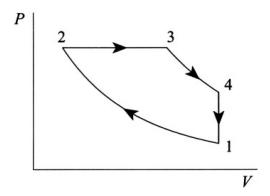
Física Estadística I Tarea 01: Termodinámica Clásica

Dr. Omar De la Peña Seaman

15 Enero 2020

Nombre del Estudiante:

Problema 1 Diesel engine


For an ideal Diesel cycle (see figure),

- (a) Demonstrate that the internal energy is a conserved quantity, that is, $\Delta U_{tot} = 0$.
- (b) Show that the thermal efficiency of this cycle is given by,

$$\eta = 1 - \frac{1}{\gamma} \frac{(1/r_E)^{\gamma} - (1/r_c)^{\gamma}}{(1/r_E) - (1/r_c)},$$

where the ratio $r_c = V_1/V_2$ is called the *compression ratio* and the ratio $r_E = V_1/V_3$ is called the *expansion ratio* for a diesel engine.

(c) Take $r_c=20,\,r_E=5,\,{\rm and}\,\,\gamma=1.4$ and calculate the thermal efficiency.

Hints:

- 1. The processes $1 \rightarrow 2$ and $3 \rightarrow 4$ are adiabatic.
- 2. For adiabatic process it holds $T/T_0 = (V_0/V)^{\gamma-1}$, where $\gamma = C_p/C_v$.
- 3. For ideal gases, $\gamma = 5/3$ and $C_p C_v = Nk$.

.