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While many of the advances in materials science have been driven by 

breakthroughs in material design and fabrication, understanding the changes 

that occur in a material during its utilization or operation in devices is of 

immense importance for its successful integration. Considering these aspects 

and the continued growth in materials research, there is a clear need for new 

topical journals which can serve researchers to understand the phase 

transitions and exploit the phenomena to current, state-of-the-art research in 

the field of materials science, moreover with full accessibility. 

Abstract 
An essential contribution to sustainable industrial growth is the process 

intensification strategy that aims to improve manufacturing by 

reducing energy consumption and waste production through safer and 

flexible equipment. Membrane technology satisfies all the process 

intensification requirements. Polymeric membranes are used in 

different separation processes at an industrial scale due to their 

exciting separation property, low cost, and easy manufacturing. These 

membranes are prepared using different methods as phase inversion, 

controlled stretching, melt extrusion, or electrospinning depending on 

the preferred membrane morphology. Phase inversion is the most used 

process for membrane fabrication as it permits to fabrication a wide 

range of membrane morphologies from dense to porous. Here we 

review the techniques base on the phase inversion process and their 

performances in fabricating polymeric membranes. The key factors 

that influence membrane morphology have also been discussed. 
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1.Introduction 
Satisfying the current growing demand for raw materials, products, and energy 

within the restrictions imposed by sustainable development is particularly complex. In 
this perspective, one of the most challenging tasks for the industries is to increase 
productivity through intensification of processes. Process intensification (P.I.) consists of 
innovative techniques, more flexible and safe devices, and reduced energy requirements 
and waste production [1]. Membrane technology meets the requirements of P.I. for 
its low-energy consumption, mild operating conditions, good integration with 
conventional processes and easy scale-up. Membrane processes are applied in 
different sectors, from chemical to electronic technologies, including new water 
production, energy generation, tissue engineering and several separation processes, 
including nanofiltration and electrodialysis [2]. 

In the membrane processes utilized in wastewater treatment, the driving force 
is a pressure difference between the feed and the permeate side [3]. These processes 
are microfiltration (M.F.), ultrafiltration (U.F.), nanofiltration (N.F.) and reverse 
osmosis (R.O.), where the membranes present different pore sizes and so, are 
capable to separate different components ranging from suspended particles  (M.F.) 
to monovalent ions (R.O.). The membrane-mediated M.F., U.F., NF and R.O. processes 
are schematically illustrated in Figure 1. Characteristics of the membranes used in 
these processes are presented in Table 1.  

 
Figure 1. Schematic representation of the pressure drive membrane processes. 

 
Table. 1. Characteristics of the membranes used in pressure-driven membrane 

processes. Adapted from refs [3] and [4].  
 Microfiltration Ultrafiltration Nanofiltration Reverse Osmosis 

Pore-size, (m) 10-0.1 0.1-0.01 0.01–0.001 <1 nm 

Pressure, (bar) 1-4 1-8 5-30 20-65 

Separation 

mechanism 
Sieving  Sieving 

Sieving 

Charge Repulsion 
Solution Diffusion 

 
Membranes are categorized into two broad classes: polymeric and inorganic. The 

first ones are used at the industrial level in different separation processes considering 
their exciting properties and easy manufacturing [5, 6]. The polymers used for the 
preparation of M.F., U.F., NF, and reverse osmosis membranes are mainly 
polyethersulfone (P.E.S.), polysulfone (P.S.), cellulose acetate (C.A.), polyacrylonitrile 



 

(P.A.N.), polyvinylidene fluoride (PVDF), and polyamides (P.A.) owing to their high 
chemical, thermal and mechanical resistance [7]. However, this field's critical problem is 
the fouling that causes a decrease in membrane performance due to the accumulation of 
organic and inorganic materials on the surface and in the membranes' pores [8]. Another 
drawback is the trade-off between permeability and selectivity. Highly permeable 
membranes are usually less selective and viceversa [9]. Exciting alternatives to the 
polymeric membranes are the inorganic ones due to their high chemical and thermal 
stability, even though their application at an industrial scale is restricted due to high cost 
[10].  

Polymeric membranes have been prepared by different methods such as phase 
inversion, controlled stretching, interfacial polymerization, melt extrusion or 
electrospinning, depending on the preferred membrane morphology [11, 12]. Among 
these methods, phase inversion is commonly used for preparing dense and porous 
membranes with symmetric and asymmetric structures [7].  

In this mini-review, porous polymeric membranes' preparation using techniques 
based on the phase inversion process has been described. In particular, three techniques 
are introduced: nonsolvent-induced phase separation (NIPS), thermally induced phase 
separation (TIPS), and vapor-induced phase separation (V.I.P.S.). The critical factors of 
each technique that influence membrane morphology have been discussed. 

 
Polymeric membranes by the phase inversion process 

Polymeric membranes are widely used in different processes such as water 
desalination, gas separations, electrodialysis, and dialysis [13]. There are two types of 
polymeric membranes: rubbery and glassy. The first ones are characterized by very high 
mobility of the polymeric chains as their glass transition temperatures (Tg) remain below 
room temperature. Hence, they possess high free volume at room temperature (see 
Figure 2) [14, 15]. For this reason, membranes prepared by using rubbery materials 
present high permeability and low selectivity. Usually, rubbery polymers used in 
membrane preparation for gas separation processes are polydimethylsiloxane (PDMS), 
polyether block amide (P.E.B.A.X.; it consists of two monomers polyethylene oxide and 
polyamide) and polyvinyl alcohol (P.V.A.). In these materials, the permeation rate is 
controlled by the solubility, which is mainly determined by the ease of condensation of 
gas species (e.g., CO2 is more condensable than He or H2) [5, 16]. In comparison between 
PDMS and P.E.B.A.X. membranes, the last ones exhibit higher selectivities for the gas 
pairs CO2/N2 and CO2/CH4 due to the strong interaction of carbon dioxide the 
polyethylene oxide present in P.E.B.A.X. [16]. P.V.A. is also used to prepare CO2-selective 
membranes and improve gas separation performance by blending the P.V.A. with amino 
carriers of carbon dioxide [17, 18].  

Glassy polymers have very rigid structures since their Tg is above room 
temperature (see Figure 2) [15]. So, the polymeric chains act as obstacles to the gas 
molecules, and the glassy polymers have low permeability and high selectivity [19]. 



 

 
Figure 2. Free volume change for rubbery and glassy polymers. Adapted from ref. [15]. 

 
The glassy polymers essentially used to prepare commercial membranes are 

cellulose acetate, polysulfone, polyimide, polyamide, and poly(ether sulfone) [20]. The 
characteristics of some of these glassy polymers used for water treatment and gas 
separation processes are presented in Table 2. 

 
Table 2. Characteristics of commercial polymeric of N.F. and R.O. membranes. 

Membrane Manufacturer Top layer material pH range Rejection, % Ref. 

NANOFILTRATION 

NF70 Dow Filmtech 
Aromatic crosslinked 

polyamide 
3-9 95 %MgSO4 

[21] 

NF90 Dow Filmtech polyamide 3-10 
85%–95% NaCl 

>97% CaCl2 

NTR-729HF Hydranautics 
Poly(vinyl)alcohol/ 

polyamide 
2-12 70% NaCl 

NP030 Microdyn Nadire Polyethersulfone 1-14 80%–95% Na2SO4 

DK25040 Filtration Engineering Polyamide 2.3–11 30% CaCl2 

AFC80 PCI Membrane System Polyamide 1.5–10.5 80% NaCl 

NP010 Microdyn Nadire Polyethersulfone 1-14 
25%–40% 

Na2SO4 
[22] 

NP030 Microdyn Nadire Polyethersulfone 1-14 
80%–95% 

Na2SO4 

Reverse Osmosis 

AG4040C GE-Osmonics - 4-11 99.0% NaCl 

[21] 4040-HR Koch Polyamide 4-11 99.2% NaCl 

8040-SW-400-34 Koch Polyamide 4-11 99.5% NaCl 

SW30HR-380 Dow Filmtec - 2-11 99.7% NaCl [23] 

SC5100B Toray Cellulose Acetate 5.5-6.0 98.0 % NaCl [24] 

GAS SEPARATION 

Module Type Manufacturer Material Separation  

Hollow fiber Permea (Air Products) Polysulfone Air separation (O2/N2) 

[25, 26] 
- Air Liquid 

Polyimide 

Polyamide 
Hydrogen purification (H2/CO) 

- Cynara (Natco) Cellulose Acetate Acid gas treating (CO2/CH4) 

- Separex (U.O.P.) Cellulose Acetate Acid gas treating (CO2/CH4) 



 

As has been stated earlier, polymeric membranes have been prepared by a variety 
of methods such as phase inversion, interfacial polymerization, melt extrusion, and 
electrospinning [11, 12]; out of which phase inversion is the most popular one for 
preparing asymmetric and symmetric structures, with the possibility of controlling 
thickness, porosity and pore size [27]. A thermodynamically stable polymeric solution 
prepared through a demixing process, is transformed from liquid to solid state controlled 
[27, 28]. According to desolvation mechanisms, the phase inversion techniques applied 
for the membrane production are nonsolvent induced phase separation (NIPS), thermally 
induced phase separation (TIPS), and vapor induced phase separation (V.I.P.S.). 

In the immersion precipitation or nonsolvent induced phase separation (NIPS) 
process, a stable polymeric solution is cast on a support to form a thin film. Subsequently, 
the support is immersed in a coagulation bath containing a nonsolvent (usually water) 
for inducing the polymer precipitation through solvent and nonsolvent exchange [29, 
30]. The success of membrane preparation in the NIPS process depends on different 
factors: choice of a solvent nonsolvent system (completely miscible), the concentration 
of the polymer solution, coagulation bath composition, and film casting conditions [31]. 
The thermodynamic behavior of polymeric solution during the immersion-precipitation 
process is shown in Figure 3. Initially, the solution is located in a stable region (A). By 
immersing the solution (cast on support) in the nonsolvent, immediately starts the liquid-
liquid demixing and the polymeric solution reaches the metastable region (binodal 
region) (see Fig. 3a) [32]. The point t indicates the composition at the top of the film. This 
process is speedy (instantaneous demixing), and the membrane shows a finger-like 
structure with a thin skin layer. When the demixing is delayed, all film positions are in 
regions thermodynamically stable, and the demixing starts when more nonsolvent 
diffuses into the film. When this happens, the line crosses the binodal curve (see Fig. 3b) 
[32]. In this case, the membranes show a sponge-like structure with a dense top layer. 

 

 
Figure 3. Composition paths of the casted film after immersion in the nonsolvent: 

Instantaneous demixing and (b) Delayed demixing. 
 

The addition of a small amount of solvent in the coagulation bath permits forming 
a dense membrane because of a decrease in the mass exchange rate between solvent 
and nonsolvent, causing a delayed demixing [33]. Another essential aspect of being 
considered is the miscibility of the solvent and nonsolvent. High miscibility of solvent and 



 

nonsolvent produces a highly porous membrane. A reduced affinity between the solvent 
and nonsolvent causes delayed demixing, so an asymmetric membrane with a dense top 
layer is obtained [14]. The casting solution's temperature also influences the membrane's 
morphology due to its influence on solution viscosity.  

 As a consequence, it affects the solvent nonsolvent exchange rate during phase 
inversion [34]. The presence of an additive in the polymeric solution also affects the 
membrane morphology significantly [35]. It can accelerate or suppress pore formation. 
Cao et al. prepared PVDF membranes by NIPS and evaluated the effects of 1,2-propylene 
glycol (used as additive) and polymer concentration on the membrane structure [36]. The 
water flux increased with the additive content in the polymeric solution. It is well known 
that the additives influence the morphology of the membranes, interconnectivity of the 
pores and membrane hydrophilicity [37].  

Mixed matrix membranes were synthesized by NIPS using PVDF as polymer and 
lithium chloride (LiCl) as a pore-forming agent [38]. Different studies evidenced that LiCl 
improves membranes' water permeability by reducing their mean pore size and 
increasing porosity [39, 40]. In Figure 4, a comparison between the cross-sections of the 
pristine and mixed matrix membranes is shown. The mixed matrix membranes were 
symmetric and porous. The bottom side of the images displayed a spherulitic structure, 
and the top side a smooth layer. 

 

 
Figure 4. Membrane cross section of a) PVDF membrane, and b) MMM (22 wt.% of M.F.I. 

zeolite). Adapted from ref. [38]. 
 
Recently, PSf/C.A. membranes were prepared by NIPS and the effect of two 

additives on the membrane morphology was studied [41]. The additives used were the 
polyvinylpirrolidone (PVP) (a pore-forming agent) and the Pluronic F127 (PLU), a non-ionic 
surfactant. The membranes prepared with 3 wt. % of PVP exhibited macro-voids along the 
section. On the other hand, membranes prepared with 3 wt. % of PLU exhibited a finger-
like structure.  

When simple solvent evaporation causes the precipitation, the technique is called 
dry phase inversion technique [42] and the membrane presents a dense structure. When 
a solvent evaporation step is executed before phase inversion, the process is called dry-



 

wet phase inversion [43]. In this case, an initial evaporation step determines a skin layer's 
formation with a local increase of the polymer concentration. When the casted film is 
immersed in a coagulation bath, the skin layer acts as a barrier to solvent and nonsolvent 
diffusion, causing a delay in demixing [44]. Poly(ether ether ketone) with a cardo group 
(P.E.E.K.W.C.) was utilized for the preparation of membranes by dry/wet phase 
separation technique, using three chlorinated solvents; chloroform (T.C.M.), 
dichloromethane (D.C.M.) and 1,2-dichloroethane (D.C.E.) [45]. Membranes with dense 
skin layers were obtained using T.C.M. and D.C.M. solvents, while the membranes with a 
porous skin layer were obtained using D.C.E. solvent. Such a difference in the 
membranes' skin layer morphology resulted from distinct solvents' distinct volatility 
(D.C.M.> T.C.M.> D.C.E.).  

In the thermally induced phase separation (TIPS) technique, membrane formation 
is induced by decreased temperature [46]. The polymer is first dissolved in a "latent 
solvent" (substance that does not act as a solvent for the polymer at room temperature) 
at elevated temperature (near the melting point of the polymer) [47]. The solution is 
casted in the desired shape and then cooled down to induce phase separation and 
solidification.  Extraction of the latent solvent permits to obtain of membranes with 
porous structures [48]. This technique is used for preparing membranes with semi-
crystalline polymers that cannot be easily dissolved in solvents such as polypropylene 
(P.P.) and polyethylene (P.E.) [49-52]. Yeon et al. fabricated P.E. membranes with large 
pore diameters for manufacturing prismatic batteries [53]. Using soybean oil (S.B.O.) and 
dioctyl phthalate (D.O.P.) as diluents they prepared several ternary and binary mixtures 
(PE/SBO, PE/DOP and PE/DOP/SBO). The obtained experimental results indicated that the 
microporous membranes' pore size can be controlled by using a diluent mixture. The 
membranes fabricated from the ternary blends presented larger pores than those 
obtained with the binary blends. Table 3 summarizes the results of the works reported 
on the preparation of P.E. membranes using the TIPS technique.  

 

Table 3: Effect of the polymer-diluent mixture on the morphology of membranes 
prepared by TIPS technique.  

Polymer Diluent Extractant Membrane Morphology Ref. 

HDPE DOP/isoparaffin - 

Pore size(PE/DOP): 0.17 m 

Pore size(PEISOP): 0.07 m 

Pore size(PE/DOP/ISOP):0.07-0.5 m 

[54] 

PE Liquid Paraffine ethanol 
Pore size= 3-5 m 

Porosity= 50-60 % 
[55] 

PE Mineral Oil Trichloroethylene Porosity 5.9–53% [56] 

HDPE 
PP/clay 

platelets/SEPS 
- 

Pore size (PP/HDPE): 6.46 µm 

Pore size (PP/HDPE/SEPS): 3.82 µm 

Pore size (PP/HDPE/SEPS/clay): 2.02-

2.96 µ 

[57] 

LLDPE OPE/p-xylene - 
PE: smooth surface 

PE/OPE: fibrous 
[58] 

HDPE= = high density polyethylene; DOP= dioctyl phthalate; PP= polypropylene; SEPS= polystyrene-block-

poly(ethylene-ran-propylene)-block-polystyrene, 

 
In the vapor-induced phase separation (V.I.P.S.) process, the polymeric solution is 



 

casted on support and put in a chamber containing a vapor of nonsolvent saturated with 
a solvent [59]. The membrane formation occurs due to the diffusion of the nonsolvent 
into the casted film. In this method, the mass transfer rate is meager, which avoids macro-
voids formation [60]. This technique permits a better control of the membrane 
morphology. Porous membranes prepared by this technique are used in water treatment 
[61, 62] and the dense gas separation process [63, 64]. Peng and coworkers investigated 
the effect of different parameters such as exposition time, polymer content and relative 
humidity of air on PSf membrane structure [65]. Results obtained by them indicate a 
longer exposure time during the V.I.P.S. permits a dense skin layer. Furthermore, a finger-
like structure was obtained with a high polymer content; while, a low polymer content 
was favorable for a sponge-like structure. The humidity of air mainly affects the top 
surface rather than the cross-section. PVDF membranes were prepared by coupling NIPS 
and TIPS for M.F. and U.F. applications. Besides utilizing non-toxic solvents (triethyl 
phosphate, T.E.P.) in conformity with green chemistry principles, Bouyer et al. [66] 
prepared symmetric PVDF membranes with tailored properties. It was also possible to 
synthesize M.F. membranes with different pore sizes by varying the exposure time 
between 2.5 and 2.7 min. Recently, symmetric porous polybenzimidazole membranes 
were synthesized by V.I.P.S. and used as proton exchange membrane fuel cells. The 
membranes showed high porosity (72%) and good proton conductivity (70.8 mS cm-2 at 
180 °C) [67]. 

 
Conclusions 

For its low-energy consumption, mild operating conditions, good integration with 
conventional processes, membrane technology is applied for fresh water production, 
energy generation, tissue engineering and other separation processes. Polymeric 
materials play an important role in developing membranes due to their low cost, 
excellent processability and ample abundance. A large variety of techniques such as 
phase inversion, interfacial polymerization, controlled stretching, melt extrusion or 
electrospinning are used to fabricate polymer membranes. Phase inversion is a unique 
technique, which is usually used for preparing dense and porous membranes with 
symmetric and asymmetric structures. This mini-review is an introductory description of 
the polymeric membrane preparation using a technique based on the phase inversion 
process that has been provided. In particular, the attention has been focused on three 
techniques: nonsolvent induced phase separation (NIPS), thermally induced phase 
separation (TIPS), and vapor-induced phase separation (V.I.P.S.). The influence of the 
critical factors of each technique on the membrane morphology has been described.  
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