Estado Sólido I Tarea 1: Estructura Cristalina

Dr. Omar De la Peña Seaman

22 agosto 2023

Nombre del Estudiante:

Problema1 Properties of basic crystal structures

- (a) Calculate the first nearest-neighbor distance for the bcc and fcc crystal structures.
- (b) Obtain the packing fraction f_e for the bcc and fcc crystal structures.
- (c) Show that the c/a ratio for an ideal hexagonal close-packed structure is $(8/3)^{1/2} = 1.633$.

.

Problema 2 Graphene structure

Graphene forms a two-dimensional honeycomb lattice with carbon atoms at the corners of a hexagon separated by a distance d. The primitive lattice vectors \mathbf{a}_1 and \mathbf{a}_2 are shown in the figure.

- (a) Find the lattice vector's magnitude $|\mathbf{a}_1|$ and $|\mathbf{a}_2|$ in terms of d, and call this magnitude a.
- (b) Rewrite \mathbf{a}_1 and \mathbf{a}_2 in terms of a, and express them in Cartesian coordinates with unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$.
- (c) How many atoms does graphene have in the conventional and the primitive unit cells? Which are their positions? (in Cartesian coordinates).

• • • • • • • • •

Problema 3 Scattering amplitude contributions

From the scattering amplitude,

$$F = \sum_{\mathbf{G}} \int dV n_{\mathbf{G}} \exp\left[i(\mathbf{G} - \Delta \mathbf{k}) \cdot \mathbf{r}\right],$$

show that F is negligibly small when $\Delta \mathbf{k}$ differs significantly from any reciprocal lattice vector \mathbf{G} .

.

Problema 4 Structure factor of diamond

Consider the diamond crystal structure as a conventional cubic cell with a basis of eight atoms if the cell, then:

- (a) Find the structure factor S of this basis.
- (b) Find the zeros of S and show that the allowed reflections of the diamond structure satisfy $v_1 + v_2 + v_3 = 4n$, where all indices are even and n is any integer, or else all indices are odd.

.