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The computer implementation of the algorithm for the calculation of electromagnetic radiation scattering
by a multilayered sphere developed by Yang, is presented. It has been shown that the program is
effective, resulting in very accurate values of scattering efficiencies for a wide range of size parameters,
which is a considerable improvement over previous implementations of similar algorithms. The program,
named scattnlay, would be the first of its kind to be publicly available.

Program summary

Program title: scattnlay
Catalogue identifier: AEEY_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEEY_1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Gnu General Public License (GPL)
No. of lines in distributed program, including test data, etc.: 8932
No. of bytes in distributed program, including test data, etc.: 175 276
Distribution format: tar.gz
Programming language: ANSI C
Computer: Any with a C compiler
Operating system: Linux (any), Windows, Solaris
RAM: ∼1–100 MB
Classification: 1.3
Nature of problem: The scattering of electromagnetic (EM) radiation by a multilayered sphere is an
interesting phenomenon to study for the application of such materials in several fields. Just to mention
two examples, metal nanoshells (a dielectric core surrounded by a metallic shell) are a class of
nanoparticles with tunable optical resonances that can be used, among others, in medicine for optical
imaging and photothermal cancer therapy; while in the field of atmospheric sciences, light absorption by
aerosols has a heating effect in the atmosphere that is of great interest to study several climatic effects.
Although at first glance the expressions of the scattering coefficients seem simple and straightforward
to implement, they involve several numerical difficulties which make most of the existent algorithms
inapplicable to several extreme cases. More recently, Yang [1] has developed an improved recursive
algorithm that circumvents most of the numerical problems present in previous algorithms, which is
implemented in the current program.
Solution method: Calculations of Mie scattering coefficients and efficiency factors for a multilayered sphere
as described by Yang [1], combined with standard solutions of the scattering amplitude functions.
Restrictions: Single scattering, permeability of the layers is always unity.
Running time: Seconds to minutes
References:
[1] W. Yang, Appl. Opt. 42 (2003) 1710–1720.
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1. Introduction

The scattering of electromagnetic (EM) radiation by a multilay-
ered sphere is an interesting phenomenon to study for the applica-
tion of such materials in several fields. Just to mention two exam-
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ples, metal nanoshells (a dielectric core surrounded by a metallic
shell) are a class of nanoparticles with tunable optical resonances
that can be used, among others, in medicine for optical imaging
and photothermal cancer therapy [1–3]; while in the field of atmo-
spheric sciences, light absorption by aerosols has a heating effect
in the atmosphere that is of great interest to study several climatic
effects [4,5].

The first model developed to study the EM scattering by a
coated sphere was given by Aden and Kerker [6] and, after that,
Wait [7] proposed a recursive algorithm applicable to the multilay-
ered sphere and more recently, Bhandari [8] proposed a complete
set of scattering coefficients for the latter case. Although at first
glance the expressions of the scattering coefficients seem simple
and straightforward to implement, they involve several numerical
difficulties which make most of the existent algorithms [7,9–11]
inapplicable to several cases [12,13]. A few years ago, Yang [14]
developed an improved recursive algorithm that circumvents most
of the numerical problems present in previous algorithms, and al-
though the development of a computer program that implements
the algorithm has already been reported [15], it is not publicly
available.

In this article, a computer program based on the calculation of
the Mie coefficients and efficiency factors for single multilayered
spheres as described in Yang’s algorithm [14] is presented and its
exactitude has been successfully tested for several cases.

2. EM scattering by a multilayered sphere

In short, the solution of the scattering by a multilayered sphere
consists in expressing the EM fields in each layer l in terms of
appropriate sets of spherical wave functions. Each layer is char-
acterized by a size parameter xl = 2π Nmrl/λ = krl and a relative
refractive index ml = Nl/Nm , l = 1,2, . . . , L, where λ is the wave-
length of the incident wave in vacuum, rl is the outer radius of
the lth layer, Nm and Nl are the refractive index of the medium
outside the particle and its lth component, respectively, and k is
the propagation constant. In the region outside the particle, the
relative refractive index is mL+1 = 1. It is supposed that the inci-
dent electric field is an x-polarized wave, �Ei = E0 exp[ikr cos(θ)]êx

with a time dependence of exp(−iωt). The space is divided into
two regions: the region inside the multilayered sphere, and the
surrounding medium outside the particle. The electric and mag-
netic fields (inside and outside the sphere) are considered as the
superposition of sets of spherical wave functions. For example, �Ein
and �Eout can be expressed in terms of complex spherical eigenvec-
tors [14]:

�Ein =
∞∑

n=1

En
[
c(l)

n �M(1)
o1n − id(l)

n �N(1)
e1n

]
, (1)

�Eout =
∞∑

n=1

En
[
ia(l)

n �N(3)
e1n − b(l)

n �M(3)
o1n

]
, (2)

where En = in E0(2n+1)/n(n+1), and �M( j)
o1n and �N( j)

e1n ( j = 1,3) are
the vector harmonic functions with the radial dependence of the
first kind of spherical Bessel function for j = 1 and the first kind
of spherical Hankel function for j = 3 (the explicit expressions for
�M( j)

o1n and �N( j)
e1n can be found elsewhere, for instance, in Chapter 4

of Ref. [18]).
In the region outside the sphere, the total external field is the

superposition of the incident and scattered fields, �E = �Ei + �Es ,
which can be expanded by:

�Ei =
∞∑

En
[ �M(1)

o1n − i �N(1)
e1n

]
, (3)
n=1
�Es =
∞∑

n=1

En
[
ian �N(3)

e1n − bn �M(3)
o1n

]
, (4)

where an and bn are the scattering coefficients. It can be deduced
[14] that a(1)

n = b(1)
n = 0, and c(L+1)

n = d(L+1)
n = 1. The expansion co-

efficients (a(l)
n ,b(l)

n , c(l)
n , and d(l)

n ) and scattering coefficients (an and
bn) are obtained by matching the tangential components of EM
fields at each interface and after a little bit of algebra (for details
see Ref. [14]), the final coefficients in the series can be identified
with the scattering coefficients [14]:

an = aL+1
n = [Ha

n(mL xL)/mL + n/xL]ψn(xL) − ψn−1(xL)

[Ha
n(mL xL)/mL + n/xL]ζn(xL) − ζn−1(xL)

, (5)

bn = bL+1
n = [mL Hb

n(mL xL) + n/xL]ψn(xL) − ψn−1(xL)

[mL Hb
n(mL xL) + n/xL]ζn(xL) − ζn−1(xL)

, (6)

where, ψn and ζn are the Riccati–Bessel functions (as defined in
Ref. [13]) and the determinants Ha

n and Hb
n can be calculated by

the expressions [14]:

Ha
n(m1x1) = D(1)

n (m1x1), (7a)

Ha
n(mlxl) = G2 D(1)

n (mlxl) − Q (l)
n G1 D(3)

n (mlxl)

G2 − Q (l)
n G1

,

l = 2, . . . , L, (7b)

Hb
n(m1x1) = D(1)

n (m1x1), (8a)

Hb
n(mlxl) = G̃2 D(1)

n (mlxl) − Q (l)
n G̃1 D(3)

n (mlxl)

G̃2 − Q (l)
n G̃1

,

l = 2, . . . , L, (8b)

and

D(1)
n (z) = ψ ′

n(z)/ψn(z), (9)

D(3)
n (z) = ζ ′

n(z)/ζn(z), (10)

Q (l)
n = ψn(mlxl−1)

ζn(mlxl−1)

/
ψn(mlxl)

ζn(mlxl)
, (11)

G1 = ml H
a
n(ml−1xl−1) − ml−1 D(1)

n (mlxl−1), (12)

G2 = ml H
a
n(ml−1xl−1) − ml−1 D(3)

n (mlxl−1), (13)

G̃1 = ml−1 Hb
n(ml−1xl−1) − ml D

(1)
n (mlxl−1), (14)

G̃2 = ml−1 Hb
n(ml−1xl−1) − ml D

(3)
n (mlxl−1). (15)

One important thing to have into consideration with the current
algorithm (and indeed with all existent algorithms known to us) is
that there exists a possibility of failure due to zero denominators.
For example, jn(z) has real zeros, leading to poles of D(1)

n (z), and
h(1)

n (z) has complex zeros, leading to poles of D(3)
n (z). Additionally,

Cachorro and Salcedo [16] have shown that there may also be the
possibility of isolated singularities in the amplitudes a(l)

n and b(l)
n

of the spherical vector waves, fortunately they are so narrow that
they will not normally show up [16].

2.1. Computational algorithm

Before we can calculate the scattering coefficients, it is neces-
sary to determine the logarithmic derivatives of the Riccati–Bessel
functions (D(1)

n (z) and D(3)
n (z)), the ratio Q (l)

n ,ψn(xL) and ζn(xL).
Firstly D(1)

n (z), this is the same that was used before in the al-
gorithms of the original Mie theory; Wiscombe [17] showed that
it can be accurately calculated by the use of a downward recur-
rence:
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D(1)
Nmax

(z) = 0 + i0, (16a)

D(1)
n−1(z) = n

z
− 1

D(1)
n (z) + n/z

, n = Nmax, . . . ,1. (16b)

The number of terms, Nmax , is a function of the size parameters.
A good choice [17] for the number of terms is given by Nmax =
max(Nstop, |mlxl|, |mlxl−1|) + 15, l = 1,2, . . . , L. The value of Nstop
is the integer closest to:

Nstop =

⎧⎪⎪⎨
⎪⎪⎩

xL + 4x1/3
L + 1, 0.02 � xL < 8,

xL + 4.05x1/3
L + 2, 8 � xL < 4200,

xL + 4x1/3
L + 2, 4200 � xL < 20,000.

⎫⎪⎪⎬
⎪⎪⎭ (17)

For the case of D(3)
n (z), Mackowski et al. [9] have shown that

it is possible to calculate it using the following method, which is
stable for all values of z:

ψ0(z)ζ0(z) = 1

2

[
1 − (cos 2a + i sin 2a)exp(−2b)

]
, (18a)

D(3)
0 (z) = i, (18b)

ψn(z)ζn(z) = ψn−1(z)ζn−1(z)

×
[

n

z
− D(1)

n−1(z)

][
n

z
− D(3)

n−1(z)

]
, (18c)

D(3)
n (z) = D(1)

n (z) + i

ψn(z)ζn(z)
, n = 1, . . . , Nmax, (18d)

where z = a + ib. The ratio Q (l)
n can be accurately determined by

[14]:

Q (l)
0 = exp(−i2a1) − exp(−2b1)

exp(−i2a2) − exp(−2b2)
× exp

(−2[b2 − b1]
)
, (19a)

Q (l)
n = Q (l)

n−1

(
xl−1

xl

)2 [z2 D(1)
n (z2) + n]

[z1 D(1)
n (z1) + n]

[n − z2 D(3)
n−1(z2)]

[n − z1 D(3)
n−1(z1)]

,

n = 1, . . . , Nmax, (19b)

where z1 = mlxl−1 = a1 + ib1 and z2 = mlxl = a2 + ib2. Finally,
ψn(xL) and ζn(xL) are also the same functions used in most of the
algorithms for the scattering by a solid sphere and can be calcu-
lated from [9,17]:

ψ0(xL) = sin(xL), (20a)

ψn(xL) = ψn−1(xL)

[
n

xL
− D(1)

n−1(xL)

]
, n = 1, . . . , Nmax, (20b)

ζ0(xL) = sin(xL) − i cos(xL), (21a)

ζn(xL) = ζn−1(xL)

[
n

xL
− D(3)

n−1(xL)

]
, n = 1, . . . , Nmax. (21b)

Once the above mentioned quantities for xL, z1 and z2 are deter-
mined, it is possible to use the expressions (5)–(15) to calculate
the scattering coefficients and after that we are ready to obtain all
the measurable quantities associated with scattering and absorp-
tion, such as scattering matrix elements and efficiency factors.

2.2. Scattering matrix

Now, let the radiation be described by the four-component
Stokes vector: Î = [I, Q , U , V ]T . The relation between the incident
and scattered Stokes parameters is given by the scattering matrix Ŝ
[18]:

Î s ∝ Ŝ Î i, (22)

where Î i( Î s) is the Stokes vector before (after) the scattering and:
Ŝ(θ) =
⎡
⎢⎣

S11(θ) S12(θ) 0 0
S12(θ) S11(θ) 0 0

0 0 S33(θ) S34(θ)

0 0 −S34(θ) S33(θ)

⎤
⎥⎦ , (23)

here θ is the scattering angle (angle between the direction of
the incident and the scattered radiation). The elements of the
scattering matrix Sik can be derived from the complex scatter-
ing amplitudes (the asterisk denotes the complex conjugation)
S1(θ), S2(θ):

S11(θ) = 1
2

[∣∣S2(θ)
∣∣2 + ∣∣S1(θ)

∣∣2]
, (24a)

S12(θ) = 1
2

[∣∣S2(θ)
∣∣2 − ∣∣S1(θ)

∣∣2]
, (24b)

S33(θ) = 1
2

[
S1(θ)S∗

2(θ) + S∗
1(θ)S2(θ)

]
, (24c)

S34(θ) = i
2

[
S1(θ)S∗

2(θ) − S∗
1(θ)S2(θ)

]
. (24d)

The scattering amplitudes, in turn, can be calculated as:

S1(θ) =
∞∑

n=1

2n + 1

n(n + 1)

[
anπn(θ) + bnτn(θ)

]
, (25a)

S2(θ) =
∞∑

n=1

2n + 1

n(n + 1)

[
anτn(θ) + bnπn(θ)

]
. (25b)

The angular functions πn and τn only depend on cos(θ) and can
be found from recurrence relations [17]:

π0(θ) = 0, π1(θ) = 1, (26a)

πn(θ) = 2n − 1

n − 1
cos(θ)πn−1(θ) − n

n − 1
πn−2(θ) (n � 2), (26b)

τn(θ) = n cos(θ)πn(θ) − (n + 1)πn−1(θ) (n � 1). (26c)

2.3. Efficiency factors

The extinction, scattering and radiation pressure efficiency fac-
tors (Q ext, Q sca and Q pr) are readily obtained by the relations [18]:

Q ext = 2

x2
L

∞∑
n=1

(2n + 1)Re{an + bn}, (27)

Q sca = 2

x2
L

∞∑
n=1

(2n + 1)
(|an|2 + |bn|2

)
, (28)

Q pr = Q ext − g Q sca

= Q ext − 4

x2
L

{ ∞∑
n=1

[
n(n + 2)

n + 1
Re

{
ana∗

n+1 + bnb∗
n+1

}

+ 2n + 1

n(n + 1)
Re

{
anb∗

n

}]}
. (29)

From the calculated efficiencies it is also possible to derive the
absorption efficiency factor (Q abs), single scattering albedo (Λ) and
asymmetry parameter (g):

Q abs = Q ext − Q sca, (30)

Λ = Q sca/Q ext, (31)

g = (Q ext − Q pr)/Q sca. (32)

Yet another quantity, which is mainly relevant to the radar com-
munity, is the radar backscattering efficiency factor (Q bk) [18]:

Q bk = 1

x2

∣∣∣∣∣
∞∑

(2n + 1)(−1)n(an − bn)

∣∣∣∣∣
2

. (33)

L n=1
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For all the efficiency factors, it can be found the corresponding
cross sections from the relation C = A Q , where A = πr2

L is the
geometrical cross-section of the particle.

Finally, one more useful quantity which can be calculated is the
differential (bistatic) scattering cross section dCsca/dΩ , defined as
the energy scattered per unit time into a unit solid angle about a
direction defined by the scattering angle θ for unit incident irradi-
ance. It is expressed in terms of the scattered irradiance Is(θ), the
incident irradiance Ii , and the distance r to the detector as [18,19]:

dCsca

dΩ
= r2 Is(θ)

Ii
= 1

k2

[
S11(θ) + Q i

Ii
S12(θ)

]
. (34)

3. Computer program

The presented program (scattnlay) is written in ANSI C. In order
to offer more flexibility the program was divided in three files: the
main program (scattnlay.c) is responsible for the input/output of
the data, the library nmie.c is the actual implementation of Yang’s
algorithm and the library ucomplex.c provides the functions needed
for the complex algebra. With this distribution it is possible to use
the scattering code either as a standalone program or as a library
for inclusion into some other program. In the file nmie.c the only
exported function is nMie, which performs the actual calculation.
It receives five parameters: L, the number of layers; x, an array
containing the size parameters of the layers [1..L]; m, an array con-
taining the relative refractive indexes of the layers [1..L]; nTheta,
the number of scattering angles and Theta, and array containing
the angles θ (in degrees) at which the scattering amplitudes will
be calculated. The output of the function consists of the seven
parameters described in Eqs. (27)–(33) and the two complex scat-
tering amplitudes [Eqs. (25a) and (25b)], and returns an integer,
which is the number of multipolar expansion terms used for the
calculations. Neither the elements of the scattering matrix nor the
Fig. 1. Extinction and scattering efficiencies (Q ext, Q sca) and single-scattering albedo as the function of size parameter of the outermost layer for a 5-layer sphere with
m1 = 1.8 + i1.7, m2 = 0.8 + i0.7, m3 = 1.2 + i0.09, m4 = 2.8 + i0.2, m5 = 1.5 + i0.4, V 1/V T = 0.1, V 2/V T = 0.26, V 3/V T = 0.044 and V 4/V T = 0.3666.
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Fig. 2. Extinction and scattering efficiencies (Q ext, Q sca) and single-scattering albedo as the function of size parameter of the outermost layer for a soot-coated water sphere.
The refractive indices of water and soot are m1 = 1.33 + i0.00, m2 = 1.59 + i0.66, respectively and the volume fraction of soot is 0.01.
differential scattering cross sections are calculated in the program
but they can be easily obtained from Eqs. (24a)–(24d) and (34),
respectively. The calculation finishes after the inclusion of Nmax

multipolar expansion terms in the calculation of the scattering co-
efficients.

3.1. Tests of the code

The accuracy of the code was tested for five different cases. For
the first two of them, the results were compared with the ones
obtained using the program n-mie version 3 [20], which imple-
ments the recursive algorithm developed by Wu and Wang [10],
the applicability limits of the program are explored for the Kai and
Massoli’s model [13] in the third test and compared with results
from the geometrical optics for the Luneburg lens (fourth case); fi-
nally, in the fifth test case the obtained values are compared with
reported experimental results.
3.1.1. Five-layers sphere
The first test case uses the benchmark distributed with

n-mie (a 5-layers sphere with m1 = 1.8 + i1.7, m2 = 0.8 + i0.7,
m3 = 1.2 + i0.09, m4 = 2.8 + i0.2, m5 = 1.5 + i0.4, V 1/V T = 0.1,
V 2/V T = 0.26, V 3/V T = 0.044 and V 4/V T = 0.3666). The values of
Q ext, Q sca and the albedo obtained for xL between 1.0 and 100.0
can be observed in Fig. 1. For the values of xL lower than 50.0,
the results of both programs are in excellent agreement (4 decimal
places). However, for values of xL greater than 50.0, n-mie presents
numerical problems and the results are obviously illogical. scat-
tnlay, on the other hand, doesn’t have any problem for the whole
interval.

3.1.2. Soot-coated water sphere
The second test consists in a soot-coated water sphere, which

was previously described by Yang [14] (the refractive indices of
water and soot are m1 = 1.33 + i0.00, m2 = 1.59 + i0.66, respec-
tively and the volume fraction of soot is 0.01). Again Q ext, Q sca and
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the albedo were obtained for xL in between 1.0 and 100.0. For this
extreme case [14] (Fig. 2), n-mie fails even earlier (for xL > 20.0)
while again scattnlay has no problem. For the region where n-mie
is accurate (xL < 20.0) the results of both programs are the same
up to 5 decimal places.

3.1.3. Kai and Massoli’s model
The applicability limits of our computer code were explored for

the Kai and Massoli’s model in the third test. The model consists in
a multilayered sphere with a radial profile of the refractive index
ml = nl + ikl given by nl = n1 + 0.5(nL − n1)(1 − cos tπ) and kl = 0,
where t = (l − 1)/(L − 1),n1 = 1.01nL , and nL = 1.33. The size pa-
rameter is xl = x1 + t(xL − x1), where l = 1,2, . . . , L, x1 = 0.001xL
and L is the total number of layers. The obtained domain is shown
in Fig. 3; it can be seen that a considerable improvement was ob-
tained (when compared to Fig. 3, Ref. [14]).

Fig. 3. Computational domain of our computer code for Kai and Massoli’s model
(black region). When compared with their computational domain (Fig. 3, Ref. [14]),
it can be seen that a considerable improvement was obtained. The refractive index
ml = nl + ikl is nl = n1 +0.5(nL −n1)(1−cos tπ) and kl = 0, where t = (l−1)/(L −1),
n1 = 1.01nL , and nL = 1.33. The size parameter is xl = x1 + t(xL − x1), where l =
1,2, . . . , L, x1 = 0.001xL and L is the total number of layers.
3.1.4. Luneburg lens
This test case is the scattering from a Luneburg lens [11,14],

which is a sphere of radius a with a radially-varying index of re-
fraction, given by:

m(r) =
[

2 −
(

r

a

)2]1/2

. (35)

For the calculations, the Luneburg lens was approximated as a
multilayered sphere with 500 equally spaced layers. The refractive
index of each layer is defined to be equal to m(r) at the mid-
point of the layer: ml = [2 − (x̄/xL)

2]1/2, with x̄ = (xl−1 + xl)/2, for
l = 1,2, . . . , L. The size parameter in the lth layer is xl = lxL/500.
According to geometrical optics theory, the reduced differential
cross section (the differential cross section divided by a2) can be
expressed as [11]:

dCsca/d
(
a2Ω

) = cos(θ). (36)

This formula is valid in the angular range 0 � θ � π/2. No rays are
scattered to angles larger than π/2 and therefore the geometric
optics differential cross section of a Luneburg lens is zero in the
range π/2 � θ � π . The differential cross section was calculated
from Eq. (34), considering that the expression is simplified if the
incident light is unpolarized:

dCsca

dΩ
= S11(θ)

k2
. (37)

The results are shown in Fig. 4 for size parameter xL = 60.
The quantity plotted is the reduced differential cross sections
dCsca/d(a2Ω). The obtained results accurately match those by
Johnson [11] and Yang [14]. It can also be seen that for angles
below π/2 and outside the forward scattering region, the wave
optics differential cross section oscillates around the geometric op-
tics value.

3.1.5. Experimental results
Finally, the values obtained by scattnlay were compared with

experimental results. For this we used the normalized absorbance
reported for gold nanoshells by Schwartzberg et al. [21]. The nor-
malized values of Q ext were obtained (Fig. 5) using the values of
Fig. 4. Reduced differential cross section dCsca/d(a2�) as a function of scattering angle θ for a spherical Luneburg lens with a size parameter xL = 60. The size parameter in

the lth layer is xl = lxL/500. The refractive index is ml = [2 − (x̄/xL)
2] 1

2 , with x̄ = (xl−1 + xl)/2, for l = 1,2, . . . , L. From the geometrical optics theory, dCsca/d(a2�) = cos(θ).
The inset shows the same graph using a linear scale, instead of the logarithmic one used in the main graph.
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Fig. 5. Normalized Q ext calculated using the values of Rc and tsh reported in
Ref. [21] for different nanoshells, and the refractive index of gold reported by John-
son and Christy [22].

Rc and tsh reported in Ref. [21], for different nanoshells and the re-
fractive index of gold was obtained from Johnson and Christy [22].
It can be noted that our results (Fig. 5) are in excellent agreement
with the spectra in Fig. 4 of Ref. [21] in spite of the experimental
errors and the size distribution that almost certainly exists in their
samples.

4. Conclusions

The calculations performed using Mie theory have been for
many years a powerful tool for better understanding the scatter-
ing of electromagnetic radiation. Although a lot of programs are
publicly available for the case of scattering by a solid sphere, only
a few of them are able to deal with a multilayered sphere and
they have convergence problems for relatively low values of xL . In
this work we describe a computer implementation of the efficient
algorithm developed by Yang [14] and showed that it is very ac-
curate for a wide range of size parameters, considerably increasing
the applicability limits with respect to equivalent computer codes.
We also showed that the program is able to reproduce well exper-
imental results. This implementation of Yang’s algorithm, to our
knowledge, would be the first of its kind to be available publicly.
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