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We have studied optimum configurations of Au and Ag nanorods for optical sensing applications. From the anal-
ysis of the resonance condition by means of the quasistatic approximation, it was found that sensitivity is con-
trolled by two main factors: the aspect ratio of the nanorods and their composition (the metal’s bulk plasma
wavelength), and it depends linearly on both. The finding was confirmed quantitatively using T-matrix calcula-
tions, even for particles with a radius of 40nm, where the quasistatic approximation is no longer valid. For ease of
detection, the intensity of the surface plasmon resonance band of the nanostructures was included along with its
full-width at half-maximum in the correction factor C, which on multiplying with the sensitivity (ΔλSPR=Δnm)
gives a figure of merit. It has been demonstrated that the metal nanorods, especially the larger ones, have better
optical sensitivity than the nanostructures of nanobox- or nanoshell-like geometries, which have been reported to
be the best optical sensors for these metals. © 2011 Optical Society of America

OCIS codes: 050.6624, 160.3900, 160.4236, 160.4760, 240.6680.

1. INTRODUCTION
Potential applications of metal nanoparticles (NPs) in areas
such as chemical and biochemical sensing [1,2] or cancer
treatment [3] arising from the dependence of their surface
plasmon resonance (SPR) frequency on the refractive index
of the surrounding environment [4] have made them the
subject of intensive research nowadays [5,6]. For sensing
applications, a high sensitivity of the SPR frequency to
the change in the refractive index of the surroundings
(ΔλSPR=Δnm) is required. However, the plasmonic behaviors
of metal NPs and their sensitivity to the refractive index
change of the embedding medium strongly depend on their
physical geometry. Numerous studies have been performed
[7–12] on metallic nanostructures of various geometries to
find suitable configurations with optimum sensitivity. Never-
theless, it has been noticed that not only the sensitivity of the
SPR band of the NPs matters for sensing applications, but also
its width, as this parameter affects ease of detection [9,12,13].
For that very reason, a figure of merit (FOM) was defined [12]
by multiplying the sensitivity by a correction factor C, which is
related to the full-width at half-maximum (FWHM) of the plas-
mon band through the relation: C ¼ 1=FWHM. Using this ex-
pression of FOM, it has been claimed that nanocubes [12] and
nanoboxes [10] (hollow nanocubes) are the most efficient
metallic NPs for sensing applications. However, even though
there has been no shortage of efforts to use metallic nanorods
as sensors [14–16], none of the reported works have taken
this correction factor into account while estimating their
sensitivity.

A simple yet effective way to represent the nanorods is
through prolate spheroids, which can be formed by rotating
an ellipse around its major axis. They can be described with

two parameters: b, which is the rotational (transversal) semi-
axis, and a, the longitudinal semiaxis. However, it is more con-
venient to describe their shape using the aspect ratio ϵ (the
ratio of the longitudinal to the rotational axis, a=b) and their
size using the radius rV of a sphere having the same volume.
The typical single SPR peak observed for a sphere is split in
two for the nanospheroids, i.e., the longitudinal and trans-
verse modes, which are red- and blueshifted, respectively.
This effect can be explained by the presence of a high density
of electronic charge at the spheroid extremity, produced by
polarization. Therefore, a greater (lower) electron screening
occurs in the longitudinal (transverse) direction, resulting in a
weaker (stronger) restoring force of the electron gas, and
therefore lowering (increasing) its resonance frequency.

In this work, we have studied the dependence of the refrac-
tive index sensitivity and SPR bandwidth on the aspect ratio of
gold and silver prolate spheroids in random orientations
(Fig. 1), using T-matrix calculations [17], to find their optimum
configurations for sensing applications. For the calculations
we used the free code developed by Mishchenko and Travis
[18]. The bulk dielectric function values of gold and silver re-
ported by Johnson and Christy [19] were used after a correc-
tion to incorporate the surface dispersion effects [20]. It has
been demonstrated that these metallic nanorods with opti-
mum aspect ratios have excellent sensitivity, even surpassing
that of other more exotic geometries, which are harder to
synthesize.

2. T-MATRIX METHOD
The T-matrix method was originally developed by Waterman
[21] and later improved by Mishchenko et al. and Wielaard
et al. [22–24]. In this method, the incident, internal, and
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scattered electric fields (~Ei, ~Eint, and ~Es) are expanded in
terms of appropriate sets of spherical wave functions, which
are correlated by means of a transition (or T) matrix. A rela-
tion between the expansion coefficients for the incident and
the scattered fields can be obtained by using integral repre-
sentations of the electric fields, which should satisfy the
vector Helmholtz equation:

∇ ×∇ × ~E − k2 ~E ¼ 0 ðk ¼ 2π=λÞ; ð1Þ

where λ is the wavelength in the medium. The best basis func-
tions for a spheroidal particle are spherical wave vectors, ~Mυ
and ~Nυ; υ represents the spherical harmonic double index m

and n. When the time dependence expð−iωtÞ is used (ω ¼ kc

and c is the speed of light), these functions are given by

~Mυ ¼ ∇ × ~r · expð−imφÞPm
n ðcosðθÞÞ × ½jnðkrÞ þ innðkrÞ�;

ð2aÞ

~Nυ ¼ k−1∇ × ~Mυ; ð2bÞ

with the geometric parameters defined following Mishchenko
et al. [17]. Here Pm

n ðcosðθÞÞ are the associated Legendre func-
tions, jnðkrÞ are the spherical Bessel functions, nnðkrÞ are the
Neumann functions, and the indices are n ¼ 0; 1; :::::;
m ¼ −n;−nþ 1; :::::; n − 1; n. These functions are outward
traveling waves with singularity at the origin that satisfy
the Helmholtz vector equation and form a complete set of
functions on the unit sphere. The corresponding functions
that are regular (finite) at the origin are obtained by excluding
the Neumann function nnðkrÞ from Eq. (2). Thus, the regular
vector waves, ~M

r
υ and ~N

r
υ, have a pure Bessel function radial

dependence. The incident field in the surrounding medium is
regular at the origin, and thus can be expanded as regular
waves such as

~Eiðkmed~rÞ ¼ E0

X
υ
Dυ½aυ ~Mr

υðkmed~rÞ þ bυ ~N
r
υðkmed~rÞ�; ð3Þ

where E0 is the amplitude of the incident field, Dυ is a normal-
ization constant, aυ and bυ are the expansion coefficients that
are assumed to be known, and for an incident plane wave,
they are expressed in terms of the associated Legendre func-

tions and their derivatives [21]. The internal field can be
expanded in terms of the same regular waves:

~Eintðkpart~rÞ ¼ E0

X
μ
½cμ ~Mr

μðkpart~rÞ þ dμ ~N
r
μðkpart~rÞ�; ð4Þ

where μ incorporates the two spherical harmonic indices
mentioned above and cμ and dμ are the expansion coefficients
of the internal field. Finally, the outgoing scattered field can
be expressed in terms of outgoing spherical waves [by keep-
ing the Neumann function in Eq. (2)]:

~Esðkmed~rÞ ¼ E0

X
υ
Dυ½f υ ~Mo

υðkmed~rÞ þ gυ ~N
o
υðkmed~rÞ�; ð5Þ

where f υ and gυ are the expansion coefficients characterizing
the scattered field. They are obtained by multiplying the
known expansion coefficients of the incident field by a so-
called transition matrix or T matrix:

�
f υ
gυ

�
¼

�
T11 T12

T21 T22

��
aυ
bυ

�
: ð6Þ

Equation (6) is the main equation of the T-matrix approach;
only the expansion coefficients of the incident field and the
elements of the T matrix need to be calculated now.

Finally, Mishchenko’s averaging scheme [25] was used to
calculate the orientation averaging of the optical properties,
because in most real systems the nanorods are randomly or-
iented. This method is very efficient in computational terms
because the T matrix is calculated only once during averaging.
This can be accomplished by taking advantage of the fact that
the T matrix does not depend on the directions of propagation
and the states of polarization of the incident and scattered
fields, but only on the size, morphology, and composition
of the scattering particle as well as on its orientation with
respect to the laboratory reference frame.

3. QUASISTATIC APPROXIMATION
In this section we will use the quasistatic approximation to
theoretically analyze the main factors affecting the spectral
sensitivity of the SPR. Despite its simplicity, this approach
is useful to qualitatively understand many phenomena related
to light scattering by small particles. In this approximation,
the absorption cross section of randomly oriented ellipsoids
can be calculated as [9,26]

σabsðωÞ ¼
Vϵ3=2m

3c

X3
i¼1

L−2
i

ωϵ2
½ϵ1 þ ϵmðL−1

i − 1Þ�2 þ ϵ22
; ð7Þ

where V is the particle volume, c is the speed of light in va-
cuum, ϵnp ¼ ϵ1 þ iϵ2 and ϵm are the dielectric functions of the
NP and the surrounding medium, respectively, and Li are geo-
metric factors. For prolate spheroids, the Li terms only
depend on the eccentricity (e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðb=aÞ2

p
), through the

relations [27]

L1 ¼
1 − e2

e2

�
−1þ 1

2e
ln
�
1þ e

1 − e

��
; L2 ¼ L3 ¼

1 − L1

2
: ð8Þ

For the longitudinal SPR, we obtain the resonance condition
for the minimum of the denominator; by assuming that ϵ2 is

Fig. 1. (Color online) Schematic representation of a randomly
oriented prolate spheroid, showing the impinging electromagnetic
waves. E and B are the electric and magnetic fields, respectively,
and k is the wave vector.
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approximately constant (which is true in most cases), this
condition can be simplified to ϵ1 þ ϵmðL−1

1 − 1Þ ¼ 0. The di-
electric function of the metal can also be approximated, by
means of Drude’s model [9,27]:

ϵnpðωÞ ¼ ϵib −
ω2
p

ω2 − iωΓ ≈ ϵib −
ω2
p

ω2 þ i
ω2
p

ω3 Γ; ð9Þ

where ω, ωp, and Γ are the optical frequency, the metal plasma
frequency, and the damping constant, respectively and ϵib re-
presents the interband contribution to the dielectric function.
Now, using Eq. (9), the resonance condition can be rewritten
as

λSPR
λp

¼ ωp

ωSPR
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵib þ ϵmðL−1

1 − 1Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵib þ n2

mðL−1
1 − 1Þ

q
;

ð10Þ
where λSPR and λp represent the SPR and the bulk plasma
wavelengths, respectively, and nm is the refractive index of
the surrounding medium. Now, because the factor L−1

1 − 1
is approximately proportional to ϵ2 ðL−1

1 − 1 ∝ ϵ2Þ [16], it fol-
lows that if ϵib in Eq. (10) is small compared to the other term,
then the sensitivity of the SPR wavelength to the refractive
index variations is

dλSPR
dnm

∝ λp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L−1
1 − 1

q
∝ ϵλp: ð11Þ

It is clear from Eq. (11) that the sensitivity of the surface plas-
mon wavelength to the changes in refractive index of the local
environment is linearly proportional to both λp (type of metal)
and the aspect ratio of the nanorod. As for the widening of the
SPR peak, it is first necessary to calculate the Taylor expan-
sion of σabs near λSPR [28]:

ϵ1ðλÞ þ ϵmðL−1
i − 1Þ ≈ ½ϵ1ðλSPRÞ þ ϵmðL−1

i − 1Þ�

þ ∂ϵ1ðλÞ
∂λ

����
λ¼λSPR

ðλ − λSPRÞ: ð12Þ

Now the FWHM of the SPR peak can be found from the
analogy of the expression obtained for the absorption cross
section with a Lorentzian function, after replacing the ob-
tained expansion in Eq. (7) [28]:

Δλ1=2 ¼ 2jλSPR − λ1=2j ≈ 2ϵ2ðλSPRÞ=
����∂ϵ1ðλÞ∂λ

����
λ¼λSPR

����: ð13Þ

This equation shows that the width of the peak has a much
more complex dependency on the parameters of the particle

Fig. 2. (Color online) Simulated optical extinction spectra for gold (silver) prolate spheroids (ϵ ¼ 3), in random orientations, with equivalent radii
of (a) [(c)] 10 and (b) [(d)] 40 nm, respectively, and embedded in different media with increasing refractive indices (1.0–2.0). The insets show the
plots of the SPR peak position λSPR against the refractive index of the embedding medium. The solid lines are linear fits to the data points.
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than the sensitivity. However, Eq. (13) indicates that the band-
width is narrower when the imaginary part of the dielectric
function of the metal is smaller and the gradient of the real
part is steeper.

In principle, Eqs. (11) and (13) are just rough approxima-
tions of the influence of the particles’ parameters on the SPR
sensitivity and linewidth, and they should be valid only for
very small particles (rV < 10nm). However, we will demon-
strate in the next section that they remain valid when the size
of the NP is increased beyond this limit. For this, the results
obtained by an exact method (Tmatrix) will be presented. The
calculations will be performed for nanospheroids with radii of
10 nm (where the assumptions we made are mostly met) and
40 nm (where the quasistatic approximation is not valid).

4. RESULTS AND DISCUSSION
The calculated optical extinction spectra for randomly or-
iented gold and silver prolate spheroids, embedded in differ-
ent media, with aspect ratio ϵ ¼ 3 and equivalent radii rv of
10 nm and 40nm are shown in Fig. 2. Regardless of size, an
increase of the refractive index of the surrounding environ-
ment produced a redshift for both the SPR modes. The effect
is more pronounced for the longitudinal mode than for the
transversal mode. Therefore, all our subsequent discussions
are restricted to the former mode. As can be seen (insets
of Fig. 2), the shift of the SPR position is linear for both
the metals. A linear regression of the SPR wavelengths yielded
similar experimental sensitivities of the small (big) NPs to the
refractive index variations (ΔλSPR=Δnm): 320.7 and 350.0
(323.1 and 320:7nm) per refractive index unit (RIU) for gold
and silver, respectively. Those values are equivalent or better
than the ones reported for some other shapes such as nano-

boxes [10] and nanoshells [29,30] of the same metals. Indeed,
the sensitivity can be greatly improved by increasing the as-
pect ratio of the nanorods. For instance, when ϵ is varied from
1.0 to 6.0, the ΔλSPR=Δnm of gold (silver) spheroids changes
from 76.5 to 604:7 nm=RIU (115.0 to 599:1nm=RIU) and from
93.8 to 546:2nm=RIU (133.7 to 536:6 nm=RIU) for the small
(10nm) and big (40nm) particles, respectively, as shown
in Fig. 3.

However, the enhancement of the sensitivity does not come
without a cost, because the linewidth (FWHM) of the SPR
peak also becomes larger on increasing the aspect ratio
(Fig. 4). Moreover, the increase of the FWHM with the aspect
ratio is more pronounced than that of the sensitivity for the
corresponding nanostructure [Fig. 5(a); the plotted values
correspond to the average FWHM, because it also depends
on the refractive index of the matrix]. From the plot of the
FOM [Fig. 5(b)], it is clear that there is an optimum value
of ϵ (between 3 and 4 for both metals) that yields a maximum
sensitivity, which is comparable to the one reported by Cao
et al. [10] for gold nanoboxes. Additionally, the small differ-
ence in sensitivity between gold and silver is considerably ac-
centuated when it is taken into consideration that the latter
metal has a much narrower plasmon than the former. Another
effect, which is true in both cases but is much more evident
for silver, is that the larger spheroids have worse FOM values
than the smaller ones; this can be attributed to the broadening
caused by the phase retardation effect [14]. Finally, it can
be noted that the obtained values for the FOM are better than
those reported for gold nanoboxes [10] and silver nano-
cubes [12].

So far we have shown that for sensing (optical and bio-
logical) applications, Au and Ag nanorods can compete

Fig. 3. (Color online) Change of SPR peak positions of gold (silver) nanorods of different aspect ratios ϵ, with equivalent radii of (a) [(c)] 10 and
(b) [(d)] 40nm, respectively, with the variation of the refractive index (nm) of the embedding medium. The lines are linear regressions, used to
obtain the reported sensitivities (slope of the lines).
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favorably with most of the geometric variants. However, it is
worth examining an additional factor that makes them even
more attractive. Apart from the linewidth, the intensity of
the SPR peak of the metallic nanostructures is another factor
that should also be taken into account for the ease of detec-
tion, for obvious reasons, of two peaks with the same line-
width, the more intense one would be easier to detect.
Therefore, we propose to modify the correction factor to take
into account the “slenderness” of the peak instead of just its
linewidth. For the sake of simplicity, we assume that the SPR
peak has a Lorenzian shape:

LSPR ¼ QSPR
ext

1þ
�

λ−λSPR
FWHM=2

�
2 ; ð14Þ

where QSPR
ext is the extinction efficiency at the SPR wavelength;

the correction factor now can be redefined as

C ¼
R
∞
−∞

LSPRdλ
FWHM

¼ π QSPR
ext

FWHM
: ð15Þ

In order to simplify the expression, the term π can be safely
omitted from C (because it is a constant). It should be noted
that both QSPR

ext and the FWHM depend on the refractive index
of the matrix and, therefore, their average values in the region
of interest should be used. Finally, the new FOM can be
rewritten as

FOM ¼ hQSPR
ext i

hFWHMi
ΔλSPR
Δnm

: ð16Þ

Fig. 4. (Color online) Variations of plasmon linewidth for gold (silver) nanorods of different aspect ratios ϵ, with equivalent radii of (a) [(c)] 10 and
(b) [(d)] 40nm, respectively, with the variation of the refractive index (nm) of the embedding medium. The lines are a guide for the eye.

Fig. 5. (Color online) (a) Refractive index sensitivity ΔλSPR=Δnm

(solid symbols), and FWHM (open symbols) of the SPR peak and
(b) Sherry’s FOM, plotted against the aspect ratio of gold [silver] na-
norods, with equivalent radii of 10 (black squares) [(red circles)] and
40nm (green triangles) [(blue diamonds)], respectively.
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On increasing the aspect ratio of the metallic nanorods, their
SPR gets more intense, unlike for nanoshells [31] and nano-
boxes [10], where the intensity drops almost exponentially
when the wall thickness is reduced. Therefore, the optical sen-
sitivity of the nanorods with a proper aspect ratio is much
higher than their nanoshell and nanobox counterparts. The
FOM defined by Sherry et al. [12] does not take into account
the effect of the intensity for the sake of ease of detection.
Therefore, the FOM we defined in Eq. (16) should provide
a more realistic assessment of the appropriateness of a struc-
ture to be used as a sensor. As an example, our newly defined
FOM, calculated for the same types of metal particles pre-
viously analyzed, is presented in Fig. 6. As can be seen, the
larger particles present higher values of the FOM due to their
higher SPR intensity. At the same time, the optimum aspect
ratios were shifted to higher values than those previously
obtained.

5. CONCLUSIONS
Through theoretical analysis and T-matrix calculations of ran-
domly oriented Au and Ag prolate spheroids, it has been
shown that the optical sensitivity of these nanostructures
strongly depends on their composition, size and aspect ratio.
While the sensitivity of the nanostructures increases consid-
erably with ϵ, the width of their SPR peak increases more ra-
pidly, making them difficult to apply as sensors. Taking into
account these two factors, a FOM [12] was calculated, show-
ing that there exists a size-dependent optimum aspect ratio for
each of these metals, which makes them more suitable for
sensing applications. According to this concept of the FOM,
smaller NPs are better for sensing applications. However, in-
corporating the SPR intensity factor to the conventional FOM,
our amended FOM revealed just the opposite result, indicating
that larger particles would be the better sensors due to their
higher SPR peak intensity.
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