Estado Sólido I
 Tarea 4: Modelo del Gas de Electrones Libres

Dr. Omar De la Peña Seaman

14 octubre 2021

Nombre del Estudiante: \qquad

Problema 1 Kinetic energy, pressure, and bulk modulus of an electron gas
(a) Show that the kinetic energy of a three-dimensional gas of N free electrons at 0 K is

$$
U_{0}=\frac{3}{5} N \epsilon_{F} .
$$

(b) Derive a relation connecting the pressure and volume of an electron gas at 0 K .

Hint: The result may be written as $p=(2 / 3) U_{0} / V$.
(c) Show that the bulk modulus $B=-V(\partial p / \partial V)$ of an electron gas at 0 K is $B=5 p / 3=$ $10 U_{0} / 9 \mathrm{~V}$.

Problema 2 Chemical potential in 1D and 2D
Show that the chemical potential of a Fermi gas in $1 D$ and $2 D$ are given by:

$$
\begin{aligned}
& 1 D: \mu(T)=\epsilon_{F}\left[1+\frac{\pi^{2}}{12}\left(\frac{k_{B} T}{\epsilon_{F}}\right)^{2}\right] \forall \epsilon_{F}=\frac{\hbar^{2} \pi^{2}}{2 m} n^{2}, \\
& 2 D: \quad \mu(T)=k_{B} T \ln \left[\exp \left(\frac{\pi n \hbar^{2}}{m k_{B} T}\right)-1\right],
\end{aligned}
$$

for n electrons per unit lenght or area.

Problema 3 Frequency dependence of the electrical conductivity
Use the equation $m(d v / d t+v / \tau)=-e E$ for the electron drift velocity v and consider an oscillating electric field $E(t)=E e^{i \omega t}$. Then find the following:
(a) The velocity v as a function of time and frequency.
(b) The conductivity at frequency ω, given by:

$$
\sigma(\omega)=\sigma(0)\left(\frac{1+i \omega \tau}{1+(\omega \tau)^{2}}\right)
$$

where $\sigma(0)=n e^{2} \tau / m$.

Problema 4 Cohesive energy of free electron Fermi gas
We define the dimensionless lenght r_{s} as r_{0} / a_{H}, where r_{0} is the radius of a sphere that contains one electron, and a_{H} is the Bohr radius $\hbar^{2} / e^{2} m$.
(a) Show that the average kinetic energy per electron in a free electron Fermi gas at 0 K is $2.21 / r_{s}^{2}$, where the energy is expressed in rydbergs with $1 \mathrm{Ry}=m e^{4} / 2 \hbar^{2}$.
(b) Show that the coulomb energy of a point positive charge e interacting with the uniform electron distribution of one electron in the volume of a sphere of radius r_{0} (given by $\rho=-e / V)$ is $-3 e^{2} / 2 r_{0}$ or $-3 / r_{s}$ in rydbergs. You can consider the point particle located at the origin of the sphere, and use the following expresion for the interaction:

$$
V_{C}^{+}=\int \frac{e \rho}{|\mathbf{r}|} d \mathbf{r} .
$$

(c) Show that the coulomb self-energy of the electron distribution of the sphere is $3 e^{2} / 5 r_{0}$ or $6 / 5 r_{s}$ in rydbergs, using the following expression:

$$
V_{C}^{\text {self }}=\int \frac{q(\mathbf{r}) \rho}{|\mathbf{r}|} d \mathbf{r},
$$

where $q(\mathbf{r})$ is the charge of the electron distribution at a given \mathbf{r}.
(d) Construct the total energy of the system, by summing the kinetic and both coulomb potential energies. Show that the equilibrium value for r_{s} is 2.46 , and find the cohesive energy value (the minimum of energy).

