# Estado Sólido I <br> Tarea 1: Estructura Cristalina 

Dr. Omar De la Peña Seaman

24 enero 2023

Nombre del Estudiante: $\qquad$

## Problema 1 Properties of basic crystal structures

(a) Calculate the first nearest-neighbor distance for the bcc and fcc crystal structures.
(b) Obtain the packing fraction $f_{e}$ for the bcc and fcc crystal structures.
(c) Show that the $c / a$ ratio for an ideal hexagonal close-packed structure is $(8 / 3)^{1 / 2}=1.633$.

## Problema 2 Hexagonal space lattice

The primitive translation vectors of the hexagonal space lattice may be taken as

$$
\mathbf{a}_{1}=\left(3^{1 / 2} a / 2\right) \hat{\mathbf{x}}+(a / 2) \hat{\mathbf{y}} ; \quad \mathbf{a}_{2}=-\left(3^{1 / 2} a / 2\right) \hat{\mathbf{x}}+(a / 2) \hat{\mathbf{y}} ; \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} .
$$

(a) Show that the volume of the primitive cell is $\left(3^{1 / 2} / 2\right) a^{2} c$.
(b) Show that the primitive translations of the reciprocal lattice are

$$
\mathbf{b}_{1}=\left(2 \pi / 3^{1 / 2} a\right) \hat{\mathbf{x}}+(2 \pi / a) \hat{\mathbf{y}} ; \quad \mathbf{b}_{2}=-\left(2 \pi / 3^{1 / 2} a\right) \hat{\mathbf{x}}+(2 \pi / a) \hat{\mathbf{y}} ; \quad \mathbf{b}_{3}=(2 \pi / c) \hat{\mathbf{z}},
$$ so that the lattice is its own reciprocal, but with a rotation of axes.

## Problema 3 Interplanar separation and Bragg condition

Consider a plane $h k l$ in a crystal lattice.
(a) Prove that the recirpocal lattice vector $\mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}$ is perpendicular to this plane.
(b) Prove that the distance between two adjacent parallel planes of the lattice is $d(h k l)=$ $2 \pi /|\mathbf{G}|$.
(c) Show for a simple cubic lattice that $d^{2}=a^{2} /\left(h^{2}+k^{2}+l^{2}\right)$.
(d) Show that the diffraction condition $2 \mathbf{k} \cdot \mathbf{G}=G^{2}$ is an analogous statement of the Bragg condition, $2 d \operatorname{Sin} \theta=n \lambda$.

## Problema 4 Scattering amplitude contributions

From the scattering amplitude,

$$
F=\sum_{\mathbf{G}} \int d V n_{\mathbf{G}} \exp [i(\mathbf{G}-\Delta \mathbf{k}) \cdot \mathbf{r}],
$$

show that $F$ is negligibly small when $\Delta \mathbf{k}$ differs significantly from any reciprocal lattice vector $\mathbf{G}$.

## Problema 5 Structure factor of diamond

The basis of the diamond crystal structure consists of eight atoms if the cell is taken as the conventional cube.
(a) Find the structure factor $S$ of this basis.
(b) Find the zeros of $S$ and show that the allowed reflections of the diamond structure satisfy $v_{1}+v_{2}+v_{3}=4 n$, where all indices are even and $n$ is any integer, or else all indices are odd.

