# Estado Sólido I <br> Tarea 1: Enlace Químico 

Dr. Omar De la Peña Seaman

18 Enero 2021

Nombre del Estudiante:

Problema 1 Van der Waals interaction
As a simple quantum mechanical model for the van der Waals interaction consider two identical harmonic oscillators (oscillating dipoles) at a separation $R$. Each dipole consists of a pair of opposite charges whose separations are $x_{1}$ and $x_{2}$, respectively, for the two dipoles. A restoring force $f$ acts between each pair of charges $(f=-k x)$.
(a) Write down the Hamiltonian $H_{0}$ for the two oscillators without taking into account electrostatic interaction between the charges.
(b) Determine the interaction energy $H_{1}$ of the four charges.
(c) Assuming $\left|x_{1}\right| \ll R$ and $\left|x_{2}\right| \ll R$, approximate $H_{1}$ as follows

$$
H_{1} \approx-\frac{2 e^{2} x_{1} x_{2}}{R^{3}}
$$

(d) Show that tranformation to normal coordinates, $x_{s}=\left(x_{1}+x_{2}\right) / \sqrt{2}$ and $x_{a}=\left(x_{1}-\right.$ $\left.x_{2}\right) / \sqrt{2}$, decouples the total energy $H=H_{0}+H_{1}$ into a symmetric and an antisymmetric contribution.
(e) Calculate the frequencies $\omega_{s}$ and $\omega_{a}$ of the symmetric and antisymmetric normal vibration modes. Evaluate the frequencies $\omega_{s}$ and $\omega_{a}$ as Taylor series in $2 e^{2} /\left(k R^{3}\right)$ and truncate the expansions after second order terms.
(f) The energy of the complete system of two interacting oscillators can be expressed as $U=\hbar\left(\omega_{s}+\omega_{a}\right) / 2$. Derive an expression for the energy of the isolated ocillators and show that this is decreased by an amount $c / R^{6}$ when mutual interaction (bonding) occurs.

Problema 2 Cohesive energy of bcc and fcc neon
Using the Lennard-Jonnes potential, calculate the ratio of the cohesive energies of Neon $(\mathrm{Ne})$ in the bcc and fcc structures. The lattice sums for the bcc are:

$$
\Sigma_{j}^{\prime} p_{i j}^{-12}=9.11418 ; \quad \Sigma_{j}^{\prime} p_{i j}^{-6}=12.2533 .
$$

and for the fcc are:

$$
\Sigma_{j}^{\prime} p_{i j}^{-12}=12.13188 ; \quad \Sigma_{j}^{\prime} p_{i j}^{-6}=14.45392 .
$$

## Problema 3 Linear ionic crystal

Consider a line of $2 N$ ions of alternating charge $\pm q$ with a repulsive potential energy $A / R^{n}$ between nearest neighbors.
(a) Show that at the equilibrium separation

$$
U\left(R_{0}\right)=-\frac{2 N q^{2} \ln 2}{R_{0}}\left(1-\frac{1}{n}\right) .
$$

(b) Let the crystal be compressed so that $R_{0} \rightarrow R_{0}(1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $C \delta^{2} / 2$, where

$$
C=\frac{(n-1) q^{2} \ln 2}{R_{0}} .
$$

Hint: the expressions are in CGS units. To obrain results in SI, replace $q^{2}$ by $q^{2} / 4 \pi \epsilon_{0}$.

## Problema 4 State Equations

For each of the following state equations, calculate the $p(V)$ equation:
(a) EOS2:

$$
E(V)=a+b V^{-1 / 3}+c V^{-2 / 3}+d V^{-1} .
$$

(b) Murnagham EOS:

$$
E(V)=E_{0}+\frac{B_{0} V}{B^{\prime}}\left[\left(\frac{V_{0}}{V}\right)^{B^{\prime}} \frac{1}{B^{\prime}-1}+1\right]-\frac{B_{0} V_{0}}{B^{\prime}-1}
$$

(c) Birch-Murnagham EOS:

$$
E(V)=E_{0}+\frac{9 B_{0} V_{0}}{16}\left\{\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{3} B^{\prime}+\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{2}\left[6-4\left(\frac{V_{0}}{V}\right)^{2 / 3}\right]\right\} .
$$

