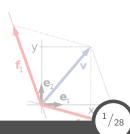
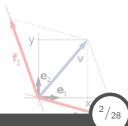
## Contenido

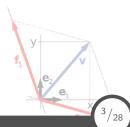
5. Operadores y espacios



- 5. Operadores y espacios
- 5.1 Funcionales lineales y espacio dual
- 5.2 Aniquiladores, transpuesta de un operador
- 5.3 Operadores adjuntos y autoadjuntos
- 5.4 Operadores ortogonales y unitarios
- 5.5 Cambio de bases ortonormales



- 5. Operadores y espacios
- 5.1 Funcionales lineales y espacio dual
- 5.2 Aniquiladores, transpuesta de un operador
- 5.3 Operadores adjuntos y autoadjuntos
- 5.4 Operadores ortogonales y unitarios
- 5.5 Cambio de bases ortonormales



### Funcionales lineales, ejemplos

Considerando mapeos lineales desde un espacio vectorial V, de dimensión n, a su propio campo de escalares K, de dimensión 1, entonces al mapeo,

$$\phi: V \to K$$

se le conoce como funcional lineal o forma lineal si  $\forall~u,v\in V$  y  $a,b\in K$  se cumple con:

$$\phi(au + bv) = a\phi(u) + b\phi(v),$$

es decir, un funcional lineal en V será un mapeo lineal de V hacia K.

### **Ejemplos**

• Sea  $\pi_i: K^n \to K$  el mapeo de **proyección**,

$$\pi_i(a_1, a_2, \dots, a_i, \dots, a_n) = a_i,$$

el cual es lineal, por tanto representará un funcional lineal en  $K^n$ 

### Funcionales lineales, ejemplos

• Sea V el espacio vectorial de **polinomios** en t sobre  $\mathcal{R}$ , entonces definiendo,

$$J: V \to \mathcal{R} \ \ \forall \ J$$
 operador integral,

descrito como,

$$J(p(t)) = \int_0^1 p(t)dt,$$

el cual al ser lineal, se considera como un funcional lineal en V.

 Sea V el espacio vectorial de matrices cuadradas de dimensión n sobre K, entonces definiendo el mapeo de la traza,

$$T:V o K,$$
 
$$T(A)=a_{11}+a_{22}+\ldots+a_{nn} \ \forall \ A=[a_{ij}],$$

es decir, el mapeo T asigna a la matriz A la suma de sus elementos diagonales  $\Rightarrow$  es un mapeo lineal, y por tanto será un funcional lineal en V.

### Espacio dual

El set de transformaciones lineales en un esp. vectorial V sobre el campo K también forma un espacio vectorial sobre K, ya que cumple con las propiedades de adición y multiplicación por un escalar. Siendo  $\phi, \sigma$  funcionales lineales en V y  $k \in K$ :

$$(\phi + \sigma)(v) = \phi(v) + \sigma(v) \quad \& \quad (k\phi)(v) = k\phi(v).$$

Al espacio formado por los funcionales lineales se le conoce como el espacio dual de V, y se le denota por  $V^*$ , el cual tiene la misma dimensión que el espacio V.

### **Ejemplo**

Sea  $V=K^n$  el espacio de vectores (columnas) de n entradas, entonces el **espacio dual**  $V^*$  puede idenficarse con el espacio de vectores (fila):

$$\phi = (a_1, a_2, \dots, a_n) \in V^*,$$

$$\therefore \quad \phi(v) = \phi(x_1, x_2, \dots, x_n) = (a_1, a_2, \dots, a_n)(x_1, x_2, \dots, x_n)^T,$$

$$\Rightarrow \quad \phi(v) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n.$$

#### Base dual

Teorema Suponiendo que  $\{v_1,v_2,\ldots,v_n\}$  es una base de V sobre K y considerando a  $\phi_1,\phi_2,\ldots,\phi_n$  funcionales lineales definidos como,

$$\phi_i(v_i) = \delta_{ij} = \begin{cases} 1 & \to & i = j, \\ 0 & \to & i \neq j, \end{cases}$$

entonces  $\{\phi_1, \phi_2, \dots, \phi_n\}$  será una base de  $V^*$ , que se conoce como base dual.

Teorema Sea  $\{v_1, v_2, \dots, v_n\}$  una base de V y  $\{\phi_1, \phi_2, \dots, \phi_n\}$  la base dual de  $V^*$ , entonces:

 $(i) \ \ {\rm Para\ cualquier\ } {\bf vector}\ u \in V \ {\rm se\ tiene,}$ 

$$u = \phi_1(u)v_1 + \phi_2(u)v_2 + \ldots + \phi_n(u)v_n,$$

(ii) Para cualquier funcional lineal  $\sigma \in V^*$ 

$$\sigma = \sigma(v_1)\phi_1 + \sigma(v_2)\phi_2 + \ldots + \sigma(v_n)\phi_n.$$

#### Base dual

#### Demostración

Al ser  $u \in V$  y  $\{v_1, v_2, \dots, v_n\}$  una base de V , entonces se puede expresar u como,

$$u = a_1v_1 + a_2v_2 + \ldots + a_iv_i + \ldots + a_nv_n,$$

aplicando el funcional lineal  $\phi_i$  a la expresión anterior de u,

$$\phi_i(u) = a_1 \phi_i(v_1) + a_2 \phi_i(v_2) + \ldots + a_i \phi_i(v_i) + \ldots + a_n \phi_i(v_n),$$

pero: 
$$\phi_i(v_j) = \delta_{ij} \Rightarrow \phi_i(u) = a_i \ \forall \ i = 1, 2, \dots, n,$$

sust. en 
$$u$$
:  $u = \phi_1(u)v_1 + \phi_2(u)v_2 + \ldots + \phi_n(u)v_n + \ldots + \phi_n(u)v_n$ .

Usando el resultado anterior, se aplica el funcional lineal  $\sigma$ :

$$\sigma(u) = \phi_1(u)\sigma(v_1) + \phi_2(u)\sigma(v_2) + \dots + \phi_i(u)\sigma(v_i) + \dots + \phi_n(u)\sigma(v_n),$$
  
=  $(\sigma(v_1)\phi_1 + \sigma(v_2)\phi_2 + \dots + \sigma(v_i)\phi_i + \dots + \sigma(v_n)\phi_n)(u),$ 

debido a que  $\boldsymbol{u}$  es un vector genérico de  $\boldsymbol{V}$ , entonces:

$$\sigma = \sigma(v_1)\phi_1 + \sigma(v_2)\phi_2 + \ldots + \sigma(v_i)\phi_i + \ldots + \sigma(v_n)\phi_n$$

Base dual

Teorema Sea  $\{v_1,v_2,\ldots,v_n\}$  y  $\{w_1,w_2,\ldots,w_n\}$  bases de V y  $\{\phi_1,\phi_2,\ldots,\phi_n\}$  y  $\{\sigma_1,\sigma_2,\ldots,\sigma_n\}$  bases duales de  $V^*$  asociadas a  $\{v_i\}$  y  $\{w_i\}$ , respectivamente. Si P es la matriz de cambio de base de  $\{v_i\}$  a  $\{w_i\}$   $\Rightarrow$   $(P^{-1})^T$  será la matriz de cambio de base de  $\{\phi_i\}$  a  $\{\sigma_i\}$ .

#### Demostración

Describiendo la base  $\{w_i\}$  en términos de la base  $\{v_i\}$ ,

$$w_{i} = a_{i1}v_{1} + a_{i2}v_{2} + \dots + a_{in}v_{n},$$

$$\begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix} \quad \forall \quad A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

#### Base dual

De igual manera, expresando la base dual  $\{\sigma_i\}$  en términos de  $\{\phi_i\}$ :

$$\sigma_{i} = b_{i1}\phi_{1} + b_{i2}\phi_{2} + \ldots + b_{in}\phi_{n},$$

$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \vdots \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{n} \end{bmatrix} \quad \forall \quad B = \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{bmatrix},$$

de donde se pueden definir las matrices de cambio de base  ${\cal P}$  y base dual  ${\cal Q}$  como,

$$P = A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}, \quad Q = B^{T} = \begin{bmatrix} b_{11} & b_{21} & \dots & b_{n1} \\ b_{12} & b_{22} & \dots & b_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \vdots$$

#### Base dual

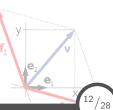
Ahora, aplicando el funcional lineal  $\sigma_i$  al vector  $w_j$ , mediante sus expresiones respectivas de las bases  $\{\phi_i\}$  y  $\{v_i\}$ :

$$\sigma_{i}(w_{j}) = \delta_{ij}, 
\therefore \sigma_{i}(w_{j}) = (b_{i1}\phi_{1} + b_{i2}\phi_{2} + \dots + b_{in}\phi_{n})(a_{j1}v_{1} + a_{j2}v_{2} + \dots + a_{jn}v_{n}), 
\Rightarrow \sigma_{i}(w_{j}) = b_{i1}a_{j1} + b_{i2}a_{j2} + \dots + b_{in}a_{jn}, 
= [a_{j1}, a_{j2}, \dots, a_{jn}][b_{i1}, b_{i2}, \dots, b_{in}]^{T}, 
= F_{i}C_{i},$$

en donde  $F_j$  es el j-ésimo vector fila de  $P^T$  y  $C_i$  el i-ésimo vector **columna** de Q. Corriendo ahora para todos los índices:  $i, j = 1, 2, \ldots, n$ :

$$[F_j C_i] = [\delta_{ij}] = 1,$$
  
 $\forall [F_j C_i] = P^T Q \Rightarrow Q = (P^T)^{-1} = (P^{-1})^T$ 

- 5. Operadores y espacios
- Aniquiladores, transpuesta de un operador
- 5.4 Operadores ortogonales y unitarios



### Aniquiladores

Considerando W como un subset de un espacio vectorial V. Un funcional lineal  $\phi \in V^*$  se le llama **aniquilador** si,

$$\phi(w) = 0 \quad \forall \quad w \in W \quad \Rightarrow \quad \phi(w) = \{0\}.$$

El set de todos los mapeos con tal característica, denotado como  $W^0$ , se conoce como **aniquilador de** W, y será un **subespacio** de  $V^{\ast}$ .

### Características

- (i)  $0 \in W^0$ .
- (ii) Si  $\phi,\sigma\in W^0\Rightarrow$  para cualquiera escalares  $a,b\in K$  y cualquier  $w\in W$  se tiene:

$$(a\phi + b\sigma)(w) = a\phi(w) + b\sigma(w) = a(0) + b(0) = 0,$$
  

$$\therefore a\phi + b\sigma \in W^0,$$

demostrándose que  $W^0$  es un subespacio de  $V^*$ .

#### Aniquiladores

Teorema Si se tiene que el espacio vectorial V posee una dimensión finita, y W es un subespacio de V

$$\Rightarrow$$
 dim $W + \text{dim}W^0 = \text{dim}V$ .

#### Demostración

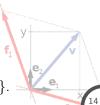
Suponiendo que la  $\dim V=n$  y  $\dim W=r\leq n$  siendo una base de W el set  $\{w_1,w_2,\ldots,w_r\}$ , entonces decidiendo **extenderla** para que sea una base de V,

$$\{w_1, w_2, \ldots, w_r, v_1, v_2, \ldots, v_{n-r}\}.$$

Ahora, considerando la base dual  $V^*$  de V,

$$\{\phi_1,\phi_2,\ldots,\phi_r,\sigma_1,\sigma_2,\ldots,\sigma_{n-r}\},\$$

siendo  $\{\phi_i\}$  la base dual asociada a  $\{w_i\}$ , y  $\{\sigma_i\}$  a  $\{v_i\}$ .



#### Aniquiladores

Debido a la definición de base dual,

$$\sigma_i(v_j) = 1 \ \forall \ i = j, \ \sigma_i(v_j) = 0 \ \forall \ i \neq j,$$

entonces los funcionales  $\{\sigma_i\}$  aniquilarán cada uno de los  $\{w_i\}$ ,

$$\therefore \quad \sigma_1, \sigma_2, \dots, \sigma_{n-r} \in W^0,$$

y como  $\{\sigma_i\}$  es parte de la base de  $V^* \Rightarrow$  sus elementos serán linealmente independientes.

Por otro lado, considerando un  $\sigma$  genérico tal que  $\sigma \in W^0$  ,

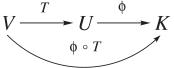
$$\Rightarrow \sigma = \sigma(w_1)\phi_1 + \sigma(w_2)\phi_2 + \ldots + \sigma(w_r)\phi_r + \ldots$$
$$\ldots + \sigma(v_1)\sigma_1 + \sigma(v_2)\sigma_2 + \ldots + \sigma(v_{n-r})\sigma_{n-r},$$
$$= \sigma(v_1)\sigma_1 + \sigma(v_2)\sigma_2 + \ldots + \sigma(v_{n-r})\sigma_{n-r},$$

es decir, el set  $\{\sigma_1,\sigma_2,\ldots,\sigma_{n-r}\}$  expande a  $W^0$ , por tanto será una base  $W^0$  con dimensión:

$$\dim W^0 = n - r = \dim V - \dim W \implies \dim W^0 + \dim W = \dim V.$$

### Transpuesta de un mapeo lineal

Sea  $T:V \to U$  un mapeo lineal desde un espacio vectorial V hacia un espacio vectorial U, entonces para cualquier funcional lineal  $\phi \in U^*$  la composición  $\phi \circ T$  representará un mapeo lineal  $V \to K$ ,



∴ se tiene que,

 $\phi \circ T \in V^*$ .

Con lo anterior, se observa que la correspondencia  $\phi \to \phi \circ T$  representa un mapeo  $U^* \to V^*$ , ya que  $\phi \in U^*$  y  $\phi \circ T \in V^*$ .

El mapeo anterior se le conoce como la **transpuesta** de T, el cual es **lineal** y se expresa como  $T^t$ :

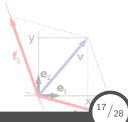
$$T^t: U^* \to V^*$$

definida como:  $T^t(\phi) = \phi \circ T$ ,

$$\text{siendo:}\quad \left(T^{t}(\phi)\right)(v) = \phi\left(T(v)\right) \quad \forall \quad v \in V.$$

### 5. Operadores y espacios

- 5.1 Funcionales lineales y espacio dual
- 5.2 Aniquiladores, transpuesta de un operador
- 5.3 Operadores adjuntos y autoadjuntos
- 5.4 Operadores ortogonales y unitarios
- 5.5 Cambio de bases ortonormales



### Operadores adjuntos

Para un operador lineal T en un espacio vectorial de producto interno V se dice que tiene un operador **adjunto**  $T^\dagger$  en V si,

$$\langle u|T(v)\rangle = \langle T^{\dagger}(u)|v\rangle \quad \forall \quad u,v \in V.$$

Para el caso de representaciones matriciales:

• Sea A una matriz cuadrada, **real**, de dimensión n, considerada como la representación de un operador en  $\mathcal{R}^n \Rightarrow \text{para } u, v \in \mathcal{R}^n$ :

$$\langle u|Av\rangle = u^T Av = (A^T u)^T v = \langle A^T u | v \rangle,$$

 $\therefore$  la transpuesta de A, dada por  $A^T$ , será la adjunta de A.

• Sea B una matriz cuadrada, **compleja**, de dimensión n, considerada como la representación de un operador en  $C^n \Rightarrow \text{para } u, v \in C^n$ :

$$\langle u|Bv\rangle = u^{\dagger}Bv = (B^{\dagger}u)^{\dagger}v = \langle B^{\dagger}u|v\rangle,$$

∴ la hermítica conjugada de B,  $B^{\dagger}$ , será la adjunta de B.

### Operadores adjuntos

Teorema Sea T un operador lineal en un espacio vectorial de producto interno V de dimensión finita sobre  $K\Rightarrow$ 

(i) Existe un único operador lineal  $T^{\dagger}$  en V tal que,

$$\langle u|T(v)\rangle = \langle T^{\dagger}(u)|v\rangle \quad \forall \quad u,v \in V.$$

 $\begin{array}{ll} (ii) \;\; {\rm Si} \; A \; {\rm es} \; {\rm la} \; {\rm representaci\'on} \; {\rm matricial} \; {\rm de} \; T \; {\rm con} \; {\rm respecto} \\ {\rm a} \; {\rm alguna} \; {\rm base} \; {\rm \bf ortonormal} \; S = \{u_i\} \; {\rm de} \; V \Rightarrow {\rm la} \; {\rm representaci\'on} \; {\rm matricial} \; {\rm de} \; T^\dagger \; {\rm en} \; {\rm la} \; {\rm base} \; S \; {\rm es} \; {\rm la} \; {\rm \bf herm\'itica} \\ {\rm \bf conjugada} \; A^\dagger.^1 \end{array}$ 

Teorema Sean T,  $T_1$  y  $T_2$  operadores lineales en V y  $k \in K \Rightarrow$ 

$$(T_1 + T_2)^{\dagger} = T_1^{\dagger} + T_2^{\dagger}, \quad (kT)^{\dagger} = k^* T^{\dagger},$$
  
 $(T_1 T_2)^{\dagger} = T_2^{\dagger} T_1^{\dagger}, \quad (T^{\dagger})^{\dagger} = T_2^{\dagger}$ 

<sup>&</sup>lt;sup>1</sup>Sólo se cumple cuando la representación matricial de  $T^{\dagger}$  y T es respecto a una base **ortonormal**.

Funcionales lineales y espacios de producto interno

Recordando que un funcional lineal  $\phi$  en un espacio vectorial V representa un mapeo lineal,

$$\phi: V \to K \ \ \forall \ \ K = {\sf campo \ de \ escalares},$$

si además V es un espacio vectorial de producto interno  $\Rightarrow$  cada  $u \in V$  determina un mapeo:

$$\hat{u}: V \to K$$
, definido como:  $\hat{u}(v) = \langle u|v \rangle$ .

Por tanto, para cualquier  $a,b\in K$  y  $v_1,v_2\in V$  se tiene:

$$\hat{u}(av_1 + bv_2) = \langle u|av_1 + bv_2 \rangle = a\langle u|v_1 \rangle + b\langle u|v_2 \rangle = a\hat{u}(v_1) + b\hat{u}(v_2),$$

con lo cual,  $\hat{u}$  es un funcional lineal de V.

Teorema Sea  $\phi$  un funcional lineal en un espacio vectorial de producto interno V con dimensión finita  $\Rightarrow$  existe un único vector  $u \in V$  tal que,

$$\phi(v) = \langle u|v\rangle \quad \forall \quad v \in V.$$

### Operadores autoadjuntos

El operador T será autoadjunto del espacio vectorial de producto interno V si se cumple,

$$T^{\dagger} = T.$$

Para el caso de representaciones matriciales A del operador,

- Real  $\Rightarrow A$  es simétrica.
- Complejo  $\Rightarrow A$  es hermítica.

**Teorema** Sea  $\lambda$  un eigenvalor de un operador lineal T en V, si T es **autoadjunto**  $\Rightarrow \lambda$  será **real**.

#### Demostración

$$\begin{split} \lambda \left\langle v | v \right\rangle &= \left\langle v | \lambda v \right\rangle, \text{ pero } T(v) = \lambda v, \\ &= \left\langle v | T(v) \right\rangle = \left\langle T^{\dagger}(v) \middle| v \right\rangle \text{ pero } T = T^{\dagger}, \\ &= \left\langle T(v) | v \right\rangle = \left\langle \lambda v | v \right\rangle = \lambda^* \left\langle v | v \right\rangle, \end{split}$$

por tanto  $\lambda = \lambda^* \Rightarrow \lambda$  es real.

### Operadores autoadjuntos

Teorema Sea T un operador autoadjunto en V. Supongamos que u y v son eigenvectores de T perteneciendo a diferentes eigenvalores  $\Rightarrow u$  y v serán ortogonales:  $\langle u|v\rangle=0$ .

#### Demostración

Tenemos que se cumple con:

$$T(u) = \lambda_1 u, \quad T(v) = \lambda_2 v \quad \forall \quad \lambda_1 \neq \lambda_2 \in \mathcal{R},$$

entonces,

$$\begin{split} \lambda_2 \left< u | v \right> &= \left< u | \lambda_2 v \right> = \left< u | T(v) \right>, \\ &= \left< T^\dagger(u) | v \right> = \left< T(u) | v \right> = \left< \lambda_1 u | v \right>, \\ &= \lambda_1 \left< u | v \right> \ \ \, \text{ya que } \lambda_1 \in \mathcal{R}, \end{split}$$

pero 
$$\lambda_1 \neq \lambda_2 \Rightarrow \langle u|v\rangle = 0.$$

### 5. Operadores y espacios

- 5.1 Funcionales lineales y espacio dual
- 5.2 Aniquiladores, transpuesta de un operador
- 5.3 Operadores adjuntos y autoadjuntos

#### 5.4 Operadores ortogonales y unitarios

5.5 Cambio de bases ortonormales



# Operadores ortogonales y unitarios

### Operadores ortogonales y unitarios

Sea U un operador lineal en un espacio vectorial de producto interno V, de dimensión finita  $\Rightarrow$  si se tiene:

$$U^\dagger = U^{-1}$$
 ó  $UU^\dagger = U^\dagger U = \mathbb{1}$ 

se dice que el operador es **ortogonal** o **unitario** si se trata de un campo asociado **real** o **complejo**, respectivamente.

Teorema Las siguientes condiciones son equivalentes,

- $U^{\dagger} = U^{-1}$ ;  $UU^{\dagger} = U^{\dagger}U = \mathbb{1}$  $\Rightarrow U$  es unitario (ortogonal).
- *U* preserva el **producto interno**,

$$\langle U(u)|U(w)\rangle = \langle u|w\rangle \quad \forall \quad u,w \in V.$$

• *U* preserva la **norma**,

$$||U(v)|| = ||v|| \quad \forall \quad v \in V.$$



# Operadores ortogonales y unitarios

### Operadores ortogonales y unitarios

Para el caso de la invariancia del  $\operatorname{prod.}$  interno cuando U es unitario,

$$\langle U(u)|U(v)\rangle = \left\langle U^{\dagger}U(u)\middle|v\right\rangle = \left\langle \mathbb{1}(u)\middle|v\right\rangle,$$
  
\therefore \langle U(u)|U(v)\rangle = \langle u|v\rangle.

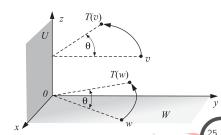
Ahora para la invariancia de la norma tenemos:

$$\begin{split} \|U(v)\| &= \sqrt{\langle U(v)|U(v)\rangle} = \sqrt{\langle U^\dagger U(v)|v\rangle}, \\ \|U(v)\| &= \sqrt{\langle \mathbbm{1}(v)|v\rangle} = \sqrt{\langle v|v\rangle} = \|v\|. \end{split}$$

### Ejemplo

Sea  $T: \mathcal{R}^3 \to \mathcal{R}^3$  un operador lineal que rota cada vector v sobre el eje z por un ángulo fijo  $\theta$ ,

$$T(x, y, z) = (x \cos\theta - y \sin\theta, x \sin\theta + y \cos\theta, z).$$



# Operadores ortogonales y unitarios

Matrices ortogonales y unitarias

Sea  ${\cal U}$  un operador lineal en un espacio vectorial de producto interno  ${\cal V}$  entonces se tiene:

- Una matriz compleja A representa a un operador unitario U (relativa a una base ortonormal)  $\iff A^{\dagger} = A^{-1}$ , donde A se le conoce como matriz unitaria.
- Una matriz **real** A representa a un operador **ortogonal** U (relativa a una base ortonormal)  $\iff A^T = A^{-1}$ , donde A se le conoce como matriz **ortogonal**.

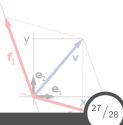
Recordando las características equivalentes de las matrices unitarias (ortogonales),

- A es una matriz unitaria (ortogonal).
- Las filas de A forman un set ortonormal.
- Las columnas de A forman un set ortonormal.

26/28

### 5. Operadores y espacios

- 5.1 Funcionales lineales y espacio dual
- 5.2 Aniquiladores, transpuesta de un operador
- 5.3 Operadores adjuntos y autoadjuntos
- 5.4 Operadores ortogonales y unitarios
- 5.5 Cambio de bases ortonormales



### Cambio de bases ortonormales

#### Cambio de bases ortonormales

Teorema Sea  $\{u_1, u_2, \ldots, u_n\}$  una base ortonormal de un espacio vectorial de producto interno  $V \Rightarrow$  la matriz de cambio de base de  $\{u_i\}$  a otra base ortonormal es unitaria (ortogonal).

De manera inversa, si  $P = [a_{ij}]$  es una matriz **unitaria** (ortogonal)  $\Rightarrow$  lo sig. representa una base ortonormal,

$$u'_i = a_{1i}u_1 + a_{2i}u_2 + \ldots + a_{ni}u_n \quad \forall i = 1, 2, \ldots, n.$$

Como las matrices que representan el  ${\bf mismo}$  operador T son  ${\bf similares}$ ,

$$B = P^{-1}AP \ \ \forall \ \ P = \text{matriz de cambio de base},$$

- Las matrices complejas A y B son unitariamente equivalentes si existe una matriz unitaria P tal que  $B = P^{\dagger}AP$ .
- Las matrices reales A y B son ortogonalmente equivalentes si existe una matriz ortogonal P tal que  $B = P^T A P$ .