Estado Sólido I
 Tarea 5: Electrón en un Potencial Periódico

Dr. Omar De la Peña Seaman

14 noviembre 2023

Nombre del Estudiante:

Problema 1 Square lattice

Consider a square lattice in two dimensions with the crystal potential

$$
U(x, y)=-4 U \operatorname{Cos}(2 \pi x / a) \operatorname{Cos}(2 \pi y / a) .
$$

Apply the secular equation,

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-\epsilon\right) C_{\mathbf{k}}+\sum_{\mathbf{G}} C_{\mathbf{k}-\mathbf{G}} V_{\mathbf{G}}=0
$$

and find the following:
(a) The energy spectrum ϵ around the corner point of the Brillouin zone $\mathbf{k}=\mathbf{k}_{f}+\delta$, with $\mathbf{k}_{f}=(\pi / a, \pi / a):$

$$
\epsilon=\frac{\hbar^{2}}{2 m}\left(k_{f}^{2}+\delta^{2}\right) \pm U\left[1+\frac{4}{U^{2}}\left(\frac{\hbar^{2} k_{f}^{2}}{2 m}\right)\left(\frac{\hbar^{2} \delta^{2}}{2 m}\right)\right]^{1 / 2} .
$$

(b) The energy gap $\Delta \epsilon$ at \mathbf{k}_{f}.

Hint: δ can be consider as in same direction as \mathbf{k}_{f}.

Problema 2 Kronig-Penney model

For the square-well periodic potential (Kronig-Penney potential), find the general trascendental equation that comes as a result of applying the boundary and periodic conditions to the wave functions in the real space:

$$
\left[\left(q^{2}-\kappa^{2}\right) / 2 q \kappa\right] \operatorname{Senh} q b \operatorname{Sen} \kappa a+\operatorname{Cosh} q b \operatorname{Cos} \kappa a=\operatorname{Cos} k(a+b) .
$$

Problema 3 Delta-function potential for the Kronig-Penney model
Applying the delta-function approximation for the square-well periodic potential (KronigPenney): $b \rightarrow 0$ and $U_{0} \rightarrow \infty$, demonstrate,
(a) The approximate form of the transcendental equation (applying the conditions mentioned above):

$$
\frac{P}{\kappa a} \operatorname{Sen} \kappa a+\operatorname{Cos} \kappa a=\operatorname{Cos} k a .
$$

(b) The energy of the lowest energy band at $k=0$.
(c) The band gap at $k=\pi / a$.

Hint: For the last two questions, you can consider that $P=q^{2} b a / 2 \ll 1$.

