = P(j) \pm 1 \rightarrow (-1)^{2P(i) \pm 1} = -1.6$$

⁵Debido a que las funciones $\{\phi_k\}$ son ortonormales: $\langle \phi_k | \phi_l \rangle = \delta_{kl}$.

 $^{^{\}rm 6}{\rm Siendo}~2P(i)$ la def. de número par, y $2P(i)\pm 1$ la de número impar.

Operadores idénticos de un par de electrones

Con el análisis anterior, los elementos de matriz quedan como,

$$\langle\Phi|\hat{A}|\Phi\rangle =$$

$$\frac{1}{2(N!)} \sum_{n \neq m=1}^{N} \sum_{i=1}^{N!} \left[\langle \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) | \hat{a}_2(n,m) | \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) \rangle + \dots \right]$$

... -
$$\langle \phi_{i_m}(\mathbf{x}_n) \phi_{i_n}(\mathbf{x}_m) | \hat{a}_2(n,m) | \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) \rangle]$$
.

En la expresión anterior se observa que todos los pares de electrones dan la misma contribución a $\langle \Phi | \hat{A} | \Phi \rangle$, por tanto:

(a)
$$\sum_{n,m}^{N} \to \frac{N!}{(N-2)!} = N(N-1),^{7}$$

(b)
$$\sum_{i=1}^{N!} \to (N-2)! \sum_{i_n \neq i_m=1}^{N} .8$$

 $^{^{7}}$ Total de comb. que se pueden formar con N elementos en (N-2) sitios.

⁸Total de términos que dan el mismo elemento (i_n, i_m) .

Operadores idénticos de un par de electrones

Por tanto, tomando en cuenta el análisis previo, los elementos de matriz se pueden expresan como,

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{2(N!)} N(N-1)(N-2)! \sum_{i_n \neq j_m = 1}^{N} \times \dots$$

$$\dots \times \left[\langle \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) | \hat{a}_2(n,m) | \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) \rangle + \dots$$

$$\dots - \langle \phi_{i_m}(\mathbf{x}_n) \phi_{i_n}(\mathbf{x}_m) | \hat{a}_2(n,m) | \phi_{i_n}(\mathbf{x}_n) \phi_{i_m}(\mathbf{x}_m) \rangle \right].$$

Renombrando $i_n \to i, \ j_m \to j$ y removiendo la mención explícita de los argumentos,

$$\langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{2} \sum_{i,j=1}^{N} \left[\langle \phi_i \phi_j | \hat{a}_2 | \phi_i \phi_j \rangle - \langle \phi_j \phi_i | \hat{a}_2 | \phi_i \phi_j \rangle \right],^{9}$$

es decir, se obtiene que $\langle \Phi | \hat{A} | \Phi \rangle$ representa una suma sobre todos los pares de orbitales.

⁹Se ha incluido i = j en la sumatoria ya que da un término nulo.

Ecuaciones de Hartree-Fock

Con los resultados obtenidos anteriormente, es posible analizar los elementos de matriz de la cantidad ${\cal F}$,

$$F = \langle \Phi | \hat{H}_e | \Phi \rangle - \sum_{ij=1}^{N} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right],$$

es particular para $\langle \Phi | \hat{H}_e | \Phi \rangle$, en donde:

$$\hat{H}_e = \sum_{i=1}^{N} \hat{h}_1(\mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j=1}^{N} \hat{h}_2(\mathbf{r}_i, \mathbf{r}_j),$$

lo cual se puede expresar como,

$$\langle \Phi | \hat{H}_e | \Phi \rangle = \sum_{i=1}^{N} \langle \phi_i | \hat{h}_1 | \phi_i \rangle + \frac{1}{2} \sum_{i,j=1}^{N} \left[\langle \phi_i \phi_j | \hat{h}_2 | \phi_i \phi_j \rangle - \langle \phi_j \phi_i | \hat{h}_2 | \phi_i \phi_j \rangle \right].$$

Ecuaciones de Hartree-Fock

Sin embargo, recordando que el objetivo es determinar el set de orbitales $\{\phi_k\}$ tal que la función F sea estacionaria 10 bajo pequeñas variaciones de los orbitales,

$$\delta F = 0 \ \forall \ \phi_k \to \phi_k + \delta \phi_k,$$

entonces, se debe calcular δF cuando varían los $\{\phi_k\}$,

$$\delta F = \delta \langle \Phi | \hat{H}_e | \Phi \rangle - \delta \sum_{ij=1}^{N} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right].$$

Por tanto, analizando de manera general la variación para los operadores de un electrón que conforman \hat{H}_e :

$$\delta \langle \Phi | \hat{A} | \Phi \rangle = \delta \sum_{i=1}^{N} \langle \phi_i | \hat{a}_1 | \phi_i \rangle \quad \forall \quad \phi_k \to \phi_k + \delta \phi_k.$$

¹⁰Es decir, posea una valor extremal: $\delta F = 0$.

Ecuaciones de Hartree-Fock

Expandiendo la expresión anterior:

$$\begin{split} \delta \left\langle \Phi | \hat{A} | \Phi \right\rangle &= \left[\left\langle \phi_{1} | \hat{a}_{1} | \phi_{1} \right\rangle + \left\langle \phi_{2} | \hat{a}_{1} | \phi_{2} \right\rangle + \ldots + \left\langle \phi_{k-1} | \hat{a}_{1} | \phi_{k-1} \right\rangle + \ldots \right. \\ & \ldots + \left\langle \phi_{k} + \delta \phi_{k} | \hat{a}_{1} | \phi_{k} + \delta \phi_{k} \right\rangle + \left\langle \phi_{k+1} | \hat{a}_{1} | \phi_{k+1} \right\rangle + \ldots + \left\langle \phi_{N} | \hat{a}_{1} | \phi_{N} \right\rangle \right] + \ldots \\ & \ldots - \left[\left\langle \phi_{1} | \hat{a}_{1} | \phi_{1} \right\rangle + \left\langle \phi_{2} | \hat{a}_{1} | \phi_{2} \right\rangle + \ldots + \left\langle \phi_{k-1} | \hat{a}_{1} | \phi_{k-1} \right\rangle + \ldots \\ & \ldots + \left\langle \phi_{k} | \hat{a}_{1} | \phi_{k} \right\rangle + \left\langle \phi_{k+1} | \hat{a}_{1} | \phi_{k+1} \right\rangle + \ldots + \left\langle \phi_{N} | \hat{a}_{1} | \phi_{N} \right\rangle \right], \\ &= \left\langle \phi_{k} | \hat{a}_{1} | \phi_{k} \right\rangle + \left\langle \delta \phi_{k} | \hat{a}_{1} | \phi_{k} \right\rangle + \left\langle \delta \phi_{k} | \hat{a}_{1} | \phi_{k} \right\rangle, \\ &= \left\langle \phi_{k} | \hat{a}_{1} | \delta \phi_{k} \right\rangle + \left\langle \delta \phi_{k} | \hat{a}_{1} | \phi_{k} \right\rangle, \\ &\approx \left\langle \phi_{k} | \hat{a}_{1} | \delta \phi_{k} \right\rangle + \left\langle \delta \phi_{k} | \hat{a}_{1} | \phi_{k} \right\rangle, \\ \end{split}$$

considerando que \hat{a}_1 es un operador hermítico, se tiene finalmente:

$$\delta \langle \Phi | \hat{A} | \Phi \rangle = \langle \delta \phi_k | \hat{a}_1 | \phi_k \rangle^* + \langle \delta \phi_k | \hat{a}_1 | \phi_k \rangle.$$

 $^{^{11}\}langle\delta\phi_k|\hat{a}_1|\delta\phi_k\rangle\to 0$, ya que solo se consideran variaciones a primer orden.

Ecuaciones de Hartree-Fock

Ahora, analizando la variación para los operadores de **un par de electrones**,

$$\begin{split} \delta \left\langle \Phi | \hat{A} | \Phi \right\rangle &= \delta \sum_{ij=1}^{N} \frac{1}{2} \left[\left\langle \phi_i \phi_j | \hat{a}_2 | \phi_i \phi_j \right\rangle - \left\langle \phi_j \phi_i | \hat{a}_2 | \phi_i \phi_j \right\rangle \right], \\ &= \frac{1}{2} \sum_{i=1}^{N} \left[\left\langle \phi_i (\phi_k + \delta \phi_k) | \hat{a}_2 | \phi_i (\phi_k + \delta \phi_k) \right\rangle + \dots \right. \\ & \dots - \left\langle (\phi_k + \delta \phi_k) \phi_i | \hat{a}_2 | \phi_i (\phi_k + \delta \phi_k) \right\rangle + \dots \\ & \dots - \left\langle \phi_i \phi_k | \hat{a}_2 | \phi_i \phi_k \right\rangle + \left\langle \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \right\rangle \right] + \dots \\ & \dots + \frac{1}{2} \sum_{j=1}^{N} \left[\left\langle (\phi_k + \delta \phi_k) \phi_j | \hat{a}_2 | (\phi_k + \delta \phi_k) \phi_j \right\rangle + \dots \\ & \dots - \left\langle \phi_j (\phi_k + \delta \phi_k) | \hat{a}_2 | (\phi_k + \delta \phi_k) \phi_j \right\rangle + \dots \\ & \dots - \left\langle \phi_k \phi_j | \hat{a}_2 | \phi_k \phi_j \right\rangle + \left\langle \phi_j \phi_k | \hat{a}_2 | \phi_k \phi_j \right\rangle \right], \end{split}$$

Ecuaciones de Hartree-Fock

$$\delta \langle \Phi | \hat{A} | \Phi \rangle = \frac{1}{2} \sum_{i=1}^{N} \left[\langle \phi_i \delta \phi_k | \hat{a}_2 | \phi_i \phi_k \rangle + \langle \phi_i \phi_k | \hat{a}_2 | \phi_i \delta \phi_k \rangle + \dots \right]$$

$$\dots + \langle \phi_i \delta \phi_k | \hat{a}_2 | \phi_i \delta \phi_k \rangle - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \rangle + \dots$$

$$\dots - \langle \phi_k \phi_i | \hat{a}_2 | \phi_i \delta \phi_k \rangle - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \delta \phi_k \rangle \right] + \dots$$

$$\dots + \frac{1}{2} \sum_{j=1}^{N} \left[\langle \delta \phi_k \phi_j | \hat{a}_2 | \phi_k \phi_j \rangle + \langle \phi_k \phi_j | \hat{a}_2 | \delta \phi_k \phi_j \rangle + \dots$$

$$\dots + \langle \delta \phi_k \phi_j | \hat{a}_2 | \delta \phi_k \phi_j \rangle - \langle \phi_j \delta \phi_k | \hat{a}_2 | \phi_k \phi_j \rangle + \dots$$

$$\dots - \langle \phi_j \phi_k | \hat{a}_2 | \delta \phi_k \phi_j \rangle - \langle \phi_j \delta \phi_k | \hat{a}_2 | \delta \phi_k \phi_j \rangle \right] + \dots$$

$$\approx \frac{1}{2} \sum_{i=1}^{N} \left[\langle \phi_i \delta \phi_k | \hat{a}_2 | \phi_i \phi_k \rangle + \langle \phi_i \phi_k | \hat{a}_2 | \phi_i \delta \phi_k \rangle - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \rangle + \dots \right]$$

$$\dots - \langle \phi_k \phi_i | \hat{a}_2 | \phi_i \delta \phi_k \rangle] + \frac{1}{2} \sum_{j=1}^N \left[\langle \delta \phi_k \phi_j | \hat{a}_2 | \phi_k \phi_j \rangle + \dots \right]$$

... +
$$\langle \phi_k \phi_j | \hat{a}_2 | \delta \phi_k \phi_j \rangle - \langle \phi_j \delta \phi_k | \hat{a}_2 | \phi_k \phi_j \rangle - \langle \phi_j \phi_k | \hat{a}_2 | \delta \phi_k \phi_j \rangle$$
.

Ecuaciones de Hartree-Fock

Del resultado anterior, se obtiene:

$$\delta \langle \Phi | \hat{A} | \Phi \rangle$$

$$\approx \frac{1}{2} \sum_{i=1}^{N} \left[\langle \phi_{i} \delta \phi_{k} | \hat{a}_{2} | \phi_{i} \phi_{k} \rangle + \langle \phi_{i} \phi_{k} | \hat{a}_{2} | \phi_{i} \delta \phi_{k} \rangle - \langle \delta \phi_{k} \phi_{i} | \hat{a}_{2} | \phi_{i} \phi_{k} \rangle + \dots \right]$$

$$\dots - \langle \phi_{k} \phi_{i} | \hat{a}_{2} | \phi_{i} \delta \phi_{k} \rangle + \frac{1}{2} \sum_{j=1}^{N} \left[\langle \delta \phi_{k} \phi_{j} | \hat{a}_{2} | \phi_{k} \phi_{j} \rangle + \dots \right]$$

$$\dots + \langle \phi_{k} \phi_{j} | \hat{a}_{2} | \delta \phi_{k} \phi_{j} \rangle - \langle \phi_{j} \delta \phi_{k} | \hat{a}_{2} | \phi_{k} \phi_{j} \rangle - \langle \phi_{j} \phi_{k} | \hat{a}_{2} | \delta \phi_{k} \phi_{j} \rangle \right],$$

$$\approx \frac{1}{2} \sum_{i=1}^{N} \left[\langle \delta \phi_{k} \phi_{i} | \hat{a}_{2} | \phi_{k} \phi_{i} \rangle + \langle \phi_{k} \phi_{i} | \hat{a}_{2} | \delta \phi_{k} \phi_{i} \rangle - \langle \delta \phi_{k} \phi_{i} | \hat{a}_{2} | \phi_{i} \phi_{k} \rangle + \dots \right]$$

$$\dots - \langle \phi_{i} \phi_{k} | \hat{a}_{2} | \delta \phi_{k} \phi_{i} \rangle \right] + \frac{1}{2} \sum_{j=1}^{N} \left[\langle \delta \phi_{k} \phi_{j} | \hat{a}_{2} | \phi_{k} \phi_{j} \rangle + \dots \right]$$

... + $\langle \phi_k \phi_i | \hat{a}_2 | \delta \phi_k \phi_i \rangle - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \rangle - \langle \phi_i \phi_k | \hat{a}_2 | \delta \phi_k \phi_i \rangle |$.¹²

¹²Donde
$$\langle f_1 f_2 | \hat{a}_2 | f_3 f_4 \rangle = \langle f_2 f_1 | \hat{a}_2 | f_4 f_3 \rangle$$
.

Ecuaciones de Hartree-Fock

Al ser ambas sumatorias exactamente **iguales** en forma, se pueden combinar en una sola sumándolas,

$$\delta \langle \Phi | \hat{A} | \Phi \rangle \approx \sum_{i=1}^{N} \left[\langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_k \phi_i \rangle + \langle \phi_k \phi_i | \hat{a}_2 | \delta \phi_k \phi_i \rangle + \dots \right]$$

$$\dots - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \rangle - \langle \phi_i \phi_k | \hat{a}_2 | \delta \phi_k \phi_i \rangle \right],$$

$$\approx \sum_{i=1}^{N} \left[\langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_k \phi_i \rangle + \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_k \phi_i \rangle^* + \dots \right]$$

$$\dots - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \rangle - \langle \delta \phi_k \phi_i | \hat{a}_2 | \phi_i \phi_k \rangle^* \right].^{13}$$

Ya con el resultado anterior se obtiene la expresión completa de $\delta \, \langle \Phi | \hat{H}_e | \Phi \rangle$, donde sólo hace falta calcular la variación de la **constricción**,

$$\delta F = \delta \langle \Phi | \hat{H}_e | \Phi \rangle + \delta \sum_{ij=1}^{N} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right].$$

 $^{^{13}}$ Aplicando la condición de hermiticidad del operador \hat{a}_2 .

Ecuaciones de Hartree-Fock

Por tanto, calculando tal variación,

tunic, cancalante tar variation,
$$\delta \sum_{ij=1}^{N} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right]$$

$$= \sum_{i=1}^{N} \left\{ \lambda_{ik} \left[\langle \phi_i | \phi_k + \delta \phi_k \rangle - \delta_{ik} \right] - \lambda_{ik} \left[\langle \phi_i | \phi_k \rangle - \delta_{ik} \right] \right\} + \dots$$

$$\dots + \sum_{j=1}^{N} \left\{ \lambda_{kj} \left[\langle \phi_k + \delta \phi_k | \phi_j \rangle - \delta_{kj} \right] - \lambda_{kj} \left[\langle \phi_k | \phi_j \rangle - \delta_{kj} \right] \right\},$$

$$= \sum_{i=1}^{N} \lambda_{ik} \left\langle \phi_i | \delta \phi_k \right\rangle + \sum_{j=1}^{N} \lambda_{kj} \left\langle \delta \phi_k | \phi_j \right\rangle,$$

$$= \sum_{i=1}^{N} \lambda_{ik} \left\langle \delta \phi_k | \phi_i \right\rangle^* + \sum_{j=1}^{N} \lambda_{kj} \left\langle \delta \phi_k | \phi_j \right\rangle,$$

$$= \sum_{i=1}^{N} \left[\lambda_{ik} \left\langle \delta \phi_k | \phi_i \right\rangle^* + \lambda_{ki} \left\langle \delta \phi_k | \phi_i \right\rangle \right].$$

Ecuaciones de Hartree-Fock

Finalmente, con el resultado anterior, es posible analizar la expresión completa para $\delta F,$

$$\begin{split} \delta F &= \delta \left\langle \Phi | \hat{H}_e | \Phi \right\rangle + \delta \sum_{ij=1}^N \lambda_{ij} \left[\left\langle \phi_i | \phi_j \right\rangle - \delta_{ij} \right], \\ &= \left\langle \delta \phi_k | \hat{h}_1 | \phi_k \right\rangle^* + \left\langle \delta \phi_k | \hat{h}_1 | \phi_k \right\rangle + \sum_{i=1}^N \left[\left\langle \delta \phi_k \phi_i | \hat{h}_2 | \phi_k \phi_i \right\rangle + \dots \right. \\ &\dots + \left\langle \delta \phi_k \phi_i | \hat{h}_2 | \phi_k \phi_i \right\rangle^* - \left\langle \delta \phi_k \phi_i | \hat{h}_2 | \phi_i \phi_k \right\rangle - \left\langle \delta \phi_k \phi_i | \hat{h}_2 | \phi_i \phi_k \right\rangle^* \right] + \dots \\ &\dots - \sum_{i=1}^N \left[\lambda_{ik} \left\langle \delta \phi_k | \phi_i \right\rangle^* + \lambda_{ki} \left\langle \delta \phi_k | \phi_i \right\rangle \right], \end{split}$$

siendo que para encontrar la condición de extremal del funcional F, se deben expresar en su forma integral los elementos de matriz obtenidos anteriormente:

$$\langle \phi_i | \hat{a}_1 | \phi_k \rangle = \int d\mathbf{x} \phi_i^* \hat{a}_1 \phi_k.$$

Ecuaciones de Hartree-Fock

$$\delta F = \int d\mathbf{x}_1 \delta \phi_k(\mathbf{x}_1) \hat{h}_1 \phi_k^*(\mathbf{x}_1) + \int d\mathbf{x}_1 \delta \phi_k^*(\mathbf{x}_1) \hat{h}_1 \phi_k(\mathbf{x}_1) + \dots$$

$$\dots + \sum_{i=1}^N \left[\int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k^*(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) + \dots$$

$$\dots + \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_k^*(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k^*(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_i(\mathbf{x}_1) \phi_k(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

$$\dots - \int \int d\mathbf{x}_1 d\mathbf{x}_2 \delta \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) + \dots$$

se observa que es posible agrupar por términos de variación, $\delta \phi_k$ y $\delta \phi_k^*$, los cuales son linealmente independientes.

Ecuaciones de Hartree-Fock

Agrupando términos en función de su variación:

$$\delta F = \int d\mathbf{x}_1 \delta \phi_k(\mathbf{x}_1) \left\{ \hat{h}_1 \phi_k^*(\mathbf{x}_1) + \sum_{i=1}^N \left[\int d\mathbf{x}_2 \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_k^*(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) + \dots \right] \right.$$

$$\dots - \int d\mathbf{x}_2 \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) \left[-\sum_{i=1}^N \lambda_{ik} \phi_i^*(\mathbf{x}_1) \right] + \dots$$

$$\dots + \int d\mathbf{x}_1 \delta \phi_k^*(\mathbf{x}_1) \left\{ \hat{h}_1 \phi_k(\mathbf{x}_1) + \sum_{i=1}^N \left[\int d\mathbf{x}_2 \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) + \dots \right] \right.$$

$$\dots - \int d\mathbf{x}_2 \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_i(\mathbf{x}_1) \phi_k(\mathbf{x}_2) \left[-\sum_{i=1}^N \lambda_{ki} \phi_i(\mathbf{x}_1) \right] \right\},$$

debido a que $\delta\phi_k$ y $\delta\phi_k^*$ son independientes y genéricas, para que $\delta F=0$ los coeficientes de cada variación deben anularse uno a uno.

Ecuaciones de Hartree-Fock

Por tanto, para $\delta F=0$ se debe cumplir:

$$\hat{h}_1 \phi_k^*(\mathbf{x}_1) + \sum_{i=1}^N \left[\int d\mathbf{x}_2 \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_k^*(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) + \dots \right]$$

$$\dots - \int d\mathbf{x}_2 \phi_i(\mathbf{x}_2) \hat{h}_2 \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) = \sum_{i=1}^N \lambda_{ik} \phi_i^*(\mathbf{x}_1),$$

$$\hat{h}_1 \phi_k(\mathbf{x}_1) + \sum_{i=1}^N \left[\int d\mathbf{x}_2 \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) + \dots \right]$$

$$\dots - \int d\mathbf{x}_2 \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_i(\mathbf{x}_1) \phi_k(\mathbf{x}_2) = \sum_{i=1}^N \lambda_{ki} \phi_i(\mathbf{x}_1),$$

ecuaciones que representan las condiciones para que el funcional F tenga un comportamiento estacionario, es decir, condiciones extremales.

Ecuaciones de Hartree-Fock

Introduciendo los operadores dependientes de los orbitales \hat{J}_i ,

$$\hat{J}_i \phi_k(\mathbf{x}_1) = \int d\mathbf{x}_2 \phi_i^*(\mathbf{x}_2) \hat{h}_2 \phi_k(\mathbf{x}_1) \phi_i(\mathbf{x}_2) = \int d\mathbf{x}_2 \frac{|\phi_i(\mathbf{x}_2)|^2}{|\mathbf{r}_2 - \mathbf{r}_1|} \phi_k(\mathbf{x}_1),$$

así como también \hat{K}_i ,

$$\hat{K}_{i}\phi_{k}(\mathbf{x}_{1}) = \int d\mathbf{x}_{2}\phi_{i}^{*}(\mathbf{x}_{2})\hat{h}_{2}\phi_{i}(\mathbf{x}_{1})\phi_{k}(\mathbf{x}_{2}) = \int d\mathbf{x}_{2}\frac{\phi_{i}^{*}(\mathbf{x}_{2})\phi_{k}(\mathbf{x}_{2})}{|\mathbf{r}_{2} - \mathbf{r}_{1}|}\phi_{i}(\mathbf{x}_{1}),$$

$$= \int d\mathbf{x}_{2}\frac{\phi_{i}^{*}(\mathbf{x}_{2})}{|\mathbf{r}_{2} - \mathbf{r}_{1}|}\hat{P}_{12}\left[\phi_{i}(\mathbf{x}_{2})\phi_{k}(\mathbf{x}_{1})\right],^{14}$$

- Operador de Coulomb, \hat{J}_i : Describe la interacción electrostática clásica entre dos distribuciones de carga descritas por $|\phi_i|^2$ y $|\phi_k|^2$.
- Operador de intercambio, \hat{K}_i : Es una consecuencia directa del requerimiento cuántico de que la función de onda de los N-electrones sea antisimétrica al intercambio de dos electrones.

¹⁴Donde \hat{P}_{12} es el operador de permutación $\mathbf{x}_1 \to \mathbf{x}_2$.

Ecuaciones de Hartree-Fock

Con la ayuda de los operadores \hat{J}_i y \hat{K}_i se pueden expresar las condiciones extremales como,

$$\left\{ \hat{h}_{1} + \sum_{i=1}^{N} \left[\hat{J}_{i} - \hat{K}_{i} \right] \right\} \phi_{k} = \sum_{i=1}^{N} \lambda_{ki} \phi_{i},$$

$$\left\{ \hat{h}_{1} + \sum_{i=1}^{N} \left[\hat{J}_{i} - \hat{K}_{i} \right]^{*} \right\} \phi_{k}^{*} = \sum_{i=1}^{N} \lambda_{ik} \phi_{i}^{*},$$

relacionando ambas ecuaciones se obtiene: 15

$$\sum_{i=1}^{N} (\lambda_{ki} - \lambda_{ik}^*) \phi_i = 0 \quad \Rightarrow \quad \lambda_{ki} = \lambda_{ik}^*,$$

es decir, los λ 's forman una matriz hermítica de $N \times N$, y las ecuaciones de la condición extremal son equivalentes entre ellas.

 $^{^{15}}$ Tomando el complejo conjugado de la seg. ec. y restando, donde $\hat{h}_1 = \hat{h}_1^*$.

¹⁶Debido a que los orbitales $\{\phi_i\}$ son ortogonales.

Ecuaciones de Hartree-Fock

Por tanto, de la ecuación de condición extremal se puede definir un nuevo operador,

$$\hat{F} = \hat{h}_1 + \sum_{i=1}^{N} \left[\hat{J}_i - \hat{K}_i \right] \quad \Rightarrow \quad \hat{F}\phi_k = \sum_{i=1}^{N} \lambda_{ki} \phi_i$$

en donde \hat{F} se le conoce como el **operador de Fock**¹⁷ y cuya ec. puede tener múltiples sol. que llevan a diferentes sets de valores λ_{ki} .

Centrándose en el caso cuando

$$\lambda_{ki} = \delta_{ki} \epsilon_k,$$

entonces las ecuaciones de Hartree-Fock se expresan como:

$$\hat{F}\phi_k = \epsilon_k \phi_k.$$

¹⁷El cual es hermítico.

Ecuaciones de Hartree-Fock

Las ecuaciones de Hartree-Fock,

$$\hat{F}\phi_k = \epsilon_k \phi_k.$$

representan un set de ecuaciones de eigenvalores, en donde:

- \hat{F} no es el Hamiltoniano, es el operador de Fock.
- Representa una ecuación para una partícula, y no para N-partículas, siendo que esa información está incluida en el operador \hat{F} .
- \hat{F} depende de las soluciones que se quieren encontrar: ϕ_i ,

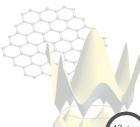
$$\hat{F} = \hat{h}_1 + \sum_{i=1}^{N} \left[\hat{J}_i - \hat{K}_i \right] \quad \forall \quad \hat{J}_i \phi_k(\mathbf{x}_1) = \int d\mathbf{x}_2 \frac{|\phi_i(\mathbf{x}_2)|^2}{|\mathbf{r}_2 - \mathbf{r}_1|} \phi_k(\mathbf{x}_1),$$

$$\hat{K}_i \phi_k(\mathbf{x}_1) = \int d\mathbf{x}_2 \frac{\phi_i^*(\mathbf{x}_2)}{|\mathbf{r}_2 - \mathbf{r}_1|} \hat{P}_{12} \left[\phi_i(\mathbf{x}_2) \phi_k(\mathbf{x}_1) \right].$$

• Los eigenvalores ϵ_k aún no están relacionados con ningún observable físico.

Contenido: Tema 02

- 2. Método de Hartree-Fock
- 2.1 La aproximación de Hartree
- 2.2 El método de Hartree-Fock
- 2.3 Orbitales, energía total, teorema de Koopmans
- 2.4 Método de Hartree-Fock-Roothaan



Preliminares

El operador de Fock, en las ecs. de Hartree-Fock (H-F), es:

$$\begin{split} \hat{F} &= \hat{h}_1 + \sum_{i=1}^N \left(\hat{J}_i - \hat{K}_i \right) \quad \Rightarrow \quad \hat{F} \phi_k = \epsilon_k \phi_k, \\ \text{donde:} \quad \hat{J}_i \phi_k(\mathbf{x}_1) &= \int d(\mathbf{x}_2) \frac{|\phi_i(\mathbf{x}_2)|^2}{|\mathbf{r}_2 - \mathbf{r}_1|} \phi_k(\mathbf{x}_1), \\ \hat{K}_i \phi_k(\mathbf{x}_1) &= \int d(\mathbf{x}_2) \frac{\phi_i^*(\mathbf{x}_2)}{|\mathbf{r}_2 - \mathbf{r}_1|} \hat{P}_{12} \left[\phi_i(\mathbf{x}_2) \phi_k(\mathbf{x}_1) \right]. \end{split}$$

Sin embargo, los operadores dependen de la forma de los orbitales \Rightarrow para resolver las ecuaciones de H-F se procede como sigue:

- Se propone una forma inicial adecuada para los orbitales.
- Se **generan** los operadores \hat{J}_i y \hat{K}_i .
- Se resuelven las ecs. de H-F, obteniendo un nuevo set de orb.
- Éstos se utilizan para generar de nuevo los operadores \hat{J}_i y \hat{K}_i .
- Se continúa hasta que $\{\phi_{in}\} \approx \{\phi_{out}\} \Rightarrow$ las ecs. de H-F han sido resueltas de manera **auto-consistente**.

Energía

Antes de abordar el proceso de solución de las ecs. de Hartree-Fock, se debe analizar la exp. para la energía electrónica total del sistema,

$$\begin{split} E_{HF} &= \langle \Phi | \hat{H}_e | \Phi \rangle \quad \forall \quad \Phi = \text{determinante de Slater}, \\ &= \sum_{i=1}^N \langle \phi_i | \hat{h}_1 | \phi_i \rangle + \frac{1}{2} \sum_{i,j=1}^N \left[\langle \phi_i \phi_j | \hat{h}_2 | \phi_i \phi_j \rangle - \langle \phi_j \phi_i | \hat{h}_2 | \phi_i \phi_j \rangle \right], \end{split}$$

por lo cual, calculando E_{HF} mediante las ecs. de H-F,

$$\hat{F}\phi_k = \epsilon_k \phi_k \quad \Rightarrow \quad \sum_{k=1}^N \langle \phi_k | \hat{F} | \phi_k \rangle = \sum_{k=1}^N \epsilon_k \langle \phi_k | \phi_k \rangle = \sum_{k=1}^N \epsilon_k,^{18}$$

donde:
$$\hat{F} = \hat{h}_1 + \sum_{l=1}^{N} \left(\hat{J}_l - \hat{K}_l \right)$$
,

$$\therefore \sum_{k=1}^{N} \langle \phi_k | \hat{h}_1 | \phi_k \rangle + \sum_{k,l=1}^{N} \left[\langle \phi_k | \hat{J}_l | \phi_k \rangle - \langle \phi_k | \hat{K}_l | \phi_k \rangle \right] = \sum_{k=1}^{N} \epsilon_k.$$

¹⁸Debido a la ortogonalidad de los orbitales.

Energía

Analizando los elementos de matriz que involucran a \hat{J}_l y \hat{K}_l ,

$$\langle \phi_{k} | \hat{J}_{l} | \phi_{k} \rangle = \int \int d\mathbf{x}_{1} d\mathbf{x}_{2} \frac{|\phi_{l}(\mathbf{x}_{2})|^{2} |\phi_{k}(\mathbf{x}_{1})|^{2}}{|\mathbf{r}_{2} - \mathbf{r}_{1}|},$$

$$= \int \int d\mathbf{x}_{1} d\mathbf{x}_{2} \phi_{k}^{*}(\mathbf{x}_{1}) \phi_{l}^{*}(\mathbf{x}_{2}) \hat{h}_{2} \phi_{k}(\mathbf{x}_{1}) \phi_{l}(\mathbf{x}_{2}),$$

$$= \langle \phi_{k} \phi_{l} | \hat{h}_{2} | \phi_{k} \phi_{l} \rangle \quad \forall \quad \hat{h}_{2} = \frac{1}{|\mathbf{r}_{2} - \mathbf{r}_{1}|},$$

$$\langle \phi_{k} | \hat{K}_{l} | \phi_{k} \rangle = \int \int d\mathbf{x}_{1} d\mathbf{x}_{2} \frac{\phi_{k}^{*}(\mathbf{x}_{1}) \phi_{l}^{*}(\mathbf{x}_{2})}{|\mathbf{r}_{2} - \mathbf{r}_{1}|} \hat{P}_{12} \left[\phi_{l}(\mathbf{x}_{2}) \phi_{k}(\mathbf{x}_{1})\right],$$

$$= \int \int d\mathbf{x}_{1} d\mathbf{x}_{2} \phi_{k}^{*}(\mathbf{x}_{1}) \phi_{l}^{*}(\mathbf{x}_{2}) \hat{h}_{2} \phi_{l}(\mathbf{x}_{1}) \phi_{k}(\mathbf{x}_{2}),$$

$$= \langle \phi_{k} \phi_{l} | \hat{h}_{2} | \phi_{l} \phi_{k} \rangle = \langle \phi_{l} \phi_{k} | \hat{h}_{2} | \phi_{k} \phi_{l} \rangle,$$

sustituyendo lo anterior en la expresión general:

$$\sum_{k=1}^{N} \langle \phi_k | \hat{h}_1 | \phi_k \rangle + \sum_{k=1}^{N} \left[\langle \phi_k \phi_l | \hat{h}_2 | \phi_k \phi_l \rangle - \langle \phi_l \phi_k | \hat{h}_2 | \phi_k \phi_l \rangle \right] = \sum_{k=1}^{N} \epsilon_k.$$

Energía

Comparando ambos resultados obtenidos,

$$\begin{split} E_{HF} &= \sum_{i=1}^{N} \left. \langle \phi_i | \hat{h}_1 | \phi_i \rangle + \frac{1}{2} \sum_{i,j=1}^{N} \left[\left. \langle \phi_i \phi_j | \hat{h}_2 | \phi_i \phi_j \rangle - \left. \langle \phi_j \phi_i | \hat{h}_2 | \phi_i \phi_j \rangle \right] \right., \\ \sum_{k=1}^{N} \epsilon_k &= \sum_{k=1}^{N} \left. \langle \phi_k | \hat{h}_1 | \phi_k \rangle + \sum_{k,l=1}^{N} \left[\left. \langle \phi_k \phi_l | \hat{h}_2 | \phi_k \phi_l \rangle - \left. \langle \phi_l \phi_k | \hat{h}_2 | \phi_k \phi_l \rangle \right] \right., \end{split}$$

se observa que se relacionan de la siguiente manera, ¹⁹

$$E_{HF} = \sum_{k=1}^{N} \epsilon_k - \frac{1}{2} \sum_{k,l=1}^{N} \left[\langle \phi_k \phi_l | \hat{h}_2 | \phi_k \phi_l \rangle - \langle \phi_l \phi_k | \hat{h}_2 | \phi_k \phi_l \rangle \right],$$

en donde la energía electrónica total es:

- Suma de las energías de los orbitales individuales ϵ_k .
- Menos un término de doble conteo debido a las inter. electrón electrón

 $^{^{19} {\}sf Las}$ sumatorias son idénticas haciendo: i o k y j o l.

Orbitales: Teorema de Koopmans

Regresando al proceso del ciclo de auto-consistencia para resolver las ecs. de H-F, en algún punto se tendrán más orbitales que los N requeridos, por lo que existirá una arbitrariedad al poblarlos!

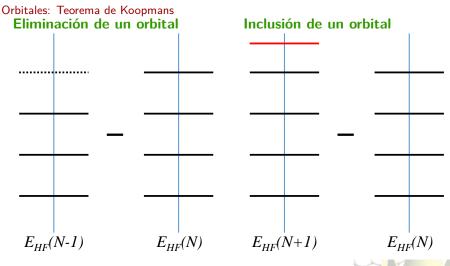
Hipótesis

Como se tiene interés en el estado base \Rightarrow se deben escoger los N orbitales que correspondan a los valores más bajos en energía ϵ_k .

La hipótesis anterior descansa en el teorema de Koopmans,

- (i) $E_{HF}(N-1)-E_{HF}(N)\approx -\epsilon_n$ La energía de un sistema al que se le ha **removido** un electrón de un orbital n (con energía ϵ_n) es **menor** que la del sist. original.
- (ii) $E_{HF}(N+1) E_{HF}(N) \approx \epsilon_m$ La energía de un sistema al que se le ha **añadido** un electrón en un orbital m (con energía ϵ_m) es **mayor** que la del sist. original.

Donde el **sistema original** es el caso en que los N electrones **ocupan** los N orbitales de **menor** energía.

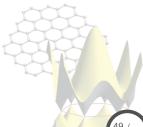


La diferencia energética corresponderá a la energía del orbital desocupado ϵ_n .

La diferencia en energía corresponderá a la energía del orbital incluído ϵ_m .

Contenido: Tema 02

- 2. Método de Hartree-Fock
- 2.1 La aproximación de Hartree
- 2.2 El método de Hartree-Fock
- 2.3 Orbitales, energía total, teorema de Koopmans
- 2.4 Método de Hartree-Fock-Roothaan



Planteamiento

El problema original es resolver las ecuaciones de H-F,

$$\hat{F}\psi_k = \epsilon_k \psi_k,$$

$$\forall \ \psi_k \approx \Phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = |\phi_1, \phi_2, \dots, \phi_n|,$$

es decir, se debe encontrar tanto ϵ_k como el set $\{\phi_k\}$ en **todo** punto del espacio, así como su dependiencia espinorial, lo cual proviene de aplicar la **condición extremal** $\delta F=0$ a la sig. ecuación,

$$F = \langle \Phi | \hat{H}_e | \Phi \rangle - \sum_{i,j=1}^{N} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right].$$

Tal procedimiento, mediante la metodología de autoconsistencia, resulta en la práctica extremadamente complejo, ya que:

- Se deben aplicar variaciones a cada uno de los orbitales de $\{\phi_k\}$.
- Lo anterior debe ser obtenido en cada punto del espacio.

Lo cual significa que se debe obtener un número infinito de parámetros para la solución del problema!!

Propuesta de Roothaan

La propuesta de Roothaan para reducir el número de parametros es una expansión de los orbitales $\{\phi_k\}$ en un set fijo de funciones base,

$$\phi_l(\mathbf{x}) = \sum_{p=1}^{N_b} c_{pl} \chi_p(\mathbf{x}),^{20}$$

en donde las func. base $\{\chi_p\}$ así como el número de ellas, N_b , son fijas, y sólo los coeficientes de expansión c_{pl} son los que varían.

Por tanto, sust. la propuesta de Roothaan en la forma funcional de F,

$$F = \sum_{i=1}^{N} \langle \phi_i | \hat{h}_1 | \phi_i \rangle + \frac{1}{2} \sum_{i,j=1}^{N} \left[\langle \phi_i \phi_j | \hat{h}_2 | \phi_i \phi_j \rangle - \langle \phi_j \phi_i | \hat{h}_2 | \phi_i \phi_j \rangle \right] + \dots$$

$$\ldots - \sum_{i,j=1}^{N} \lambda_{ij} \left[\langle \phi_i | \phi_j \rangle - \delta_{ij} \right],$$

 $^{^{20}}c_{pl}$ es el coeficiente de la p-ésima función base para el l-ésimo orbital.

Propuesta de Roothaan

se obtiene,

$$F = \sum_{i=1}^{N} \sum_{m,n=1}^{N_b} c_{mi}^* c_{ni} \langle \chi_m | \hat{h}_1 | \chi_n \rangle + \frac{1}{2} \sum_{i,j=1}^{N} \sum_{m,n,q,r=1}^{N_b} c_{mi}^* c_{qj}^* c_{ni} c_{rj} \times \dots$$

$$\dots \left[\langle \chi_m \chi_q | \hat{h}_2 | \chi_n \chi_r \rangle - \langle \chi_q \chi_m | \hat{h}_2 | \chi_n \chi_r \rangle \right] + \dots$$

$$\dots - \sum_{i,j=1}^{N} \sum_{m,r=1}^{N_b} \lambda_{ij} \left[c_{mi}^* c_{rj} \langle \chi_m | \chi_r \rangle - \delta_{ij} \right],$$

siendo el requerimiento para obtener un estado estacionario:

antes:
$$\delta F=0 \ \forall \ \phi_k \to \phi_k + \delta \phi_k,$$
 ahora: $\frac{\partial F}{\partial c_{pl}}=\frac{\partial F}{\partial c_{pl}^*}=0.$

Condiciones de un estado estacionario

Calculando las derivadas parciales,

$$\frac{\partial F}{\partial c_{pl}^*} = \sum_{n=1}^{N_b} c_{nl} \langle \chi_p | \hat{h}_1 | \chi_n \rangle + \sum_{j=1}^{N} \sum_{n,q,r=1}^{N_b} c_{qj}^* c_{nl} c_{rj} \left[\langle \chi_p \chi_q | \hat{h}_2 | \chi_n \chi_r \rangle + \dots \right]
\dots - \langle \chi_q \chi_p | \hat{h}_2 | \chi_n \chi_r \rangle - \sum_{j=1}^{N} \lambda_{lj} \sum_{r=1}^{N_b} c_{rj} \langle \chi_p | \chi_r \rangle,
\frac{\partial F}{\partial c_{pl}} = \sum_{m=1}^{N_b} c_{ml}^* \langle \chi_m | \hat{h}_1 | \chi_p \rangle + \sum_{j=1}^{N} \sum_{m,q,r=1}^{N_b} c_{ml}^* c_{qj}^* c_{rj} \left[\langle \chi_m \chi_q | \hat{h}_2 | \chi_p \chi_r \rangle + \dots \right]
\dots - \langle \chi_q \chi_m | \hat{h}_2 | \chi_p \chi_r \rangle - \sum_{j=1}^{N} \lambda_{il} \sum_{r=1}^{N_b} c_{mi}^* \langle \chi_m | \chi_p \rangle,$$

Condiciones de un estado estacionario

$$\frac{\partial F}{\partial c_{pl}^{*}} = 0 \quad \rightarrow \quad \sum_{n=1}^{N_{b}} \left\{ \langle \chi_{p} | \hat{h}_{1} | \chi_{n} \rangle + \sum_{j=1}^{N} \sum_{q,r=1}^{N_{b}} c_{qj}^{*} c_{rj} \left[\langle \chi_{p} \chi_{q} | \hat{h}_{2} | \chi_{n} \chi_{r} \rangle - \dots \right] \right.$$

$$\left. \dots - \langle \chi_{q} \chi_{p} | \hat{h}_{2} | \chi_{n} \chi_{r} \rangle \right] \right\} c_{nl} = \sum_{r=1}^{N_{b}} \sum_{j=1}^{N} \lambda_{lj} c_{rj} \langle \chi_{p} | \chi_{r} \rangle ,$$

$$\frac{\partial F}{\partial c_{pl}} = 0 \quad \rightarrow \quad \sum_{m=1}^{N_{b}} \left\{ \langle \chi_{m} | \hat{h}_{1} | \chi_{p} \rangle + \sum_{j=1}^{N} \sum_{q,r=1}^{N_{b}} c_{qj}^{*} c_{rj} \left[\langle \chi_{m} \chi_{q} | \hat{h}_{2} | \chi_{p} \chi_{r} \rangle - \dots \right] \right.$$

$$\left. \dots - \langle \chi_{q} \chi_{m} | \hat{h}_{2} | \chi_{p} \chi_{r} \rangle \right] \right\} c_{ml}^{*} = \sum_{m=1}^{N_{b}} \sum_{i=1}^{N} \lambda_{il} c_{mi}^{*} \langle \chi_{m} | \chi_{p} \rangle ,$$

$$\left[\dots \right]^{*} \quad \rightarrow \quad \sum_{m=1}^{N_{b}} \left\{ \langle \chi_{p} | \hat{h}_{1} | \chi_{m} \rangle + \sum_{j=1}^{N} \sum_{q,r=1}^{N_{b}} c_{qj} c_{rj}^{*} \left[\langle \chi_{p} \chi_{r} | \hat{h}_{2} | \chi_{m} \chi_{q} \rangle - \dots \right] \right.$$

$$\left. \dots - \langle \chi_{r} \chi_{p} | \hat{h}_{2} | \chi_{m} \chi_{q} \rangle \right] \right\} c_{ml} = \sum_{m=1}^{N_{b}} \sum_{i=1}^{N} \lambda_{il}^{*} c_{mi} \langle \chi_{p} | \chi_{m} \rangle .$$

Ecuaciones de Hartree-Fock-Roothaan

Realizando los cambios de variables mudas en las ecuaciones anteriores 21 y restando se obtiene,

$$0 = \sum_{r=1}^{N_b} \sum_{j=1}^{N} \left(\lambda_{lj} - \lambda_{jl}^* \right) c_{rj} \left\langle \chi_p | \chi_r \right\rangle \quad \Rightarrow \quad \lambda_{lj} = \lambda_{jl}^*,$$

siendo que los coef. c_{rl} y las funciones base $\langle \chi_p | \chi_r \rangle$ son genéricas \Rightarrow los multiplicadores de Lagrange forman una **matriz hermítica**, donde además ambas ecs. son una sola (una la compleja conj. de la otra).

Considerando una descripción diagonal: $\lambda_{lj} = \epsilon_l \delta_{lj}$, se obtienen las ecuaciones de **Hartree**-**Fock**-**Roothaan**,

$$\sum_{n=1}^{N_b} \left\{ \langle \chi_p | \hat{h}_1 | \chi_n \rangle + \sum_{j=1}^{N} \sum_{q,r=1}^{N_b} c_{qj}^* c_{rj} \left[\langle \chi_p \chi_q | \hat{h}_2 | \chi_n \chi_r \rangle - \dots \right] \right\}$$

...
$$-\langle \chi_q \chi_p | \hat{h}_2 | \chi_n \chi_r \rangle] \} c_{nl} = \epsilon_l \sum_{n=1}^{N_b} \langle \chi_p | \chi_n \rangle c_{nl}.$$

²¹En la segunda ecuación: $m \to n$; $r \to q \& q \to r$; $i \to j$.

Ecuaciones de Hartree-Fock-Roothaan

Las ecuaciones de Hartree-Fock-Roothaan deben de resolverse igualmente de manera auto-consistente, además de que también pueden expresarse en forma matricial,

$$\mathbf{F} \cdot \mathbf{c}_l = \epsilon_l \mathbf{O} \cdot \mathbf{c}_l,$$

en donde,

$$\mathbf{c}_l \ \to \ \text{coeficientes del l-\'esimo orbital},$$

$$O_{pn} = \langle \chi_p | \chi_n \rangle \ \to \ \text{elementos de matriz de traslape},$$

y ${f F}$ conteniendo los elementos de matriz de Fock,

$$F_{pn} = \langle \chi_p | \hat{h}_1 | \chi_n \rangle + \sum_{i=1}^{N} \sum_{q,r=1}^{N_b} c_{qj}^* c_{rj} \left[\langle \chi_p \chi_q | \hat{h}_2 | \chi_n \chi_r \rangle - \langle \chi_q \chi_p | \hat{h}_2 | \chi_n \chi_r \rangle \right].$$

Ecuaciones de Hartree-Fock-Roothaan

Algunos detalles de las ecuaciones de Hartree-Fock-Roothaan:

 Reemplaza el problema de determinar un número infinito de valores por un número finito de parámetros.

Hartree-Fock

Se deben determinar **todos** los orbitales en **todos** los puntos del espacio.

Hartree-Fock-Roothaan

Se deben determinar solamente los coeficientes de la exp. en las funciones base para cada orbital.

- La precisión del cálculo de la energía total electrónica se puede mejorar sistemáticamente incrementando el número de funciones base.
- La calidad de la solución dependerá fuertemente de la calidad de las funciones base.
- La precisión de un cálculo H-F-R nunca podrá superar la de un cálculo H-F directo, y sólo dará resultados razonables suponiendo que la aproximación H-F sea adecuada al problema.

Ecuaciones de Hartree-Fock-Roothaan: Sistema restringido

Al tomar en cuenta el espín del electrón, el valor **total espinorial** del sistema de N electrones se puede considerar como una restricción adicional a la función de onda total Φ .

Para ello se considera el comportamiento de Φ bajo los operadores \hat{S}^2 y \hat{S}_z dados por:

$$\hat{S}^{2} = \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2},$$

$$\forall \hat{S}_{x} = \sum_{i}^{N} \hat{s}_{i,x}, \hat{S}_{y} = \sum_{i}^{N} \hat{s}_{i,y}, \hat{S}_{z} = \sum_{i}^{N} \hat{s}_{i,z}.$$

Considerando que se tienen n orbitales con espín α y m orbitales con espín β , se obtiene al aplicar el operador \hat{S}_z a la función de onda total lo siguiente:

$$\hat{S}_z \Phi = \frac{n-m}{2} \Phi \quad \forall \quad n+m = N,$$

es decir, la función Φ es eigenfunción de \hat{S}_z , independiente de la forma precisa de los orbitales en sí, lo cual no ocurre siempre para \hat{S}^2 .

Ecuaciones de Hartree-Fock-Roothaan: Sistema restringido

Para el caso cuando se considera n=m, se obtiene que Φ si será eigenfunción de \hat{S}^2 , con lo cual, teniendo en cuenta que α y β son ortonormales, la ecuación de H-F-R se transforma:

$$\sum_{n=1}^{N_b} \left\{ \langle \chi_p | \hat{h}_1 | \chi_n \rangle + \sum_{j=1}^{N} \sum_{q,r=1}^{N_b} c_{qj}^* c_{rj} \left[\langle \chi_p \chi_q | \hat{h}_2 | \chi_n \chi_r \rangle - \dots \right] \right.$$

$$\dots - \langle \chi_q \chi_p | \hat{h}_2 | \chi_n \chi_r \rangle \right] \left. \right\} c_{nl} = \epsilon_l \sum_{n=1}^{N_b} \langle \chi_p | \chi_n \rangle c_{nl},$$

$$\Rightarrow \sum_{n=1}^{N_b} \left\{ \langle \chi_p | \hat{h}_1 | \chi_n \rangle + \sum_{j=1}^{N/2} \sum_{q,r=1}^{N_b} c_{qj}^* c_{rj} \left[2 \langle \chi_p \chi_q | \hat{h}_2 | \chi_n \chi_r \rangle - \dots \right] \right.$$

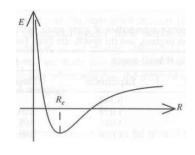
$$\dots - \langle \chi_q \chi_p | \hat{h}_2 | \chi_n \chi_r \rangle \right] \left. \right\} c_{nl} = \epsilon_l \sum_{n=1}^{N_b} \langle \chi_p | \chi_n \rangle c_{nl},$$

donde la sumatoria en los N orbitales ha sido sustituida por una sobre las N/2 dif. funciones dependientes del espacio.

Propiedades físicas: Energía total

La **energía total** contiene dos contribuciones, considerando la aproximación Born-Oppenheimer,

$$E(\mathbf{X}) = \frac{1}{2} \sum_{k_1 \neq k_2 = 1}^{M} \frac{Z_{k_1} Z_{k_2}}{|\mathbf{R}_{k_1} - \mathbf{R}_{k_2}|} + E_e(\mathbf{X}),$$



siendo que $E_e = E_{HF}$, en donde:

$$E_{HF} = \sum_{k=1}^{N} \epsilon_k - \frac{1}{2} \sum_{k,l=1}^{N} \left[\langle \phi_k \phi_l | \hat{h}_2 | \phi_k \phi_l \rangle - \langle \phi_l \phi_k | \hat{h}_2 | \phi_k \phi_l \rangle \right],$$

y por tanto, para obtener la long. de equilibrio de un enlace químico basta con calcular:

$$E(R_e) = \text{mínimo},$$

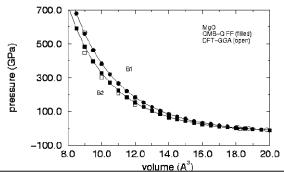
para diferentes configuraciones/posiciones de los núcleos.

Propiedades físicas: Energía total y ecuación de estado

La ecuación de estado es una rel. de energía \emph{vs} volumen E(V) que describe el comportamiento de un sólido bajo compresión o expansión.

Para el caso en el cual se desea obtener una ecuación de estado PV, se utiliza la siguiente relación termodinámica,

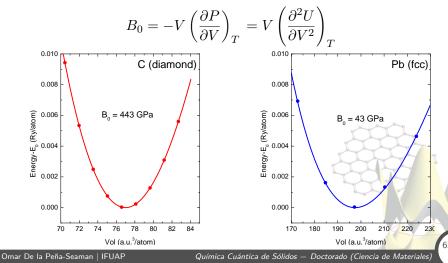
$$P(V) = -\left(\frac{\partial U}{\partial V}\right)_T.$$



Química Cuántica de Sólidos — Doctorado (Ciencia de Materiales)

Propiedades físicas: Módulo de compresibilidad

Módulo de compresibilidad: Medida de la habilidad de un material para resistir los cambios en el volumen debido a una compresión o expansión uniforme,



Propiedades físicas: Ecuaciones de estado (EOS)

De los cálculos descritos anteriormente, se obtienen set de datos $\{V,E\}$, los cuales se ajustan a EOS $E\ vs\ V$.

EOS2²²

$$E(V) = a + bV^{-1/3} + cV^{-2/3} + dV^{-1},$$

$$P(V) = \frac{1}{3}bV^{-4/3} + \frac{2}{3}cV^{-5/3} + dV^{-2}.$$

Murnagham EOS²³

$$E(V) = E_0 + \frac{B_0 V}{B'} \left[\left(\frac{V_0}{V} \right)^{B'} \frac{1}{B' - 1} + 1 \right] - \frac{B_0 V_0}{B' - 1},$$

$$P(V) = \frac{B_0}{B'} \left[\left(\frac{V_0}{V} \right)^{B'} - 1 \right].$$

²²PRB **52**, 8064 (1995).

²³Proc. Nat. Acad. Sci. USA, **30**, 244 (1944).

Propiedades físicas: Ecuaciones de estado (EOS)

Birch-Murnagham EOS²⁴

$$E(V) = E_0 + \frac{9B_0V_0}{16} \left\{ \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right]^3 B' + \dots \right.$$

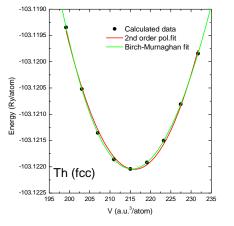
$$\dots + \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right]^2 \left[6 - 4 \left(\frac{V_0}{V} \right)^{2/3} \right] \right\},$$

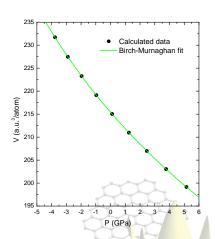
$$P(V) = \frac{3B_0}{2} \left[\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right] \times \dots$$

$$\dots \times \left\{ 1 + \frac{3}{4} \left(B' - 4 \right) \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right] \right\}.$$

²⁴PR **71**, 809 (1947).

Propiedades físicas: Ecuación de estado Birch-Murnaghan





	a_0 (a.u.)	V (a.u. ³)	B_0 (GPa)
Birch-Murnaghan	9.5157	215.4091	58.0219
Exp.	9.6169	222.3576	58

Propiedades físicas: Energía total y energía de disociación

Table 9.1 Calculated structural properties of some small molecules. Lengths are given in ångströms and angles in degrees, and the results are from Daudel *et al.* (1983)

System	X-H bond length		H-X-H bond angle	
	Theory	Experiment	Theory	Experiment
$\overline{\mathrm{H}_2}$	0.730	0.742	x M	
CH ₃	1.072	1.079	120.0	120.0
CH ₄	1.082	1.085	109.5	109.5
NH ₂	1.015	1.024	108.6	103.4
NH ₃	0.991	1.012	116.1	106.7
OH	0.967	0.971		
H_2O	0.948	0.957	111.5	104.5
HF	0.921	0.917		

Con la información calculada de la energía total es posible calcular la energía de disociación de una molécula AB,

$$D_e = E(A) + E(B) - E(AB) = E(\infty) - E(R_e),$$

en donde el cálculo de esta cantidad es menos preciso que R_e dentro de la aproximación de H-F.

Propiedades físicas: Frecuencias de vibración

Si se expande la expresión de la energía en Taylor alrededor del mínimo,

$$E(R) \approx E(R_e) + \frac{k}{2}(R - R_e)^2,$$

$$k = \left. \frac{d^2 E}{dR^2} \right|_{R=R_e},$$

es posible obtener las frecuencias de vibración en el límite armónico,

$$\hbar\omega=\hbar\sqrt{\frac{k}{\mu}}\;\forall\;\mu=\frac{M_AM_B}{M_A+M_B},$$

Table 9.2 Calculated vibrational properties of some small molecules. The frequencies are given in cm⁻¹, and the results are from Daudel *et al.* (1983)

System	Theory	Experiment
$\overline{H_2}$	4644	4405
CH_3	3321	3184
	3125	3002
	1470	1383
	776	580
CH₄	3372	3019
	3226	2917
	1718	1534
	1533	1306
NH ₂	3676	3220
	3554	3173
	1651	1499
NH ₃	3985	3444
	3781	3336
	1814	1627
	597	950
OH	3955	3735
H ₂ O	4143	3756
	3987	3657
	1678	1595
HF	4150	4138

siendo que las frecuencias obtenidas por H-F normalmente subestiman

Propiedades físicas: Densidad electrónica de carga

Para calcular la densidad electrónica de carga $\rho(\mathbf{r})$, se aplica:

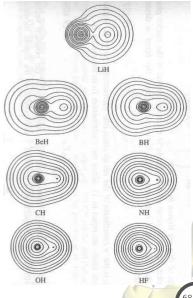
$$\hat{a}_1(i) = \delta(\mathbf{r} - \mathbf{r}_i),$$

$$\forall \hat{A} = \sum_{i=1}^{N} \hat{a}_1(i),$$

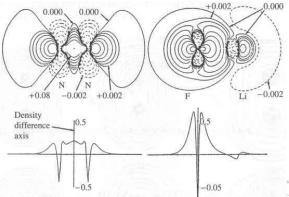
por tanto, dentro de la aproximación de H-F, se obtiene:

$$A = \sum_{i=1}^{N} \langle \phi_i | \hat{a}_1 | \phi_i \rangle,$$

$$\Rightarrow \rho(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i(\mathbf{r}_i)|^2.$$



Propiedades físicas: Densidad electrónica de carga



Otra manera de describir la densidad de carga es mediante la **diferencia** de densidad $\Delta \rho(\mathbf{r})$, en función de la densidad de los átomos aislados,

$$\Delta \rho(\mathbf{r}) = \rho(\mathbf{r}) - \sum_{m=1}^{M} \rho_m(\mathbf{r} - \mathbf{R}_m).$$