Estado Sólido I
 Tarea 2: Enlace Químico

Dr. Omar De la Peña Seaman

8 febrero 2023

Nombre del Estudiante: \qquad

Problema 1 van der Waals interaction by electric dipoles
(a) An electric dipole, with dipolar moment \mathbf{p}, generates a potential energy $V(r)$ and electric field \mathbf{E} given by:

$$
V(r)=\frac{\mathbf{p} \cdot \mathbf{r}}{4 \pi \epsilon_{0} r^{3}} ; \quad \mathbf{E}=-\nabla V(r) .
$$

Obtain the expresions for $V(r)$ and \mathbf{E} in polar coordinates, if the electric dipole is oriented along the z-axis.
(b) The system is conformed by a couple of electric dipoles at fixed positions, separated by a distance \mathbf{r}, that are able to rotate on the plane $z y$, as depicted on the figure:

Calculate the potential energy $U_{p}=-\mathbf{p}^{\prime} \cdot \mathbf{E}^{p}$ that feels the dipole \mathbf{p}^{\prime} under the influence of the electric field \mathbf{E}^{p} generated by the dipole \mathbf{p}, as well as the torque $\boldsymbol{\tau}^{p^{\prime}}=\mathbf{p}^{\prime} \times \mathbf{E}^{p}$ exerted by \mathbf{p} on \mathbf{p}^{\prime}, and the torque $\boldsymbol{\tau}^{p}=\mathbf{p} \times \mathbf{E}^{p^{\prime}}$ exerted by \mathbf{p}^{\prime} on \mathbf{p}.
(c) Find the stable equilibrium positions of the dipoles (angles θ and θ^{\prime}) as well as the minimum of potential energy U_{p}, assuming that the dipoles can rotate on the plane $z y$, but cannot translate.
(d) Consider that, in fact, the dipole \mathbf{p}^{\prime} is induced by the electric field \mathbf{E}^{p} generated by the dipole $\mathbf{p}: \mathbf{p}^{\prime}=\epsilon_{0} \alpha \mathbf{E}^{p}$, where α is the polarizability of the dipole \mathbf{p}^{\prime}. Show that the
potential energy of the two dipoles can be given by $U_{p}=-D / r^{6}$, and find D for the stable equilibrium positions at the minimum of potential energy.

Problema 2 Cohesive energy of bcc and fcc neon
Using the Lennard-Jonnes potential, calculate the ratio of the cohesive energies of Neon (Ne) in the bcc and fcc structures. The lattice sums for the bcc are:

$$
\Sigma_{j}^{\prime} p_{i j}^{-12}=9.11418 ; \quad \Sigma_{j}^{\prime} p_{i j}^{-6}=12.2533
$$

and for the fcc are:

$$
\Sigma_{j}^{\prime} p_{i j}^{-12}=12.13188 ; \quad \Sigma_{j}^{\prime} p_{i j}^{-6}=14.45392 .
$$

Problema 3 Linear ionic crystal

Consider a line of $2 N$ ions of alternating charge $\pm q$ with a repulsive potential energy A / R^{n} only between first nearest neighbors.
(a) Show that at the equilibrium separation R_{0} :

$$
U\left(R_{0}\right)=-\frac{2 N q^{2} \ln 2}{R_{0}}\left(1-\frac{1}{n}\right) .
$$

(b) Let the crystal be compressed so that $R_{0} \rightarrow R_{0}(1-\delta)$ with $\delta \ll 1$. Show that the work done in compressing a unit length of the crystal has the leading term $C \delta^{2} / 2$, where

$$
C=\frac{(n-1) q^{2} \ln 2}{R_{0}} .
$$

Hint 01: The expressions are in CGS units. To obrain results in SI, replace q^{2} by $q^{2} / 4 \pi \epsilon_{0}$.
Hint 02: Remember that $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} x^{n} / n$.

Problema 4 Equations of State

For each of the following equations of state, calculate the $p(V)$ equation:
(a) EOS2:

$$
E(V)=a+b V^{-1 / 3}+c V^{-2 / 3}+d V^{-1} .
$$

(b) Murnagham EOS:

$$
E(V)=E_{0}+\frac{B_{0} V}{B^{\prime}}\left[\left(\frac{V_{0}}{V}\right)^{B^{\prime}} \frac{1}{B^{\prime}-1}+1\right]-\frac{B_{0} V_{0}}{B^{\prime}-1}
$$

(c) Birch-Murnagham EOS:

$$
E(V)=E_{0}+\frac{9 B_{0} V_{0}}{16}\left\{\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{3} B^{\prime}+\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{2}\left[6-4\left(\frac{V_{0}}{V}\right)^{2 / 3}\right]\right\} .
$$

