Física Estadística I

Tarea 04: Gases Ideales Cuánticos — Gas de Bose-Einstein

Dr. Omar De la Peña Seaman

29 Abril 2020

Nombre del Estudiante:

Problema 1 Entropy of an ideal gas

Show that the entropy of an ideal gas in thermal equilibrium is given:

1. In the case of bosons by the following expression,

$$S = k_B \sum_{k} \left[\langle \hat{n}_k + 1 \rangle \ln \langle \hat{n}_k + 1 \rangle - \langle \hat{n}_k \rangle \ln \langle \hat{n}_k \rangle \right].$$

2. In the case of fermions as:

$$S = k_B \sum_{k} \left[-\langle 1 - \hat{n}_k \rangle \ln \langle 1 - \hat{n}_k \rangle - \langle \hat{n}_k \rangle \ln \langle \hat{n}_k \rangle \right].$$

.

Problema 2 Occupation number's fluctuation

1. Derive, for all three statistics, the following expressions for the occupation number's fluctuation, $\sigma_{\hat{n}_k}^2 = \langle \hat{n}_k^2 \rangle - \langle \hat{n}_k \rangle^2$:

Bose-Einstein: $\sigma_{\hat{n}_k}^2|_{BE} = \langle \hat{n}_k \rangle + \langle \hat{n}_k \rangle^2$.

Fermi-Dirac: $\sigma_{\hat{n}_k}^2 \Big|_{FD} = \langle \hat{n}_k \rangle - \langle \hat{n}_k \rangle^2$.

Maxwell-Boltzmann: $\sigma_{\hat{n}_k}^2\big|_{MB} = \langle \hat{n}_k \rangle$.

2. Show that, quite generally:

 $\sigma_{\hat{n}_k}^2 = \langle \hat{n}_k^2 \rangle - \langle \hat{n}_k \rangle^2 = k_B T \left. \frac{\partial \langle \hat{n}_k \rangle}{\partial \mu} \right|_T.$

• • • • • • •

Problema 5

Problema 3 Thermodynamic relationships for ideal Bose gas

1. For the ideal Bose gas it was demonstrated that:

$$\frac{1}{\zeta} \left(\frac{\partial \zeta}{\partial T} \right)_V = -\frac{3}{2T} \frac{g_{3/2}(\zeta)}{g_{1/2}(\zeta)},$$

thus, show the following:

$$\frac{1}{\zeta} \left(\frac{\partial \zeta}{\partial T} \right)_p = -\frac{5}{2T} \frac{g_{5/2}(\zeta)}{g_{3/2}(\zeta)}.$$

2. Hence, also show that,

$$\gamma = \frac{C_p}{C_V} = \frac{(\partial \zeta / \partial T)_p}{(\partial \zeta / \partial T)_V} = \frac{5}{3} \frac{g_{5/2}(\zeta) g_{1/2}(\zeta)}{[g_{3/2}(\zeta)]^2}.$$

3. Check that, as T a proaches T_c from above, both γ and C_p diverge as $(T-T_c)^{-1}$.

.

Problema 4 Bose-Einstein condensation

Consider a three-dimensional gas of bosons for which the single-particle energy is given by,

$$\epsilon_{\mathbf{k},n} = \frac{\hbar^2 \mathbf{k}^2}{2m} + \alpha n,$$

where α is a positive constant and $n=-j,\ldots,j$ is an integer number.

1. Find that the expressions for the pressure p and the mean number of particles N in terms of the temperature T and the fugacity $\zeta = e^{\beta\mu}$ are:

$$N(T, V, \mu) = \sum_{n=-j}^{j} \frac{V}{\lambda^3} g_{3/2}(\zeta e^{-\beta \alpha n}) + \frac{\zeta e^{\beta \alpha j}}{1 - \zeta e^{\beta \alpha j}},$$

$$p(T, V, \mu) = \frac{k_B T}{\lambda^3} \sum_{n=-j}^{j} g_{5/2}(\zeta e^{-\beta \alpha n}).$$

2. Write down the condition for Bose-Einstein condensation, in particular, find that the conditions for ζ and N_{ϵ}^{MAX} are given by:

$$\zeta = e^{-\beta \alpha j}, \quad N_{\epsilon}^{MAX} = \sum_{l=0}^{2j} \frac{V}{\lambda^3} g_{3/2}(e^{-\beta \alpha l}).$$

.

Problema 5

Problema 5 Black-Body thermodynamics

1. Find expressions for the pressure p, energy density E/V, entropy density S/V and specific heat at constant volume C_V of black-body radiation in a d-dimensional cavity at temperature T:

$$p = a_d I_d (k_B T)^{d+1},$$
 $E/V = da_d I_d (k_B T)^{d+1},$ $S/V = (d+1)a_d I_d k_B (k_B T)^d,$ $C_V = d(d+1)a_d I_d k_B V (k_B T)^d,$

where the quantities a_d and I_d are given by:

$$a_d = \frac{d-1}{2^{d-1}} \frac{1}{\Gamma(d/2)(\sqrt{\pi}c\hbar)^d}, \qquad I_d = \frac{1}{d}\Gamma(d+1)\mathcal{Z}(d+1).$$

2. Evaluate these quantities explicitly for d=3.

Hint: $\epsilon_k = c\hbar |\mathbf{k}|$, where the reciprocal vector \mathbf{k} is quantized as following: $\mathbf{k} = (\pi/L)\mathbf{n}$, and \mathbf{n} is a d-dimension vector of positive integers.

.