Física Estadística I
 Tarea 05: Gases Ideales Cuánticos - Gas de Fermi-Dirac

Dr. Omar De la Peña Seaman

25 Mayo 2020

Nombre del Estudiante: \qquad

Problema 1 Fermi gas compressibility
Calculate the following properties of a nearly-degenerate ideal Fermi gas, up to T^{2}-order terms.

1. The Fermi energy of the gas, ϵ_{F}.
2. The chemical potential, μ.
3. The pressure, p.
4. The isothermal compressibility κ, given by,

$$
\kappa=-\left.\frac{1}{V} \frac{\partial V}{\partial P}\right|_{T} .
$$

Hint: the energy dispersion of an ideal gas is $\epsilon_{k}=\hbar^{2} \mathbf{k}^{2} / 2 m$.

Problema 2 Constant density of states

Let the density of states of the electrons in some sample be assumed to be a constant D for $\epsilon>0(D=0$ for $\epsilon<0)$ and the total number of electrons be equal to N.

1. Calculate the Fermi energy ϵ_{F}.
2. Show that the specific heat is proportional to T when the system is nearly-degenerate $\left(T \ll T_{F}\right)$.

Problema 3 Relativistic Fermi gas

Consider a relativistic Fermi gas, with one-particles energies ϵ_{p} given as:

$$
\epsilon_{p}=m c^{2}\left[\sqrt{1+\left(\frac{p}{m c}\right)^{2}}-1\right],
$$

where the rest mass of the particles has been substracted. For the degenerate case, calculate the following:

1. The Fermi momentum p_{f},

$$
p_{f}=\left[\frac{3 h^{3}}{4 \pi g_{s}} \frac{N}{V}\right]^{1 / 3}
$$

2. The pressure \mathcal{P},

$$
\begin{aligned}
\mathcal{P} & =g_{s} \frac{4 \pi}{3 h^{3}}\left(m c^{2}\right) \int_{0}^{p_{f}} \frac{p^{2}(p / m c)^{2}}{\sqrt{1+(p / m c)^{2}}} d p=g_{s} \frac{\pi}{6 h^{3}}\left(m^{4} c^{5}\right) A\left(y_{f}\right), \\
\forall A\left(y_{f}\right) & =\sqrt{1+y_{f}^{2}}\left(2 y^{3}-3 y\right)+3 \operatorname{ArcSenh} y \& y_{f}=\frac{p_{f}}{m c} .
\end{aligned}
$$

3. The energy E,

$$
\begin{aligned}
E & =g_{s} \frac{4 \pi V}{h^{3}}\left(m c^{2}\right) \int_{0}^{p_{f}} p^{2}\left[\sqrt{1+(p / m c)^{2}}-1\right] d p=g_{s} \frac{\pi V}{6 h^{3}}\left(m^{4} c^{5}\right) B\left(y_{f}\right), \\
\forall B\left(y_{f}\right) & =8 y^{3}\left[\sqrt{1+y_{f}^{2}}-1\right]-A\left(y_{f}\right) .
\end{aligned}
$$

4. Obtain in the nonrelativistic limit $(p \ll m c)$ the following expression:

$$
\mathcal{P}=\frac{2}{3} \frac{E}{V}\left[1-\frac{5}{28}\left(p_{f} / m c\right)^{2}\right] .
$$

5. Calculate for the ultrarelativistic limit $(p \gg m c)$ the next relationship,

$$
\mathcal{P}=\frac{1}{3} \frac{E}{V}\left[1+\frac{4}{3} \frac{1}{\left(p_{f} / m c\right)}-\frac{2}{9} \frac{1}{\left(p_{f} / m c\right)^{2}}\right] .
$$

Hint: For the limits analysis, you could obtain the proper expansions of $A\left(y_{f}\right)$ and $B\left(y_{f}\right)$ by using tables, references, or the computer.

Problema 4 Two Fermi-gases

A three-dimensional container of fixed volume V is divided into two compartments by a wall which is freely movable and heat-conducting, but impermeable to gas particles. Both compartments contain non-relativistic ideal Fermi-gases, one contains N particles of gas A, which has spin $s_{A}=1 / 2$, and the other contains N particles of a gas B, which has spin $s_{B}=3 / 2$. Consider that the two species have indentical masses $m_{A}=m_{B}=m$. Considering the conditions for this system to be in thermal $\left(T_{A}=T_{B}\right)$ and mechanical $\left(p_{A}=p_{B}\right)$ equilibrium, use them to find the volume ratio V_{A} / V_{B} at:

1. High-temperatures: $V_{A} / V_{B}=1$.
2. Degenerate-Fermi gas $(T=0 \mathrm{~K}): V_{A} / V_{B}=2^{2 / 5}$.
3. Low-temperatures:

$$
\frac{V_{A}}{V_{B}}=r\left\{1-\frac{\pi^{2}}{4}\left(\frac{4}{3 \sqrt{\pi}} \frac{V}{N}\right)^{4 / 3}\left(\frac{2 m \pi}{h^{2}}\right)^{2}\left(k_{B} T\right)^{2}\left[\left(\frac{g_{B}}{r+1}\right)^{4 / 3}-\left(\frac{r g_{A}}{r+1}\right)^{4 / 3}\right]\right\}
$$

where $r=2^{2 / 5}, g_{B}=4$, and $g_{A}=2$.
Hint: the chemical potentials are different $\left(\mu_{A} \neq \mu_{B}\right)$.

