Física Estadística I
 Tarea 02: Mecánica Estadística Clásica

Dr. Omar De la Peña Seaman

13 Marzo 2020

Nombre del Estudiante: \qquad

Problema $1 \quad N$ three-dimensional harmonic oscillators
For a collection of N three-dimensional quantum harmonic oscillators of frequency ω and total energy E, find that the number of microstates Ω, entropy S, and the temperature T are given by:

$$
\begin{aligned}
\Omega(E, N) & =\frac{(E / \hbar \omega+3 N / 2-1)!}{(3 N-1)!(E / \hbar \omega-3 N / 2)!}, \\
S(E, N) & =N k_{B}\left[-3 \ln 3+\left(\frac{E}{N \hbar \omega}+\frac{3}{2}\right) \ln \left(\frac{E}{N \hbar \omega}+\frac{3}{2}\right)-\left(\frac{E}{N \hbar \omega}-\frac{3}{2}\right) \ln \left(\frac{E}{N \hbar \omega}-\frac{3}{2}\right)\right], \\
T & =\frac{\hbar \omega}{k_{B}}\left[\ln \frac{(E / N \hbar \omega+3 / 2)}{(E / N \hbar \omega-3 / 2)}\right]^{-1} .
\end{aligned}
$$

Problema 2 Classical spin system

1. We have a system of three classical non-interacting spins that can be aligned up \uparrow, or down \downarrow. The spins are under the influence of an applied magnetic field towards the down direction. Such field gives an ϵ energy for the \uparrow configuration, and an $-\epsilon$ energy for the \downarrow configuration. Using the microcanonical ensemble, obtain the probability of the following configurations,
(a) $(\downarrow \uparrow \uparrow)$, if the total energy is ϵ.
(b) $(\downarrow \downarrow \downarrow)$, if the total energy is ϵ.
(c) $(\downarrow \downarrow \downarrow)$, if the total energy is -3ϵ.

Where the probability is defined as:
$P=\frac{\text { possible cases }}{\text { total cases }}$.
2. Now, using the canonical ensemble, find the probability of two configurations: ($\uparrow \uparrow \uparrow$ $)$ and ($\downarrow \downarrow \downarrow$), which we are calling $P_{\uparrow \uparrow \uparrow}$ and $P_{\downarrow \downarrow \downarrow}$, respectively. Analyze the ratio $P_{\uparrow \uparrow \uparrow} / P_{\downarrow \downarrow \downarrow}$ on the following cases,
(a) $T=\epsilon / k_{B}$,
(b) $T=0$,
(c) $T \rightarrow \infty$.

Problema 3 Zipper problem

A zipper has N links, each link has a state in which it is closed with energy 0 and a state in which it is open with energy ϵ. We require that the zipper only unzip from one side (say from the left) and that the n link can only open if all links to the left of it $(1,2, \ldots, n-1)$ are already open.

1. Find that the canonical partition function is:

$$
Z(T, V, N)=\frac{1-e^{-\beta \epsilon(N+1)}}{1-e^{-\beta \epsilon}}
$$

2. Show that the average number of open links $\left\langle n_{a}\right\rangle$ is given by:

$$
\left\langle n_{a}\right\rangle=\frac{e^{-\beta \epsilon}}{1-e^{-\beta \epsilon}}-\frac{(N+1) e^{-\beta \epsilon(N+1)}}{1-e^{-\beta \epsilon(N+1)}} .
$$

3. Obtain $\left\langle n_{a}\right\rangle$ for low-temperature ($k_{B} T \ll \epsilon$) and high-temperature $\left(k_{B} T \gg \epsilon\right)$ limits:

$$
\begin{aligned}
& \text { if } k_{B} T<\epsilon \Rightarrow\left\langle n_{a}\right\rangle \approx e^{-\beta \epsilon}, \\
& \text { if } k_{B} T \gg \epsilon \Rightarrow\left\langle n_{a}\right\rangle \approx N / 2 .
\end{aligned}
$$

Problema $4 N$ harmonic oscillators in $1 D$

For a collection of N harmonic oscillators in $1 D$ of frequency ω, discussing the system:

1. Classically, find that the canonical partition function, and the entropy are given by:

$$
\begin{aligned}
& Z(T, V, N)=\left(\frac{k_{B} T}{\hbar \omega}\right)^{N} \\
& S(T, V, N)=N k_{B}\left[\ln \left(\frac{k_{B} T}{\hbar \omega}\right)+1\right], \\
& S(E, V, N)=N k_{B}\left[\ln \left(\frac{E}{N \hbar \omega}\right)+1\right] .
\end{aligned}
$$

2. Quantum mechanically, obtain also the canonical partition function, and the entropy, described as:

$$
\begin{aligned}
& Z(T, V, N)=\left[\frac{1}{2 \operatorname{Sinh}\left(\hbar \omega / 2 k_{B} T\right)}\right]^{N} \\
& S(T, V, N)=N k_{B}\left[\frac{\hbar \omega / k_{B} T}{e^{\hbar \omega / k_{B} T}-1}-\ln \left(1-e^{-\hbar \omega / k_{B} T}\right)\right] \\
& S(E, V, N)=N k_{B}\left[\left(\frac{E}{N \hbar \omega}+\frac{1}{2}\right) \ln \left(\frac{E}{N \hbar \omega}+\frac{1}{2}\right)-\left(\frac{E}{N \hbar \omega}-\frac{1}{2}\right) \ln \left(\frac{E}{N \hbar \omega}-\frac{1}{2}\right)\right] .
\end{aligned}
$$

Problema 5 Dipole interaction

Consider a pair of dipoles $\boldsymbol{\mu}$ and $\boldsymbol{\mu}^{\prime}$ (could be electric or magnetic), oriented on the directions (θ, ϕ) and $\left(\theta^{\prime}, \phi^{\prime}\right)$, respectively. The distance R between their centers is assumed fixed. Their potential energy in this orientation is given by,

$$
U=-\frac{\mu \mu^{\prime}}{R^{3}}\left[2 \operatorname{Cos} \theta \operatorname{Cos} \theta^{\prime}-\operatorname{Sin} \theta \operatorname{Sin} \theta^{\prime} \operatorname{Cos}\left(\phi-\phi^{\prime}\right)\right]
$$

Now, consider this pair of dipoles to be in thermal equilibrium. Show that the magnitude of the mean force between these dipoles, at high temperature, is given by:

$$
\langle F\rangle=\frac{2\left(\mu \mu^{\prime}\right)^{2}}{k_{B} T R^{7}}
$$

Problema 6 Megacanonical ensemble

Consider a statistical ensemble, similar to the macrocanonical one, where we allow it to interchange energy and volume, instead of particles, and we call it megacanonical ensemble. The number of particles N is constant, and the total energy E_{t} as well as the total volume V_{t} are fixed.

1. Find that the probability expression $P_{r, s}$ and the corresponding partition function \mathcal{W} on this particular ensemble are:

$$
P_{r, s}=\frac{e^{-\beta\left(E_{s}+p V_{r}\right)}}{\sum_{r, s} e^{-\beta\left(E_{s}+p V_{r}\right)}}, \quad \mathcal{W}=\sum_{r, s} e^{-\beta\left(E_{s}+p V_{r}\right)}
$$

2. Identify that the thermodynamic potential with which our partition function relates is the Gibbs free-energy, and find that the relationship is given by:

$$
G(T, p, N)=-k_{B} T \ln \mathcal{W}(T, p, N)
$$

3. Obtain the expressions for the average volume $\langle V\rangle$ and the average energy $\langle E\rangle$ from the partition function:

$$
\langle V\rangle=-\left.\frac{1}{\beta} \frac{\partial}{\partial p} \ln \mathcal{W}\right|_{T, N}, \quad\langle E\rangle=-\left.\frac{\partial}{\partial \beta} \ln \mathcal{W}\right|_{p, N}+\left.\frac{p}{\beta} \frac{\partial}{\partial p} \ln \mathcal{W}\right|_{T, N}
$$

4. Calculate the volume fluctuation σ_{V}^{2} and the energy fluctuation $\sigma_{E}^{2}=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}$:

$$
\begin{aligned}
\sigma_{V}^{2} & =\left\langle V^{2}\right\rangle-\langle V\rangle^{2}=-\left.k_{B} T \frac{\partial\langle V\rangle}{\partial p}\right|_{T, N}=k_{B} T V \kappa_{T} \\
\sigma_{E}^{2} & =\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\left.k_{B} T^{2} \frac{\partial\langle E\rangle}{\partial T}\right|_{V, N}-\left.k_{B} T \frac{\partial\langle V\rangle}{\partial p}\right|_{T, N}\left(\left.\frac{\partial\langle E\rangle}{\partial V}\right|_{T, N}\right)^{2}, \\
& =k_{B} T^{2} C_{V}+k_{B} T V \kappa_{T}\left(\left.\frac{\partial\langle E\rangle}{\partial V}\right|_{T, N}\right)^{2},
\end{aligned}
$$

and show that the relative fluctuations σ_{V} / V and σ_{E} / E are inversely proportional to the square root of the size of the system.

Problema 7 Surface absorption

A classical ideal gas is contained in a box of fixed volume V whose walls have N_{0} absorbing sites. Each of these sites can absorb at most two particles, the energy of each absorbed particle being $-\epsilon$. Use the macrocanonical ensemble to:

1. Obtain the equation of state of the gas in the presence of the absorbing walls:

$$
p=e^{\beta \mu}\left(\frac{2 \pi m}{h^{2}}\right)^{3 / 2}\left(k_{B} T\right)^{5 / 2}
$$

2. Calculate the average number of free and absorbed particles:

$$
\begin{aligned}
\left\langle N_{\text {free }}\right\rangle & =e^{\beta \mu} V\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2} \\
\left\langle N_{a b s}\right\rangle & =N_{0} \frac{e^{\beta(\mu+\epsilon)}+2 e^{2 \beta(\mu+\epsilon)}}{1+e^{\beta(\mu+\epsilon)}+e^{2 \beta(\mu+\epsilon)}} .
\end{aligned}
$$

