Estado Sólido I

Tarea 3: Modelo del Gas de Electrones Libres

Dr. Omar De la Peña Seaman

18 Febrero 2021

Nombre del Estudiante:	
Tionible del Estadiante.	

Problema 1 Kinetic energy, pressure, and bulk modulus of an electron gas

(a) Show that the kinetic energy of a three-dimensional gas of N free electrons at 0 K is

$$U_0 = \frac{3}{5}N\epsilon_F.$$

- (b) Derive a relation connecting the pressure and volume of an electron gas at 0 K. Hint: The result may be written as $p = (2/3)U_0/V$.
- (c) Show that the bulk modulus $B = -V(\partial p/\partial V)$ of an electron gas at 0 K is $B = 5p/3 = 10U_0/9V$.

.

Problema 2 Chemical potential in two dimensions

Show that the chemical potential of a Fermi gas in two dimensions is given by:

$$\mu(T) = k_B T \ln \left[\exp(\pi n \hbar^2 / m k_B T) - 1 \right],$$

for n electrons per unit area.

Hint: The density of orbitals of a free electron gas in two dimensions is independent of energy: $D(\epsilon) = m/\pi\hbar^2$, per unit area of specimen.

.

Problema 3 Frequency dependence of the electrical conductivity

Use the equation $m(dv/dt + v/\tau) = -eE$ for the electron drift velocity v and consider an oscillating electric field $E(t) = Ee^{i\omega t}$. Then find the following:

(a) The velocity v as a function of time and frequency.

Problema 4

(b) The conductivity at frequency ω , given by:

$$\sigma(\omega) = \sigma(0) \left(\frac{1 + i\omega \tau}{1 + (\omega \tau)^2} \right),$$

where $\sigma(0) = ne^2 \tau / m$.

.

Problema 4 Cohesive energy of free electron Fermi gas

We define the dimensionless lenght r_s as r_0/a_H , where r_0 is the radius of a sphere that contains one electron, and a_H is the Bohr radius \hbar^2/e^2m .

- (a) Show that the average kinetic energy per electron in a free electron Fermi gas at 0 K is $2.21/r_s^2$, where the energy is expressed in rydbergs with 1 Ry = $me^4/2\hbar^2$.
- (b) Show that the coulomb energy of a point positive charge e interacting with the uniform electron distribution of one electron in the volume of a sphere of radius r_0 (given by $\rho = -e/V$) is $-3e^2/2r_0$ or $-3/r_s$ in rydbergs. You can consider the point particle located at the origin of the sphere, and use the following expression for the interaction:

$$V_C^+ = \int \frac{e\rho}{|\mathbf{r}|} d\mathbf{r}.$$

(c) Show that the coulomb self-energy of the electron distribution of the sphere is $3e^2/5r_0$ or $6/5r_s$ in rydbergs, using the following expression:

$$V_C^{self} = \int \frac{q(\mathbf{r})\rho}{|\mathbf{r}|} d\mathbf{r},$$

where $q(\mathbf{r})$ is the charge of the electron distribution at a given \mathbf{r} .

(d) Construct the total energy of the system, by summing the kinetic and both coulomb potential energies. Show that the equilibrium value for r_s is 2.46, and find the cohesive energy value (the minimum of energy).

.