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Abstract: A simple and inexpensive method to obtain Si conical structures is proposed. The method
consists of a sequence of steps that include photolithography and metal assisted chemical etching
(MACE) to create porous regions that are dissolved in a post-etching process. The proposed process
takes advantage of the lateral etching obtained when using catalyst particles smaller than 40 nm for
MACE. The final shape of the base of the structures is mainly given by the shape of the lithography
mask used for the process. Conical structures ranging from units to hundreds of microns can be
produced by this method. The advantage of the method is its simplicity, allowing the production of
the structures in a basic chemical lab.
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1. Introduction

Different techniques have been developed in order to produce Si structures to be used in
applications such optoelectronics [1], energy storage [2], or sensors [3]. Among these techniques it is
possible to find reactive ion etching (RIE), inductively-coupled plasma (ICP)-RIE, or chemical assisted
ion beam etching (CAIBE); however, all of them require special equipment, like vacuum chambers or
plasma generators. On the other hand, electrochemical etching of Si has proved to be a good option
because it provides high control for Si dissolution. Nevertheless, etching complete wafers is complex,
since high current densities in the range of amperes are required, which derive in undesired heating
that makes necessary the use of high-quality cooling appliances.

On the other hand, the metal assisted chemical etching (MACE) technique does not require any
special equipment or facilities, and makes possible the fabrication of complex structures [4–6]. MACE is
performed by immersing a piece of semiconductor (commonly Si, but also other semiconductors like
Ge [7] or III-V semiconductors [8,9] can be used), previously coated with a catalyst (usually the metals
Au, Pt, or Ag [10]), in an HF based solution containing an oxidant agent (commonly H2O2, Na2S2O8 or
KMnO4 [11,12]). The metal catalyzes the release of electronic holes from the oxidant and, depending
on the potential energy difference between metal and semiconductor, it promotes their injection to the
semiconductor. In the most common etching case, Si is oxidized beneath or around the metallized
sections, and this oxide is dissolved by HF.

Despite it is possible to obtain different structures using MACE, the most of the reports on this
technique indicate that the etching occurs most probably in crystallographic directions (there are
fast etching planes and etch-stopper planes) or vertically [13]. However, it is also known that when
the catalyst particles have diameters smaller than 40 nm, they produce pores either vertically or
horizontally [14,15]. Furthermore, when MACE has been performed using particles with a dispersion
of sizes from 10 to 400 nm, thin pores (with diameters below 100 nm) and wide pores (with diameters
of hundreds of nanometers) were obtained vertically, while just thin pores were obtained horizontally.
By eliminating the most of the particles of sizes below 100 nm, mainly vertical porosification was
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obtained [16]. The vertical porosification of large particles is due to the much larger contact area below
than at the sides of these particles, considering that they are spherical. For lightly-doped p-type Si
wafers, for example, a larger contact area means a larger injection of electronic holes, which speeds the
etching rate up. The contact area plays an important role in MACE [17]. When the particles are smaller,
the probability is the same to etch either vertically or horizontally. With this equal probability, it is
possible to think about a porous section growing upon the time in a direction with an angle close to
45◦ with respect to the vertical (the same amount of particles may move in the x than in the y direction,
at similar velocity, producing that dy/dx = 1). To the knowledge of the authors, there are no reports to
date taking advantage of this effect.

In the present work, a methodology to obtain Si conical structures by MACE is proposed. It consist
of creating porous regions by MACE (previously defined by photolithography), which grow in angle
with the time (due to lateral and vertical porosification obtained with catalyst particles smaller than
40 nm), and removing them afterwards. This methodology brings more flexibility to the MACE process.
Additionally, it has the advantage of being simple, because the entire process could be performed in
basic chemical labs without the need of complex facilities or equipment. Arrays of conical structures
are important for different applications. They have been used as multielectrode sensing platforms
for neuronal or cardiac tissue [18]. Additionally, arrays of complete or truncated cones have been
used as antireflection layers [19] or to enhance the absorption of light [20], for different optical and
optoelectronic applications such as solar cells. Moreover, such arrays have been used to modify the
wetting properties of surfaces [21], achieving even super-repellency of hydrophobic surfaces [22].

2. Materials and Methods

p-type (100) Si wafers with resistivity of 15–25 Ω·cm were used as starting material. The fabrication
procedure to obtain the conical structures of the present work consists of a sequence of steps:
(a) Photolithography, (b) chemical deposition of Ag particles, (c) MACE etching, (d) dry oxidation of
the porosified sections, and (e) dissolution of oxide. Alternatively, at the end of the process one can
also dissolve the Ag particles in solutions of HNO3. The steps are schematized in Figure 1.

A quadratic pattern of circles was transferred by photolithography to a film of photoresist
previously deposited on the Si wafers. The photoresist acts as masking layer for the metal deposition.
The metallization can be done as sophisticated and controlled as in the case of thin film deposition by
sputtering [23–25], or as simple as in the case of chemical deposition of metal particles using just a
beaker [26]. For this report, it was used the simplest case. Ag particles were chemically deposited on
the uncovered sections of Si by immersion in a solution 0.1 mM of AgNO3 in a mixture of HF (48%),
H2O2 (30%) and H2O, in a proportion 2:3.4:94.6 v/v. High-density polypropylene beakers were used
for this and all the subsequent processes with HF, since that material endures adequately this acid.
The deposition time was 90 s, being performed in an ultrasonic bath in order to obtain a homogeneous
distribution of particles.

The etching process was performed using an aqueous solution containing HF (48%), H2O2 (30%)
as oxidant agent [27], and deionized water (DI), in a proportion 4:7:40 v/v at 30 ◦C. The etching time
was 5 h. With this process, porous Si sections were obtained. In order to obtain the final structures,
the porous sections of the Si samples need to be dissolved. To accomplish this, it is possible to use
anisotropic [28,29] or isotropic chemical etching techniques [30]; however, in order to dissolve mainly
the porous sections without important modification of the shape of the remaining Si, those techniques
were avoided in this work. The samples were submitted to thermal oxidation at 850 ◦C under O2 flux
(1 sccm) for 3 h. With this process, the porous Si sections were oxidized. To dissolve the oxide, the
samples were immersed in a solution of HF (48%) and H2O in a proportion 1:9 v/v for 60 s. Silicon
oxides are highly soluble in HF based solutions [31]. The final structures were analyzed with a JEOL
JSM-7500F (Tokyo, Japan) field emission scanning electron microscope.
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Figure 1. Schematic of the process to produce conical structures: (a) Photolithography, (b) deposition 
of Ag particles, (c) MACE, (d) dry oxidation, and (e) dissolution of oxide. 

3. Results and Discussion  

Figure 2a shows a SEM (scanning electron microscope) micrograph of a Si sample after Ag 
deposition. The Ag particles are the white sections in the micrograph. Their shape is semi‐spherical, 
but sometimes the particles coalesce giving rise to ovoidal forms. Semi‐spherical shapes are 
commonly obtained when depositing using low concentrated AgNO3 solutions [32]; the particles 
nucleate and start to grow until they coalesce and could form dendrites at longer deposition times 
[16]. It is also important to note that the particles are encrusted in Si. This happens because of the use 
of H2O2 during the deposition process: The Ag particles deposit on Si and catalyze the etching of Si 
at the same time, in the presence of the oxidant. However, the trenches are shallow because the 
deposition time is short (90 s). The deposited Ag particles have diameters in the range of 10 to 70 nm. 
A histogram of the particle size distribution (measured from SEM micrographs of the deposits) is 
presented in Figure 2b. As can be seen, the most of the particles have sizes below 40 nm. It was 
intended to have particles with sizes below 40 nm taking into account previous studies that suggest 
that with particles of those sizes the probability of etching vertically or horizontally is similar 
[16,18,19].  
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Figure 2. (a) SEM micrograph of the surface of a Si sample after deposition of Ag particles. (b) Size 
distribution of the Ag particles of the deposits. 

Figure 1. Schematic of the process to produce conical structures: (a) Photolithography, (b) deposition
of Ag particles, (c) MACE, (d) dry oxidation, and (e) dissolution of oxide.

3. Results and Discussion

Figure 2a shows a SEM (scanning electron microscope) micrograph of a Si sample after Ag
deposition. The Ag particles are the white sections in the micrograph. Their shape is semi-spherical,
but sometimes the particles coalesce giving rise to ovoidal forms. Semi-spherical shapes are commonly
obtained when depositing using low concentrated AgNO3 solutions [32]; the particles nucleate and
start to grow until they coalesce and could form dendrites at longer deposition times [16]. It is also
important to note that the particles are encrusted in Si. This happens because of the use of H2O2 during
the deposition process: The Ag particles deposit on Si and catalyze the etching of Si at the same time,
in the presence of the oxidant. However, the trenches are shallow because the deposition time is short
(90 s). The deposited Ag particles have diameters in the range of 10 to 70 nm. A histogram of the
particle size distribution (measured from SEM micrographs of the deposits) is presented in Figure 2b.
As can be seen, the most of the particles have sizes below 40 nm. It was intended to have particles with
sizes below 40 nm taking into account previous studies that suggest that with particles of those sizes
the probability of etching vertically or horizontally is similar [16,18,19].
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Figure 3 shows a SEM micrograph of the structures obtained after the MACE process, dry oxidation
and oxide dissolution. As can be observed, the structures are arrays of truncated cones. The bases and
tops of the cones differ a bit from the circular shape. The diameters of the cones are 52 ± 5 µm for the
top part and around 120 µm for the bottom part. They have a height of 60 µm.

Figure 4 shows a close-up to the structures. The walls of the cones is rough, with apparent
porosity. This is an indication that the oxidation time was not enough to oxidize the whole porous
Si sections. Because of this, the porous sections could not be completely dissolved during the last
treatment in HF solutions (that dissolve SiO2). However, the porosity of the cone walls is a good
indication of the transversal porosification. Taking a look at the surface of the cones (inset of Figure 4)
helps confirming the existence of transversal pores. They grow in the <100> directions. In principle,
one would not expect pores exactly at the surface; however, Ag particles may grow through the
photoresist (the photoresist is partially permeable to Ag+ ions during the deposition of Ag particles).
It is important to mention that the photoresist used for the experiments of the present work is not HF
resistant; nevertheless, it stands enough time for the Ag deposition, and it starts detaching during
the etching process. It is not necessary that the photoresist stands the whole etching time, since no
masking layer is necessary for this process (the etching rate in sections with Ag is hundreds of times
faster than the etching rate in sections without catalyst). The few Ag particles grown beneath the
photoresist could move in the X-Y plane during the etching process due to the availability of etchant in
the surface (the photoresist does not stand HF, and the acid could diffuse through or below it); for this
reason, it is possible to see transversal pores exactly at the surface.
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Figure 3. SEM micrograph of the obtained structures after the whole process. An array of truncated
cones is evident.

Taking a closer look to one entire truncated cone (see Figure 5), one can observe two different
slopes of the cone walls. Going up to down, the first slope is of 2.8, while the second is of 1.3. The steep
first slope is given by an excess of etchant; thus, the etching process is reaction-rate limited. As could
be observed in the histogram of Figure 2, there is a good number of particles larger than 40 nm.
Those particles have a higher probability of etching vertically. As they offer larger areas to catalyze
the decomposition of H2O2, they inject a larger number of electronic holes to the semiconductor
enabling a faster etching rate than with the smaller particles. It is known that the one dimensional
(vertical) etching rate increases with the catalyst particle size (in particular with the coverage area of
the catalyst) [10], but until certain limit of sizes, when the mass transfer beneath the catalyst particles is
limited, and the etching rate starts to decrease [11]. After the first 24 µm of etching in depth, the process
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is diffusion limited. It is common to observe diffusion limitation during a MACE process [33]. In this
way, the etching process is mainly controlled by the availability of etchant, and the effect of the particle
size is secondary. The difference between the vertical and the horizontal etching rate is about 30% in
this depth range (27.5 µm of lateral etching vs. 36 µm of vertical etching, producing a slope of 1.3).
The difference of etching rates in shallower depths is 180%. Following the tendency of the etching
fronts, evoluting in angle, one can predict that if the MACE etching time is longer, complete conical
structures (not truncated) could be obtained.

Micromachines 2020, 11, 402 5 of 9 

 

the particle size is secondary. The difference between the vertical and the horizontal etching rate is 
about 30% in this depth range (27.5 µm of lateral etching vs. 36 µm of vertical etching, producing a 
slope of 1.3). The difference of etching rates in shallower depths is 180%. Following the tendency of 
the etching fronts, evoluting in angle, one can predict that if the MACE etching time is longer, 
complete conical structures (not truncated) could be obtained.  

 

Figure 4. SEM micrograph closing up at the wall of the cones. Inset: Top view of the cones. 

 

Figure 5. SEM micrograph of a truncated cone indicating its dimensions. The dashed lines indicate 
the two slopes of the cone walls. 

Figure 6 shows a top view of the pattern of photoresist used during the etching process 
(photograph of the left), in contrast to the pattern of truncated cones obtained (SEM micrograph of 
the right). The photograph was captured with a portable optical microscope equipped with a CCD 
(charge‐coupled device) camera. The dots of photoresist deviate a bit from the circular shape due to 
the resolution of the photomask, which was fabricated with a conventional paper printer. The 
diameter of the dots of the original pattern is of about 120 µm, with a pitch of 230 µm. The final 

Figure 4. SEM micrograph closing up at the wall of the cones. Inset: Top view of the cones.

Micromachines 2020, 11, 402 5 of 9 

 

the particle size is secondary. The difference between the vertical and the horizontal etching rate is 
about 30% in this depth range (27.5 µm of lateral etching vs. 36 µm of vertical etching, producing a 
slope of 1.3). The difference of etching rates in shallower depths is 180%. Following the tendency of 
the etching fronts, evoluting in angle, one can predict that if the MACE etching time is longer, 
complete conical structures (not truncated) could be obtained.  

 

Figure 4. SEM micrograph closing up at the wall of the cones. Inset: Top view of the cones. 

 

Figure 5. SEM micrograph of a truncated cone indicating its dimensions. The dashed lines indicate 
the two slopes of the cone walls. 

Figure 6 shows a top view of the pattern of photoresist used during the etching process 
(photograph of the left), in contrast to the pattern of truncated cones obtained (SEM micrograph of 
the right). The photograph was captured with a portable optical microscope equipped with a CCD 
(charge‐coupled device) camera. The dots of photoresist deviate a bit from the circular shape due to 
the resolution of the photomask, which was fabricated with a conventional paper printer. The 
diameter of the dots of the original pattern is of about 120 µm, with a pitch of 230 µm. The final 

Figure 5. SEM micrograph of a truncated cone indicating its dimensions. The dashed lines indicate the
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Figure 6 shows a top view of the pattern of photoresist used during the etching process (photograph
of the left), in contrast to the pattern of truncated cones obtained (SEM micrograph of the right).
The photograph was captured with a portable optical microscope equipped with a CCD (charge-coupled
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device) camera. The dots of photoresist deviate a bit from the circular shape due to the resolution of
the photomask, which was fabricated with a conventional paper printer. The diameter of the dots of
the original pattern is of about 120 µm, with a pitch of 230 µm. The final structures have an upper
diameter of 52 ± 5 µm, with a lower diameter in the range of 120 µm (as the original pattern).
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Figure 6. Left: Photograph of the pattern of photoresist used during the process. Right: SEM
micrograph of a top view of the array of truncated cones.

The fact that the top of the cones does not have the same shape than the dots of photoresist could
be explained with the fact that the etching occurs mainly in <100> directions (see Figure 4). The etching
profile of lateral pores, saw from above, is schematized in Figure 7. The dots of the figure represent
Ag particles, while the straight lines represent the pores. All the straight lines have the same length,
considering equal etching rates in the [100] and [010] directions. It is clear that the region without lines
(pores) is not exactly a circle. It is also possible to observe that there are sections with lines (pores)
just in one direction, thus the density of pores in those sections is just the half. Sections with pores in
two directions can be oxidized faster, due to the higher density of pores, which provide larger surface
areas to be oxidized. These oxidized sections can be easily removed in HF solutions. One could still
observe pores in the walls of the cones of this work. This should indicate that the oxidation of all
porous sections was not complete (the oxidation of the sections with pores in just one direction takes
longer). If the oxidation time would be reduced even more, the cones would tend to have a flower-like
shape (the sum of the sections with no lines and the sections with lines in one direction of Figure 7).
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To prove that the proposed process to produce conical structures works also in the micron range,
an experiment was performed using a mask with a quadratic array of circular dots of 1.5 µm, with
pitch of 3 µm. A micrograph of the resulting structures is shown in Figure 8a. Figure 8b shows a
micrograph of the cross-section of one of the micro-cones. As can be observed, no pores cross the
structure, supporting the theory of cone formation. Despite the surface of the cones looks porous,
the bulk is solid. The lines observed in the cross section are a cleavage artifact.
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Figure 8. SEM micrographs of micron sized truncated cones produced by the methodology of this
work. (a) Overview; (b) cross-section of a cone.

4. Conclusions

Transversal porosification of Si by MACE using Ag particles of sizes smaller of 40 nm has been
used as basis to produce conical structures. At etching depths smaller than 24 µm, porosification is
controlled by the reaction rate, producing steeper cone walls. Deeper etching is limited by the diffusion
of the etchant, producing a reduction of the slope of the cone walls. Transversal porosification occurs
mainly in the <100> direction. Due to this, the final cross-sectional shapes of the cones do not follow
exactly the shape of the patterns of the photolithography mask. It was proved that the methodology
works to produce conical structures of sizes from units to hundreds of micrometers, and it could be
developed in basic chemical labs without complex equipment.
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