Física Estadística I Tarea 02: Mecánica Estadística Clásica

Dr. Omar De la Peña Seaman 14 Febrero 2020

Nombre del Estudiante:

Problema 1 N three-dimensional harmonic oscillators

For a collection of N three-dimensional quantum harmonic oscillators of frequency ω and total energy E, find that the number of microstates Ω , entropy S, and the temperature T are given by:

$$\begin{split} \Omega(E,N) &= \frac{(E/\hbar\omega + 3N/2 - 1)!}{(3N-1)!(E/\hbar\omega - 3N/2)!}, \\ S(E,N) &= Nk_B \left[\left(\frac{E}{N\hbar\omega} + \frac{3}{2} \right) \ln \left(\frac{E}{N\hbar\omega} + \frac{3}{2} \right) - \left(\frac{E}{N\hbar\omega} - \frac{3}{2} \right) \ln \left(\frac{E}{N\hbar\omega} - \frac{3}{2} \right) \right], \\ T &= \frac{\hbar\omega}{k_B} \left[\ln \frac{(E/N\hbar\omega + 3/2)}{(E/N\hbar\omega - 3/2)} \right]^{-1}. \end{split}$$

.

Problema 2 Classical spin system

We have a system of three classical non-interacting spins that can be aligned up \uparrow , or down \downarrow . The spins are under the influence of an applied magnetic field towards the down direction. Such field gives an ϵ energy for the \uparrow configuration, and an $-\epsilon$ energy for the \downarrow configuration. Using the microcanonical ensemble, obtain the probability of the following configurations,

- 1. $(\downarrow\uparrow\uparrow)$, if the total energy is ϵ .
- 2. $(\downarrow\downarrow\downarrow\downarrow)$, if the total energy is ϵ .
- 3. $(\downarrow\downarrow\downarrow\downarrow)$, if the total energy is -3ϵ .

Where the probability is defined as:

$$P = \frac{\text{possible cases}}{\text{total cases}}.$$

.