Estado Sólido I
 Tarea 1: Estructura Cristalina

Dr. Omar De la Peña Seaman

22 agosto 2023

Nombre del Estudiante: \qquad

Problema 1 Properties of basic crystal structures
(a) Calculate the first nearest-neighbor distance for the bcc and fcc crystal structures.
(b) Obtain the packing fraction f_{e} for the bcc and fcc crystal structures.
(c) Show that the c / a ratio for an ideal hexagonal close-packed structure is $(8 / 3)^{1 / 2}=1.633$.

Problema 2 Graphene structure

Graphene forms a two-dimensional honeycomb lattice with carbon atoms at the corners of a hexagon separated by a distance d. The primitive lattice vectors \mathbf{a}_{1} and \mathbf{a}_{2} are shown in the figure.

(a) Find the lattice vector's magnitude $\left|\mathbf{a}_{1}\right|$ and $\left|\mathbf{a}_{2}\right|$ in terms of d, and call this magnitude a.
(b) Rewrite \mathbf{a}_{1} and \mathbf{a}_{2} in terms of a, and express them in Cartesian coordinates with unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$.
(c) How many atoms does graphene have in the conventional and the primitive unit cells? Which are their positions? (in Cartesian coordinates).

Problema 3 Scattering amplitude contributions

From the scattering amplitude,

$$
F=\sum_{\mathbf{G}} \int d V n_{\mathbf{G}} \exp [i(\mathbf{G}-\Delta \mathbf{k}) \cdot \mathbf{r}],
$$

show that F is negligibly small when $\Delta \mathbf{k}$ differs significantly from any reciprocal lattice vector \mathbf{G}.

Problema 4 Structure factor of diamond

Consider the diamond crystal structure as a conventional cubic cell with a basis of eight atoms if the cell, then:
(a) Find the structure factor S of this basis.
(b) Find the zeros of S and show that the allowed reflections of the diamond structure satisfy $v_{1}+v_{2}+v_{3}=4 n$, where all indices are even and n is any integer, or else all indices are odd.

