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Abstract

We study the optical response of eccentric nanoshells (i.e., spherical nanoparticles with an eccentric spherical
inclusion) in the near and the far field through finite-difference time-domain simulations. Plasmon hybridization
theory is used to explain the obtained results. The eccentricity generates a far-field optical spectrum with various
plasmon peaks. The number, position, and width of the peaks depend on the core offset. Near-field enhancements
in the surroundings of these structures are significantly larger than those obtained for equivalent concentric
nanoshells and, more importantly, they are almost independent of the illumination conditions. This opens up the
door for using eccentric nanoshells in applications requiring intense near-field enhancements.
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Background
Metal nanoparticles (NPs) have unique electronic and
optical properties that have spawned considerable inter-
est. More precisely, they support collective oscillations
of the free electrons, a phenomenon known as localized
surface plasmon resonance (LSPR), with applications in
several fields [1–5]. Some of those applications, like
medical diagnostics [6], immunoassays [7, 8], and studies
of living cells and bacteria [9, 10], require a fine control
over the spectral properties (i.e., position and width) of
the LSPR, which are susceptible to parameters like the
size, shape, structure, and composition of the particles
[11], along with the nature of dispersing dielectric
medium. Metallic nanoshells [12, 13] and their variants
[14–16] are well suited to provide this control because,
even though they have a simple shape, they present a
notable structural tunability of the plasmon frequencies
[17, 18], as has been demonstrated both theoretically
[12] and experimentally [19].
On the other hand, there are some applications such

as surface-enhanced spectroscopies [9, 20, 21], thermal
therapy of tumors [22], and thermoplasmonics [4, 23]
that require an intense near field. Nanoshells are not

equally attractive in this case because the reduction of
thickness of the metal layer, which is required to tune
the LSPR position, results in very weak near fields.
Hence, different structures, like rough surfaces [24] and
nanoparticle junctions [25], are usually preferred for
these applications. The advantage of these structures
comes from their ability to concentrate the light into
small volumes, greatly enhancing the local electromag-
netic (EM) field in this region, producing the so-called
“hot spots” [26]. However, these structures have an im-
portant disadvantage: the position of the hot spots might
be located in difficult to reach positions (e.g., in the in-
terparticle gap or inside the irregularities). Spherical
nanoshells with an eccentric core [27] or with surface
defects [28] generate enhancements of the near electric
field much more intense than that of the concentric
ones. In other words, they combine the best of both
worlds: a tunable LSPR coupled with large near-field
enhancement. However, rough nanoshells have been
far more studied in the literature [28–32] than the
eccentric ones [27, 33, 34], probably because the lat-
ter are harder to synthesize [33].
In this paper, we have used finite-difference time-

domain (FDTD) calculations [35, 36] to study the influ-
ence of geometrical parameters on the LSPR of eccentric
nanoshells (ENs). We performed a simple expansion of
Au dielectric function reported by Johnson and Christy
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[37] with a Drude term and five Lorentzian peaks, as has
been described elsewhere [38]. It was found that the ec-
centricity shifts the plasmon energies and makes higher-
order multipolar modes visible in the optical spectra.
Moreover, near-field enhancements in the vicinity of
ENs are much higher than those obtained around a con-
centric nanoshell. The obtained results are explained in
terms of the theory of plasmon hybridization and they
show that ENs have a great potential for applications re-
quiring intense field enhancements like surface-
enhanced spectroscopies, thermal therapy of tumors,
and thermoplasmonics.

Methods
Calculation of the Optical Response
Several theoretical approaches have been utilized to de-
scribe the light absorption and scattering by metallic
nanostructures. For instance, the analysis of LSPR prop-
erties of metallic nanoparticles with spherical symmetry
is usually done by means of the Mie theory [39, 40],
whereas methods like FDTD [35, 36] are employed for
other cases, e.g., for structures without spherical sym-
metry. The theory of plasmon hybridization [16] has also
been developed to study the LSPR of metallic nanoparti-
cles in terms of the interaction between the plasmons of
metallic nanostructures with simpler forms (e.g., the
LSPR of nanoshells is studied as the interaction of the
modes in a sphere and a cavity). In this work, we have
studied eccentric nanoshells with geometries as shown in
Fig. 1a, using the computer software MEEP [41], which is
an implementation of the FDTD method [35, 42]. A de-
tailed description of the FDTD method can be reviewed
elsewhere [35].
The dimensions of the ENs are set to 15 and 20 nm

for the internal (R0) and external (R1) radii, respectively.
The position of the core, which was set initially at the
center of the sphere, is displaced by a distance, d (1 to
5 nm in steps of 1 nm) in the X, Y, and Z directions, re-
spectively, to evaluate how the eccentricity affects the
optical response in the far and near fields. The computa-
tional cell has a size of 160 × 160 × 160 nm3 with a
spatial resolution of 0.66 nm and is surrounded by
perfectly matched layers with a thickness of 200 nm to
absorb the scattered waves. The structure is placed at
the center of the cell. A broadband Gaussian source
(200–900 nm) with the electric field polarized in the X
direction is placed at the top of the cell and the EM
wave propagates along the Z direction, interacting with
the EN. The fields are allowed to evolve, and the simula-
tion is terminated once |E|2 have decayed up to 10−8 at
the bottom of the cell.
The far-field response is studied by means of the

extinction efficiency factor, Qext, which can be calcu-
lated from the extinction cross section, Cext, and the

cross-sectional area projected onto a plane perpendicular
to the incident beam, A, using the expression [40]:

Qext ¼
Cext

A
¼ Cext

πR2
1

ð1Þ

The extinction cross section represents the rate at
which the incident radiation, Iinc, is attenuated by the
structure and, in a non-absorbing medium, it can be cal-
culated as the sum of the absorption and scattering cross
sections, Cabs and Csca [40]:

Fig. 1 Schematic representation of the eccentric nanoshell structures.
a Schematic representation of the simulated eccentric nanoshells with
the core offset a distance d from the center of the shell. R0 and R1
represent the core and shell radii, respectively. b Energy level diagram
representing the plasmon hybridization in the eccentric metallic
nanoshells, resulting from the interaction of the sphere and the cavity
plasmons. The green dashed lines illustrate the hybridization of sphere
and cavity plasmons in a concentric nanoshell. For an eccentric
nanoshell, there exists an interaction between primitive plasmon
modes of all multipolar order (red dashed lines). This results in an extra
shift for the eccentric nanoshell of the dipolar bonding and
antibonding plasmons to the red and blue, respectively (represented
by the arrows of the corresponding color)
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Cext ¼ Cabs þ Csca ¼ W abs þW sca

I inc
ð2Þ

where Wabs and Wsca represent the power absorbed and
scattered by the structure, respectively.
The values of Iinc, Wabs, and Wsca are calculated as the

integral of the Poynting vector of the Fourier-transformed
electric and magnetic fields at each frequency, ω, over
a closed area to obtain a full spectrum in a single
simulation [41]:

W ωð Þ ¼ ℜ∯Eω �Hω dS ð3Þ
The near-field response is evaluated by means of the

field enhancement, |E|/|E0|, at the plasmon frequency of
the structure. Each component of the complex electric
field (Ex, Ey, and Ez) is stored at each time step and every
point of the space in the simulation cell. Once the fields,
which are of the form of E = E (x, y, z, t), have been ac-
cumulated over the full simulation time, they are
Fourier-transformed to obtain a full spectrum of the
electric fields in the frequency domain, E = E (x, y, z, ω),
for all the space considered in the simulation cell. This
calculation is performed twice: firstly with the structure
to obtain the fields scattered by the EN, |E| and then
without the EN to obtain the incident field, |E0|, and
normalize the previous result.

Plasmon Hybridization Theory
Wu and Nordlander developed the plasmon hybridization
theory to explain the LSPR behavior in ENs [27]. The
energy level diagram for plasmon hybridization in the
studied ENs is depicted in Fig. 1b. The LSPR of concentric
metallic nanoshells can be viewed as the interaction be-
tween the plasmons of a sphere and a cavity. The
hybridization of the plasmon of the sphere and the cavity
creates two new plasmon oscillation modes, i.e., the higher
energy (antibonding) mode |ω+〉 and the lower energy
(bonding) mode |ω−〉, corresponding to the antisymmetric
and symmetric interactions between the |ωs〉 and |ωc〉

modes, respectively.
Plasmon hybridization in an eccentric nanoshell is

similar to that of its concentric counterpart, but the shift
of the core introduces a very important difference: sym-
metry breaking eliminates the orthogonality between
different-order modes. Hence, cavity and sphere modes
of different multipolar indices can hybridize, forming
bonding and antibonding modes that cannot exist in
concentric nanoshells [27]. This additional interaction
results in stronger hybridization and larger plasmon en-
ergy shifts of the dipolar bonding and antibonding plas-
mons to the red and blue, respectively. However, the
more important effect of symmetry breaking lies in the
fact that all the plasmon modes of the EN have a contri-
bution from the optically active dipolar sphere plasmons.

Consequently, several of the hybridized modes of the EN
can be excited by the incoming light also in the dipole
limit (i.e., for small particles, like the ones studied in this
work, where higher-order modes are not expected to be
visible) [27].

Results and Discussion
The extinction efficiency factor, Qext, for all the studied
cases is represented in Fig. 2 as a function of the core
shift along the X (Fig. 2a), Y (Fig. 2b), and Z (Fig. 2c)
axes. Obviously, the optical response of the concentric
nanoshell (dx = dy = dz = 0) is independent of the illumin-
ation conditions. As the eccentricity increases, the LSPR
redshifts and widens, eventually splitting into two or
even three peaks (for the larger offsets). This behavior is
common to all the studied cases but is more prominent
when the polarization of light is parallel to the direction
of the core shift (Fig. 2a). Appearance of these additional
peaks can be understood if we recall that plasmon
modes with different multipolar orders cannot interact
in concentric nanoshells due to the orthogonality

Fig. 2 Extinction efficiency spectra as a function of the wavelength
and eccentricity. Extinction efficiency spectra as a function of the
wavelength for different values of eccentricity determined by the
offset of the nanoshell core along the a X, b Y, and c Z axes
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condition. However, primitive plasmons with different
indexes can interact when the symmetry is broken, pro-
ducing hybridized plasmon modes that contain contribu-
tions from all multipolar orders. Moreover, the dipolar
contribution in those hybrid modes means that they are
optically active even in the dipole limit, which explains
the new peaks that appear in the extinction spectra of
the small ENs studied in this work.
Unlike the high-energy (>4.0 eV) modes reported by

Wu and Nordlander [27], all the plasmon modes that
appear in our results correspond to bonding modes. This
difference comes from the fact that our dielectric func-
tion includes the interband transitions of gold, which
damp the antibonding plasmon modes that lie in the
same spectral region. The same effect is responsible for
the widening of the bonding plasmon modes in our re-
sults in comparison to the modes reported by Wu and
Nordlander [27]. On the other hand, it is remarkable
that the spectra obtained for the polarizations perpen-
dicular to the core shift direction are very similar, re-
gardless the polarization/direction of the incident light,
either perpendicular (Fig. 2b) or parallel to the offset
(Fig. 2c). Finally, it should be noted that the extinction
efficiency is somewhat attenuated as the core is shifted.
This effect, common to all nanoshells [43], not only for
eccentric ones, is related with the reduction of the metal
layer. However, in spite of the reduction, the extinction
efficiency is still intense enough for most applications.
Moreover, the LSPR damping for a given plasmon shift
would be lower in an eccentric nanoshell than in a con-
centric one because the additional shift introduced by
the core makes it possible to obtain a given LSPR dis-
placement with a lower R0/R1 ratio.
A more detailed comparison between all the illumin-

ation conditions can be seen in Fig. 3. The optical ex-
tinction spectra obtained for the offset of 4 nm along all
the Cartesian axes, together with insets representing the
color maps of the local electric field enhancements ob-
tained for all the LSPR maxima are depicted in Fig. 3a.
All the trend discussed previously are clearly seen here:
the spectra for the polarization perpendicular to the off-
set are very similar and exhibit two peaks, whereas the
spectrum of the parallel polarization is redshifted and a
third peak appears. In addition, the near-field enhance-
ments are higher for the peaks located at larger wave-
lengths, even if the extinction efficiency is lower, as can
be seen in the insets. Field enhancements (|E|/|E0|) are
around 30 for those LSPR peaks, a twofold increase over
a concentric nanoshell (not shown). The differential
scattering cross section in the XZ plane at the LSPR
maximum is shown in Fig. 3b for the same structures,
along with the same quantity for the concentric nano-
shell. It can be seen that the general behavior of scatter-
ing is not considerably affected by the eccentricity, and

it is dominated by two large lobes in the forward and
backward scattering directions. The important change
that can be seen in Fig. 3b is the reduction of the total
scattering, more marked when the core shift is parallel
to the direction of the light polarization.
The effect of the core shift in the near field is depicted

in Figs. 4 and 5. Figure 4 shows the field enhancement
profiles along each axis of the nanoshell, for the same
direction of core shift. The distribution of field enhance-
ment for zero offset is explained in Fig. 4. Along the
polarization direction (Fig. 4a, X direction), it reaches its
maximum in the vicinity of the shell, then goes to one
inside it and is increased again inside the core, where it
is almost constant. On the contrary, in a direction per-
pendicular to the polarization (Fig. 4b, c, Y and Z direc-
tions), the field enhancement increases near the shell
until it reaches a certain value that is kept approximately
constant inside the shell and core, without a clear

Fig. 3 Extinction efficiency spectra and local electric field
enhancements obtained for all the LSPR maxima. a Extinction
efficiency spectra corresponding to the offset of 4 nm along all the
Cartesian axes (polarization is fixed along the X axis). The insets are
color maps representing the local electric field enhancements
obtained for all the LSPR maxima. b Differential scattering cross
section in the XZ plane at the LSPR maximum for the same
structures and for the concentric nanoshell
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maximum. Field enhancement is symmetrical with re-
spect to the origin for the two latter cases.
The evolution of the field enhancement as a function

of core shift is similar in all the cases, regardless of
whether it is performed in the same direction or perpen-
dicular to the polarization direction of the incident light.
As the core shift increases, the value of |E|/|E0| becomes
asymmetrical with the larger increases in the thinner
side, whereas it decreases in the opposite side, reaching
its maximum value for a core shift of 4 nm. For a more
detailed analysis of the hot spot, Fig. 5 represents the
value of |E|/|E0| in the point p1, located on the offset
axis at 0.5 nm of the nanoshell surface as a function of
core shift and illumination conditions. Field enhancement
at this point reaches a value of about 20 when the core is
shifted in the polarization direction of incident light and
25 for the axis perpendicular to the polarization direction.
This means that the field is enhanced two- and sixfold, re-
spectively, compared to the field enhancement produced
around a concentric nanoshell. More importantly, similar
values of the field enhancement are obtained for all the il-
lumination conditions. This effect can have important im-
plications for real-world applications, where it is nearly
impossible to guarantee the alignment of the nanoshells
with the polarization of light. The same is not true for the
hot spots obtained in nanoparticle junctions that only
reach the maximum value when the polarization of light is
parallel to the axis of the structure [44, 45]. Hence, this ef-
fect alone makes eccentric nanoshells a very interesting
candidate for applications requiring intense near-field en-
hancements without needing the specific orientation that
require other plasmonic nanostructures.

Conclusions
In this work, we have studied the evolution of the near-
and far-field optical response of eccentric metallic nano-
shells as a function of core offset. Plasmon modes in
eccentric nanoshells are formed by hybridization of cav-
ity and sphere plasmons of all multipolar orders, which
is forbidden in concentric nanoshells by orthogonality
conditions [27]. Hybridization becomes stronger on in-
creasing the core offset, producing larger redshifts of
bonding plasmons. Hybridized plasmon modes are com-
posed of a mixture of all the primitive dipolar plasmons,
which makes them optically active and gives rise to new
LSPR peaks in the extinction spectrum. The electric field
enhancements for resonant excitation of EN plasmons
can be substantially higher than those obtained for their
concentric counterparts. Moreover, the field enhance-
ment obtained for the larger offsets is nearly independ-
ent of the illumination conditions. These two effects
together make eccentric nanoshells very attractive for
applications requiring intense near-field enhancements.

Fig. 4 Near-field enhancement profiles along the eccentricity axis
for different offsets. Near-field enhancement profiles along the
eccentricity axis, calculated for nanoshells with the core displaced
in the a X, b Y, and c Z axes

Fig. 5 Near-field enhancement value in a point as a function of the
eccentricity. Near-field enhancement value calculated in the point
p1, as a function of the eccentricity in the three axes
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