Física Estadística I Tarea 01: Termodinámica Clásica

Dr. Omar De la Peña Seaman

24 Enero 2020

Nombre del Estudiante:

Problema 1 Diesel engine

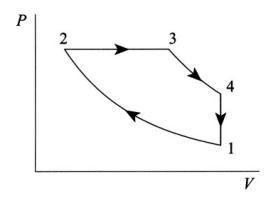
For an ideal Diesel cycle (see figure),

- (a) Demonstrate that the internal energy is a conserved quantity, that is, $\Delta U_{tot} = 0$.
- (b) Show that the thermal efficiency of this cycle is given by,

$$\eta = 1 - \frac{1}{\gamma} \frac{(1/r_E)^{\gamma} - (1/r_c)^{\gamma}}{(1/r_E) - (1/r_c)},$$

where the ratio $r_c = V_1/V_2$ is called the *compression ratio* and the ratio $r_E = V_1/V_3$ is called the *expansion ratio* for a diesel engine.

(c) Take $r_c=20,\,r_E=5,\,{\rm and}\,\,\gamma=1.4$ and calculate the thermal efficiency.



Hints:

- 1. The processes $1 \rightarrow 2$ and $3 \rightarrow 4$ are adiabatic.
- 2. For an adiabatic process it holds $T/T_0 = (V_0/V)^{\gamma-1}$, where $\gamma = C_p/C_v$.
- 3. For ideal gases, $\gamma = 5/3$ and $C_p C_v = Nk$.

.

Problema 3

Problema 2 Helmholtz free energy

A substance has the following properties,

(i) At a constant temperature T_0 the work done by it on expansion from V_0 to V is,

$$W = -KT_0 \ln\left(\frac{V}{V_0}\right).$$

(ii) The entropy is given by,

$$S = k \frac{V}{V_0} \left(\frac{T}{T_0} \right)^a,$$

where V_0 , T_0 , and a are fixed constants.

(a) Show that the Helmholtz free energy is the following:

$$F(T,V) = -kT_0 \ln \left(\frac{V}{V_0}\right) + k\left(\frac{V}{V_0}\right) \frac{T_0}{a+1} \left[1 - \left(\frac{T}{T_0}\right)^{a+1}\right].$$

(b) Find the following equation of state:

$$pV = kT_0 \left[1 - \frac{V}{(a+1)V_0} \left\{ 1 - \left(\frac{T}{T_0}\right)^{a+1} \right\} \right].$$

(c) Find that the work done at an arbitrary constant temperature T, from point 1 to point 2 is given by:

$$W = -kT_0 \ln \left(\frac{V_2}{V_1}\right) + \frac{kT_0}{(a+1)V_0} \left[1 - \left(\frac{T}{T_0}\right)^{a+1}\right] (V_2 - V_1).$$

Problema 3 van der Waals model

A monoatomic gas obeys the van der Waals equation,

$$[p + a(N/V)^2] (V - Nb) = NkT,$$

(a) Prove, using thermodynamics identities that:

For any gas:
$$\frac{\partial C_V}{\partial V}\Big|_T = T \left. \frac{\partial^2 p}{\partial T^2} \right|_V$$
, van der Waals: $\left. \frac{\partial C_V}{\partial V} \right|_T = 0$.

(b) Show that the entropy S(T, V) of the van der Waals gas is the following, considering $C_V = 3Nk/2$:

$$S(T, V) = Nk \ln \left[(V - Nb)T^{3/2} \right] + \text{cte.}$$

Problema 3

(c) Calculate the internal energy U(T, V) and show it is as:

$$U(T,V) = \frac{3}{2}NkT - \frac{aN^2}{V} + \text{cte.}$$

(d) Demonstrate that the final temperature when the gas is adiabatically compressed from (T_1, V_1) to a final volume V_2 is,

$$T_2 = T_1 \left(\frac{V_1 - Nb}{V_2 - Nb} \right)^{2/3}$$

and that the work done on this compression process is:

$$W_{1\to 2} = \frac{3}{2}NkT_1 \left[\left(\frac{V_1 - Nb}{V_2 - Nb} \right)^{2/3} - 1 \right] - \frac{aN^2}{V_1V_2} (V_2 - V_1).$$

.