Estado Sólido I
 Tarea 2: Enlace Químico

Dr. Omar De la Peña Seaman

7 septiembre 2023

Nombre del Estudiante:

Problema 1 van der Waals interaction

As a simple quantum mechanical model for the van der Waals interaction consider two identical harmonic oscillators (oscillating dipoles) at a separation R. Each dipole consists of a pair of opposite charges whose separations are x_{1} and x_{2}, respectively, for the two dipoles. A restoring force f acts between each pair of charges $(f=-C x)$.
(a) Write down the Hamiltonian H_{0} for the two oscillators without taking into account electrostatic interaction between the charges.
(b) Determine the interaction energy H_{1} of the four charges.
(c) Assuming $\left|x_{1}\right| \ll R$ and $\left|x_{2}\right| \ll R$, approximate H_{1} as follows

$$
H_{1} \approx-\frac{2 e^{2} x_{1} x_{2}}{R^{3}}
$$

(d) Show that transformation to normal coordinates, $x_{s}=\left(x_{1}+x_{2}\right) / \sqrt{2}$ and $x_{a}=\left(x_{1}-\right.$ $\left.x_{2}\right) / \sqrt{2}$, decouples the total energy $H=H_{0}+H_{1}$ into a symmetric and an antisymmetric contribution.
(e) Calculate the frequencies ω_{s} and ω_{a} of the symmetric and antisymmetric normal vibration modes. Evaluate the frequencies ω_{s} and ω_{a} as Taylor series in $2 e^{2} /\left(C R^{3}\right)$ and truncate the expansions after second order terms.
(f) The energy of the complete system of two interacting oscillators can be expressed as $U=\hbar\left(\omega_{s}+\omega_{a}\right) / 2$. Derive an expression for the energy of the isolated oscillators and show that this is decreased by an amount cte $/ R^{6}$ when mutual interaction (bonding) occurs.

Problema 2 Lattice sums for the cubic structure

For a cubic structure, the lattice sums' exact values for the Lennard-Jones potential are the following:

$$
\Sigma_{j}^{\prime} p_{i j}^{-12}=6.2021 ; \quad \Sigma_{j}^{\prime} p_{i j}^{-6}=8.4019
$$

(a) Calculate both lattice sums (12- and 6 -power) for different number of neighbors (first, second, and so on), and find the one with a difference of less than 0.02% for the 12 -power sum, respect to the exact value.
(b) How much is the difference for the 6-power sum of the number of neighbors determined on the previous question (respect to the exact value)?

Problema 3 Bonding properties for an ionic crystal

The repulsive interaction for an ionic crystal can be also be expressed by the model of Born-Meyer, giving for the total energy of the crystal the following:

$$
U(R)=N\left[\beta\left(\frac{R_{0}}{R}\right)^{n}-\frac{\alpha q^{2}}{R}\right],
$$

where N is the number of ion pairs in the crystal, R_{0} is the equilibrium first nearestneigborns distance, and α and β are material-related parameters.
(a) Obtain a relationship between the α and β parameters, considering that the system is in equilibrium.
(b) Determine an expresion for the bulk modulus $\left(B_{0}\right)$ in the equilibrium.

Problema 4 Equations of State

For each of the following equations of state, calculate the $p(V)$ equation:
(a) EOS2:

$$
E(V)=a+b V^{-1 / 3}+c V^{-2 / 3}+d V^{-1} .
$$

(b) Murnagham EOS:

$$
E(V)=E_{0}+\frac{B_{0} V}{B^{\prime}}\left[\left(\frac{V_{0}}{V}\right)^{B^{\prime}} \frac{1}{B^{\prime}-1}+1\right]-\frac{B_{0} V_{0}}{B^{\prime}-1} .
$$

(c) Birch-Murnagham EOS:

$$
E(V)=E_{0}+\frac{9 B_{0} V_{0}}{16}\left\{\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{3} B^{\prime}+\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{2}\left[6-4\left(\frac{V_{0}}{V}\right)^{2 / 3}\right]\right\} .
$$

