Física Estadística I Tarea 02: Mecánica Estadística Clásica

Dr. Omar De la Peña Seaman

21 Febrero 2020

Nombre del Estudiante:	

Problema 1 N three-dimensional harmonic oscillators

For a collection of N three-dimensional quantum harmonic oscillators of frequency ω and total energy E, find that the number of microstates Ω , entropy S, and the temperature T are given by:

$$\Omega(E,N) = \frac{(E/\hbar\omega + 3N/2 - 1)!}{(3N-1)!(E/\hbar\omega - 3N/2)!},$$

$$S(E,N) = Nk_B \left[-3\ln 3 + \left(\frac{E}{N\hbar\omega} + \frac{3}{2}\right) \ln \left(\frac{E}{N\hbar\omega} + \frac{3}{2}\right) - \left(\frac{E}{N\hbar\omega} - \frac{3}{2}\right) \ln \left(\frac{E}{N\hbar\omega} - \frac{3}{2}\right) \right],$$

$$T = \frac{\hbar\omega}{k_B} \left[\ln \frac{(E/N\hbar\omega + 3/2)}{(E/N\hbar\omega - 3/2)} \right]^{-1}.$$

Problema 2 Classical spin system

- 1. We have a system of three classical non-interacting spins that can be aligned up \uparrow , or down \downarrow . The spins are under the influence of an applied magnetic field towards the down direction. Such field gives an ϵ energy for the \uparrow configuration, and an $-\epsilon$ energy for the \downarrow configuration. Using the microcanonical ensemble, obtain the probability of the following configurations,
 - (a) $(\downarrow\uparrow\uparrow)$, if the total energy is ϵ .
 - (b) $(\downarrow\downarrow\downarrow\downarrow)$, if the total energy is ϵ .
 - (c) $(\downarrow\downarrow\downarrow\downarrow)$, if the total energy is -3ϵ .

Where the probability is defined as:

$$P = \frac{\text{possible cases}}{\text{total cases}}.$$

2. Now, using the canonical ensemble, find the probability of two configurations: ($\uparrow\uparrow\uparrow$) and ($\downarrow\downarrow\downarrow$), which we are calling $P_{\uparrow\uparrow\uparrow}$ and $P_{\downarrow\downarrow\downarrow}$, respectively. Analyze the ratio $P_{\uparrow\uparrow\uparrow}/P_{\downarrow\downarrow\downarrow}$ on the following cases,

Problema 4

- (a) $T = \epsilon/k_B$,
- (b) T = 0,
- (c) $T \to \infty$.

.

Problema 3 Zipper problem

A zipper has N links, each link has a state in which it is closed with energy 0 and a state in which it is open with energy ϵ . We require that the zipper only unzip from one side (say from the left) and that the n link can only open if all links to the left of it $(1, 2, \ldots, n-1)$ are already open.

1. Find that the canonical partition function is:

$$Z(T, V, N) = \frac{1 - e^{-\beta \epsilon (N+1)}}{1 - e^{-\beta \epsilon}}.$$

2. Show that the average number of open links $\langle n_a \rangle$ is given by:

$$\langle n_a \rangle = \frac{e^{-\beta \epsilon}}{1 - e^{-\beta \epsilon}} - \frac{(N+1)e^{-\beta \epsilon (N+1)}}{1 - e^{-\beta \epsilon (N+1)}}.$$

3. Obtain $\langle n_a \rangle$ for low-temperature $(k_B T \ll \epsilon)$ and high-temperature $(k_B T \gg \epsilon)$ limits:

if
$$k_B T \ll \epsilon \implies \langle n_a \rangle \approx e^{-\beta \epsilon}$$
,
if $k_B T \gg \epsilon \implies \langle n_a \rangle \approx N/2$.

.

Problema 4 N harmonic oscillators in 1D

For a collection of N harmonic oscillators in 1D of frequency ω , discussing the system:

1. Classically, find that the canonical partition function, and the entropy are given by:

$$Z(T, V, N) = \left(\frac{k_B T}{\hbar \omega}\right)^N,$$

$$S(T, V, N) = Nk_B \left[\ln\left(\frac{k_B T}{\hbar \omega}\right) + 1\right],$$

$$S(E, V, N) = Nk_B \left[\ln\left(\frac{E}{N\hbar \omega}\right) + 1\right].$$

2. Quantum mechanically, obtain also the canonical partition function, and the entropy, described as:

$$\begin{split} Z(T,V,N) &= \left[\frac{1}{2\mathrm{Sinh}\left(\hbar\omega/2k_BT\right)}\right]^N, \\ S(T,V,N) &= Nk_B \left[\frac{\hbar\omega/k_BT}{e^{\hbar\omega/k_BT}-1} - \ln\left(1-e^{-\hbar\omega/k_BT}\right)\right], \\ S(E,V,N) &= Nk_B \left[\left(\frac{E}{N\hbar\omega} + \frac{1}{2}\right)\ln\left(\frac{E}{N\hbar\omega} + \frac{1}{2}\right) - \left(\frac{E}{N\hbar\omega} - \frac{1}{2}\right)\ln\left(\frac{E}{N\hbar\omega} - \frac{1}{2}\right)\right]. \end{split}$$

Problema 4

.