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ABSTRACT

We have studied two different superconducting intermetallic alloy systems, the first is
the Nb1−xMox binary alloy, and the second system corresponds to MgB2 doped with
Al on Mg-site and C on B-site, giving as a result the Mg1−xAlxB2 and MgB2(1−x)C2x

ternary alloys. We have calculated the structural, electronic, vibrational, electron-
phonon and superconducting properties of these systems within the framework of
the density functional theory using the self-consistent virtual-crystal approxima-
tion (VCA). For the three studied alloys, the structural properties, electronic band
structure, and selected high-symmetry phonon frequencies have been calculated for
a large number of concentrations, comparing two implementations of the VCA in
the all-electron (LAPW) and the pseudopotential (MBPP) method. The complete
phonon dispersion, electron-phonon and superconducting properties of these alloys
where obtained within the framework of density functional perturbation theory using
the MBPP method. For the Nb-Mo alloy, we found very good agreement between
both methodologies for all the calculated properties, independent of the approxima-
tion used for the exchange-correlation functional (LDA and GGA). We identified an
electronic topological transition for this alloy at around 30% of Mo-content. The
calculated phonon dispersions bands as a function of x are in good agreement with
the experimental data. For the Eliashberg function α2F (ω), we found a shift of
weight to higher frequencies as well as an overall reduction with increasing x up
to x ≈ 0.7, however for x = 1 (pure Mo) the spectral weight for α2F (ω) increases
again. The evolution of the electron-phonon average coupling strength λ(x) closely
follows the variation of the electronic density of states at EF . All experimental val-
ues of the superconducting critical temperature Tc(x) were well reproduced using a
proper interpolation scheme for the Coulomb pseudopotential µ∗(x). For all the cal-
culated properties, we found good agreement with experimental results, indicating
the applicability of the VCA on Nb1−xMox. According to the other systems studied
in this thesis, from previous works in the past it is well known that the harmonic
calculations of the full phonon dispersion for MgB2 are in very good agreement with
measurements, suggesting that the anharmonic effects are not very crucial for the
MgB2-based alloy systems. From the analysis of the full phonon dispersion evolution
as a function of x, we found strong renormalization of the E2g-phonon mode for both
Al- and C-doped MgB2, and also a strong reduction of the E2g-band dispersion with
the filling of the σ-band was observed. For both systems, α2F (ω) and λ were calcu-
lated applying the two band model (σ,π) for several concentrations. Using α2

ijF (ω)
and a diagonal expression for µ∗(ωc), we solved the Eliashberg gap equations in the
two band model neglecting interband scattering Γσπ. We found good agreement of
∆σ(x), ∆π(x), and Tc(x) with experimental data and no gap merging at any x is
predicted. Based on those results, we may say that Γσπ, if present, is small and
their effects on the reduction of Tc in the Mg1−xAlxB2 and MgB2(1−x)C2x systems
are negligible and masked by the σ-band filling effect.
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RESUMEN

Hemos estudiado dos diferentes sistemas de aleaciones intermetálicas superconduc-
toras, la aleación binaria Nb1−xMox y un sistema que corresponde a aleaciones
ternarias basadas en MgB2: Mg1−xAlxB2 y MgB2(1−x)C2x. Se han calculado las
propiedades estructurales, electrónicas, vibracionales, de acoplamiento electrón-
fonón y superconductoras de estas aleaciones dentro del marco de la teoŕıa del
funcional de la densidad usando la aproximación auto-consistente del cristal virtual
(VCA). Para los tres sistemas, los parámetros estructurales, la estructura electrónica
y las frecuencias fonónicas en puntos de alta simetŕıa han sido calculados para varias
x, comparando las implementaciones de VCA en el método de todos los electrones
(LAPW) y el de pseudopotenciales (MBPP). Las bandas completas de dispersión
fonónicas, el acoplamiento electrón-fonón y las propiedades superconductoras fueron
obtenidas dentro del marco de la teoŕıa perturbativa del funcional de la densidad en
el método de pseudopotenciales. En el sistema Nb-Mo encontramos en muy buen
acuerdo entre ambos métodos en todas las propiedades calculadas, independiente-
mente de la aproximación usada para el funcional de intercambio-correlación (xc),
LDA o GGA. Identificamos una transición topológica electrónica en una concen-
tración cŕıtica de ≈ 30% de Mo. Las bandas de dispersión fonónicas calculadas
como función de x están en buen acuerdo con datos experimentales. Para la función
de Eliashberg α2F (ω) encontramos un corrimiento del espectro a frecuencias may-
ores aśı como también una reducción generalizada conforme se incrementa x hasta
x ≈ 0.7, incrementándose ligeramente para x = 1 (Mo). La evolución de la constante
de acoplamiento λ(x) sigue muy de cerca el comportamiento de la densidad de esta-
dos al nivel de Fermi N(EF ). Los valores experimentales y la tendencia de Tc(x) son
reproducidos por los cálculos utilizando un esquema de interpolación adecuado para
el potencial Coulómbico µ∗(x). Para todas las propiedades calculadas, encontramos
en general muy buen acuerdo con datos experimentales, indicanto la aplicabilidad
del VCA en Nb1−xMox. En las aleaciones basadas en el MgB2 (con Al y C), obtuvi-
mos las bandas de dispersión fonónicas armónicas para diferentes concentraciones.
Comparando el cálculo del MgB2 con datos experimentales encontramos muy buen
acuerdo, indicando que los efectos anarmónicos no juegan un papel importante en
este material. Del análisis de la evolución de las bandas fonónicas en función de
x se observa una fuerte reducción de la dispersión de la banda relacionada con el
modo E2g a medida que la banda σ se va saturando. Para ambos sistemas, α2F (ω)
y λ se calcularon aplicando el modelo de dos bandas σ y π. Usando α2

ijF (ω) y una
expresión de matriz diagonal para µ∗(ωc), resolvimos las ecuaciones de Eliashberg
para la brecha superconductora en el modelo de dos bandas sin considerar el término
de dispersión interbandas Γσπ. Encontramos muy buen acuerdo de ∆σ(x), ∆π(x),
t Tc(x) calculados con resultados experimentales, además de no observar el colapso
de las dos brechas a ninguna x en ambos casos. Por tanto, se puede decir que Γσπ

en caso de estar presente, es pequeño y sus efectos en la reducción de las brechas y
Tc en Mg1−xAlxB2 y MgB2(1−x)C2x son despreciables y encubiertos por el efecto del
llenado de la banda σ.
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Introduction

The effects of the electron-phonon interaction in metals are evident in many quan-

tities that could be measured from experiments. Just to mention some of them,

it contributes to thermal and electrical resistivities, it also generate the enhance-

ment of the effective electron mass as measured in the electronic heat capacity,

and additionally, plays an important role in superconductivity. Specifically for the

last mentioned, within the Eliashberg theory the superconducting temperature Tc,

among other properties, depend just on two quantities, the Coulomb pseudopo-

tential µ∗ and the Eliashberg or electron-phonon spectral function α2F (ω) [1–4].

This quantity basically measures the effectiveness of phonons of energy h̄ω to

scatter electrons from one part of the Fermi surface to another.

The electron-phonon coupling could be obtained by tunneling measurements

across metal-insulator-superconductor junctions [5]. Structure in the tunneling

conductance reflects structure in the superconducting gap function that arises

from the interaction between electrons and phonons. Applying a tunneling inver-

sion procedure, the McMillan-Rowell scheme [6] that consists in solving iteratively

the Eliashberg equations, an α2F (ω) is obtained that accurately reproduces the

measured tunneling conductance. Nevertheless, this method is not always applica-

ble to all systems, particularly to those for which junction construction is difficult

and also systems where the coupling is so weak that the phonon structure in the

tunneling data is complicated to extract [5].

The usefulness of the simulation approach, enters then at this point, since it

can help to analyze and study systems and materials where experimental data

are limited or difficult to extract. First principles calculations can provide use-

ful information about the electron-phonon coupling, but the knowledge of the

electronic excitation spectra, the full-phonon dispersion, and the self-consistent

response of the electronic system to lattice vibrations is needed. Recently, the

linear response theory within the framework of density functional theory [7,8] has

shown to be a powerful method for calculating lattice dynamical properties and

electron-phonon coupling parameters in solids [9,10]. Superconducting metals for

which good tunneling data are available have been used as test cases for demon-

strating the accuracy of the method [11, 12].
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2 Introduction

Nevertheless, for the case of alloys, there is not too much information in the

literature, especially from the theoretical point of view, neither for the vibrational

nor the electron-phonon coupling properties. For example the Nb1−xMox alloy,

a very widely studied system from the experimental point of view, presents non-

monotonic behavior for Tc and the phonon frequency at the high symmetry points

in the Brillouin zone, as a function of Mo-content [13–18]. The origins of these

features is not yet completely understood despite of the efforts to study the alloy

theoretically. This is due in part to the lack of a suitable and computationally

non-expensive approximation to study the evolution of different properties as a

function of concentration, without losing information such as the crystal structure

or symmetry, among others. For example, the evolution of the electronic and

elastic properties of the Nb1−xMox alloy as a function of x has been studied using

quasi-random structures [19], the coherent potential approximation (CPA) [20–

22], and the Korringa-Kohn-Rostoker coherent potential approximation (KKR-

CPA) [23,24] approaches. However, these studies have been limited to only a few

Mo concentrations, because these calculations are very difficult to interpret and

computationally very demanding, especially if one is interested in very low (close

to Nb) or high concentrations (close to Mo). Thus, the Nb1−xMox system is a

perfect case to test the applicability of a different approach, the self-consistent

virtual-crystal approximation [25–29], and it’s usefulness on the calculation of

vibrational properties, electron-phonon coupling, and superconductivity.

Another interesting and widely studied system, because of it’s superconduct-

ing properties observed in 2001, is MgB2 and related alloys. The intermetallic

compound MgB2 has a Tc ≈ 39 K [30] and it is now generally accepted as a

phonon-mediated BCS/Eliashberg superconductor with multiple gaps and strong

electron-phonon (e-ph) coupling. The coupling takes place mainly between the σ

Fermi surface sheets, coming from the boron px − py orbitals, with one specific

type of phonon, the B-B bond stretching modes with E2g symmetry at the Γ

point [31–34]. As soon as MgB2 was discovered as a superconductor material, the

scientific community started to search for a possible family of superconductors

related to this compound. The first studies in this direction were the substitu-

tion of constitutive elements by other similar ones, such as Mg by Al and B by

C, giving rise to the Mg1−xAlxB2 [35–38] and the MgB2(1−x)C2x [39–43] alloys,

respectively. The superconducting properties of the alloys, like e-ph coupling and

Tc, are influenced by doping in several ways, due to the change in the electronic

structure that has direct impact on them through, for example, the change in

the electronic density of states. The result is a reduction of the e-ph coupling,

Tc, and the superconducting gaps, among other quantities, as a function of Al

or C-content [35–51]. Further, the change in the e-ph coupling also influences

the phonon properties, like the renormalization of the E2g phonon frequency in
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Mg1−xAlxB2, that has been demonstrated by Raman scattering measurements,

which was found a frequency increment (hardening) as a function of x, from ≈ 73

meV for MgB2 until 123 meV in AlB2 [32,52,53]. In the case of the C-doped sys-

tem, unfortunately so far there are no frequency measurements (neither Raman

nor IXS) available as a function of x.

The main aim of this thesis was to study the electron-phonon coupling and su-

perconducting properties of the Nb1−xMox, Mg1−xAlxB2, and MgB2(1−x)C2x alloys

by means of first principles calculations, using for this purpose the self-consistent

virtual-crystal approximation for the simulation of the alloy systems. We also

performed calculations of the structural, electronic, and vibrational properties for

each concentration (x), since they represent the required input data for the cal-

culations of the e-ph coupling and superconducting properties. The evolution of

the studied properties is analyzed as a function of x, and the effects of the elec-

tronic topological transitions on vibrational and superconducting properties are

also discussed.

For this computational study we used numerical calculations within the frame-

work of density functional theory (DFT) [7, 8] using the self-consistent virtual-

crystal approximation (VCA) [25–29]. We performed the calculations of the struc-

tural, electronic and some frequencies at high symmetry points in the Brillouin

zone, using the full-potential linearized augmented plane-wave method (LAPW)

[54–56] as implemented in the Wien2k code [57] for which the VCA has already

been tested previously [26–29]. In addition, we investigated the same properties

using our implementation of the VCA within the mixed-basis pseudopotential

(MBPP) method [58]. The current MBPP code incorporates an implementation

of the very efficient linear response [9, 32, 59–61] approach to lattice dynamical

properties, which is currently not available in the Wien2k code. Thus, vibrational

properties as well as the electron-phonon coupling were obtained with the linear re-

sponse theory. Finally, superconductivity is discussed within the framework of the

Eliashberg theory in the cases of one and two bands(or gaps) models [10,31,62–64].

The thesis is organized in the following way: Chapter 1 reviews briefly the main

ideas of the density functional theory, and also the LAPW and MBPP methods,

for the solution of the Kohn-Sham equations. Additionally, an explanation of the

virtual-crystal approximation is presented. Chapter 2 is devoted to the description

of the perturbative density functional theory, which relies on the linear response

theory approach for the calculation of vibrational properties. It also includes

a section devoted to the Eliashberg theory, the electron-phonon coupling, and

superconductivity, and how they are applied in the present calculations. The

results of our study are split by alloy system: the Nb-Mo alloy is discussed in

Chapter 3, while the MgB2-based alloys are presented in Chapter 4. The structural

parameters, electronic properties, phonon frequencies and e-ph coupling spectra,
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and superconducting properties such as Tc and gaps are analyzed and discussed

as a function of the concentration for each alloy. The numerical details for each

system are also included in the corresponding chapters. Finally, the conclusions

of this thesis are presented.



Chapter 1

The Density Functional Theory

and methods

1.1 Introduction

There are different numerical calculation methods right now that are used to

determine the ground state of solid state systems and materials in general, treating

the many-body problem from the theoretical point of view. These methods, or

approximations, are classified in three main groups: the first one is the Hartree-

Fock approximation, The second one is based in the density funcional theory

(DFT), and the last one are the statistical quantum methods, like the Monte

Carlo, for example. In this thesis we use the second type method, that is to say,

the density functional theory in order to describe and analyze the systems under

study.

A theoretical description of the electronic properties of a specific system is

not easy at all, since we are dealing as we said before with a many-body prob-

lem. Then, we start the description of the system with the time-independent

Schrödinger equation



− h2

2m

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i,j

′ e2

|ri − rj|



Ψ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN)

(1.1)

assuming the Born-Oppenheimer approximation, which is based on the nuclei be-

ing much heavier than electrons. In this case we can neglect the nuclei movement,

considering them as static and then we only take into account the electrons move-

ment. in the last equation ri is the position vector of the i-th electron, N is the

total number of electrons in the system, Vext is the external potential where the

electrons move (potential generated by the nuclei), and E is the total electronic

energy. The Hamiltonian’s first terms on Eq. (1.1) correspond to the kinetic en-

ergy and the external potential, respectively. Now, if we solve the last equation

5



6 Chapter 1. The Density Functional Theory ...

just with the Hamiltonian terms mentioned before, we will get the energy that

corresponds just to the interaction between the electrons and the nuclei, but it

will be missing the term that corresponds to the interaction between electrons

(Coulomb interaction). That term is the third one on Eq. (1.1). As we can see

from that equation, although spin variables have not been taken into account ex-

plicitly in order to simplify the equation, it is still quite complicated to solve Eq.

(1.1) for general cases. The reason is the dependence of the wavefunction on the

3N position coordinates, and also due to the electron-electron interaction term,

so it is impossible to simplify the equation to an easier form in order to solve in a

straight forward way. However, we have one advantage, since we know that many

of the important properties, or experimental observables that we are interested

in, depend only on the electronic charge density, which could be expressed as

ρ(r) = N
∫

Ψ(r, r2, . . . , rN)Ψ∗(r, r2, . . . , rN)dr2dr3 . . . drN . (1.2)

When we calculate Ψ we are obtaining more information than actually needed for

many practical applications, additionally the computing-time used is increased,

so it is convenient to avoid the calculation of this extra information included in

Ψ that is useless for our purposes. A first approach to obtain a system where

we do not need to put our hands directly on the wavefunctions was the theory

proposed by Thomas-Fermi [65–67]. That theory, which is an approximation by

construction, was focused on calculating all the interesting properties using only

as a starting point the electronic charge density ρ(r). At that time there were

efforts to develop approximate ways to calculate the electronic charge density ρ(r)

or the wavefunction Ψ [68,69]. Later, Hohenberg and Kohn [7] took up the basic

idea of Thomas-Fermi model and formulated the density functional theory as an

exact theory of the many-body system. This formulation applies to any system

of interacting particles in an external potential, Vext(r). The DFT, as we know it

nowadays, is based upon two theorems proved by Hohenberg and Kohn [7], which

are:

Theorem I: For any system of interacting particles in any external potential

Vext(r), the potential Vext(r) is determined uniquely, apart from a constant, by the

ground state charge density ρ0(r).

Theorem II: A universal functional E[ρ] in terms of the charge density ρ(r)

can be defined, valid for any external potential Vext(r). For any particular Vext(r),

the exact ground state energy of the system is the global minimum value of this

functional, and the density ρ(r) that minimizes the functional is the exact ground

state charge density ρ0(r).
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The consequences of these two theorems are quite important, because, from The-

orem I, we have that since the Hamiltonian is fully determined (by the knowledge

of ρ0(r)), it follows that the many-body wavefunctions for all states (ground and

excited) are determined by ρ0(r). Therefore all the properties of the system are

completely determined given only the ground state charge density ρ0(r). Accord-

ing to Theorem II, the functional E = E[ρ(r)] alone is sufficient to determine the

exact ground state energy and density, but it does not provide any direct guidance

concerning excited states. The great importance of the Hohenberg-Kohn theorems

lies in the fact that it is not necessary to explicitly calculate of the wave function

Ψ for the N particle system, but only the total electronic charge density ρ(r) is

needed in order to obtain all the properties of the ground state. However, this

theorem does not tell us the explicit form of the functionals, and until now there

do not exist exact functionals for the total energy E = E[ρ(r)].

1.2 Kohn-Sham equations

The Kohn-Sham approach is used to replace the difficult interacting many-body

system obeying the Hamiltonian of the Eq. (1.1) with a different auxiliary system

that can be solved more easily. Kohn and Sham reformulated the problem of

calculating the ground state total energy of a charge density functional (E[ρ(r)]),

in such a way that the problem of N interacting particles (electrons) is solved

using a group of N independent Schrödinger equations for individual independent

particles but with an interacting density and a complicated effective potential.

The ansatz of Kohn and Sham [8] assumes that the ground state density of

the original interacting system is equal to that of some chosen non-interacting

system. This leads to independent-particle equations for the non-interacting sys-

tem that can be considered exactly soluble (in practice by numerical means) with

all the difficult many-body terms incorporated into an exchange-correlation (xc)

functional of the density. The exchange term comes from the hole in the proba-

bility density of electrons due to the Pauli principle, i.e., the antisymmetry of the

wavefunction and applies only to electrons with the same spin. The correlation

term has contributions for electrons of either spin and is the hole resulting from

the Coulomb electrostatic interaction which avoids electrons get close together.

It is important to mention that only the total contribution (exchange-correlation)

has a real physical meaning. The energy under this scheme is expressed in the

following way,

E[ρ] = T [ρ] +
∫

ρ(r)
[

Vext(r) +
1

2
VC(r)

]

dr + ξxc[ρ], (1.3)

where T [ρ] is the kinetic energy of the system, considered as a ground state prop-

erty and then expressed as a density functional. The next term is the energy
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related to the external potential due to the nuclei and any other external fields.

The following one is the classical Coulomb interaction energy of the electron den-

sity ρ(r),

e2

2

∫ ∫

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 =

1

2

∫

VC(r)ρ(r)dr. (1.4)

The last term ξxc[ρ] on Eq. (1.3) is where are grouped all the many-body effects

of exchange and correlation, and it is named exchange-correlation energy. The

Eq. (1.3) could be solved by applying the variational principle that comes from

the Theorem II of DFT:

E[ρ̃(r)] ≥ E[ρ(r)], (1.5)

including the constrain of having a fixed number of particles in the system (N),

that is also a particular functional of ρ(r),

N =
∫

ρ(r)dr, (1.6)

which is related by a Lagrange multiplier [8],

δ

δρ

[

E − µ
(
∫

ρ(r) −N
)]

= 0. (1.7)

This gives the next Euler-Lagrange equation [8]

δT

δρ
+ Vext(r) + VC(r) +

δξxc

δρ
= µ, (1.8)

where the Lagrange multiplier µ corresponds to the chemical potential of the

electron gas.

In the next step, Kohn and Sham compared the last result with the one ob-

tained from a non-interacting N particles system (fermions) moving under the

effects of an effective potential Veff , constructed in such a way that the charge

density of this new system is equivalent to the one of the real system. Then,

according to this, we can write Eq. (1.8) in a different way,

δT̃

δρ
+ Veff(r) = µ. (1.9)

In the equation above it has been introduced the kinetic energy of a non-interacting

particle system T̃ . the components of these non interacting system are called

the particles of the auxiliary system to differentiate them from the real system

particles. Thus, relating the two last equations we find an expression for Veff ,
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Veff(r) = Vext(r) + VC(r) +
δξxc

δρ
+

(

δT

δρ
− δT̃

δρ

)

≡ Vext(r) + VC(r) + Vxc(r), (1.10)

where we have introduced the exchange-correlation potential Vxc(r), which is given

by

Vxc(r) =
δξxc

δρ
+

(

δT

δρ
− δT̃

δρ

)

. (1.11)

The main advantage of introducing the auxiliary system is that for this system

we can solve the many-body Schrödinger equation, just splitting it into N equa-

tions of independent particles with a potential that must be found self-consistently

with the resulting density, and these equations represent the Kohn-Sham equa-

tions in their canonical form

[

− h̄2

2m
∇2 + Veff(r)

]

ψi(r) = εiψi(r), (1.12)

where ψi(r) and εi correspond to the wavefunction (also called orbital) and the

eigenvalue of the energy for the i-th particle of the auxiliary system, respectively.

Additionally we have the expression for the charge density as a function of the

orbitals,

ρ(r) =
N
∑

i=1

|ψi(r)|2. (1.13)

As we mentioned before, the charge density expressed by Eq. (1.13) is equiv-

alent to the one of the real system, by construction, but the orbitals ψi and

eigenvalues εi do not correspond to the real particles.

In practice, the charge density of the ground state is found in a self-consistent

way by applying iterative methods, which start with a test charge density, that

usually corresponds to the superposition of isolated atoms. From this density

we can construct the potential Veff , plug it into Eq. (1.12) and by solving the

equations to get the orbitals ψi. Once we get the eigenvalues and orbitals, using

Eq. (1.13) we are able to find a new density, which is compared with the previous

one. This process is repeated and until a certain convergence criteria between the

input and output densities is reached. On this way we get a good approximation

of the real system by the use of the auxiliary system.

The charge density of the auxiliary and real systems are equivalent but, the

orbitals and eigenvalues are not. In this way, the total energy of the auxiliary

system of independent particles is just the sum of the eigenvalues of the occupied
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orbitals εi, but in the case of the real system the energy is given by a more complex

expression,

E[ρ] =
N
∑

i=1

〈

ψi

∣

∣

∣

∣

∣

− h̄2

2m
∇2

∣

∣

∣

∣

∣

ψi

〉

+
∫

ρ(r)
[

Vext(r) +
1

2
VC(r)

]

dr + Exc[ρ]. (1.14)

However, using Eqs. (1.10) and (1.12) we can simplify the total energy expres-

sion of Eq. (1.14) in the following way

E[ρ] =
N
∑

i=1

εi −
∫

ρ(r)
[

Vext(r) +
1

2
VC(r)

]

dr + Exc[ρ], (1.15)

where we have defined Exc = ξxc + (T − T̃ ). The last equation tells us that the

sum of individual particle energies is modified by the exchange-correlation energy

term. Thus, the Kohn-Sham equations are independent of any approximation

to the functional Exc[ρ], and would lead to the exact ground state density and

energy for the interacting (or real) system, if the exact functional Exc[ρ] was

known. Furthermore, it follows from the Hohenberg-Kohn theorems that the

ground state density uniquely determines the potential at the minimum, so there

is an unique Kohn-Sham potential [V (r)]min ≡ Veff(r) associated with any given

interacting electron system. The problem is that until now there is not available

an exact functional for Exc[ρ], and the theory does not give a functional form for

this energy, in contrast to the other terms on Eq. (1.15), therefore, Exc[ρ] has to

be approximated. The simplest way is to use a local or nearly local functional of

the density. This means that the exchange-correlation energy can be expressed in

the form

Exc[ρ(r)] =
∫

ρ(r)ǫxc[ρ(r)]dr, (1.16)

where ǫxc[ρ(r)] is an energy per electron at point r that depends only on the local

density ρ(r). In the next section some of the different approximations proposed to

find an appropriate expression for the exchange-correlation energy are discussed.

1.3 xc-functionals: LDA and GGA

In the previous section we introduced the Kohn-Sham formalism which allows

an exact treatment of most of the contributions to the electronic energy of an

atomic or molecular system, including the major fraction of the kinetic energy. All

remaining, unknown parts are collected into the exchange-correlation functional

Exc[ρ(r)]. As we mentioned before, this includes the non-classical portion of the

electron-electron interaction along with the correction for the self-interaction and

the component of the kinetic energy not covered by the non-interacting reference
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system. In this section we introduce two of the approximations widely used for

the description of Exc[ρ(r)], namely the local density approximation and beyond

it, the generalized gradient approximation. The simplest, and at the same time

remarkably useful, approximation for the exchange-correlation potential is the so-

called local density approximation, LDA. The central point of this model is the

idea of a hypothetical uniform electron gas. This is a system in which electrons

move in a positive background charge distribution such that the total ensemble

is electrically neutral. The number of electrons as well as the volume V of the

gas are considered to approach infinity, while the electron density (N/V = ρ)

remains finite and has a constant value everywhere. The model system over

which LDA rests, also known as the homogeneous electron gas, is widely used

nowadays, despite being a very simple and crude approximation, because it is

the only system for which we know the form of the exchange and correlation

energy functionals exactly or at least to a very high accuracy. The LDA uses

the expression of Exc[ρ(r)] as exposed on the seminal work of Kohn-Sham, Eq.

(1.16) [8]. The quantity ǫxc[ρ(r)] can be further split into exchange and correlations

contributions,

ǫxc[ρ(r)] = ǫx[ρ(r)] + ǫc[ρ(r)]. (1.17)

The expressions for these two quantities vary depending on the version or

specific approximation of LDA. In this thesis we apply two different versions for

the LDA xc-functional, the Hedin-Lundqvist (HL) [70] as well as the Perdew

and Wang version (PW92) [71]. These two parametrizations have the following

expression for ǫx, in the non-polarized case (per spin ρ and per electron ρ→ 2ρ),

ǫx = −3

4

(

2

π
ρ
)1/3

= − 3

4πrs

(

9π

4

)1/3

, (1.18)

where the parameter rs is defined as the radius of a sphere containing one electron

on average, rs = (3/4πρ)1/3. Thus, rs is a measure of the average distance between

electrons. For partially polarized systems, the exchange energy is just the sum of

terms for the two spins, which can also be expressed in terms of the total density

ρ = ρ↑ + ρ↓ and the fractional polarization

ζ =
ρ↑ − ρ↓

ρ
. (1.19)

Then we can re-write ǫx(rs, ζ) using Eqs. (1.18) and (1.19) as

ǫx(rs, ζ) = − 3

4πrs

(

9π

4

)1/3
[

(1 + ζ)4/3 + (1 − ζ)4/3
]

/2. (1.20)

For the ǫc term, each parametrization (HL and PW92) has its own form. They

are very similar however small differences exist. For HL we have,
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ǫc(rs) = −C
[

(1 + x3)ln
(

1 +
1

x

)

+
x

2
− x2 − 1

3

]

, (1.21)

and the correlation potential is obtained from,

Vc(rs) = ǫc(rs) −
rs

3

dǫc(rs)

drs
(1.22)

giving the following expression,

Vc(rs) = −Cln
(

1 +
1

x

)

, (1.23)

where C = 0.045 Ryd, x = rs/A, and A = 21.

On the other hand, the expression for the PW92 version is,

ǫc(rs, ζ) = ǫc(rs, 0) + αc(rs)
f(ζ)

f ′′(0)
+ [ǫc(rs, 1) − ǫc(rs, 0)] f(ζ)ζ4, (1.24)

where,

f(ζ) =
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

(24/3 − 2)
. (1.25)

The functions ǫc(rs, 0), ǫc(rs, 1) and −αc(rs) are obtained from the following

general equation, just performing the substitution of G by each one of the previous

functions,

G(rs, A, α1, β1, β2, β3, β4, p) =

−2A(1 + α1rs)ln

[

1 +
1

2A(β1r
1/2
s + β2rs + β3r

3/2
s + β4rP+1

s )

]

, (1.26)

where the parameters A, α1, βi, and P are fitted in such a way to get the corre-

lation energy in the high density limit.

The poor performance of LDA in certain systems has led to the development of

various generalized gradient approximations (GGAs) with marked improvement

over LDA for many cases [72–77]. The first step beyond the local approximation

is a functional that depends on the magnitude of the density gradient |∇ρ| as

well as the value of ρ at each point. Such a “gradient expansion approximation”

(GEA) was suggested in the original paper of Kohn and Sham [8], and obtained

by Herman et al. [78]. The low-order expansion of the exchange and correlation

energies is known [79]. However, the GEA does not lead to consistent improvement

over the LDA. It violates the sum rules and other relevant conditions, like that

the exchange hole is not restricted to be negative for any pair (r1; r2) [78] and,
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indeed, often leads to worse results. The basic problem is that gradients in real

materials are so large that the expansion breaks down.

The term generalized-gradient approximation (GGA) denotes a variety of pro-

posed ways for functions that modify the behavior at large gradients in such a

way to preserve desired properties. Then, it is convenient to define the functional

as a generalized form of the Eq. (1.6) [80],

EGGA
xc [ρ(r)] =

∫

ρ(r)ǫxc[ρ(r), |∇ρ(r)|]dr,

≡
∫

ρ(r)ǫhom
x [ρ(r)]Fxc[ρ(r), |∇ρ(r)|]dr, (1.27)

where Fxc is dimensionless and ǫhom
x is the exchange energy of the non-polarized

(or unpolarized) gas given by Eq. (1.18). For the exchange energy we only need

to consider the spin-unpolarized Fx[ρ(r), |∇ρ(r)|].
In this thesis we use the GGA parametrization of Perdew, Burke and Ernzerhof

proposed in 1996, known as GGA-PBE96 [81]. In PBE96, the exchange is given by

a simple form for the enhancement factor Fx. The form is chosen with Fx(0) = 1

(so that the local approximation is recovered) and Fx → constant at large s,

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (1.28)

where s is the dimensionless reduced density gradient, and is given by,

s =
|∇ρ|
2kFρ

(1.29)

having kF = 3(2π/3)1/3r−1
s as the Fermi’s wavevector. The numerical values for

the parameters are κ = 0.804 and µ = 0.21951. These values are chosen in order

to satisfy boundary conditions and to recover the linear response form of the local

approximation.

The form for the correlation is expressed as the local correlation plus an ad-

ditive term, both depending upon the gradients and spin polarization. The form

chosen to satisfy several conditions is [80]

EGGA−PBE96
c [ρ↑, ρ↓] =

∫

ρ[ǫhom
c (rs, ζ) +H(rs, ζ, t)], (1.30)

where ζ = (ρ↑ − ρ↓)/ρ is the spin polarization, rs is the local value of the density

parameter and t is a dimensionless gradient t = |∇ρ| /2φkTFρ. Here φ = [(1 +

ζ)2/3 + (1 − ζ)2/3]/2 and t is scaled by the screening wavevector kTF rather than

kF (kTF =
√

4kF/πa0, with a0 the Bohr radius). The final form is

H =
e2

a0
γφ3ln

(

1 +
β

γ
t2

1 + At2

1 + At2 + A2t4

)

, (1.31)
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where the factor e2/a0 is unity in atomic units. The function A is given by

A =
β

γ

[

exp

(

−ǫhom
c

γφ3e2/a0

)

− 1

]−1

, (1.32)

where the PBE96 parametrization uses β = 0.066725 and γ = 0.031091.

1.4 The full-potential method

In order to solve the Kohn-Sham equations the use of approximations is needed

from the practical point of view where they are used trying to reduce the com-

puting time, for example. The majority of the methods that we have until now

for solving the equations of DFT consider the expansion of the eigenfunctions ψi

in some kind of basis functions and also some kind of treatment of the potential

in order to make the problem more tractable. One of the methods used in this

thesis belongs to the group of so called full potential methods (since they include

explicitly the core electrons in the calculation), applying a linearized augmented

planewave (LAPW) scheme as an expansion basis. The LAPW method is basi-

cally a modification to the augmented planewave method (APW) of Slater [82,83].

The essence of the APW method is the following [82]: near an atomic nucleus the

potential and wavefunctions of the system are similar to those in an isolated atom,

i.e., they are strongly varying but nearly spherical. Conversely, in the regions be-

tween atoms both the potential and wavefunctions behave in a smoother way.

According to this, the space is then divided into two regions and different basis

expansions are used in these regions: radial solutions of the Schrödinger equa-

tion inside the non-overlapping atom centered spheres (region II) and planewaves

in the remaining interstitial region (region I). In Fig. 1.1 we show a schematic

representation of these two regions.

The fundamental improvement of the LAPW method over the APW was the

proposing that the basis functions and their derivatives be continuous at the

boundary of the regions, by matching them to a radial function at fixed El and

its derivative with respect to El [54]. This choice solved some problems with the

APW method [56] that prevented it to be used as a full potential method.

In the LAPW method, the basis functions inside the spheres are linear com-

binations of radial functions ul(r)Ylm(r) and their energy derivatives. The energy

derivative, u̇l(r)Ylm(r), satisfies

{

− d2

dr2
+
l(l + 1)

r2
+ V (r) −El

}

ru̇l(r) = rul(r) (1.33)

in the non-relativistic case. These functions are matched to the values and deriva-

tives of the planewaves on the sphere boundaries. Planewaves, augmented in this

way, are the LAPW basis functions. In terms of this basis the wavefunctions are
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Figure 1.1: In the APW and LAPW methods, the space is divided in two regions. In
(a) we have a scheme where is showed the division of the space in two regions on a
charge density map and in (b) the division is showed in terms of the different functions:
I-planewaves and II-spherical harmonics.

φkn =











1
Ω1/2 e

ikn·r r ∈ I

∑

lm [Almul(r, El) +Blmu̇l(r, El)]Ylm(r) r ∈ II
(1.34)

where ul(r, El) is the radial solution of the Kohn-Sham equation for a fixed energy

El and u̇l(r, El) is the energy derivative of the same function evaluated at the same

energy. The coefficients Alm and Blm are functions of kn, which are determined

in order to obtain the continuity on the boundary. For the interstitial zone,

the expansion is based on planewaves with kn = k + Kn, where Kn are the

reciprocal lattice vectors and k is the wavevector inside the first Brillouin zone.

An important point to mention is that inside the spheres the LAPWs have more

variational freedom than APWs. For example, if El differs slightly from the band

energy (ǫ) a linear combination then, will reproduce the APW radial function

constructed at that band energy

ul(r, ǫ) = ul(r, El) + (El − ǫ)u̇l(r, El) +O(El − ǫ)2, (1.35)

where O(El − ǫ)2 denotes errors that are quadratic on this energy difference.

The solutions to the Kohn-Sham equations are expanded in this combined

basis set of LAPWs according to the linear variation method,

ψk =
∑

n

cnφkn (1.36)
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and the coefficients cn are determined by the Rayleigh-Ritz variational principle.

In order to improve upon the linearization (i.e. to increase the flexibility of the

basis) and to make possible a consistent treatment of semicore and valence states

in one energy window (to ensure orthogonality) additional kn independent basis

functions can be added. They are called “local orbitals (LO)” [84] and consist

of a linear combination of two radial functions at two different energies and one

energy derivative (at one of these energies):

φLO
lm = [Almul(r, E1,l) +Blmu̇l(r, E1,l) + Clmul(r, E2,l)]Ylm(r) (1.37)

The coefficients Alm, Blm, and Clm are determined by constrains on φLO. It should

be normalized and goes to zero in value and slope at the sphere boundary.

In this general form the LAPW method expands the potential as following

V (r) =











∑

K VK(r)eiK·r r ∈ I

∑

lm Vlm(r)Ylm(r) r ∈ II
(1.38)

and the charge density in an analogous way. Thus no shape approximations are

made, a procedure frequently called as a ”full-potential” method. The code that

is used on this thesis for the full-potential calculations is the WIEN2K code,

developed by Blaha and coworkers [57].

1.5 The pseudopotential method

The other method used in this thesis is a pseudopotential one, applying a mixed-

basis for the eigenfunctions [59,85,86]. The fundamental idea of a pseudopotential

is the replacement of one problem with a simpler one. The primary application

in electronic structure is the replacement of the strong Coulomb potential of the

nucleus and the effects of the tightly bound core electrons by an effective ionic

potential acting on the valence electrons. This is the essence of the pseudopo-

tential approximation: the strong core potential (including the ionic potential,

core charge and a component of the exchange-correlation potential related to the

valence-core interaction) is replaced by a pseudopotential, whose ground state

wavefunction ϕps mimics the all electron valence wavefunction outside a selected

core radius rc [56, 87–90] (see Fig. 1.2).

For the calculations in this thesis we have used the so called ab-initio norm-

conserving pseudopotentials [91, 92] in order to ensure the accuracy and trans-

ferability of them. The term ab-initio is used because they are not fitted to

experiment, in fact they are constructed to fit the valence properties calculated

for the atom (or atomic-like states). The creation of this kind of pseudopoten-

tials was motivated by the following goals: (1) the pseudopotential should be
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ϕps(r)

ϕ(r)

Vps(r)

V(r)

rc r

Figure 1.2: Schematic illustration of the replacement for the all-electron wavefunction
and core potential by a pseudo-wavefunction and pseudopotential

as soft as possible meaning that it should allow expansion of the valence pseudo-

wavefunctions using as few planewaves as possible; (2) it should be as transferable

as possible, meaning that the pseudopotential generated for a given atomic config-

uration should reproduce also others accurately, helping to assure that the results

will be reliable in solid state calculations where the crystal potential is necessarily

different from an atomic potential; and (3) the pseudo-charge density (the den-

sity constructed using the pseudo-wavefunctions) should reproduce the valence

charge density as accurately as possible. With norm-conserving pseudopotentials,

the pseudo-wavefunctions and pseudopotential are constructed to be equal to the

actual valence wavefunctions and potential outside some core radius, rc. Inside

rc, the pseudo-wavefunctions differ from the true wavefunctions, but the norm is

constrained to be the same. That is,

∫ rc

0
drr2ϕps∗(r)ϕps(r) =

∫ rc

0
drr2ϕ∗(r)ϕ(r) (1.39)

where the wavefunctions refer to the atomic reference state and spherical symme-

try is enforced. It is important to note that the wavefunctions and eigenvalues are

different for different angular momenta (l) and this implies that the pseudopoten-

tial should also be l dependent.

One measure of transferability is provided by the logarithmic derivatives at

rc of the all-electron and pseudo-wavefunctions, ϕ and ϕps, respectively. The

imposed equality of these for r ≥ rc, ensures that the logarithmic derivatives at

rc are also equal for the atomic reference configuration.
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1

ϕps(rc, E)

dϕps(rc, E)

dr
=

1

ϕ(rc, E)

dϕ(rc, E)

dr
(1.40)

where E is the energy. The transferability is then defined by the range of E over

which Eq. (1.40) holds adequately. However, using Green’s theorem, we have

− ∂

∂E

∂

∂r
lnϕ(rc, E) =

1

r2
cϕ

∗(rc, E)ϕ(rc, E)

∫ rc

0
drr2ϕ∗(rc, E)ϕ(rc, E). (1.41)

Imposition of norm-conservation ensures not only that the logarithmic deriva-

tive of the pseudo- and all-electron wavefunction match at the reference energy,

but also that the first derivative with respect to E matches as well. Thus, the

difference between the pseudo- and all-electron logarithmic derivative is second

order in the deviation from the reference, and this helps ensure transferability for

norm-conserving pseudopotentials. The method used here for construction of the

pseudopotentials and pseudo-wavefunctions is the Vanderbilt scheme [93].

For many semiconductors or simple metals with only s and p valence states,

the pseudopotentials are sufficiently smooth so that a small basis set of simple

plane waves can be used. Nevertheless, in the case of transition metals, for exam-

ple, the somewhat deeper pseudopotentials render planewave expansions uneco-

nomical. A mixed basis consisting of planewaves and additional, well localized,

energy-independent functions, which describe the more tightly bound nature of

the d states, has proved to be very efficient [59,94]. The approximations made on

the basis, the neglect of the core charge density and the shape difference between

real and pseudo-valence charge densities within a small sphere around the atomic

positions, hold as long as the real core and valence charge densities do not signifi-

cantly overlap outside this sphere. For the calculations applying the pseudopoten-

tial formalism, we have used an energy-independent mixed-basis set [59,85,86]. It

contains a moderate number of plane waves augmented by well localized functions

centered at the atomic sites to describe the localized states, such as d states.

In the mixed-basis method the wavefunctions for a crystal with several atoms

per unit cell are given by

ψnk(r) =
∑

G

αnk
G

1√
Ω

ei(k+G)·r +
∑

j,l,m

βnk
jlmφ

k
jlm(r). (1.42)

where αnk
G and βnk

jlm are obtained as eigenvectors ψnk of the generalized eigenvalue

problem:

Hkψnk = ǫnkS
kψnk, (1.43)

where Hk and Sk are the Hamiltonian and overlap matrix, respectively. In Eq.

(1.42) the terms
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(1/
√

Ω)ei(k+G)·r (1.44)

are the planewaves and φk
jlm(r) are Bloch sums

φk
jlm(r) =

1√
N

∑

R

eik·(R+rj)ϕlm(r −R − rj) (1.45)

of localized basis functions ϕlm centered at the positions of atomic nuclei in the

crystal (r′ = r −R − rj):

ϕlm(r′) = ilfl(r
′)Klm(r̂′) r′ = |r′| r̂′ = r′/|r′| (1.46)

The fl(r
′) are Gaussians or numerical functions, depending on the kind of

orbital you want to describe (s, p, d, etc.). The localized numerical functions are

derived from atomic valence pseudo-wavefunctions ψl(r) by cutting off the tails

beyond certain radius rc. The cubic harmonics Klm(r̂′) are given by

Kl,+m(ϑ, ϕ)
Kl,−m(ϑ, ϕ)

}

=

√

√

√

√

2l + 1

2π(1 + δ0,m)

(l −m)!

(1 +m)!
(−1)mPm

l (cos ϑ)

{

cosmϕ
sinmϕ

(1.47)

Finally for the calculation of the overlap matrix Sk and Hamiltonian matrix Hk

entering in Eq. (1.43), matrix elements containing both planewaves and Bloch

sums of the localized functions (Eqs. (1.48) and (1.49) respectively) have to be

evaluated. The program used for the pseudopotential calculations in this study

was the FORTRAN90 Program for Mixed-Basis Pseudopotential Calculations for

Crystals, MBPP, developed by Meyer, Elsässer and Fähnle in Max-Planck-Institut

für Metallforschung, Stuttgart, Germany [58].

1.6 The virtual crystal approximation

In this section we are presenting the approximation used to model the alloys. We

are considering that a disordered alloy A1−xBx is formed that results from a sub-

stitution of one former element (A) by the alloying one (B) at a certain content

or concentration, x. The standard methods for studying alloys (supercells for ex-

ample) require the construction of huge unit cells in order to ensure periodicity in

the system, that is translated as an increasing in the computing time, and also in

the lost of symmetry that makes difficult the interpretation of the results. Then

for the simulation of the alloying in the cases under study in this thesis (Nb-Mo,

Mg1−xAlxB2, and MgB2(1−x)C2x alloys), we use the virtual crystal approximation

(VCA) [25–29]. This approximation simulates the alloying by the use of virtual

atoms with fractional number of charge carriers that corresponds to the concen-

tration of the alloy on the unit cell. To clarify the concept we use as an example,
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the hypothetical A1−xBx case. We perform a systematic substitution of all the A

and B atoms (with nA and nB charge carriers, respectively) in the unit cell by a

virtual atom with a fractional number of charge carriers that corresponds to the

concentration of the alloy in the unit cell, nA−B = (1 − x)nA + (x)nB (Fig. 1.3).

System System AA
a)

System System BB System System AA11--xxBBxx

+ =

b)
System System AA11--xxBBxx VCA VCA AA11--xxBBxx

Figure 1.3: Schematic illustration of the replacement of the real alloy system a) by
the VCA system b): the substitution of the atoms A and B by a virtual atom with
fractional number of charge carriers nA−B = (1 − x)nA + (x)nB.

One important point to mention is that this approximation is only valid when

the alloying elements are nearest neighbors on the periodic table, that is to say,

|nA − nB| = 1. More important, once we have fixed the total number of charge

carriers by atom on the unit cell (nA−B), we let the system to evolve by means

of a redistribution of the ground state charge density on a self-consistent way.

This means that the only step where we are modifying the system is in nA−B.

In other words, we do not just perform an average of the charge density or the

potential between atoms A and B, but rather these properties are generated and

redistributed on every self-consistent cycle of the calculation, giving then a self-

consistent virtual crystal approximation (SC-VCA) [27].



Chapter 2

Calculation methods for lattice

dynamics and electron-phonon

coupling

2.1 Introduction

A wide variety of physical properties of solids depend on their lattice-dynamical

behavior: infrared, Raman, and neutron diffraction spectra; specific heat, thermal

expansion, and heat conduction. Other phenomena are related to the electron-

phonon interaction such as the resistivity of metals, and superconductivity to men-

tion a few of them. The understanding of these properties in terms of phonons

is considered an important part of the solid state theory and in general of the

quantum theory. The basic theory of lattice vibrations dates back to the 1930s,

and the work of Born and Huang [95] is considered today as a basic reference

textbook of this field. These early formulations were mainly concerned with es-

tablishing the general properties of the dynamical matrices without considering

their connections with the electronic properties that actually determine them. A

systematic study of these connections was not performed until the 1970s [96, 97].

In the specific case of lattice-dynamical properties, a large number of ab initio

calculations based on the linear response theory of lattice vibrations [96,97] have

been made possible over the past fifthteen years by the developments of density

functional theory (DFT) [7, 8] and by the development of density functional per-

turbation theory (DFPT) [9,98,99]. The aim of this chapter is to review in some

detail the theoretical framework of density functional perturbation theory, includ-

ing the technical approaches used for the calculation of vibrational properties,

namely, frozen phonon approximation and linear response theory. Additionally,

we revise the electron-phonon coupling concepts and the Eliashberg formalism,

which are used in the calculations of the superconducting properties of the sys-

tems under study in this thesis.

21
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2.2 Perturbative DFT and the dynamic matrix

With the use of the adiabatic approximation of Born-Oppenheimer [100] (which

is based on the nuclei being much heavier than electrons) we can separate the

vibrational from the electronic degrees of freedom. Thus, the lattice-dynamical

properties of a system are determined by the eigenvalues ǫN and eigenfunctions

ΦN of the Schrödinger equation:

(

−
∑

I

h̄2

2MI

∂2

∂R2
I

+ E(R)

)

ΦN (R) = ǫNΦN (R), (2.1)

where MI is mass of the Ith-nucleus, RI its coordinate, R ≡ {RI} the set of all

the nuclear coordinates, and E(R) the clamped-ion energy of the system, which

is often referred to as the Born-Oppenheimer energy surface. E(R) is considered

as the ground-state energy of a system of interacting electrons moving in the field

of the nuclei (treated as fixed), whose Hamiltonian (that depends on R) acting

on the electronic variables reads

HBO(R) = − h̄2

2m

∑

i

∂2

∂r2
i

+
e2

2

∑

i6=j

1

|ri − rj|
−
∑

iI

ZIe
2

|ri − RI |
+ EN(R), (2.2)

where ZI is the charge of the Ith nucleus, −e is the electron charge, and EN (R)

is the electrostatic interaction between nuclei given by

EN (R) =
e2

2

∑

I 6=J

ZIZJ

|RI − RJ |
. (2.3)

The equilibrium of system is reached when the forces acting on the individual

nuclei vanish:

FI ≡ −∂E(R)

∂RI
= 0, (2.4)

whereas the vibrational frequencies of the atoms ω are obtained from the Hessian

of the Born-Oppenheimer energy, scaled by the nuclear mass:

det

∣

∣

∣

∣

∣

1√
MIMJ

∂2E(R)

∂RI∂RJ
− ω2

∣

∣

∣

∣

∣

= 0. (2.5)

From the last two equations it can be seen that for obtain the equilibrium

geometry and the vibrational properties of a system it is required the calculation

of the first and second derivatives of its Born-Oppenheimer energy surface. In

order to obtain this quantities it is used the Hellmann-Feynman theorem [101,102]

which basically states that the first derivative of the eigenvalues of a Hamiltonian,
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Hλ, that depends on a parameter λ, is given by the expectation value of the

Hamiltonian’s derivative:

∂Eλ

∂λ
=

〈

Ψλ

∣

∣

∣

∣

∣

∂Hλ

∂λ

∣

∣

∣

∣

∣

Ψλ

〉

, (2.6)

where Ψλ is the eigenfunction of Hλ that corresponds to the Eλ eigenvalue. In

the Born-Oppenheimer approximation, the nuclear coordinates act as parameters

in the electronic Hamiltonian, see Eq. (2.2). Thus, the force acting on the I-th

nucleus in the electronic ground state is

FI = −∂E(R)

∂RI

= −
〈

Ψ(R)

∣

∣

∣

∣

∣

∂HBO(R)

∂RI

∣

∣

∣

∣

∣

Ψ(R)

〉

, (2.7)

where Ψ(r, R) represents the electronic ground state wave function of the Born-

Oppenheimer Hamiltonian. We observe that this Hamiltonian depends on R via

the electron-ion interaction that couples to the electronic degrees of freedom only

through the electron charge density. In this case, applying the Hellmann-Feynman

theorem as expressed above, we have the following expression,

FI = −
∫

ρR(r)
∂VR(r)

∂RI

dr− ∂EN (R)

∂RI

, (2.8)

where VR(r) is the electron-nucleus interaction,

VR(r) = −
∑

iI

ZIe
2

|ri −RI |
, (2.9)

and ρR(r) is the ground-state electron charge density corresponding to the nu-

clear configuration R. With the help of the already obtained Hellmann-Feynman

forces we are able to calculate the Hessian of the Born-Oppenheimer energy sur-

face appearing in Eq. (2.5), by differentiating them with respect to the nuclear

coordinates,

∂2E(R)

∂RI∂RJ

= − ∂FI

∂RJ

=
∫

∂ρR(r)

∂RJ

VR(r)

∂RI

dr +
∫

ρR(r)
∂2VR(r)

∂RI∂RJ

dr +
∂2EN(R)

∂RI∂RJ

.

(2.10)

The last equation basically states that for the calculation of ∂2E(R)/∂RI∂RJ it is

required the calculation of the ground-state electron charge density ρR(r) as well as

of its linear response to a distortion of the nuclear geometry, ∂ρR(r)/∂RI [96,97].

The Hessian matrix is known as the matrix of the interatomic force constants and

applying to it a Fourier transform, this gives the so called dynamical matrix of the

system [9, 99].
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2.3 Linear response theory: RuO2 as a case of

study

In the previous section we observed that the matrix of the interatomic force con-

stants of a system is determined by the its electron-density linear response. The

aim of this section is to obtain this response from DFT by assuming that the ex-

ternal potential on the electrons is a differentiable function of a set of parameters,

λ ≡ {λi}, (where λ could be RI in the case of considering the dynamics of the lat-

tice). As in the case of Eq. (2.8) and Eq. (2.9), we apply the Hellmann-Feynman

theorem but now with the set of parameters λi instead of RI , obtaining the first

and second derivatives of the ground-state energy

∂E

∂λi

=
∫

ρλ(r)
∂Vλ(r)

∂λi

dr, (2.11)

∂2E

∂λi∂λj
=
∫ ∂ρλ(r)

∂λi

∂Vλ(r)

∂λj
dr +

∫

ρλ(r)
∂2Vλ(r)

∂λi∂λj
dr. (2.12)

The electron-density response, ∂ρλ(r)/∂λi, in Eq. (2.12) can be evaluated linearis-

ing the charge density as a function of the orbitals (Eq. (1.13)), the Kohn-sham

equation in their canonical form (Eq. (1.12)), and the effective potential (Eq.

(1.10)) taking into account the explicit form of Vxc (Eq. (1.11)) and VC (Eq.

(1.04)). The linearization is respect to the wave function, density and potential.

In particular, the linearization of Eq. (1.13) leads to

∆ρ(r) = 2Re
N
∑

n=1

ψ∗
n(r)∆ψn(r), (2.13)

where the finite-difference operator ∆λ is defined as

∆λF =
∑

i

∂Fλ

∂λi

∆λi (2.14)

and the superscript λ has been omitted just for clarity. Each Kohn-Sham eigen-

function and its complex conjugate used in Eq. (2.13) are degenerate, since the ex-

ternal potential (both, unperturbed and perturbed) is real. Therefore, the imagi-

nary part of the sum appearing in Eq. (2.13) vanishes.

In oder to obtain the variation of the Kohn-Sham orbitals, ∆ψn(r), we apply

standard first-order perturbation theory:

(HSCF − ǫn)|∆ψn〉 = −(∆VSCF − ∆ǫn)|ψn〉, (2.15)

where

HSCF = − h̄2

2m

∂2

∂r2
+ VSCF (r) (2.16)
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is the unperturbed Kohn-Sham Hamiltonian,

∆VSCF (r) = ∆V (r) + e2
∫ ∆ρ(r′)

|r − r′|dr
′ +

dvxc(ρ)

dρ

∣

∣

∣

∣

∣

ρ=ρ(r)

∆ρ(r), (2.17)

is the first-order correction to the self-consistent potential, and ∆ǫn = 〈ψn|∆VSCF |ψn〉
represents the first-order variation of the Kohn-Sham eigenvalue ǫn.

The Eqs. (2.13) to (2.17) form a set of self-consistent equations for the per-

turbed system completely analogous to the Kohn-Sham equations in the unper-

turbed case (Eqs. (1.10), (1.12), and (1.13)) being Eq. (2.15) the corresponding

Kohn-Sham eigenvalue equation. Focus in the perturbed case, the self-consistency

requirement is manifested in the dependence of the right-hand-side on the solution

of the linear system. For the left-hand-side, we have that ∆VSCF (r) is a linear

functional of ρ(r), which also depends linearly in the ∆ψ’s. Thus, the whole self-

consistent calculation can be considered in terms of a generalized linear problem.

Now, the aim is to find a procedure to obtain the first-order correction to a

given eigenfunction of the Schrödinger equation, given by Eq. (2.15). One way to

express this function is in terms of a sum over the spectrum of the unperturbed

Hamiltonian,

∆ψn(r) =
∑

m6=n

ψm(r)
〈ψm|∆VSCF |ψn〉

ǫn − ǫm
, (2.18)

where we are running over all the states of the system, occupied and empty, but

without taking into account the state that is being considered, in this case n.

Using this form for ∆ψn we can express the charge-density response as following,

∆ρ(r) = 2
N
∑

n=1

∑

m6=n

ψ∗
n(r)ψm(r)

〈ψm|∆VSCF |ψn〉
ǫn − ǫm

. (2.19)

In the last equation the m index is considered as counting conduction states only.

This is equivalent to say that the charge-density distribution does not respond

to a perturbation acting only on the occupied-state subspace, or in other words,

to the component of any perturbation which couples occupied states among each

other. Finally, one of the greatest advantages of LRT and DFPT, as compared

to other non-perturbative methods for calculating vibrational properties of crys-

talline solids (like the frozen-phonon or molecular dynamics analysis methods), is

that within LRT-DFPT the responses to perturbations of different wavelengths

are decoupled. This important feature allows one to calculate phonon frequencies

at arbitrary wave vectors q avoiding the use of supercells and using an approach

that is essentially independent of the phonon wavelength.

As a test case of using the LRT, we performed the calculation of the lattice

dynamics of bulk RuO2 in the rutile structure. The results are compared with
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Table 2.1: Comparison of measured and calculated frequencies of Raman-active modes
(in meV)

Mode Experiment Theory
Ref. [103] LDA GGA

B1g 20.5 22.4 23.2
Eg 65.5 66.3 60.3
A1g 80.0 82.7 74.1
B2g 88.7 92.7 85.3

measurements of the Raman spectra [103] as well as with the generalized phonon

density of states (GDOS) obtained by inelastic neutron scattering [104]. RuO2

has been studied previously in great detail, in order to understand the mechanism

of the catalytic carbon monoxide oxidation on the RuO2(110) surface [105]. Using

the optimized structural parameters, the phonon dispersion curves and the gener-

alized phonon density of states (GDOS) have been calculated using two different

xc-functionals, the LDA as given by Hedin and Lundqvist [70] and the GGA as

given by Perdew, Burke, and Ernzerhof (PBE) [81]. Phonon dispersion bands

are presented in the Fig. 2.1 (LDA and GGA). The analysis of the eigenvec-

tors shows that the Ru-dominated modes are responsible for the low-lying part of

the spectrum, while above 50 meV the spectrum is clearly dominated by oxygen

vibrational modes.

LDA GGA

Figure 2.1: Calculated phonon dispersion curves for RuO2 (rutile) with the LDA (left)
and GGA (right) along high-symmetry lines in the first Brillouin zone.

Comparing LDA and GGA dispersions, the most striking difference is seen at

the upper end of the spectrum. For the GGA the high-lying oxygen modes are

located around 70 meV while in LDA calculations they show up around 80 meV.

This is a very significant difference. For comparison with experimental data so

far only q = 0 modes obtained from Raman measurements [103] are available.
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These modes are listed in the Table 2.1 and compared with our calculations.

As it can be seen the most prominent Eg mode is represented very well in LDA

calculations, while in GGA calculations the frequency of this mode is substantially

underestimated. For other modes the effect is not as drastic but, again, the LDA

results are in better agreement with the experimental data than GGA. However,

these measurements probe only the Γ point of the Brillouin zone; thus we do not

have enough information to say anything about the quality of the LDA versus

GGA. To overcome this situation we compared our calculated GDOS and the

measured GDOS with neutron scattering [104].

Figure 2.2: Comparison of theoretical GDOS results for the LDA and GGA with
experimental data.

The Fig. 2.2 shows the comparison of the calculated and measured GDOS.

We can see that in the regime up to 20 meV which is dominated by Ru vibrations

modes LDA and GGA results do not differ appreciably and both agree very well

with the experiment. Above roughly 20 meV the LDA and GGA start to differ

more and more, with the phonon modes calculated by the GGA being much

softer (lower in frequency). Above 60 meV it becomes quite obvious that the

GGA results do not agree with the experiments while the LDA gives very good

agreement with the measured generalized phonon density of states. In the upper

part of the spectrum the GGA results are off by roughly 10 meV which is a huge

discrepancy. The measurements of the GDOS support the trends already seen

in the Raman measurements and indicate that these are not restricted to the Γ

point in the Brillouin zone only. We can conclude that although for structural

studies it seems that GGA calculations give slightly better description compared

to experiment than LDA, for investigations of phonon properties LDA is clearly



28 Chapter 2. Calculation methods for lattice dynamics...

preferred, at least in this particular system.

2.4 The frozen phonon approximation

The frequencies of selected phonon modes can be calculated from energy differ-

ences (or from the forces acting on atoms) produced by finite and periodic dis-

placements (u) of a few atoms in an otherwise perfect crystal at equilibrium. A

frozen-phonon calculation for lattice vibrations at a generic q vector requires a su-

percell having q as a reciprocal-lattice vector and whose linear dimensions must be

therefore at least of the order of 2π/|q|. In practice, the size of the supercell that

one can afford to deal with has limited the application of this technique to zone-

center or selected zone-boundary phonon modes in relatively simple materials.

However, zone-center phonons are also the best characterized because they may

be Raman or infrared active, so that they do not require neutron or x-ray spec-

troscopy to be detected. By calculating the total energy for a set of displacements

configurations (varying the values of u), one maps out the energy surface along

this particular phonon mode. This potential curve is typically parabolic around

the equilibrium configuration (small u), but for large displacements, anharmonic

components in the potential become important. One can extract the frequency

for this phonon mode from the potential energy curve, solving the Schrödinger

equation and taking from there the two lowest energy eigenvalues that are related

with the frequency [99, 106–108].

The advantages of the frozen-phonon approach are that it provides the poten-

tial for the atomic displacements and it is not limited to the harmonic approx-

imation and it does not require any specialized computer code, as DFPT does.

This technique can in fact be straightforwardly implemented using any standard

total energy and force code, and only moderate care is needed in the evaluation

of numerical derivatives. Nevertheless, the principal limitation is the unfavorable

scaling of the computational cost with the range of the long-wavelength modes,

since one needs to setup a supercell that can be quite large in order to include the

corresponding distortion.

2.5 Eliashberg theory: e-ph coupling and super-

conductivity

In this section we review the theoretical background of the phonon mediated super-

conductivity. Indeed, the description of the electron-phonon coupling mechanism

is considered one of most successful models explaining conventional superconduc-

tivity (no high Tc’s superconductors). We also discuss the most developed micro-

scopical theory until now that tries to explain the phenomenological behavior of
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the superconducting materials, that is the Eliashberg theory [1, 3, 4].

While the discovery of superconductivity occurred in 1911 [109], from a the-

oretical point of view, a first breakthrough occurred with the discovery of the

Meissner-Ochsenfeld effect [110] (the expulsion of magnetic fields from inside a

superconductor), and the understanding of that phenomenon implied that the su-

perconducting state was a thermodynamic phase [111]. In 1950 several important

developments took place; first, two independent isotope effect measurements were

performed on Hg [112, 113], which indicated that the superconducting transition

was intimately related to the lattice, probably through the electron-phonon inter-

action. Basically the way that it works is the following: changing only the isotopic

mass of one species (and therefore the phonon frequencies) changes the critical

temperature accordingly (decreasing the mass increases the phonon frequencies

and Tc). Secondly, Fröhlich [114] studied the electron-phonon interaction in met-

als, using a mean-field theoretical approach for the first time. His theory correctly

produced an isotope effect and moreover, predicted the discovery of the perovskite

superconductors, by suggesting that the number of free electrons per atom should

be reduced. He also demonstrated through second order perturbation theory, that

electrons exhibit an effective attractive interaction through the phonons.

What occurs physically in the electron-phonon interaction, is that one elec-

tron makes a transition which excites a phonon, accompanied by an ionic charge

density fluctuation. A second electron undergoes a transition caused by this in-

duced charge density fluctuation. If the differences in the electron energies are

small compared to the phonon excitation energy, the second electron is actually

attracted to the first. This interaction scheme is shown in Fig. 2.3. This idea rep-

resented the starting point for the two-electron interaction in metals and used in a

simplified way by the Bardeen-Cooper-Schrieffer (BCS) theory in 1957 [115,116].

BCS considered an electron-gas as the model for a metal where the electrons, in

addition to being subject to the usual screened Coulomb interaction, interact via

exchange of virtual phonons. The two effects compete to respectively bind or

separate a pair of electrons. Pairing electrons (also known as Cooper pairs) leads

to a lower total energy, and the excitation spectrum of the resulting system pos-

sesses a gap, which one has to overcome to excite a single electron of a pair. By

treating the e-ph interaction via the simplified model of a Cooper pair (assuming

that the effective phonon-mediated interaction energy between the two electrons

is negative and a constant about the Fermi surface and zero otherwise), the BCS

theory was able to explain all the observed properties of a superconductor and

put the pairing formalism on a firm ground.

BCS was very successful in explaining a large number of experiments, like the

isotope effect, penetration depth, specific heat, the energy gap in the electronic

spectrum, among others for conventional superconductors like Al, Pb, V, Nb, Ta,
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a) b)

Figure 2.3: In a) one electron polarizes the lattice; in b) that electron has moved away.
In the meantime a second electron (see below in a)) is attracted to the polarized region,
which has remained polarized long after the first electron has left the region.

Cu, and including superconducting alloys such as Nb3Sn. Indeed, one of the ele-

gant outcomes of the BCS theory is the universality of various properties; at the

same time this universality means that this theory really does not distinguish one

superconductor from another, and more seriously, one mechanism from another.

After the BCS work appeared, several works rederived their results using alter-

native formalisms. A remarkable one was from Gor’kov [117], who developed a

Green’s function method, from which the BCS results could be derived, near the

superconducting transition temperature, Tc. Around the same time, tunneling be-

came a very useful spectroscopic probe of the superconducting state [118]; besides

providing an excellent measure of the gap in a superconductor, it also revealed

the fine detail of the e-ph interaction [119], to such an extent that tunneling data

could be inverted to tell us about the underlying e-ph interactions. The Gor’kov

formalism proved to be the most useful, for the purposes of generalizing BCS the-

ory (with its model effective interaction) to the case where the electron-phonon

interaction is properly taken into account in the superconducting state. That

work was developed by Eliashberg in 1960 [1].

The central quantity of the Eliashberg theory is the so-called Eliashberg spec-

tral function, α2F (ω), which expresses the e-ph interaction in the form of a spec-

tral density. For phonon-mediated superconductivity it forms the essential bridge

between theory and experiment. α2F (ω) can be calculated from ab-initio calcu-

lations and used as input in the Eliashberg gap equations to determine Tc and

the temperature-dependence of the energy gap. It can also be derived, as we said

before, from experiments by inversion of tunneling spectra.

The discussion of the e-ph coupling is first focused on the isotropic limit, while
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in the next part we present a brief description that contains the principal results

for the anisotropic limit of the multiband case. For simplicity of the analysis,

we consider the case of a single atom of mass M per unit cell. The e-ph matrix

element for scattering of an electron from a Bloch state ki to another Bloch state

kj = ki + q (i and j are band indexes) by a phonon of frequency ωqν is

gqν(ki,kj) =

(

h̄

2Mωqν

)1/2

〈ki |ûqν · ∇RVsc|kj〉 , (2.20)

where ûqν is the phonon polarization vector, and ∇RVsc is the gradient of the self-

consistent potential with respect to atomic displacements [120]. The scattering

of phonon qν by electrons give rise to a finite phonon linewidth that can be

determined from the following,

γqν = 2πωqν

∑

ki,kj

|gqν(ki,kj)|2 δ(ǫki
− ǫF )δ(ǫkj

− ǫF ). (2.21)

The Eliashberg spectral function is given then by a sum over contributions to the

coupling from each phonon mode (for each band combination i,j),

α2F (ω) =
1

2πN(0)

∑

qν

γqν

ωqν
δ(ω − ωqν), (2.22)

where N(0) is the electronic density of states (per atom and spin) at the Fermi

energy.

Once we have defined the electron-phonon matrix elements and the Eliashberg

function, we can introduce the Eliashberg gap equations, which can be formulated

in terms of both real and imaginary frequency axes. In the real axis formulation

the superconducting gap ∆ is complex and defined for all frequencies ω, while on

the imaginary axis the gap is real and only defined on the discrete set of imaginary

Matsubara frequencies ωn = πT (2n− 1), with n = 0,±1,±2, . . . and T being the

temperature in energy units. The two formulations become formally equivalent by

an analytic continuation of the gap itself and the gap equations [3]. In this thesis

we have used the imaginary gap equations which involve two nonlinear coupled

equations for the Matsubara gaps ∆(iωn) and the renormalization factors Z(iωn).

On the imaginary-frequency axis, they take the form (for an isotropic system):

∆(iωn)Z(iωn) = πT
∑

m

[Λ(iωm − iωn) − µ∗(ωc)θ(ωc − |ωm|)]N∆1(iωm), (2.23)

Z(iωn) = 1 +
πT

ωn

∑

m

Λ(iωm − iωn)N∆0(iωm), (2.24)

where θ is the Heaviside function, and µ∗(ωc) is the Coulomb pseudopotential

opposing superconductivity. It comes with a cutoff at ωc; to ensure convergence,
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it is usually chosen ten times the maximum phonon frequency: ωc ≈ 10ωmax
ph .

The functions Λ(iωm − iωn), N∆1(iωm), and N∆0(iωm) which are related to the

electron-phonon attraction between two electrons interacting around the Fermi

energy are defined as,

Λ(iωm − iωn) = 2
∫ ∞

0

ωα2F (ω)dω

ω2 + (ωn − ωm)2
≡ Λ(ωm − ωn) (2.25)

N∆1(iωm) =
∆(iωm)

√

ω2
m + ∆2(iωm)

(2.26)

N∆0(iωm) =
ωm

√

ω2
m + ∆2(iωm)

(2.27)

The solution of the gap equations (2.23) and (2.24) requires as input the e-ph

spectral function α2F (ω) and the Coulomb pseudopotential µ∗(ωc). The first one

is obtained from ab-initio calculations and the second one is a parameter that

must be fitted in order to reproduce the experimental data.

Analytic expressions for the critical temperature (Tc) can be obtained from

the Eliashberg gap equations (2.23) and (2.24) under some approximations. For

example, McMillan [121] considered the integral equations in the real frequency

formulation of the Eliashberg theory, involving the complex gap function ∆(ω). By

considering several approximations about the shape of the gap function McMillan

was able to show that an approximate solution for the critical temperature can

be written in the form

Tc = ω0exp

{

− 1 + λ

λ− µ∗(1 + (〈ω〉 /ω0)λ)

}

, (2.28)

with ω0 being the maximum phonon frequency and 〈ω〉 being the average phonon

frequency, defined as

〈ω〉 =

∫ ω0

0 α2(ω′)F (ω′)dω′
∫ ω0

0 α2(ω′)F (ω′)dω′/ω′ , (2.29)

and with λ as the effective mass enhancement parameter given by

Λ(m = n) = Λ(0) ≡ λ = 2
∫ ∞

0
dω
α2F (ω)

ω
. (2.30)

From extensive numerical studies of the integral equations, McMillan [121] was

further able to show that in most cases Tc could be reproduced reasonably well

by the following expression,

Tc =
ΘD

1.45
exp

{

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

}

, (2.31)
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where ΘD is the Debye temperature. It is important to mention here that the

Coulomb pseudopotential µ∗ used in the McMillan equation is different from the

one that appears in the Eliashberg equations (2.23) and (2.24). Nevertheless, there

exists a relation between both pseudopotentials, scaled in the following way [2],

1

µ∗(〈ω2〉) =
1

µ∗(ωc)
+ ln

(

ωc

〈ω2〉1/2

)

(2.32)

where 〈ω2〉 is given by

〈

ω2
〉

=
2

λ

∫

dωα2F (ω)ω. (2.33)

In practice, the value of µ∗ could be considered as lying between the widely

used range of 0.10 to 0.20 [121], or by fixing Tc to the experimental value in Eq.

(2.31), or solve numerically the Eliashberg equation for Tc (explained later) using

a standard Matsubara technique, and then obtaining µ∗ [11, 32, 122].

Allen and Dynes [2] improve the McMillan equation considering results of

more than 200 such numerical solutions for a number of different shapes of the

Eliashberg function and values of λ from small to as large as 106. They basically

proposed the same equation as McMillan, but with the prefactor ΘD/1.45 replaced

by ωlog/1.2. The logarithmically averaged characteristic phonon frequency ωlog in

the Allen-Dynes formula is obtained from

ωlog = exp

{

2

λ

∫ ∞

0

dω

ω
α2F (ω)ln(ω)

}

. (2.34)

This equation can be taken to represent an important measure of the average

phonon frequency associated with the spectral density α2F (ω).

As a final point, we write down the Eliashberg gap equations also in the multi-

band model. The reason for considering this case is that it has been demonstrated

by experimental and theoretical works that the MgB2 possesses two superconduct-

ing gaps [31, 44, 63, 64, 123–127]. The equations for a multiband system are the

following (i and j being the band index),

∆i(iωn)Zi(iωn) = πT
∑

m,j

[

Λij(iωm − iωn) − µ∗
ij(ωc)θ(ωc − |ωm|)

]

N j
∆1(iωm),

(2.35)

Zi(iωn) = 1 +
πT

ωn

∑

m,j

Λij(iωm − iωn)N j
∆0(iωm), (2.36)

where,

Λij(iωm − iωn) = 2
∫ ∞

0

ωα2
ijF (ω)dω

ω2 + (ωn − ωm)2
≡ Λij(ωm − ωn), (2.37)
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N j
∆1(iωm) =

∆j(iωm)
√

ω2
m + ∆2

j (iωm)
, (2.38)

N j
∆0(iωm) =

ωm
√

ω2
m + ∆2

j (iωm)
. (2.39)

The solution of these equations for a two gap system like MgB2 requires as in-

put (a) the four (but only three independent) electron-phonon spectral functions

α2
ijF (ω) since i, j = 1, 2; and (b) the four (but only three independent) elements

of the Coulomb pseudopotential matrix µ∗
ij(ωc).



Chapter 3

Results for the Nb-Mo alloy

3.1 Introduction

The Nb1−xMox alloy forms a solid solution with a body-centered cubic (bcc) struc-

ture for the whole range of Mo concentrations (0.0 ≤ x ≤ 1.0) [13, 14]. The con-

stituent elements, Nb(Z=41) and Mo(Z=42), belong to the 4d-transition metals

on the Periodic Table with 5 and 6 valence electrons, respectively. Therefore, by

changing the Mo-content in the system, we obtain a continuous evolution of the

number of electrons per atom (ne). An interesting characteristic of this system is

the non-monotonic behavior of the superconducting critical temperature (Tc) as

a function of x. While Nb possesses the highest Tc among elemental metals (9.25

K), Tc decreases with increasing Mo-content, falling below 0.5 K for 0.4 ≤ x ≤ 0.9,

and slightly recovering again to Tc = 0.92 K for pure Mo (x = 1) [13–15].

The non-monotonic behavior of Tc for the Nb-Mo alloy as a function of the

Mo content has motivated many experimental and theoretical studies. Indeed,

there are a lot of studies on the structural [14, 19, 128–130], elastic [129, 131–

134], electronic [20–24,130,135–137], vibrational [11,16–18,106–108,138,139], and

superconducting properties [11, 13, 15, 140–142] of this alloy. It is interesting to

note that the evolution of some of these properties as a function of Mo-content also

shows non-monotonic behavior. The origin of these features is not yet completely

understood despite all the above mentioned efforts. For example, experimental

studies of the elastic properties at low temperatures show anomalies in the C ′ and

C44 elastic constants around a Mo-content of x ≈ 0.4 [129,131–134]. This behavior

was associated with an electronic topological transition of the Fermi surface as

a consequence of increasing ne. However, early tight-binding calculations of the

electronic structure and elastic properties using the rigid band approximation did

not reproduce the anomalies observed experimentally [129,131–134].

Another interesting behavior comes from the vibrational properties, where

the evolution of the dispersion curves with increasing Mo-content shows that the

phonon anomalies are strongly dependent on the value of ne [16–18]. For example,

35
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a Kohn anomaly is present in the longitudinal branch [00ζ ] in Nb, but not in Mo.

In contrast, in Mo, a depression is found near the symmetry point H for the

longitudinal and transversal branches [16–18]. The evolution of this anomaly in

the Nb1−xMox alloy was studied using coherent one-phonon scattering of thermal

neutrons and it was found that at x ≈ 0.4, the anomaly starts to disappear [18],

but for higher Mo concentrations, (≥ 0.9), a depression at the H-point appears

suddenly. Another example of this kind of change due to the variation of ne occurs

in the transversal-mode frequencies at the N point, where the frequencies of the

transversal modes (T1 and T2) in Nb are 16.13 and 20.88 meV, respectively, while

for Mo this ordering is reversed with the T2 frequency at 18.78 meV and the T1

at 23.57 meV [18].

From the theoretical point of view, the evolution of the electronic and elastic

properties of the Nb1−xMox alloy as a function of x has been studied using quasi-

random structures [19], the coherent potential approximation (CPA) [20–22],

and the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)

[23, 24] approaches. However, these studies have been limited to only a few Mo

concentrations, because these calculations are computationally very demanding,

especially if one is interested in very low (close to Nb) or high concentrations (close

to Mo). These studies [20–22,24] found an electronic topological transition (ETT)

from a holelike band to an electronlike band at the Γ point of the electronic band

structure between x = 0.25 and x = 0.50, but because a large disorder-induced

smearing of the bands was already obtained for the x = 0.25 case, it was difficult

to accurately identify the critical Mo-concentration (xc) of the ETT in this alloy.

A smaller range xc = 0.3 − 0.4 was given by Bruno et al. [23], who analyzed the

ETT within the rigid-band approximation using their calculated band structure

for x =0.50 as a starting point. Now, about the superconducting properties, the Tc

was calculated only in a fairly global way by expressing the electron-phonon cou-

pling λ as a function of x in terms of the Hopfield parameter (η) [24]. Combined

with the Debye temperature and assumptions about the Coulomb pseudopotential

µ∗, the general trend of Tc(x) was reproduced with the McMillan formula [121].

Reliable quantitative values can only be obtained, however, from a more detailed

treatment of the phonon dispersion and the electron-phonon coupling.

In this chapter we present the results of the calculations of the structural,

electronic, vibrational, and superconducting properties and their evolution for the

Nb1−xMox alloy, as a function of x in the whole range of the Mo concentrations

(0 ≤ x ≤ 1). The results were obtained using two methodologies: the full-

potential LAPW method and the MBPP pseudopotential method, both of them

for two different xc-functionals, LDA and GGA. The main reason for the use of

two different methodologies is the validation of the pseudopotential calculations

by comparing a wide variety of properties such as the mentioned above with the
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highly accurate full-potential LAPW method. The closer the MBPP calculations

are to LAPW ones, the better the description of the pseudopotential is for each

case under study. Additionally, and as explained early in Chapter 1, we use both

functionals, LDA and GGA in order to find which one is better describing the dif-

ferent calculated properties. In the section 3.2 they are presented the numerical

details of the calculations of the structural, electronic, vibrational and supercon-

ducting properties the Nb-Mo system. In the section 3.3, we present the results

of the structural optimization of the Nb1−xMox alloy at the BCC structure for

the whole range of Mo concentrations. The results are compared with experimen-

tal data, specifically the lattice constant (a0) and the bulk modulus (B0). The

evolution of the density of states (DOS) and the electronic band structure as a

function of Mo-content are analyzed in order to determine the critical concentra-

tion of possible electronic topological transitions. That analysis is presented in

section 3.4. In the section 3.5 they are presented the results of the vibrational

calculations, namely, the frequencies for two high-symmetry points, H , and N

(with its three different polarizations N1,N3, and N4), which are compared with

experimental data available in the literature. The full phonon dispersion curves

and the phonon density of states (PDOS) for different values of x are also pre-

sented. The evolution of the vibrational anomalies as a function of Mo-content is

analyzed. With the information obtained for the electronic and vibrational prop-

erties at the optimized lattice parameters, we have obtained the electron-phonon

properties such as the Eliashberg function, α2F (ω), the logarithmic average of the

frequency, ωlog, the electron-phonon coupling constant, λ, and Tc as a function of

x, for the Nb1−xMox alloy. Those results are presented and analyzed in section

3.6.

3.2 Numerical details of the calculations

This section is split in two parts in order to explain in detail each step of the

calculations, namely, properties obtained with (i) the all-electron LAPW and (ii)

the MBPP method. For the calculation of the vibrational properties we have

used the implementation of linear response theory (LRT) on the MBPP method

and the frozen phonon approximation (FPA) with the LAPW method. It is im-

portant to emphasize that all the calculations performed in this thesis used two

xc-functionals, LDA [70,71] and GGA [81].

(i) LAPW calculations. For the all-electron calculations, the Kohn-Sham total

energies were calculated using the full-potential linearized augmented plane-wave

method (LAPW) [54–56] as implemented in the Wien2k code [57]. The core

states were treated fully relativistically, and the semicore and valence states were

computed in a scalar relativistic approximation [143]. The exchange-correlation
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potential was evaluated within LDA using the Perdew-Wang form [71] and the

GGA using the functional proposed by Perdew, Burke, and Ernzerhof (PBE)

[81,144,145]. We chose muffin-tin radii (RMT ) of 2.25 a.u. for Nb and Mo, and a

plane-wave cutoffRMT×KMAX = 9.0. Inside the atomic spheres, the potential and

charge densities were expanded in crystal harmonics up to l = 10. Convergence

was assumed when the energy difference between the input and output steps

was less than 1 × 10−6 Ry. Special attention was paid to convergence of results

with respect to the number of k points. We used a grid of 23×23×23 for the

structural optimization and 32×32×32 for the frozen phonon calculations. For

the integration inside the Brillouin zone in reciprocal space we used the Gaussian

smearing method with a smearing factor of 0.2 eV.

HH NN33NN11 NN44
0

00 0

Figure 3.1: Displacement patterns on the BCC structure for the calculations of the H,
N1, N3, and N4 phonon modes of the Nb-Mo alloy using the frozen phonon approxima-
tion.

The vibrational properties obtained with the LAPW code were calculated us-

ing the frozen phonon approximation (FPA) [106–108], which involves the cal-

culation of the total energy of the crystal as a function of atom displacements

for a particular eigenmode. The studied phonon modes correspond to the wave

vector at the H (threefold degenerated) and N high-symmetry points. In the Fig.

3.1 they are shown the different displacement patterns implemented for the BCC

structure, which corresponds to the structure of the Nb-Mo alloy in the VCA ap-

proximation. In the Tables 3.1 and 3.2 we present the structural details for each

distortion pattern H and N (with its three different polarizations), respectively,

such as the origin of the new Cartesian system ( ~O), the lattice vectors with respect

to this new origin (~ai), the basis vectors (~bi) including the displacement unit (u),

and the corresponding space group. The energy-versus-displacement ab initio cal-

culation was fitted by a sixth-order polynomial with only even terms, as required

by the symmetry of the displacement patterns. The harmonic phonon frequency

was then extracted from the second-order coefficient of the fitted polynomial.

(ii) MBPP calculations. As we said before, the pseudopotential calculations

were performed with the mixed-basis pseudopotential method (MBPP) [58]. In

this calculation we have used norm conserving pseudopotentials under the Van-

derbilt scheme [93], and considered 4s and 4p semicore states as valence electrons



3.2. Numerical details of the calculations 39

Table 3.1: Structural details of the H distortion pattern.

H
~O

(

1
4
, 1

4
, 1

4

)

a

~a1 (1, 0, 0)a
~a2 (0, 1, 0)a
~a3 (0, 0, 1)a
~b1

1
4
~a1 + 1

4
~a2 +

(

1
4

+ u
)

~a3

~b2
3
4
~a1 + 3

4
~a2 +

(

1
4
− u

)

~a3

Space group P4/nmm-D7
4h (#129)

Table 3.2: Structural details of the N distortion patterns.

N1 N3 N4

~O
(

−1
2
, 0, 1

2

)

a
(

1
4
, 1

4
, 1

4

)

a
(

−1
2
, 0, 1

2

)

a

~a1 (0, 0, 1)a (−1, 1, 0) a (0, 0, 1)a
~a2 (1,−1, 0) a (0, 0, 1)a (1,−1, 0) a
~a3 (1, 1, 0)a (1, 1, 0)a (1, 1, 0)a
~b1

3
4
~a2 +

(

1
4
− u

)

~a3

(

1
4
− u

)

~a2 + 1
4
~a3

(

3
4
− u

)

~a2 + 1
4
~a3

~b2
1
4
~a2 +

(

3
4

+ u
)

~a3

(

3
4

+ u
)

~a2 + 3
4
~a3

(

3
4

+ u
)

~a2 + 3
4
~a3

Space group Cmma-D21
2h (#67) Cmcm-D17

2h (#63) Cmcm-D17
2h (#63)

which substantially improved the description of the different calculated proper-

ties in this alloy. The fairly deep potentials for Nb/Mo are efficiently treated by

the mixed-basis scheme, which uses a combination of local functions and plane

waves for the representation of the valence states. We used s-, p- and d-type

functions at the Nb/Mo sites, supplemented by plane waves up to a kinetic en-

ergy of 36 Ry. Phonon properties are calculated via density functional perturba-

tion theory [8, 59] as implemented in the MBPP code [9, 62]. The studies were

carried out with two different approximations for the exchange-correlation func-

tional, the LDA using the Hedin-Lundqvist form [70] and the GGA using the

PBE functional [81, 144, 145]. The Brillouin-zone integration has been performed

using Monkhorst-Pack special k-point sets with a Gaussian smearing of 0.2 eV.

For the calculation of the ground state properties (structural optimization and

electronic properties) a 20×20×20 k-point mesh was used. For the phonon calcu-

lations we have used a much denser 32×32×32 k-point mesh. Complete spectra

are obtained from a Fourier interpolation of dynamical matrices calculated on an

8×8×8 q-point mesh. The same method provides access to the screened electron-

phonon matrix elements, which are the ingredients of the isotropic Eliashberg

theory [10,146]. All phonon calculations are based on full structural optimization

for each x with respect to the total energy. Finally, estimates for Tc are obtained
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via the Allen-Dynes formula [2].

The Nb1−xMox alloy was modeled in the self-consistent virtual crystal approx-

imation (VCA) [25–29]. In the case of the all-electron method, the Nb (Z=41)

sites were substituted by virtual-atoms which have a fractional electronic charge

(Z=41+x) depending on the Mo concentration (x). The valence charge was mod-

ified by the same amount in order to maintain the neutrality of the virtual-atom.

This approximation is justified since Mo has only one electron more than Nb. The

potential for the VCA system is determined self-consistently for each value of x

without shape approximation [57]. The self-consistent VCA within the LAPW

framework has already been applied successfully to model C, Be and Al sub-

stitutions in MgB2 [26, 27] and electron and hole doping in high-temperature

superconducting compounds [28, 29]. In the same spirit, the VCA was imple-

mented within the pseudopotential method by generating new pseudopotentials

with a fractional nuclear charge (Z=41+x) for each x and by adjusting the va-

lence charge accordingly. The equilibrium lattice parameter was determined by

total-energy calculations for eleven Mo concentrations (x=0.0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9 and 1.0). The structural optimization was performed with

both methods, all-electron (LAPW) and pseudopotential (MBPP), and each one

for both xc-functionals, LDA and GGA.

3.3 Structural properties
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Figure 3.2: Evolution of lattice parameter a0 as a function of x for the Nb-Mo system.
For comparison experimental data are also included [14,128,132].

We present the calculated lattice parameters for the eleven x values start-
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ing from Nb(x = 0.0) until Mo(x = 1.0). The optimal values were obtained by

the minimization of the total energy as a function of volume using the Birch-

Murnaghan equation of state [147]. In Figs. 3.2 and 3.3 we show the evolution

of the lattice parameter, a0, and the bulk modulus, B0, as a function of x. The

very good agreement between the two methods of calculation for the same xc-

functional (LDA or GGA) indicates that the implementation of the VCA in the

pseudopotential code describes very well the structural parameters of the Nb-

Mo alloy. In fact, both methods with both functionals follow the trend of the

experimental data [14, 128, 129, 132, 148]. The GGA results are closer to the ex-

perimental data than LDA, which is consistent with the tendency reported in the

literature that GGA improves the calculation of the lattice parameters in com-

parison with LDA [72–77]. The largest difference between GGA calculations and

the experimental data for a0 is only 0.5%, which happens in pure Mo, comparing

the MBPP-GGA value of 3.1619 Å and the experimental value of 3.1454 Å [14].
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Exp. [129]

Nb1-xMox

Figure 3.3: Calculated bulk modulus (B0) for Nb1−xMox compared with experimental
results [129].

3.4 Electronic properties

In order to evaluate the effects of increasing the Mo-content on the electronic

properties of the Nb1−xMox alloy, we analyzed the evolution of the density of

states (DOS) and the band structure. In Fig. 3.4 we present the DOS for the case

of Nb (x = 0) and the DOS integral, which corresponds to the number of valence

electrons of the system up to the given energy. One of the important effects of
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adding Mo to Nb - and then obtaining the Nb-Mo alloy - is the shift of the Fermi

level to the right on the DOS plot (see Fig. 3.4) as a result of increasing the

number of valence electrons in the system (the raising of the dashed line). This

is an important effect of alloying, which is captured by the simple rigid band

approximation but neglects the changes in the DOS. In our case we are using

the VCA, which gives us information about the changes in the shape of DOS,

obtaining a broadening of the plot as a function of x (not showed here since the

changes are quite small but observable) in addition to the change in the position

of the Fermi level. These small effects are quite important since the position of

the Fermi level is very close to a high peak, near to a shoulder, and any small

change in the DOS could have a very important effect on the value of the density

of states at the Fermi level, N(EF ).
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Figure 3.4: Electronic density of states, DOS, and the DOS integral for Nb correspond-
ing to the MBPP-GGA data.

In order to see the effects of alloying on the DOS closely, in Fig. 3.5 we plotted

the N(EF ) as a function of x obtained with both methods (LAPW and MBPP) for

each functional (LDA and GGA). We can see that N(EF ) decreases as a function

of x reaching the lowest value around x ≈ 0.7, however, near to Mo it increases a

little bit. We can see clearly that in the interval that corresponds to the range of

0.0 ≤ x ≤ 0.4, there are some differences between methods (solid and dash lines);

the differences disappear at x = 0.4. This result indicates that at the regime of

high Mo content, the N(EF ) has practically the same behavior as a function of x

for both methods with both xc-functionals. From a methodological point of view,

we also find a very good agreement between functionals and methods, especially
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at x ≥ 0.2. For lower x, a region that corresponds to the shoulder of the central

peak, the agreement is not so good, indicating that this is a very sensitive zone.
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Figure 3.5: Evolution of the density of states at the Fermi level for the Nb1−xMox

system.

Another way to explore the effects of alloying on the electronic properties is

the analysis of the electronic band structure. In Fig. 3.6, we show the band struc-

tures for the boundary cases under study for this alloy, Nb(x=0) and Mo(x=1),

which correspond to the calculated MBPP-GGA data, using the calculated lattice

parameters. From the band structure, it can be seen that a threefold degenerate

state exists at the Γ point (EΓ), close to the Fermi level, which lies at 0.3 eV in

Nb and at −1.5 eV in Mo. Thus, in Nb(x=0) the band centered at Γ is partially

filled and crosses the Fermi level with hole character, but as the Mo-content is

increased, it starts to fill up until a critical concentration (xc) where this band

is completely filled. For x > xc, other bands are rising in that region but with

electron character. This indicates that an electronic topological transition (ETT)

occurs around the Γ point at xc, since the Fermi surface corresponding to the hole-

like band disappears and a Fermi surface with electron character emerges. In order

to find the critical concentration xc, we trace the evolution of the energy bands at

the Γ point. In Fig. 3.7, the values of EΓ are shown as a function of x calculated

with both methods and both functionals. We find a very good agreement between

both methods, MBPP and LAPW. Nevertheless, GGA gives slightly larger values

for xc than LDA (xc is 0.28 and 0.32 for LDA and GGA, respectively). Note that

this result represents an accurate determination (under the restrictions and limits

of VCA) for xc ≈ 0.3 of the ETT, which has been conjectured from the observed

anomalies in the elastic properties of this system [129].
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3.5 Vibrational properties

In this section we present the results of the vibrational properties of Nb1−xMox

and their evolution as a function of x. In the first part we show the phonon

frequencies of the Nb-Mo alloy at the H and N (with its three polarizations)

high symmetry points obtained by means of the FPA using the all-electron code

(LAPW) and with the LRT implemented on the pseudopotential code (MBPP).

The second part corresponds to the analysis of the full-phonon dispersion curves

as the Mo-content changes in the alloy. For all modes (H , N1, N3, and N4), we

compare the results obtained with the two methods using both LDA and GGA

xc-functionals to experimental data [18].
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The results for the phonon frequencies at the H and N points are presented

in Fig. 3.8, where the label FPA indicates frequencies obtained with the LAPW

code and LRT indicates the ones obtained with the MBPP. For comparison, ex-

perimental frequencies from Powell et al. [18] are included. These experimental

data were taken at room temperature, but it has been found that the frequen-

cies of the H- and N -point phonons practically remain unchanged down to low

temperatures [149, 150]. We see that the frequencies agree very well between the

two methodologies (FPA and LRT). Furthermore, the trends of the experimental

data are reproduced with both functionals, LDA and GGA. In particular, we find

that VCA predicts correctly the non-monotonic dependence of the frequencies on
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x. This a very remarkable result considering the fact that the VCA works as a

linear interpolation of the electronic charge at the beginning of the calculation.

It is important however to note that the present version of VCA a self-consistent

treatment is performed, thus the charge density is redistributed for each concen-

tration, leading then to a better description of the alloy than, for example, the

rigid band approximation, which only considers the shifting of the Fermi level

as the principal effect of alloying as well as previous versions of VCA where the

charge density or potential for the alloy is obtained taken a weighted average of

the alloying elements.

From Fig. 3.8a we can see that for both modes, H and N3, the frequency

shows a monotonic increase until x ≈ 0.4-0.5 where it reaches a maximum, and

then starts to decrease for larger x. We note that for the H mode in Mo, a slight

deviation for the calculated frequency from the experimental value is observed

(ωFPA−LDA=21.34 meV, ωFPA−GGA=20.28 meV, ωexpt=22.68±0.25 meV) despite

the fact that anharmonic terms have been taken into account. Extensive tests

showed that the frequency of the H-point phonon of Mo is quite sensitive to

various numerical parameters, such as k-point sampling, because of the presence

of an anomaly at the H point. Interestingly, both methods with both functionals

give very similar frequencies (a difference less than 0.4 meV) for the N3 mode in Nb

which is also anomalous. For the N1 mode (see Fig. 3.8b), we found a quasilinear

behavior of the frequency for x ≤ 0.4, with a large slope. In contrast to the

other modes studied, the N1 mode does not show a maximum for intermediate

concentrations. Finally, for the N4 mode, we found good agreement of our GGA

results with the experimental values of the frequency for Nb and Mo. Further

experimental data for intermediate concentrations for this specific mode are not

available in the literature.

From the methodological point of view, we found that the range of differences

between the calculated frequencies with GGA and LDA is quite broad, but it

depends on the mode. For instance, for the H and N1 modes (∆ωLDA−GGA ≈
1.24-2.48 meV) the differences are larger than those for the N3 and N4 modes

(∆ωLDA−GGA ≈ 0.41-1.65 meV). This indicates that the H and N1 modes are

more sensitive to the xc-functional and, in general, to the details of the description

of the electronic density of the system. We find that in both methods, GGA

gives lower frequencies than LDA and that GGA is in better agreement with

the experimental results, with the exception of the N1 mode where both LDA

and GGA show the same level of agreement. However, more calculations for the

full-phonon dispersion curves are needed in order to establish which xc-functional

describes better the phonon properties of the Nb-Mo alloy system. We want to

note that the differences of the frequencies between calculations and experiments

could be larger if the numerical parameters (such as k-point sampling, or the
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cut energy, among others) are not properly taken into account. In particular,

for the FPA, the fitting procedure of the effective potential to the total-energy

calculations is rather critical in order to get reliable results.
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Figure 3.9: Phonon dispersion curves and phonon density of states (PDOS) for
Nb1−xMox calculated using the LDA and GGA xc-functionals. Experimental data [18]
are shown by empty circles.

As we mentioned before, a detailed analysis of the full-phonon dispersion curves

is needed in order to observe the evolution of the phonon anomalies at different

places in the Brillouin zone as a function of x. From the experimental point of

view, measurements of phonon dispersions revealed a wealth of phonon anomalies

which strongly depend on the value of x [16–18] as we already mention in the intro-
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duction. Thus, an interesting test of the VCA in modeling alloys is to evaluate the

usefulness of this approach in describing the evolution of the phonon anomalies.

In Fig. 3.9 we display the phonon dispersions together with the corresponding

phonon densities of states (PDOS) for eight Mo concentrations (x = 0.0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.7, and 1.0). Results obtained with both xc-functionals, LDA and

GGA, are compared with the experimental data [18]. As a general trend, the

phonon spectra hardens with increasing x, which indicates a strengthening of the

interatomic bonds from Nb to Mo. Comparing between the two xc-functionals,

we find that GGA produces softer frequencies than LDA for all concentrations.

However, both perform equally well with respect to experimental data for x = 0.0

and x = 0.4, with only a slight preference for LDA in the case of x = 1. From

the complete dispersion curves, we can follow in more detail the evolution of the

different anomalies present in Nb1−xMox as a function of x. In particular the

Kohn anomaly at the Γ-H direction and the crossing of the transversal branches

at the Γ-N direction. The latter is directly connected with the reordering of the

transversal frequencies at the N point mentioned above. We note that the Kohn

anomaly becomes less deep as x increases and disappears for x ≈ 0.5. In contrast,

on the Mo side a strong softening occurs at the H point. For the Γ-N direction

the crossing of the transverse branches moves toward the zone boundary of ζ with

increasing x until for x ≈ 0.5 it reaches the N point. For larger x the crossing

disappears, while close to Mo, the lower transverse branch develops a depression

in the vicinity of N . As it was mentioned before in the numerical details section,

the method that we used to obtain the full-phonon dispersion curves provides

access to the screened electron-phonon matrix elements, which are the ingredients

of the Eliashberg theory [10, 146]. The study of such properties is discussed on

the following section.

3.6 Superconducting properties

We now discuss our results for the electron-phonon coupling properties of the

Nb1−xMox alloy. In Fig. 3.10 we show the calculated electron-phonon spectral

functions α2F (ω). We can see that increasing x, the weight of the spectra is de-

creasing gradually until x ≈ 0.7, before recovering again for Mo. The shape of the

spectra reflects the underlying PDOS, which explains the shift to higher frequen-

cies when x increases, as well as the fact that the LDA spectra are always harder

than the corresponding GGA ones. Experimental information about α2F (ω) is

only available for Nb [5,151–153]. Results from different tunneling experiments for

Nb [5,151–153] are depicted in Fig. 3.10 with symbols. While there is reasonable

agreement for the low-frequency region, theory and experiments clearly differ with

respect to the intensity of the high-frequency (longitudinal) peak. Theory predicts
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a significantly larger coupling of the longitudinal phonons than seen in all experi-

ments. This discrepancy has also been found in previous calculations of Savrasov

et al. [10,11] and Bauer et al. [141]. Early attempts to link it to difficulties related

to the tunneling technique (e.g. preparation of high-quality junctions) have been

discarded by extensive studies [5, 153]. This points to a currently unidentified

shortcoming in the theoretical approach.
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Figure 3.10: Eliashberg function α2F (ω) for Nb1−xMox calculated using the LDA and
GGA xc-functionals. Symbols refer to spectra extracted from tunneling experiments
[5, 151–153].

The spectral functions determine the electron-phonon mass enhancement pa-

rameter λ(x) and the average effective frequency ωlog(x). The evolution of these

two quantities together with the density of states at the Fermi level N(EF ) are

shown in Fig. 3.11. Both xc-functionals result in very similar λ(x). For small

x, λ decreases almost linearly until x ≈ 0.4, passes a shallow minimum in the

range 0.4 ≤ x ≤ 0.7 before increasing slightly toward x = 1 (Mo). A very similar

behavior is exhibited by N(EF ), which indicates that the variation of λ with x is

predominantly determined by the variation of N(EF ), and to a much lesser degree

by the variation of the electron-phonon coupling. The effective phonon frequency

used in the Allen-Dynes formula is always higher for LDA than for GGA, a feature

that comes from the harder phonon spectrum for LDA. The increase of ωlog(x)

from Nb to Mo essentially occurs in the region 0.2 ≤ x ≤ 0.7, while ωlog(x) stays

almost constant otherwise.

In comparison with previous theoretical work, our value of λ=0.41 for Mo

(LDA and GGA) agrees very well with that obtained by Savrasov et al. (λ=0.42)

[11]. Similarly, for Nb we obtain λLDA = 1.34 and λGGA = 1.31, very close results
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to the value found by Bauer et al. (λ=1.33) [141]. While a slightly smaller value

was reported by Savrasov et al. (λ=1.26) [11]. This difference can be traced back

to the use of the experimental lattice constant in the calculation of the electron-

phonon coupling in the latter work [11], while in the present calculation as well as

by Bauer et al. [141] the calculated lattice constant was chosen. The theoretical

values of λ for Nb are approximately 20% larger than those deduced from tunneling

experiments (1.04 [5], 1.22 [154], 0.95-1.09 [153]), which is a direct consequence of

the overestimation of the high-frequency part of the Eliashberg function discussed

above. It is important to mention that in contrast to the tunneling experiments,

from a de Haas-van Alphen experiment [155] a value of λ = 1.33 was extracted,

which is in close agreement with the theory.
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Figure 3.11: Evolution of N(EF ), λ, and ωlog as a function of x for the Nb1−xMox

alloy.

The superconducting critical temperature Tc(x), was obtained using the Allen-

Dynes formula [2] 1. Beside the quantities λ(x) and ωlog(x) discussed above, it re-

1To check the accuracy of the Allen-Dynes formula in the strong coupling regime, we also
solved the exact gap equation for the boundary cases of the alloy, Nb and Mo. The obtained
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quires the knowledge of the Coulomb pseudopotential (µ∗), which is the only phe-

nomenological parameter. We have considered two different interpolation schemes

to estimate the dependence of µ∗ with the alloy concentration (x). The first one

consists of a simple linear interpolation, µ∗(x) = (1 − x)µ∗
Nb + (x)µ∗

Mo, between

the values of µ∗ for Nb and Mo. The boundary values were chosen to fit the

experimental Tc of 9.25 K for Nb and 0.92 K for Mo, giving µ∗
Nb=0.224(0.219)

and µ∗
Mo=0.119(0.112) for LDA(GGA). Note that our µ∗

Nb is larger than the value

obtained from inversion of the tunneling data (µ∗ ≈ 0.15 − 0.19 [153]). This

is a consequence of the larger theoretical value of λ, and has been noted be-

fore by Savrasov et al. [11]. The second scheme is based on the representation

µ∗(x) = Uc(x)N(EF , x) proposed by Gladstone et al. [156]. Here we combine our

calculated values for N(EF , x) with a linear interpolation of Uc(x). The boundary

values Uc(Nb) = 0.158(0.144) and Uc(Mo) = 0.205(0.188) for LDA(GGA), are

again chosen to reproduce the Tc’s of Nb and Mo, respectively.
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Figure 3.12: Calculated Tc(x) on a logarithmic scale for Nb1−xMox alloy using two
different interpolation schemes for µ∗(x), see text. For comparison, experimental data
from Refs. [15] are shown as open symbols.

In Fig. 3.12 we present the evolution of Tc as calculated with the two different

interpolations of µ∗(x) for both LDA and GGA, and compare them with experi-

mental data [15]. With both schemes, the experimental trend is well reproduced,

that is, a reduction of Tc for small x, a minimum at x ≈ 0.5-0.7, and then an

differences in Tc of ≈ 3% and 5% for Nb and Mo, respectively, are negligible for the purpose of
the present study.
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increase toward Mo(x = 1). Nevertheless, the linear interpolation scheme per-

forms poorly for intermediate values of x if we look carefully the comparison with

experimental data. For example, this scheme gives a minimum value for Tc of

the order of 10−6 at x = 0.5. However, a much improved description is obtained

for the case of scaling of µ∗(x) with N(EF , x) for both xc-functionals, LDA and

GGA, with a slightly better agreement for GGA in the region x ≤ 0.5.



Chapter 4

Results for the Mg1−xAlxB2 and

MgB2(1−x)C2x alloys

4.1 Introduction

In 2001 it was reported the discovery of superconductivity in the intermetallic

compound MgB2 with a Tc ≈ 39 K [30]. This discovery has motivated a lot of

activity in the scientific community, on both, experimental and theoretical, stim-

ulating a renewed interest in intermetallic superconducting materials. Although

its Tc is not so spectacular compared with the high-Tc superconductors (as high

as 160K under pressure in some cases), MgB2 possesses the highest Tc for an in-

termetallic material. Additionally, it shows a simple structure (hexagonal AlB2

type, space group P6/mmm D1
6h #191), which consists of intercalated graphite-

like boron layers with hexagonal magnesium planes, a property that makes it very

easy to study and prepare in the laboratory (see Fig. 4.1). From the technolog-

ical point of view, MgB2 has convenient mechanical properties (malleability as

an example) that make it as strong candidate to be applied in superconducting

devices [157].

c

a

Mg

B

Mg

Figure 4.1: MgB2 unit cell. The light color spheres represent Mg atoms and the dark
color ones are B atoms.
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As soon as MgB2 was found to be superconducting, its electronic properties

were studied [158, 159]. The electronic band structure consists of two bonding

σ bands corresponding to in-plane s − px − py (sp2) hybridization in the boron

layer and two π bands (bonding and anti-bonding) formed by hybridized boron

pz orbitals. Both σ and π bands have strong in-plane dispersion due to the large

overlap between all p orbitals (both in-plane and out-of-plane) for neighboring

boron atoms. The interlayer overlap is much smaller, especially for the px − py

orbitals.

The peculiar feature of MgB2 is the incomplete filling of the two σ bands

corresponding to strongly covalent, sp2-hybrid bonding within the graphite-like

boron layer. The holes at the top of these σ bands show a notably two-dimensional

character and are localized within the boron planes. In contrast, the electrons and

holes in the π bands are mostly three-dimensional and are delocalized over the

entire crystal. The unfilled σ bands, together with weak kz dispersion, give as a

result the appearance of two nearly cylindrical sheets of the Fermi surface around

the Γ − A line. The π bands form two planar honeycomb tubular networks that

consist of an anti-bonding electron-type sheet centered at kz = 0 and a similar, but

more compact, bonding hole-type sheet centered at kz = π/c, c being the distance

between boron planes. These 2D covalent and 3D metallic-type states contribute

almost equally to the total density of states (DOS) at the Fermi level, while

the unfilled covalent σ-bands experience strong interaction with the longitudinal

vibrations in the boron layer [158–160].

It is now generally accepted that MgB2 is a phonon-mediated BCS-Eliashberg

superconductor with multiple gaps and strong electron-phonon (e-ph) coupling

[161–163]. The e-ph coupling in MgB2 is resulting mainly from the interaction

of the σ-band orbitals and the B-B bond stretching modes with E2g symmetry

at Γ) [161, 163]. This general picture is supported by a wealth of experimen-

tal evidence, and its good agreement with first principles calculations [164, 165].

Since the E2g phonon mode lies at Γ in the Brillouin zone, initial experimental

verification of phonon behavior came from Raman spectroscopy, which is a useful

and sensitive technique to study zone center phonons. Experiments [32, 166–168]

showed a very broad band line-width for the phonon mode and a strong softening

(≈ 50 mev) relative to AlB2 (which is not a superconductor) [32]. This provided

early experimental confirmation of the picture of strongly coupled (broad and

soft) E2g modes at Γ. Since the Raman scattering is restricted to the Brillouin

zone center (q = 0), then this technique is only able to access a limited number

of the available phonon modes. However, given the strong dispersion and line-

width changes expected in MgB2, it is of great interest to observe the momentum

dependence of the phonon properties (e.g. ω(q)). The first investigations with

of phonon dispersion in MgB2 were calculations carried out by different groups
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nearly simultaneously [31–34]. All these groups came to similar general conclu-

sions, namely that the dominant effect in the phonon spectrum was the strong

electron-phonon coupling of E2g modes to the σ-band Fermi sheets about the Γ−A
line. This coupling leads to relatively soft and broad modes in the region where

|q| < 2kF , with kF being the radii of the cylindrical σ-band Fermi surfaces. From

the MgB2 full-phonon dispersion plot [32] it can be observed the strong softening

of the E2g mode along Γ−A, in comparison with AlB2, and the very similar struc-

ture of the low-energy phonon region of these two compounds. Measurements of

phonon spectra in pure MgB2 have been carried out by two groups using inelastic

x-ray scattering (IXS) [164, 165]. Shukla et al. [164] showed that the broad band

line seen in the Raman data was present at several points along the Γ − A line.

However, no measured values for the E2g line-width away from the Γ−A line were

reported. More recently, Baron et al. [165] showed that the softening of the E2g

mode, on moving from large momentum transfers toward Γ, and the increase of

the line-width were well correlated and in good agreement with calculations. They

also showed that the temperature dependence of the phonon spectra containing

the E2g mode was small.

Another interesting feature that has attracted attention of many authors is the

anharmonicity of the E2g phonon modes [33,34,63,169]. In general, anharmonicity

can be expected to lead to shifts of phonon frequencies relative to the harmonic

calculation, generating additional contributions to the phonon line-width and,

possibly, strong temperature dependence. The strong T -dependence in the Raman

spectra might have helped to focus attention on this aspect [168]. However, due to

the good agreement between the experimental data and harmonic calculations of

the full-dispersion phonon plots [161,170], it is clear that predictions of rather large

(15-25%) hardening of the E2g modes, due to anharmonicity are not supported.

As we mention previously, after the discovery of superconductivity in MgB2,

the e-ph coupling was estimated and then it was suggested that MgB2 is a stan-

dard BCS superconductor [159, 163], where the coupling with longitudinal vi-

brations on the B planes is the driving force for the superconductivity in this

compound. The related phonons were soon identified as two optical E2g modes,

and that was confirmed by the e-ph coupling calculation by An and Pickett [158].

After this publication, some groups started to work on the calculation of the

e-ph coupling spectral function, α2F (ω), including for this purpose the contribu-

tion of all electronic bands and all phonons on the same footing [31, 32, 63, 123].

However, experimental reports on MgB2 were not consistent with a conventional

strong coupling scenario [171–178]. In particular, it was observed that the spe-

cific heat [172,179] and tunneling [178] measurements were easy to explain if two

superconducting gaps are assumed instead of one. Liu et al. [63] concluded that

there are in fact, two distinctive gaps associated with the σ and π Fermi surfaces.
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Then, with this evidence, the results for the Eliashberg function were broken in

a 2 × 2 e-ph coupling matrix [31, 63, 64]. In the same direction, in a paper by

Geerk et al. [127], the e-ph spectral function for MgB2 was obtained experimen-

tally by tunneling spectroscopy, and compared with ab-initio LDA calculations in

the two-gap scheme. By comparing experiments and calculations, it was possible

to identify the character of the contributions to the different peaks shown in the

experimental spectra. The theoretical justification for the two-band supercon-

ductivity comes from the fact that the system is highly anisotropic and the E2g

phonons couple strongly to the holes at the top of the σ bands, while the three

dimensional π electrons couple only weakly to the phonons [158]. The different

coupling strengths of the σ- and π-bands lead to different superconducting gaps

in character and size [31, 32, 63, 123].

The search for superconductivity in MgB2 related systems is another very ac-

tive research subject. One of the first studies in this direction was the substitution

of Mg by Al. It was found to cause a decrease of the interplanar distance and a

very small reduction of the distance between atoms in the same plane. More dras-

tic is the reduction of the superconducting critical temperature, Tc, as a function

of x in the Mg1−xAlxB2 alloy, for x ≥ 0.5 where the system loses the supercon-

ducting state [35–38]. This behavior was successfully explained by first principle

calculations, using the virtual-crystal approximation, with the main reason of the

Tc reduction being the filling effect of the σ-bands as a function of x [27]. Another

interesting MgB2-based system is the MgB2(1−x)C2x alloy, which presents a nearly

constant behavior in the c lattice parameter, and a larger decrease of the a pa-

rameter, in comparison with the Al-case. The C-doped system shows a stronger

reduction of Tc as a function of x, since Tc ≈ 0 for x ≥ 0.15 [39, 40, 42, 43]. The

difference in the evolution of the lattice parameters between Al- and C-systems

indicates that although both are electron doped systems, the doping site is crucial

in the understanding of the behavior of their properties as a function of doping.

The superconducting properties of MgB2, such as e-ph coupling and Tc, are

influenced by doping in several ways, for instance the changes in the electronic

band structure that has direct impact on the electronic density of states, a key

ingredient in the superconducting properties. Furthermore, the electronic change

also influences the phonon properties, like the renormalization of the E2g phonon

frequency in Mg1−xAlxB2, which has been demonstrated by Raman scattering

measurements, where it was found that the frequency increases as a function of x,

from ≈ 73 meV (MgB2) until 123 meV (AlB2) [32,52,53]. In the case of C-doped

system, so far there are not reliable phonon characterizations as a function of x.

According to the reduction of Tc with doping in Mg1−xAlxB2 and MgB2(1−x)C2x,

it has also been observed the decrease of the superconducting gaps ∆σ and ∆π

with x in these alloys. In Al-doped single crystals and polycrystals it is clear that
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the σ and π gaps do not merge even for Tc(x) as low as 10 K [44–48], indicating

that the interband scattering Γσπ (a quantity that induces the merging of gaps)

turns out to be rather small, especially at high doping levels, and in any case

insufficient to produce the merging. For the case of C-doped system, the situation

is not so clear, since the Γσπ effect is only observed in a set of C-doped single

crystal samples [45, 48] but not in others [47, 49–51]. Then, in general it seems

that substitutions of Mg by Al and B by C, the band filling effects are largely

dominant and partially mask any other effects like Γσπ.

In this chapter we present results of the structural, electronic, vibrational,

and superconducting properties for the Mg1−xAlxB2 and MgB2(1−x)C2x systems,

as a function of the Al and C-content (x). The results were obtained using two

methodologies, the full-potential LAPW method, and the MBPP pseudopotential

method, and in both cases the LDA and GGA xc-functionals. In the section 4.2

of this chapter there is the description of the numerical details for the calculations

performed on the Al and C-doped MgB2 systems. We present in the section

4.3 the results of the structural optimization of the hexagonal unit cell for the

systems under study, for fourteen Al concentrations from x = 0 to x = 1 and for

thirteen C concentrations from x = 0 to x = 0.3. These results are compared

with experimental data, specifically the lattice constants a0 and c0. The evolution

of the density of states (DOS) and electronic band structure as a function of Al

and C-content are analyzed in order to determine the critical concentration of

possible topological transitions. This analysis is presented in the section 4.4. In

the section 4.5 they are presented the vibrational calculations for the two systems,

namely, the frequencies of the E2g phonon mode at Γ, which are compared with

experimental data available in the literature. The full-phonon dispersion curves

for different values of x are also presented in section 4.5. Finally, from the results

for the electronic and vibrational properties at the calculated lattice parameters,

we have obtained the electron-phonon properties using the two gaps model, such

as the Eliashberg function, α2
ijF (ω) and the electron-phonon coupling constant,

λij. They are used as input (together with the proposed Coulomb pseudopotential

matrix µ∗
ij) for the solution of the Eliashberg gap equations on the imaginary axis

(Matsubara frequencies), obtaining then the superconducting gaps, ∆σ, ∆π and

the value of Tc as a function of x, for the Mg1−xAlxB2 and MgB2(1−x)C2x alloys.

The results for the e-ph coupling and superconducting properties are presented in

section 4.6.

4.2 Numerical details of the calculations

As in the case of the previous chapter with the Nb-Mo alloy, we applied two

different methodologies in order to test the implementation of VCA in the pseu-
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dopotential method: (i) the all-electron LAPW and (ii) the MBPP method. As

before, for the calculation of the vibrational properties we have applied the im-

plementation of linear response theory (LRT) on the MBPP method and used the

frozen phonon approximation (FPA) with the LAPW method. For the calculated

properties of these alloy systems we also used two xc-functionals, LDA [70, 71]

and GGA [81].

(i) LAPW calculations. For the all-electron calculations, we chose muffin-tin

radii (RMT ) of 1.8 a.u. for Mg/Al and 1.4 a.u. for B/C and a plane-wave cutoff

RMT ×KMAX = 9.0. Inside the atomic spheres the potential and charge density

were expanded in crystal harmonics up to l = 10. Convergence was assumed

when the energy difference between the input and output steps was less than

1×10−6 Ry. Special attention was paid to convergence of results by performing the

calculations for a sufficiently large number of k-points, using a grid of 17×17×10

for the structural optimization and 18×18×15 for the frozen phonon calculations.

We use the Gaussian smearing method for the Brillouin-zone integration with a

smearing factor of 0.2 eV. The vibrational properties obtained with the LAPW

code were calculated using the frozen phonon approximation (FPA) [106–108].

The studied phonon mode using this method is the E2g-mode at Γ.

Mg

Asymmetrical Symmetrical

B

E2g(a)

a1

a2

O

E2g(b)
a1

a2

O

Figure 4.2: MgB2 displacement patterns corresponding to the degenerate E2g phonon
mode, (a)-asymmetrical and (b)-symmetrical.

In Fig. 4.2 they are shown the different displacement patterns for both po-

larization states of this E2g-mode. Because they are degenerate at Γ, we only

performed the calculation of the symmetric one, E2g(b). In Table 4.1 we show the

structural details for the E2g distortion patterns, the lattice vectors (~a1 and ~a2),

and the basis vectors (~b1 and ~b2) including the displacement unit (u). We per-

formed seven different distortions u for each x. The energy-versus-displacement

surface was fitted by a sixth-order polynomial with only even terms, as required

by the symmetry of the displacement pattern [33, 34]. The harmonic phonon

frequency was then extracted from the second-order coefficient of the fitted poly-

nomial using h̄/a0

√

2a2/mB, where a0 is the lattice parameter of the distorted



4.2. Numerical details of the calculations 59

cell, a2 is the second-order coefficient of the fitted polynomial and m is the mass

of the boron atom (or virtual element, in the case of C-doped system).

Table 4.1: Structural details of the distortion patterns corresponding to the E2g(a) and
E2g(b) phonon modes.

E2g(a) E2g(b)
~a1 (1, 0, 0)a (1, 0, 0) a
~a2 (0, 1, 0)a (0, 1, 0) a
~c (0, 0, 1)a (0, 0, 1) a
~b1

(

1
3
± 2√

3
u
)

~a1 +
(

2
3
± 1√

3
u
)

~a2 + 1
2
~c 1

3
~a1 +

(

2
3
± u

)

~a2 + 1
2
~c

~b2
(

2
3
∓ 2√

3
u
)

~a1 +
(

1
3
∓ 1√

3
u
)

~a2 + 1
2
~c 2

3
~a1 +

(

1
3
∓ u

)

~a2 + 1
2
~c

Space group Cmmm-D19
2h (#65) P2/m-C1

2h (#10)

(ii) MBPP calculations. The pseudopotential calculations were performed with

the mixed-basis pseudopotential method (MBPP) [58]. For B/C and Mg/Al the

pseudopotentials were constructed according to the description of Vanderbilt [93].

For the calculations we have included partial core corrections for the generation of

all pseduopotentials. The fairly deep potentials for B/C and Mg/Al are efficiently

treated by the mixed-basis scheme, which uses a combination of local functions

and plane waves for the representation of the valence states. We use s and p-

type functions at the B/C sites, supplemented by plane waves up to a kinetic

energy of 16 Ry and a GMAX parameter of 28. Phonon properties are accessed

via density functional perturbation theory [8, 59] as implemented in the MBPP

code [9,62]. The studies were carried out with two different approximations for the

exchange-correlation functional, the LDA using the Hedin-Lundqvist form [70] and

the GGA using the PBE functional [81, 144, 145]. The Brillouin-zone integration

has been performed using Monkhorst-Pack special k-point sets with a Gaussian

smearing of 0.2 eV. For the calculation of the ground state properties and phonons

a 18×18×18 k-point mesh was used. Complete Eliashberg spectra in the two gaps

model (σ and π) were obtained from a Fourier interpolation of dynamical matrices,

calculated on a much denser grid of 36×36×36 k-point mesh, with a 6×6×6 q-

point mesh. The same method provides access to the screened electron-phonon

matrix elements, which are the ingredients of the Eliashberg theory [10, 146]. All

phonon calculations are based on full structural optimization for each x with

respect to the total energy. Once we have α2
ijF (ω), the Eliashberg gap equations

were solved in the two gaps model (see section 2.5 for details) in order to obtain

∆σ, ∆π, and Tc [1].

The Mg1−xAlxB2 and MgB2(1−x)C2x alloys were modeled in the self-consistent

virtual-crystal approximation (VCA) [25–29], in the same way as described in the

section 3.2 for the Nb1−xMox alloy. Nevertheless, we want to note that in the

present case, the virtual-atom with fractional atomic number is only at the Mg or
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B site, for Al or C doping, respectively. Thus, the equilibrium lattice parameters

were determined by total-energy calculations for fourteen Al-concentrations for

Mg1−xAlxB2 (x=0.0, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0)

and for thirteen C-concentrations for MgB2(1−x)C2x (x=0.0, 0.025, 0.05, 0.075,

0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3). The structural optimization

was performed with both methods, all-electron (LAPW) and pseudopotentials

(MBPP), and in both cases with the LDA and GGA xc-functionals.

4.3 Structural properties

In Fig. 4.3 we show the evolution of the calculated structural parameters a0

and c0 as a function of the Al and C-content in the alloys. On one hand, for

the Al-doped system, we observe a decrease of the c0 lattice parameter, which

is related to the interplanar distance, and a nearly constant behavior of the a0

lattice parameter. which is related with the atom-atom distance in the same

plane. On the another hand, for the C-doped system, the behavior for these

quantities is reversed, with c0 being nearly constant and a0 showing a decreasing

behavior. This is a very interesting result keeping in mind that both systems are

electron-doped, indicating that the doping site is important for determining the

characteristics of these systems.
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Figure 4.3: Evolution of the a0 and c0 lattice parameters for Mg1−xAlxB2 and
MgB2(1−x)C2x as a function of x and comparison with experimental results [35,38–43].

The reason for this contrasting behavior of the lattice parameters is that for the
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Al-doped system, the extra charge is located on the interplanar zone, and screens

the repulsion between ions of different planes, giving as a result the reduction of

c0. Instead, the C-doped system shows the same effect but in the zone located

between the B atoms of the same plane, since the extra charge coming from the

C is located at the σ-bond and then a0 decreases as the C-content increases. This

behavior was understood due to a charge transfer analysis performed in a previous

work [27, 180].

We also observe a good agreement between both methods, independently of

the functional that we are using. This tells us so far that the VCA implementation

on the MBPP-code works very well for the calculation of structural properties on

these ternary alloys. Going further in the analysis, we see from the Fig. 4.3 that

the GGA results are in better agreement with the experimental data than LDA,

which is in accordance with several results in the literature where it is claimed

that LDA underestimates the lattice parameters of metallic systems [72–77].

4.4 Electronic properties

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

MgB2

 

E
ne

rg
y 

(e
V

)

Γ                   M         K                     Γ               A                  L

kx

A

ky

ΓΓΓΓ

A

EΓΓΓΓ

EA

EF

MgB2

Figure 4.4: Electronic band structure of MgB2 and the σ-band Fermi surface at the
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The electronic structure plays an important role in determining the super-

conducting properties of the materials. In the case of the MgB2, the σ-band

has special importance due to the strong e-ph coupling with the zone center E2g

phonon mode [123,158,159]. For that reason, we have studied the electronic prop-

erties of the Mg1−xAlxB2 and MgB2(1−x)C2x alloys, in particular the evolution of

the electronic band structure. In Fig. 4.4 we show the MgB2 electronic band

structure and the Fermi surface associated to the σ-band at the Γ − A path. In
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general, we found that this band saturates as the content of Al or C in the alloy

increases. This behavior is expected, since both systems are electron-doped, and

one of the principal effects is the shift of the Fermi level to higher energies (band

filling). Nevertheless, we find that the behavior of the σ-band is different between

both cases, Al and C-doped.

In order to analyze the evolution of the σ-band, in Fig. 4.5 we show the

behavior of the energy at the Γ point (EΓ) and at the A point (EA) (see Fig. 4.4)

as a function of x for both systems. For Mg1−xAlxB2 we found that EΓ goes to zero

at x = 0.26, indicating an electronic topological transition (ETT) happening on

the σ-band, since there is a transition from a continuous surface to a discontinuous

one [27]. If we continue increasing the Al-content, we reach a second ETT, where

EA = 0 at x = 0.57, indicating total saturation of the σ-band and collapse of

the corresponding Fermi surface. This critical concentration, xc = 0.57, correlates

with the loss of superconductivity on this alloy, experimentally determined at

x > 0.5 (nominal content) [35–38]. The last result indicates that the loss of

superconductivity in the Mg1−xAlxB2 alloy is related to the filling of the σ-band

[27, 181].
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Figure 4.5: Evolution of EΓ and EA as a function of x for Mg1−xAlxB2 and
MgB2(1−x)C2x alloys obtained with both methods, LAPW and MBPP, and with both
functionals, LDA and GGA.

We also studied the evolution of the σ-band in the MgB2(1−x)C2x system, get-

ting the following critical values for the ETT: EΓ = 0 at x = 0.117 and EA = 0 at

x = 0.175. These values are clearly different from the Al-case, with the effect of

C-doping being stronger than the Al-doping, although both of them are in prin-
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ciple electron-doping systems. Note that the x values are not directly equivalent

between both systems, since this x value is the number of extra electrons per atom

in each alloy. If we want to make them equivalent (extra electrons per cell), then

we just need to take the double of electrons for the C-doped system. With this in

mind, the σ-band saturates at x = 0.57 in the Al-doped system and at x = 0.35

in the C-doped system, per unit cell, clearly a different result to the expected

from the rigid band approximation, where the two systems must give the same

critical concentration, since under this approximation they are indistinguishable.

For MgB2(1−x)C2x the experimental value of xc, the critical concentration where

Tc → 0K has not been reported, since there are segregation problems on this alloy

at higher C-concentrations (x > 0.13). However, from the experimental data, it

is observed a loss of superconductivity for x ≥ 0.15 [39, 40, 42, 43], which is in

agreement with our predicted value of xc = 0.175.

Finally, the results have been calculated with both methodologies (LAPW and

MBPP) and with both functionals (LDA and GGA), obtaining very good agree-

ment between the two methods and only very small difference between functionals.

Moreover, the results indicate the reliable description of electronic properties by

the VCA implemented in the MBPP.

4.5 Vibrational properties
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In this section we present the results of the vibrational properties of the Al

and C-doped MgB2 alloys, in particular, the evolution of the E2g-phonon mode

frequency and the full-phonon dispersion as a function of x. We start analyzing

the evolution of the E2g-phonon mode calculated with the frozen phonon approx-

imation (FPA) implemented in the full potential code (LAPW) and the linear

response theory (LRT) implemented in the pseudopotential code (MBPP). The

two sets of calculations were performed using both xc-functionals, LDA and GGA.

In Fig. 4.6 we show the evolution of the E2g-phonon mode frequency as a

function of x for the Mg1−xAlxB2 and MgB2(1−x)C2x alloys. First we note that the

results obtained with the two methods are in agreement, independently of the xc-

functional (LDA or GGA). This gives us confidence that the VCA implementation

is performing very well on zone center, high-symmetry modes, like the E2g. In

general, we observe that both alloys show a strong renormalization of the frequency

as a function of x. This effect is stronger in the C-doped system, since the range

of x where the transition takes place is narrower than in the Al-doped system. It

is important to mention that this transition region (Fig. 4.6) correlates with the

x region between the two ETT in the σ-band which were found before (Fig. 4.5)

(Al: 0.26 ≤ x ≤ 0.57; C: 0.117 ≤ x ≤ 0.175), indicating the strong effect of the

σ-band filling on the vibrational properties. We also note that in both systems,

the LDA results are harder than GGA, a behavior that correlates with the smaller

lattice parameters obtained with LDA (see section 4.1).
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After we compared the VCA calculations of the phonon frequency for a spe-

cific mode on these alloys using the FPA-LAPW and LRT-MBPP methodologies.
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We performed the calculation of the full-phonon dispersion for MgB2 in order to

compare with experimental results available in the literature [164, 165]. We ob-

serve that the calculations are in rather good agreement with the experimental

data (see Fig. 4.7), with the GGA results (black line) being closer to experimen-

tal data than LDA (gray line). Thus, we can conclude that for MgB2 the GGA

describes better the full-phonon dispersion. Therefore, we continue the further

analysis of the Al and C-doped systems with only the GGA xc-functional.
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Figure 4.8: Full-phonon dispersion for Mg1−xAlxB2 as a function of x. Gray color
corresponds to the more affected branches by doping. Not showing x = 0.25 and
x = 0.90 just for clarity.

For Mg1−xAlxB2 we calculated the full-phonon dispersion curves for ten Al-

concentrations (0.0, 0.1, 0.2, 0.25, 0.3, 0.5, 0.55, 0.7, 0.9, and 1.0) and also ten

C-concentrations (0.0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, and 0.3) for

MgB2(1−x)C2x. The results for the Al-doped system are shown in Fig. 4.8 and for

the C-doped system in Fig. 4.9. In both figures we marked with gray color the

branches that are strongly affected by the Al and C-doping. Analyzing first the Al-

doped system, we observe an interesting behavior of the spectra as a function of x,

hardening of the E2g-phonon mode and softening of the B1g-phonon mode, which

corresponds to an out-plane movement of the B-atoms [34]. The shift of these

branches involves a strong reduction of dispersion of the branch corresponding

E2g-phonon mode, and the loss of dispersion is almost complete at x = 0.55, the

same Al-concentration that corresponds to the saturation of the σ-band on the
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electronic band structure (second ETT). At higher x, the branch keeps practically

without any change, with just a small increase in frequency. On the another hand,

the branch corresponding to the B1g-mode continues shifting down until x = 1.0.

For the C-doped system the behavior of the full-phonon dispersion as x in-

creases is similar to the Al-doped system, but taking place at smaller x. In this

case there exists also a correlation between the loss of dispersion of the branch

where the E2g-mode corresponds, with the saturation of the σ-band (x ≈ 0.175).

However, the behavior of the B1g-mode branch is slightly different, since in the

C-doped system it is less affected than in the Al-doped system, being nearly con-

stant with increasing C-content in the alloy. The loss of dispersion effect along

the M − Γ −A−H directions has a close relationship with the saturation of the

σ-band from the electronic band structure. This is because the σ-states provide

the background media in MgB2 to slow down the E2g frequency. When the σ-

states (holes) decrease due to Al or C-doping (electrons), the background density

starts to disappear and, then, the E2g-mode rises in frequency.
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Figure 4.9: Full phonon dispersion for MgB2(1−x)C2x as a function of x. Gray color
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x = 0.25 just for clarity.

With the previously obtained information (electronic and vibrational prop-

erties), and using linear response theory it is possible to calculate the electron-

phonon coupling and Eliashberg functions of the alloys from first-principles. This

is exposed in the following section.
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4.6 Superconducting properties

For the study of the superconducting properties, we have calculated the spectral

or Eliashberg function, α2F (ω), for each case, and from there, we are able to

obtain the electron-phonon coupling constant, λ. Because the alloys based on

MgB2 are described by the two gaps model, we need to obtain these quantities for

each band contribution, i.e. α2
ijF (ω) and λij with i, j = σ, π. Note that three of

these four quantities are independent: σσ, ππ (intraband contributions) and σπ

or πσ (interband contribution).
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Figure 4.10: Evolution of the total and the components of the Eliashberg spectral
function α2

ijF (ω) with ij = σσ, σπ, πσ, ππ, for the Mg1−xAlxB2 alloy.

In Fig. 4.10 we show the evolution of the total and the four components of

the Eliashberg spectral function α2
ijF (ω) (ij = σσ, σπ, πσ, ππ) of the Mg1−xAlxB2

alloy for six Al-concentrations (0.0, 0.1, 0.2, 0.30, 0.5, and 0.55). This range of

Al-concentrations represents the superconducting region for the alloy. For MgB2

(x = 0), we can see that the main contribution to the total spectral function comes

from the σσ spectra, with the main peak centered at approximately 70 meV, a

value that corresponds to the E2g-phonon mode frequency. Nevertheless, although

the σσ spectra represents the main part of the total spectra, the other components

also contribute to the total α2F (ω). For example, the ππ spectrum is closely

related to the high-frequency region of the phonons, mainly the B1g-phonon mode,

and the σπ(πσ) spectra to the low-frequency region, between 40 and 70 meV.

Thus, the present results indicate that in order to fully understand these systems,
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we must consider the other contributions to α2F (ω), instead of considering it

as a single band system (in that case, σσ). From the evolution of the different

contributions to α2F (ω) for Mg1−xAlxB2 (see Fig. 4.10), we can observe how

strongly α2
σσF (ω) is affected by the increase of Al-content. The main effects on

this component of the spectra are the shift to higher frequencies and the reduction

of its area at the same time, until x = 0.55, where the contribution is practically

zero and the system is not superconducting [27, 37, 38]. That reduction indicates

a loss of electron-phonon coupling between the σσ states and the bond-stretching

phonon modes at the corresponding frequency. The interband contribution, σπ,

follows closely the behavior of σσ, showing a reduction as a function of x and

almost disappears for x = 0.55. Nevertheless, the ππ contribution at higher

frequencies is becoming stronger and the position of its main peak is practically

unaffected by doping. This behavior is resulting from the hardening of the E2g-

phonon mode that we already discussed in the previous section.
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Figure 4.11: Evolution of the total and the components of the Eliashberg spectral
function α2

ijF (ω) with ij = σσ, σπ, πσ, ππ, for the MgB2(1−x)C2x alloy.

In Fig. 4.11 we show the results for the MgB2(1−x)C2x alloy for six C-concentra-

tions: (0.0, 0.05, 0.1, 0.125, 0.15, and 0.175). Performing the same analysis as

for the Al-doped system we find that the evolution of the different contributions

to α2F (ω) in C-doped MgB2 is quite similar to the Al-doped system. That is, a

strong decrease of the σσ and σπ contributions with an increase of the ππ spectra

due to basically the hardening of the E2g-phonon frequency. The loss of α2
σσF (ω)

at x ≈ 0.175 correlates with the occurrence of the second ETT at the σ-band in
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the electronic band structure (loss of the Fermi surface) of MgB2(1−x)C2x.

From the results of α2
ijF (ω) we have obtained the e-ph coupling parameter, λ

for each contribution (λσσ, λσπ, λπσ, and λππ). In Fig. 4.12 they are shown the

calculated values for the total and partial contributions of λ and N(EF ) for the

two alloys Mg1−xAlxB2 and MgB2(1−x)C2x. The calculated values for MgB2 are

λσσ = 0.850, λσπ = 0.196, λπσ = 0.145, λππ = 0.250, and λtot = 0.672, where each

contribution λij is normalized by the corresponding Ni and λtot = (
∑

λijNi)/Ntot.

The obtained value for λtot is very close to the experimental one by Geerk et al.

[153] (λtot = 0.650). The partial contributions to N(EF ) for MgB2 are Nσ = 0.148

states eV−1/spin and Nπ = 0.200 states eV−1/spin. These values are very similar

to those calculated earlier by Liu et al. [63] and Golubov et al. [64].
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Figure 4.12: Evolution of λij and Ni(EF ) as a function of x for the Mg1−xAlxB2 and
MgB2(1−x)C2x. The calculated values for MgB2 are: Nσ = 0.148 states eV−1/spin,
Nπ = 0.200 states eV−1/spin, λσσ = 0.850, λσπ = 0.196, λπσ = 0.145, λππ = 0.250, and
λtot = 0.672.

From the Fig. 4.12, we can clearly see that the main contribution to the e-

ph coupling in MgB2 (x = 0) is coming from the σσ component. Nevertheless,

the other contributions, ππ and interband (σπ, πσ), are not so small to neglect

them. Following the evolution of the different components of the e-ph coupling

parameter as a function of x in both alloys, we observe that λtot decreases as a

function of x, mainly by the effect of the reduction in λσσ. In contrast, λσπ, λπσ

and λππ are almost unaffected by doping. Comparing λ and N(EF ) we notice

that the e-ph coupling parameters follow the same behavior as the σ contribution
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to the density of states (Nσ). This result indicates again the great importance

of the σ-band states to the electron-phonon properties in both alloys. However,

the ππ, σπ, and πσ contributions can not be neglected, because considering only

the σσ contribution produces a value of λtot of ≈ 0.85, which is larger than the

experimental value. These effects have been already discussed in the literature

[63, 64, 158, 159].
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In the case of a single-band superconductor, from the knowledge of α2F (ω) and

a value of the Coulomb pseudopotential µ∗(ωc), we are able to solve the Eliashberg

gap equations on the imaginary frequency axis, i.e. the Matsubara frequencies

(see section 2.5 and references therein) in order to obtain the superconductor gap

as a function of T . However, in the cases of Al- and C-doped MgB2 we must

apply the Eliashberg gap equations in the two band model since we are dealing

with two distinctive contributions (σ and π) to the gaps. Therefore, we used the

α2
ijF (ω) (ij = σσ, σπ, πσ, and ππ) with a proposed diagonal form for the µ∗(ωc)

matrix. We solved the gap equations in the two band model for MgB2. In order to

reproduce the experimental value of Tc = 38.82 K [45, 48], we used the standard

expression of the cutoff frequency, ωc = 10ωmax
ph and the following values for the

µ∗(ωc) matrix elements: µ∗
σσ = µ∗

ππ = 0.107 and µ∗
σπ = µ∗

πσ = 0. The resulting

temperature dependences of the superconducting gaps are shown and compared

with experimental data [45, 125, 174, 182] in Fig. 4.13. The gap values obtained

for MgB2 at T = 0 K are ∆σ = 7.04 meV and ∆π = 2.71 meV, which are in good

agreement with experimental results [45, 125, 182]. It is important to mention at
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this point that the µ∗(ωc) values are the only non ab-initio parameters used in the

whole series of calculations in the present study.

For the Mg1−xAlxB2 and MgB2(1−x)C2x alloys we also solved the Eliashberg gap

equations in the two-band model (we obtained the T dependence of ∆σ and ∆π).

In the alloys we applied two different schemes for the scaling of µ∗(ωc) with the

alloy concentration. The first one was just keeping constant the matrix element

values with respect to MgB2. The second one was applying the representation

µ∗(x) = UcN(EF , x) proposed by Gladstone et al. [156] for the scalling of µ∗ as a

function of x. For the second scheme we combined the Uc value obtained for MgB2

from Uc = µ∗(0)/N(EF , 0) = 0.154, with the calculated values for N(EF , x)(states

eV−1/cell). From these results, the values of the superconducting gaps and Tc are

calculated.
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Figure 4.14: Superconducting gaps, ∆σ(x) and ∆π(x), and critical temperature, Tc(x),
for Mg1−xAlxB2 and MgB2(1−x)C2x. The lines with circles are the calculated values and
the symbols represent the experimental measurements [37–43,46–48,50].

The evolution of ∆σ, ∆π, and Tc as a function of x for the Al- and C-

doped systems are presented in Fig. 4.14 and compared with experimental data

[37–43,46–48,50]. Values of the superconducting gaps and λij as function of x had

been obtained previously from empirical calculations fitted to the MgB2 experi-

mental data and scaled with N(EF ) in order to get the evolution with x [181,183].

Then, we do not include that results in the discussion of this work since they only

represent a qualitative description of the experimental data [44]. We find that the
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calculations reproduce the experimental trends, that is, the decrease of the gaps

and Tc as a function of x with both approaches for µ∗, although the difference be-

tween the two schemes for µ∗ is small at a given x and both are quite close to the

experimental data. The point to be considered is that the scaled scheme predicts

the loss of superconductivity at x ≈ xc, being xc the Al- and C-concentration

where the ETT happens for each system (xc(Al) = 0.57, xc(C) = 0.177). Instead,

the constant approach predicts that Tc goes to zero at slightly lower concentra-

tions. The differences on the evolution of gaps and Tc between the Al- and C-doped

systems are more interesting. The Al-doped system shows an inflection point in

Tc(x) at x ≈ 0.25, in contrast to the C-doped system which shows a monotonic

behavior of the slope. These differences indicate how important is the doped site

on MgB2 alloys, and also that although both are electron-doped cases, their effects

on the superconducting gaps and critical temperature are quite different.

In Fig. 4.14 we observe a clear dispersion of different experimental sets of data.

This indicates how sensitive are the superconducting properties to the sample

preparation methods and physical conditions of the procedure itself. Additionally,

for these alloys it is complicated to determine accurately the real concentration

in each case. Those could be some sources for the observed experimental differ-

ences. Despite of this, the calculated Tc(x) follows nicely the data for lower and

intermediate range of Al-content. The calculations for the gaps are also in very

good agreement with the experimental data, in particular ∆π.

In the case of the C-doped MgB2 system, the tendencies for ∆σ, ∆π and Tc(x)

are similar to the Al-doped case, but given the lower x, the effects of doping

are stronger (gaps and Tc go to zero faster than in the Al-doped system). The

comparison with experiments is very good for both gaps and Tc, as a function

of x specially if takes in to account discrepancies between different experimental

results, in particular for the superconducting gaps. For Tc(x), despite of the differ-

ences between different experimental sets of data, all are approximately included

in the error bar given by Ribeiro et al. [40] and Avdeev et al. [41]. Other ex-

periments used these data set as benchmarks. Nevertheless, we observe the good

agreement of the calculated Tc(x) with practically all the experiments at x ≤ 0.05.

For higher x, the good agreement is obtained with the data sets of Kazakov et

al. [42] and Gonnelli et al. [48].

In Fig. 4.15 we show the calculations and experimental data of ∆σ and ∆π for

Al and C-doped systems [45–48, 50, 51] as a function of the critical temperature.

From the theoretical point of view, we can see that both schemes for µ∗ give

practically the same results for the σ- and π-gaps. The advantage of plotting

the values of the gaps vs. Tc as in Fig. 4.15 is that in this way it is eliminated

any possible source of discrepancy concerning the concentration of the alloys in

the experimental data. From the experimental data we observe a decrease of the
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Figure 4.15: Superconducting gaps (∆σ and ∆π) for Al- and C-doped MgB2 as a
function of critical temperature Tc, obtained from the solution of the Eliashberg gap
equations without interband scattering (lines) compared with experimental results [45–
48,50,51].

gaps as Tc decreases for both systems, but for the case of C-doped, there is a set

of data that reports a merge of the superconducting gaps at Tc ≈ 19 K [48], in

clear disagreement with the other experimental reports [47, 50, 51]. So far there

is not a consensus about the merging (or not) of the superconducting gaps in the

C-doped system. Nevertheless, in both cases we can say that the agreement of

the calculations with the experiments is quite good. Based on the agreement with

the calculations with most of the available experimental data one may conclude

that there is no clear evidence for a merging of the gaps for any of both Al- and

C- doped MgB2 systems. Therefore, the interband scattering in Al- and C-doped

samples, if present, is small and their effects are negligible on the superconducting

properties of Mg1−xAlxB2 and MgB2(1−x)C2x.
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Conclusions

• We find that the self-consistent virtual crystal approximation implemented

in the mixed basis pseudopotential code reproduce the all-electron LAPW

calculations of the structural, electronic, and vibrational properties for the

Nb1−xMox binary alloys and the Mg1−xAlxB2 and MgB2(1−x)C2x ternary

alloys.

• For the Nb1−xMox alloy, an electronic topological transition (ETT) was

found at xc ≈ 0.3, where the Fermi surface at the Γ point corresponding to

hole character in Nb disappears and a Fermi surface with electron character

emerges.

• The experimentally observed non-monotonic behavior of the phonon fre-

quencies at the H and N points, and the evolution of phonon anomalies in

the Nb1−xMox alloy with the Mo-concentration are reproduced by the VCA

calculations.

• We find that the GGA calculations for the phonon frequencies of the H

and N modes specifically in Nb1−xMox are in better agreement with exper-

imental data than the corresponding LDA calculations. However, LDA and

GGA possess similar accuracy in describing the experimental full phonon

dispersions, although with LDA typically harder spectra are obtained.

• The Eliashberg function α2F (ω) for Nb1−xMox shifts to higher frequencies

as the Mo-content increases. The total weight of α2F (ω) and the corre-

sponding coupling constant λ(x) exhibit a non-monotonic behavior with a

strong reduction at smaller x, a minimum at x ≈ 0.7 and increasing slightly

toward x = 1 (Mo).

• When the µ∗(x) is scaled with N(EF , x), the calculated Tc(x) for Nb1−xMox

reproduces the experimental data in the whole range of Mo-concentrations.

• We find two electronic topological transitions at the Fermi surface corre-

sponding to the σ-band in the Mg1−xAlxB2 and MgB2(1−x)C2x alloys. The
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first critical concentration x1(Al/C) = 0.26/0.117 corresponds to a disrup-

tion of the tubular structure at the Γ point and the second critical concen-

tration x2(Al/C) = 0.57/0.175 corresponds to the saturation of the σ-band.

• The calculated full-phonon bands for MgB2 are in good agreement with the

experimental data available in the literature. Moreover, the GGA results

are in better agreement with the experiments than LDA.

• The frequency of the E2g-phonon mode in Mg1−xAlxB2 and MgB2(1−x)C2x

shows a strong renormalization (hardening) in a very well defined range of Al

and C concentrations (x). This transition region correlates with the x range

between the two electronic topological transitions in the σ-band, indica-

ting the relevance of the electronic structure in determining the vibrational

properties of these alloys.

• The E2g phonon branch exhibits a loss of dispersion around the critical

concentration where the σ-band is saturated for the two studied alloys,

Mg1−xAlxB2 and MgB2(1−x)C2x.

• For MgB2, using the two gap model we have obtained λtot = 0.67, which is

in very good agreement with the experimental value (λexp = 0.65) deduced

from tunneling measurements.

• We reproduce the experimental behavior of ∆σ,π and Tc on both alloy sys-

tems neglecting the interband scattering, Γσπ. However, a deeper under-

standing of the role of Γσπ is needed, considering the current controversy

about the gap merging in the MgB2(1−x)C2x alloy.
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Introducción

Los efectos de la interacción electrón-fonón en materiales metálicos son evidentes

en muchas cantidades f́ısicas que pueden ser detectadas y medidas en experimen-

tos. Solo por mencionar algunos, la interacción electrón-fonón contribuye a la

resistividad eléctrica y térmica, genera el mejoramiento de la masa efectiva (la

cual puede ser medida a través de la capacidad caloŕıfica electrónica), además

de que juega un rol muy importante en el fenómeno de la superconductividad.

Centrándonos en este último, dentro del marco de la teoŕıa de Eliashberg las

propiedades superconductoras y en particular la temperatura cŕıtica, Tc, depen-

den de sólo dos cantidades para poder ser calculadas, el potencial de repulsión

Coulombico apantallado µ∗ y la función espectral o de Eliashberg α2F (ω) [1–4].

Esta cantidad representa básicamente la efectividad de que fonones de una deter-

minada enerǵıa h̄ω dispersen electrones de una región de la superficie de Fermi

a otra. Es por ello que también se le conoce como la función de acomplamiento

electrón-fonón. Esta función de acomplamiento puede ser obtenida via experi-

mentos de tunelamiento construyendo uniones metal-aislante-superconductor [5].

Este método de obtener experimentalmente α2F (ω) no es posible realizarlo en

todos los casos, particularmente en aquellos en los cuales la construcción de las

uniones es compleja y también en materiales donde el acomplamiento es tan débil

que la extracción de información de la señal de tunelaje es complicado [5].

Es aqúı donde el enfoque de la simulación computacional puede ser una her-
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ramienta muy útil para estudiar y analizar materiales sobre los cuales existe lim-

itada información experimental o es muy complicada de extraer. Los cálculos de

primeros principios pueden proveer información valiosa acerca del acoplamiento

electrón-fonón de un material en cuestión, para ello es necesario conocer difer-

entes propiedades del sistema, tal como el espectro electrónico, el mapa completo

de dispersión fonónica, y el espectro de respuesta del sistema electrónico con re-

specto a las vibraciones de la red. Recientemente dentro del marco de la teoŕıa

del funcional de la densidad (DFT) [7, 8] la teoŕıa de respuesta lineal (LRT),

ha demostrado ser una poderosa herramienta para el cálculo de propiedades

dinámicas [9] y de acoplamiento electrón-fonón [10] en materiales. Se han re-

alizado cálculos en materiales superconductores para los cuales existen una gran

cantidad de resultados experimentales, y se ha encontrado un muy buen acuerdo en

las propiedades obtenidas, demostrando la efectividad de los métodos de primeros

principios [11, 12].

Sin embargo, a pesar de los avances mencionados anteriormente, para el caso

de las aleaciones no existe mucha información de las propiedades vibracionales ni

del acoplamiento electrón-fonón, especialmente desde el punto de vista teórico.

Por mencionar un ejemplo, tenemos a laaleación Nb1−xMox, un sistema amplia-

mente estudiado, el cual presenta un comportamiento no monótono en Tc y en

el valor de la frecuencia en puntos de alta simetŕıa en la zona de Brillouin como

función de la concentración de Mo [13–18]. El origen de este comportamiento aún

no esta completamente entendido a pesar de los esfuerzos que se han realizado

para estudiar esta aleación. Esto se debe parcialmente a la falta de un método

y computacional eficiente para estudiar aleaciones y la evolución de diferentes

propiedades en función de la concentración en un amplio rango sin sacrificar in-

formación tal como la estructura cristalina o el grupo espacial, entre otras. Por

ejemplo, la evolución de las propiedades electrónicas y elásticas de Nb1−xMox en

función de x han sido estudiadas usando diferentes aproximaciones tales como

la aproximación de las estructuras cuasi-aleatorias (QRS) [19], la aproximación

del potencial coherente (CPA) [20–22] y la aproximación del potencial coherente

Korringa-Kohn-Rostoker (KKR-CPA) [23,24]. Sin embargo, estos estudios han es-

tado limitados a un número reducido de concentraciones, debido a que son dif́ıciles

de interpretar y computacionalmente costosos, especialmente si se esta interesado

en las regiones de muy bajas (cerca del Nb) o muy altas concentraciones (cerca del

Mo). Es por ello que esta aleación es un sistema ideal para probar la aplicabilidad

de un enfoque distinto en cuanto a la modelación de aleaciones para el cálculo de

propiedades vibracionales, acoplamiento electrón-fonón y superconductividad. En

este trabajo utilizamos un nuevo enfoque conocido como la aproximación auto-

consistente del cristal virtual (VCA) [25–29].

Otro sistema de interés, el cual ha sido ampliamente estudiado a pesar de que
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su descubrimiento como material superconductor fue apenas en 2001, es el MgB2 y

las aleaciones relacionadas. El compuesto intermetálico MgB2 posee una Tc ≈ 39

K [30] y actualmente se ha establecido que se trata de un material superconductor

BCS-Eliashberg, mediado por fonones con múltiples brechas superconductoras y

un fuerte acoplamiento electrón-fonón (e-ph). El acoplamiento e-ph en este ma-

terial se da principalmente entre la superficie de Fermi asociada a la banda σ,

que proviene de los orbitales px − py del boro, y fonón espećıfico correspondiente

al modo vibracional que comprime al enlace B-B con simetŕıa E2g en Γ [31–34].

Tan pronto como las propiedades superconductoras del MgB2 se descubrieron, la

comunidad cient́ıfica comenzó la búsqueda de una posible familia de superconduc-

tores relacionados con este compuesto. Los primeros estudios en esta dirección

fueron las aleaciones, es decir, la sustitución parcial de uno de los elementos con-

stitutivos del material por otros similares, tal como Mg por Al y B por C, dando

lugar a las aleaciones Mg1−xAlxB2 [35–38] y MgB2(1−x)C2x [39–43], respectiva-

mente. Las propiedades vibracionales y superconductoras de las aleaciones, como

son la frecuencia del modo E2g, el acoplamiento e-ph y Tc, son influenciadas por la

concentración del elemento aleante de varias maneras. Por ejemplo a través de los

cambios en la estructura electrónica y la densidad de estados, los cuales tienen un

efecto directo en las propiedades antes mencionadas. El incremento de x (Al o C)

en ambas aleaciones produce un corrimiento en la frecuencia del modo E2g hacia

valores altos (conocido como renormalización), una reducción del acoplamineto

e-ph, Tc y de las brechas superconductoras [35–51].

Objetivo

El objetivo de esta tesis es el estudio del acoplamiento electrón-fonón y las propie-

dades superconductoras de las aleaciones Nb1−xMox, Mg1−xAlxB2, y MgB2(1−x)C2x

a través de cálculos de primeros principios, usando para este propósito la versión

auto-consistente de la aproximación del cristal virtual como un enfoque diferente

para la simulación de aleaciones superconductoras. En particular, analizar la

evolución de las propiedades vibracionales y superconductoras como función de

x, la aparición de transiciones topológicas electrónicas y los efectos de éstas en la

renormalización fonónica, el acoplamiento electrón-fonón y la temperatura cŕıtica

superconductora.

Metodoloǵıa

Para este estudio computacional, se usaron cálculos numéricos dentro del marco

de la teoŕıa del funcional de la densidad [7, 8] aplicando la aproximación VCA

auto-consistente [25–29]. Realizamos el cálculo de las propiedades estructurales,



80 Resumen de Tesis de Doctorado

electrónicas y de las frecuencias fonónicas en algunos puntos de alta simetŕıa en la

zona de Brillouin. Utilizamos el método de ondas planas aumentadas y linealizadas

(LAPW) [54–56], tal como está implementado en el código Wien2k [57]. La aprox-

imación VCA dentro del método LAPW ha sido usada con éxito anteriormente en

el estudio de otros sistemas [26–29]. Adicionalmente hemos investigado las mismas

propiedades implementando la aproximación VCA auto-consistente en el método

de pseudopotenciales con bases mezcladas (MBPP) [58]. Éste método incorpora

la implementación de la teoŕıa de respuesta lineal (LRT) [9, 32, 59–61] para el

cálculo de propiedades de la dinámica de la red de una manera muy eficiente. Por

lo tanto, las propiedades vibracionales aśı como también el acoplamiento electrón-

fonón fueron obtenidos mediante el uso de LRT a través del método MBPP. Las

propiedades superconductoras fueron analizadas y discutidas dentro del marco de

la teoŕıa de Eliashberg en los modelos de una y dos brechas superconductoras

citesavra2,heid,liu,kong,golu. Para ambos métodos se han utilizado las aproxima-

ciones LDA [70, 71] y GGA [81] para el potencial de intercambio y correlación

(xc) con el objetivo de analizar los efectos de correlación de gradiente sobre las

propiedades vibracionales y la interacción electrón-fonón.

Resultados

Encontramos muy buen acuerdo entre ambos métodos (LAPW y MBPP) en to-

das las propiedades calculadas para el sistema Nb-Mo , independientemente de

la aproximación usada para el funcional de intercambio-correlación (xc), LDA o

GGA. En particular, con respecto a las propiedades estructurales (parámetro de

red a0 y módulo de compresibilidad B0), reproducimos la tendencia presentan los

datos experimentales para a0 y B0 en función de x [14, 128, 129, 132, 148], encon-

trandose mejor acuerdo cuando expleamos GGA. La mayor diferencia encontrada

entre los cálculos GGA y los datos experimentales para a0 es de sólo 0.5% en x = 1

(Mo).

Para la aleación Nb-Mo identificamos una transición topológica electrónica

(ETT) en la estructura de bandas en una concentración cŕıtica (xc) de ≈ 30% de

Mo. Esta transición ocurre en Γ, en donde la superficie de Fermi correspondiente

a estados con carácter de huecos (x < xc) desaparace y una superficie de Fermi

con carácter de electrones (x > xc) emerge. Este resultado representa la primera

determinación precisa (dentro de las limitaciones de VCA) de xc para esta ETT,

la cual ha sido señalada como responsable de las anomaĺıas observadas en las

propiedades elásticas de esta aleación [129].

Respecto a las propiedades fonónicas, los cálculos reproducen la evolución no-

monótona de la frecuencia en los puntos de alta simetŕıa H , y N (N1, N3 y N4) ob-

servada experimentalmente tanto con la aproximación del fonón-congelado imple-
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mentado en el método LAPW como con la teoŕıa de respuesta lineal implementada

en el método MBPP. Ambos métodos (con ambos funcionales xc) dan un acuerdo

similar con los datos experimentales [18], indicándonos que la implementación del

VCA en MBPP es confiable para el cálculo de propiedades vibracionales. Una

vez demostrada la confiabilidad de la implementación, se procedió al cálculo de la

estructura de bandas fonónicas para determinadas concentraciones de la aleación.

Encontramos que el espectro calculado con LDA da frecuencias mayores que el

obtenido con GGA, ambos funcionales reproducen los datos experimentales con el

mismo nivel de precisión, existiendo solo una pequeña mejora de LDA sobre GGA

en Mo. Los cálculos también reproducen la evolución de las diferentes anomaĺıas

presentes en el espectro de bandas de dispersión fonónicas en función de x, tal

como la anomaĺıa de Kohn presente en Nb y que prácticamente desaparece para

x ≈ 0.5, llevando a la aparición de la depresión en H en Mo. También se observa

claramente el reordenamiento de las frecuencias en N , desde Nb hasta Mo. A par-

tir de la estructura electrónica y el espectro fonónico se determinan los elementos

de matriz del acoplamiento electrón-fonón, los cuales son elementos de entrada

para en la teoŕıa de Eliashberg de la superconductividad [10, 146].

Para la función de Eliashberg α2F (ω) de la aleación Nb-Mo encontramos una

reducción generalizada y un corrimiento del espectro a frecuencias mayores con-

forme se incrementa la concentración de Mo hasta x ≈ 0.7. Sin embargo, para

x = 1 (Mo), el espectro se incrementa un poco nuevamente. Una vez obtenida esta

información, calculamos y analizamos la evolución de la constante de acoplamiento

λ(x) y Tc(x). La variación de λ(x) sigue el comportamiento de la densidad de

estados al nivel de Fermi N(EF ), lo cual indica que la variación de λ(x) es de-

terminada predominantemente por N(EF ) y, en un grado menor, por la variación

del acoplamiento electrón-fonón. Finalmente, encontramos que los valores experi-

mentales de Tc(x) son reproducidos por los cáculos cuando utilizamos el esquema

de interpolación para µ∗(x) propuesto por Gladstone et al. [156].

Para las aleaciones Mg1−xAlxB2 y MgB2(1−x)C2x los cálculos reproducen las

tendencias observadas experimentalmente de los parámetros de red (a0 y c0), en

estos casos también obtuvimos un mejor acuerdo de los cálculos GGA con los datos

experimentales [35, 38–43]. Comparando los resultados con los métodos LAPW

y MBPP, también en estos sistemas se obsevó un muy buen acuerdo entre ellos,

indicando una implementación adecuada de la aproximación VCA en el MBPP

para estas aleaciones ternarias.

En la estructura de bandas electrónicas de las aleaciones Mg1−xAlxB2 y MgB2(1−x)C2x

observamos la aparición de dos ETT en la superficie de Fermi asociada a la banda

σ, conforme se va aumentando la concentración de Al y C, respectivamente. La

primera ETT ocurre cuando el fondo de la banda σ toca el nivel de Fermi, generan-
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dose la transición de una superficie abierta a una cerrada, y la segunda se da

cuando la banda está totalmente saturada, es decir, la superficie de Fermi cor-

respondiente a la banda σ desaparece. Las concentraciones a las cuales ocurren

estas transiciones son xc1 = 0.26 y xc2 = 0.57 para Mg1−xAlxB2 y xc1 = 0.117 y

xc2 = 0.175 para MgB2(1−x)C2x. Como se puede ver, las concentraciones cŕıticas

relacionadas con la saturación de la banda σ correlacionan con la pérdida de su-

perconductividad en las aleaciones, lo cual ocurre para x ≥ 0.5 en el sistema con

Al [35–38] y se estima en x ≥ 0.15 para el sistema con C [39, 40, 42, 43]. Esta

correlación indica que la pérdida de superconductividad en estas aleaciones está

ı́ntimamente relacionada con la saturación de la banda σ.

Para ambas aleaciones Mg1−xAlxB2 y MgB2(1−x)C2x calculamos la evolución

de la frecuencia fonónica del modo E2g en función de x con las dos metodoloǵıas,

LAPW y MBPP y cada una con los funcionales LDA y GGA. Encontramos que

ambos métodos reproducen la fuerte renormalización de la frecuencia del modo

E2g observada experimentalmente [32, 52, 53] y además estando en buen acuerdo

entre ellos, indicando que el VCA está correctamente implementado en el método

MBPP. Aplicando LRT-MBPP, obtuvimos cálculos armónicos del espectro com-

pleto de dispersión fonónico para diferentes concentraciones en ambas aleaciones.

Comparando el espectro calculado del MgB2 con datos experimentales obtenidos

mediante dispersión inelástica de rayos x (IXS) [164,165], se observa un muy buen

acuerdo, lo que indica que los efectos anarmónicos no juegan un papel importante

en este material. La evolución del espectro de dispersión fonónicos en función

de x se muestra en ambos sistemas una fuerte reducción de la dispersión de la

banda relacionada con el modo E2g a medida que x aumenta, hasta que la banda

queda totalmente plana en concentraciones muy cercanas a las cuales la banda σ

se satura por completo.

Para ambos sistemas Mg1−xAlxB2 y MgB2(1−x)C2x se calcularon α2F (ω) y λ

aplicando el modelo de dos brechas superconductoras (σ π). A partir de α2
ijF (ω)

y utilizando una expresión diagonal de la matriz para µ∗(ωc), se resolvieron las

ecuaciones de brecha superconductora de Eliashberg en el modelo de dos ban-

das sin considerar el término de dispersión entrebandas. Encontramos muy buen

acuerdo entre los resultados obtenidos para ∆σ(x), ∆π(x), y Tc(x) con los datos

experimentales correspondientes [45–48, 50, 51]. Es importante enfatizar que en

ambos casos no observó el colapso de las dos brechas en una sola a ninguna concen-

tración de Al o C. En base a estos resultados, podemos concluir que el término de

dispersión entrebandas, en caso de estar presente, es pequeño y sus efectos sobre

las propiedades superconductoras de las aleaciones Mg1−xAlxB2 y MgB2(1−x)C2x

son despreciables comparado con el efecto del llenado de la banda σ.
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